UC Berkeley's and Caltrans' new cloud-based data hub

Qijian Gan
Postdoctoral Researcher
PATH
University of California, Berkeley
qgan@berkeley.edu

For the TRB Workshop on Big Data Applications and Methods in Transportation

January 7th, 2018
Outline

- Introduction
- Architecture
- Application Examples
- Conclusion
Introduction
Why ICM (Integrated Corridor Management)?

- Traffic is getting worse and we cannot only build more roads
- To improve network performance, it is time to consider corridor-wide management that operates the network in a more “coordinated” way
- TSM&O (Transportation Systems Management and Operations)
- Caltrans created a new statewide program: **Connected Corridors**
- **Pilot in LA**: Traffic in LA is one of the worst in the U.S. *(Source: TTI 2015 Urban Mobility Scorecard)*
What is Connected Corridors?

- A statewide program – https://connected-corridors.berkeley.edu/home
- The integration of multiple components into a traffic management system
 - Not a simple piece of technology
 - A total entity made up of people, organizations, hardware, and software
A significant number of daily traffic incidents
- Heavily instrumented: good sensing coverage
- Cooperation of cities and the county
- Arterial network has some capacity to accommodate additional traffic
I-210 Pilot ICM: Connected Systems
The PATH Connected Corridors Team

Senior Leadership

Alex Bayen
Thomas West
Joe Butler

Faculty

Alex Bayen
Adib Kanafani
Alex Skabardonis

Research Staff

Francois Dion
Anthony Patire
Gabriel Gomes
Qijian Gan

Program Staff

Brian Peterson
Shivani Bongani
Jeny Govindan
Gary Gremaux
Michelle Harrington
Tom Kuhn
Cindy Li
Greg Merritt
Sean Morris
Jessica Rojas
Laman Sadaghiani
Nathaniel Titterton

Caltrans Partners

Nick Compin
Raju Porandla
Allen Chen
Farid Nowshiravan
Technical Architecture
High Level Data Flow

Data Hub

Amazon Web Services

Data Sources/TMCs

Decision Support System (DSS)

Corridor Management System (CMS)

Control Targets/TMCs
Design Challenges

- Flexibility & Scalability ⟷ Amazon Web Services
- Different data types ⟷ Different storage implementations
- Data quality ⟷ Data processing and transformation
- Computation ⟷ SPARK with Machine Learning
- Data movement ⟷ Kafka/ActiveMQ messaging
- Process control & Orchestration ⟷ Netflix Conductor for work flows
Connected Corridors ICM Architecture
Data Processing Strategies

- **Real Time Data Streams**
 - Data from field sensors (freeway & arterial), intersection signals, and probes
 - High frequency & high volume & low relational content
 - Current solution:
 - Kafka + SPARK + Cassandra

- **Heterogeneous Sources**
 - Data for Intersection Signal Inventory/State
 - Low frequency & with different subtleties & more relational content
 - Current solution:
 - Mongo + Kafka/ActiveMQ + Postgres

- **Homogeneous Sources**
 - Data for Ramp Meter Inventory/State
 - Low frequency & with a common format & more relational content
 - Current solution:
 - Kafka/ActiveMQ + Postgres
Major Data Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Information Type</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasadena</td>
<td>Intersection signal</td>
<td>Pasadena TMC</td>
</tr>
<tr>
<td>Duarte</td>
<td>Intersection signal</td>
<td>County TMC</td>
</tr>
<tr>
<td>Monrovia</td>
<td>Intersection signal</td>
<td>County TMC</td>
</tr>
<tr>
<td>Arcadia</td>
<td>Intersection signal</td>
<td>Arcadia TMC</td>
</tr>
<tr>
<td>LA County</td>
<td>Intersection signal</td>
<td>County TMC</td>
</tr>
<tr>
<td>Caltrans FW Traffic</td>
<td>Loop sensing</td>
<td>Caltrans ATMS</td>
</tr>
<tr>
<td>Caltrans FW Ramps</td>
<td>Ramp meters</td>
<td>Caltrans ATMS</td>
</tr>
<tr>
<td>Caltrans FW CMS</td>
<td>DMS</td>
<td>Caltrans ATMS</td>
</tr>
<tr>
<td>Caltrans Intersections</td>
<td>Intersection signal</td>
<td>TSMSS</td>
</tr>
<tr>
<td>Caltrans Video</td>
<td>Video</td>
<td>via RIITS</td>
</tr>
<tr>
<td>Caltrans FW Lane closure</td>
<td>Lane status</td>
<td>LCS</td>
</tr>
<tr>
<td>Caltrans incident</td>
<td>Incident</td>
<td>Caltrans ATMS</td>
</tr>
<tr>
<td>210 LCS</td>
<td>Lane status</td>
<td>High speed rail system</td>
</tr>
<tr>
<td>RIITTS Environmental sensing</td>
<td>Environmental</td>
<td>RIITTS</td>
</tr>
<tr>
<td>RIITTS Transit</td>
<td>Transit</td>
<td>RIITTS</td>
</tr>
<tr>
<td>RIITTS Video</td>
<td>Video</td>
<td>RIITTS</td>
</tr>
<tr>
<td>Gold line transit</td>
<td>Transit</td>
<td>NextBus</td>
</tr>
<tr>
<td>511 (Out only)</td>
<td>Response plan information</td>
<td></td>
</tr>
<tr>
<td>Bluetooth traffic</td>
<td>Travel time</td>
<td>County TMC</td>
</tr>
</tbody>
</table>
Real-time Data Streams

Data Example: Arterial Sensor Data

<table>
<thead>
<tr>
<th>DetectorID</th>
<th>Date</th>
<th>Time</th>
<th>State</th>
<th>Speed</th>
<th>Occupancy</th>
<th>Volume</th>
<th>AvgSpeed</th>
<th>AvgOccupancy</th>
<th>AvgVolume</th>
</tr>
</thead>
<tbody>
<tr>
<td>307502</td>
<td>20170100</td>
<td>48541</td>
<td>OPERATIONAL</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>50.00</td>
<td>1.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170104</td>
<td>34715</td>
<td>OPERATIONAL</td>
<td>15.00</td>
<td>6.00</td>
<td>240.00</td>
<td>21.00</td>
<td>7.00</td>
<td>325.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170105</td>
<td>71725</td>
<td>OPERATIONAL</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>50.00</td>
<td>1.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170109</td>
<td>75063</td>
<td>OPERATIONAL</td>
<td>24.00</td>
<td>10.00</td>
<td>600.00</td>
<td>26.00</td>
<td>9.00</td>
<td>522.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170122</td>
<td>82462</td>
<td>OPERATIONAL</td>
<td>16.00</td>
<td>7.00</td>
<td>260.00</td>
<td>21.00</td>
<td>6.00</td>
<td>267.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170123</td>
<td>22357</td>
<td>OPERATIONAL</td>
<td>23.00</td>
<td>4.00</td>
<td>240.00</td>
<td>15.00</td>
<td>3.00</td>
<td>137.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170123</td>
<td>47839</td>
<td>OPERATIONAL</td>
<td>24.00</td>
<td>8.00</td>
<td>480.00</td>
<td>23.00</td>
<td>13.00</td>
<td>658.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170127</td>
<td>28596</td>
<td>OPERATIONAL</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170128</td>
<td>54630</td>
<td>OPERATIONAL</td>
<td>0.00</td>
<td>97.00</td>
<td>30.00</td>
<td>1.00</td>
<td>96.00</td>
<td>52.00</td>
</tr>
<tr>
<td>307502</td>
<td>20170129</td>
<td>1510</td>
<td>OPERATIONAL</td>
<td>15.00</td>
<td>24.00</td>
<td>1200.00</td>
<td>19.00</td>
<td>22.00</td>
<td>1043.00</td>
</tr>
</tbody>
</table>
Heterogeneous Sources

Data Example: Intersection Signal Inventory

<table>
<thead>
<tr>
<th>OrgID</th>
<th>IntersectionID</th>
<th>Date</th>
<th>Time</th>
<th>SignalType</th>
<th>Description</th>
<th>MainStreet</th>
<th>CrossStreet</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:1</td>
<td>3075</td>
<td>20170626</td>
<td>42943</td>
<td>170 LACO IV</td>
<td>Foothill / Second</td>
<td>Foothild Blvd</td>
<td>Second Ave</td>
<td>34.151051</td>
<td>-118.025402</td>
</tr>
<tr>
<td>5:1</td>
<td>3076</td>
<td>20170626</td>
<td>42944</td>
<td>170 LACO IV</td>
<td>Foothill / First</td>
<td>Foothild Blvd</td>
<td>First Ave</td>
<td>34.151014</td>
<td>-118.026533</td>
</tr>
<tr>
<td>5:1</td>
<td>3077</td>
<td>20170626</td>
<td>42945</td>
<td>2070 D4 I SL</td>
<td>Foothill / Santa Anita</td>
<td>Foothild Blvd</td>
<td>Santa Anita Ave</td>
<td>34.150945</td>
<td>-118.035164</td>
</tr>
<tr>
<td>5:1</td>
<td>3078</td>
<td>20170626</td>
<td>42946</td>
<td>170 LACO IV</td>
<td>Foothill / Baldwin</td>
<td>Foothild Blvd</td>
<td>Baldwin Ave</td>
<td>34.150958</td>
<td>-118.030237</td>
</tr>
<tr>
<td>5:1</td>
<td>3079</td>
<td>20170626</td>
<td>42948</td>
<td>170 LACO IV</td>
<td>Colorado / Baldwin</td>
<td>Colorado St</td>
<td>Baldwin Ave</td>
<td>34.148526</td>
<td>-118.030245</td>
</tr>
<tr>
<td>5:1</td>
<td>3080</td>
<td>20170626</td>
<td>42887</td>
<td>2070 D4 I SL</td>
<td>Baldwin / Gate 7</td>
<td>Baldwin Ave</td>
<td>Gate 7</td>
<td>34.142715</td>
<td>-118.051142</td>
</tr>
<tr>
<td>5:1</td>
<td>3081</td>
<td>20170626</td>
<td>42888</td>
<td>2070 D4 I SL</td>
<td>Baldwin / Gate 8</td>
<td>Baldwin Ave</td>
<td>Gate 8</td>
<td>34.138967</td>
<td>-118.051011</td>
</tr>
<tr>
<td>5:1</td>
<td>3082</td>
<td>20170626</td>
<td>42898</td>
<td>2070 D4 I SL</td>
<td>Baldwin / Gate 9</td>
<td>Baldwin Ave</td>
<td>Gate 9</td>
<td>34.136753</td>
<td>-118.054136</td>
</tr>
<tr>
<td>5:1</td>
<td>3091</td>
<td>20170626</td>
<td>42890</td>
<td>2070 D4 I SL</td>
<td>Baldwin / Gate 10</td>
<td>Baldwin Ave</td>
<td>Gate 10</td>
<td>34.134092</td>
<td>-118.054322</td>
</tr>
<tr>
<td>5:1</td>
<td>3092</td>
<td>20170626</td>
<td>42891</td>
<td>2070 D4 I SL</td>
<td>Huntington / Baldwin</td>
<td>Huntington Blvd</td>
<td>Baldwin</td>
<td>34.131693</td>
<td>-118.054503</td>
</tr>
<tr>
<td>5:1</td>
<td>3093</td>
<td>20170626</td>
<td>42892</td>
<td>2070 D4 I SL</td>
<td>Huntington / Gate 1</td>
<td>Huntington Blvd</td>
<td>Gate 1</td>
<td>34.131808</td>
<td>-118.051978</td>
</tr>
<tr>
<td>5:1</td>
<td>3094</td>
<td>20170626</td>
<td>42893</td>
<td>2070 D4 I SL</td>
<td>Huntington / La Cadena</td>
<td>Huntington Blvd</td>
<td>La Cadena</td>
<td>34.131757</td>
<td>-118.046656</td>
</tr>
<tr>
<td>5:1</td>
<td>3095</td>
<td>20170626</td>
<td>42894</td>
<td>2070 D4 I SL</td>
<td>Huntington / Michilinda</td>
<td>Huntington Dr</td>
<td>Michilinda Ave</td>
<td>34.130806</td>
<td>-118.067429</td>
</tr>
<tr>
<td>5:1</td>
<td>3096</td>
<td>20170626</td>
<td>42895</td>
<td>2070 D4 I SL</td>
<td>Huntington / Sunset</td>
<td>Huntington Dr</td>
<td>Sunset Blvd</td>
<td>34.130945</td>
<td>-118.065124</td>
</tr>
</tbody>
</table>
Homogeneous Sources

Ramp Meter Inventory/State → Ramp Meter Reader → Ramp Meter Processor → ActiveMQ/Kafka → Postgres/PostGIS → DSS

Ramp Meter Reader → ActiveMQ/Kafka

Ramp Meter Processor → ActiveMQ/Kafka
Orchestration – Command Gateway

- **Inside the data hub: Independent services connected by messaging**
 - Each service has specific functions without knowledge of other services
 - Messaging connects services for data flows and control flows

- **External Interface: Independent pipelines with workflow and data flow control**
 - Each data pipeline has no knowledge of the other pipelines or how to communicate with the other pipelines
 - The knowledge of workflow and message routing stays in a central place - Command Gateway
Application Examples
Machine Learning – Flow Prediction

Three models from Mlib currently deployed in the Data Hub:
- Gradient boosted tree (Best Performance)
- Random forest
- Linear autoregressive model

Flow prediction at a mainline sensor

Prediction Horizon

Prediction Error

Data required for prediction
Up-to-date model parameters
Prediction outputs
Freeway Traffic Estimation

- Real-time PeMS Data
- Freeway Network

Cell Transmission Model (CTM)

Ensemble Kalman Filter (EnKF)

Estimated Traffic States (Flow, Density, Speed)
Arterial Queue Estimation

- Arterial Detector Data
- Arterial Signal Phasing Data
- Intersection Road Geometry

Data Hub ➔ Arterial Traffic State Estimation ➔ Estimated Traffic Queues (Left-Turn, Through, Right-Turn)

• Left-Turn Detector
• Advance Detector 1
• Advance Detector 2

Resulting Queue Estimates
Arterial Data Quality and Detector Health Analysis

- Data quality and detector health analysis (from intersection-level to network-level)
- Will extend to the analysis of Traffic Signal Performance in the near future
Conclusion
UC Berkeley's and Caltrans’ Data Hub

- **The cloud based data hub is:**
 - Designed for Efficiency, Reliability, and Scalability.
 - A new paradigm for managing transportation big data
 - Playing a key role in the Corridor Management System
 - Planned for deployment in late 2018 or early 2019

- **We (Caltrans & PATH) are planning to open source the software and are happy to discuss our design**
 - Research/Project Collaboration
 - Prof. Alex Bayen (bayen@berkeley.edu)
 - Joe Butler (joebutler@path.berkeley.edu)
 - Data Hub
 - Brian Peterson (brian.peterson@berkeley.edu)
 - Model Development
 - Qijian Gan (qgan@berkeley.edu)
Thank you!
Supporting Slides
/Q&A Support
Technology Stack (1/2)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Purpose</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java 7/8</td>
<td>Primary server-side programming language/framework</td>
<td>Broadly understood, easy to find resources, lots of experience/tools</td>
<td>Can be complex</td>
</tr>
<tr>
<td>Cassandra (OS/Commercial) 3.10</td>
<td>High volume, real time time-series data (sensing/probe)</td>
<td>Very fast with large data volumes, highly scalable, fault tolerant</td>
<td>No ad-hoc querying, limited talent/resources</td>
</tr>
<tr>
<td>MongoDB (OS/Commercial) 3.4.4</td>
<td>Transformation of complex relational structures</td>
<td>Document storage (schema-less), very fast querying</td>
<td>Limited talent/resources</td>
</tr>
<tr>
<td>Drools Community v.6.5.0</td>
<td>Rules engine</td>
<td>Widely used java rules engine, large production base</td>
<td>Community version has limited support</td>
</tr>
<tr>
<td>Postgres 9.6.2</td>
<td>Relational data store</td>
<td>Large installed base, used within Caltrans already, easy to find resources, PostGIS for geospatial, AWS hosted service</td>
<td>Not as scalable for extremely large data sets</td>
</tr>
<tr>
<td>Spark 2.1.0</td>
<td>High speed analytics and stream processing (sensor/probe), machine learning platform</td>
<td>Exceptionally fast and scalable processing, AWS hosted service</td>
<td>Limited talent/resources</td>
</tr>
<tr>
<td>Tomcat 8.5.15</td>
<td>WS</td>
<td>Large installed base</td>
<td></td>
</tr>
</tbody>
</table>
Technology Stack (2/2)

<table>
<thead>
<tr>
<th>Technology</th>
<th>Purpose</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveMQ 5.14.5</td>
<td>Decoupling mechanism, control messaging, status messaging, large structure data messaging</td>
<td>Significant installed base, broadly understood, capable of large messages</td>
<td>Not the fastest gun in town, not as easily scalable</td>
</tr>
<tr>
<td>Kafka 0.10.20</td>
<td>High speed, high volume data messaging</td>
<td>Built for speed, message persistence, scalable, fault tolerant</td>
<td>Reputation for being temperamental, limited to smaller message sizes, limited talent/resources</td>
</tr>
<tr>
<td>Graylog</td>
<td>System Logging</td>
<td>Simple, large installed base</td>
<td></td>
</tr>
<tr>
<td>Camel 2.18.4</td>
<td>Data hub – CMS/DSS interface and switchboard, protocol transformations</td>
<td>Significant installed base, broadly understood</td>
<td></td>
</tr>
<tr>
<td>Conductor 1.8.0</td>
<td>Data pipeline and DSS/CMS/DH command orchestration and workflow management</td>
<td>Extensive production experience at very high scale (Netflix), flexible</td>
<td></td>
</tr>
</tbody>
</table>
Primary AWS Services

<table>
<thead>
<tr>
<th>Technology</th>
<th>Purpose</th>
<th>Key uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC2</td>
<td>Server processing on demand</td>
<td>Estimation, Prediction, data processing, Persistence workers, Cassandra, MongoDB, other custom workers, messaging, logging</td>
</tr>
<tr>
<td>RDS</td>
<td>Postgres w/PostGIS</td>
<td>Modeling data store (models, corridor asset model element information)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data hub relational store (corridor asset post transformation)</td>
</tr>
<tr>
<td>S3</td>
<td>Storage</td>
<td>Stateful processing</td>
</tr>
<tr>
<td>Security Groups/ VPC/IAM</td>
<td>Cloud/network isolation/identity & access management</td>
<td>Networking/Security/Cloud access</td>
</tr>
<tr>
<td>EMR</td>
<td>Hosted Spark</td>
<td>Analytics, data quality, machine learning</td>
</tr>
<tr>
<td>Cloud Init, Cloud Formation</td>
<td>Deployment</td>
<td>Instance automation, cloud initialization and maintenance</td>
</tr>
<tr>
<td>CloudWatch, CloudTrail</td>
<td>Monitoring</td>
<td>Monitoring</td>
</tr>
<tr>
<td>Key Management Service</td>
<td>Key Management</td>
<td>Security, encryption</td>
</tr>
</tbody>
</table>
Orchestration - Overview
Decision Support System – Design Detail
Aimsun Modeling, Calibration, & Prediction

- The Aimsun Model
 - ~1000 lane miles of road, ~5000 traffic detectors, 459 signalized intersections and control plans, 45 freeway ramp meters, Metro gold line and all bus routes

- Data Inputs
 - Current
 - 2008 SCAG data, observed flow counts from the field, signal timing plans, ramp metering plans, etc.
 - In the near future
 - Predicted demands, Estimated traffic states, Response plans, etc.
Development of Response Plans & Rules Engine

- ~100 alternate arterial routes have been identified
- ~50 message signs to be installed

Response to a given incident may include 1 to 3 alternate routes from the “menu” of ~300 preliminary routes

Factors affecting choice
- Location of incident
- Prevailing traffic conditions on freeway and arterials
- Ability of route to provide effective relief
- Local defined constraints