Pasadena Testbed
Preliminary Analysis Plan

Project Status Meeting

Washington D.C.
March 24th, 2014
Multi-resolution model development process

Geographical scope: Pasadena and surrounding area

Network
- NAVTEQ 2011Q1 navigation
- NAVTEQ Traffic Patterns link speed profiles by day of week
- Detailed lane topology
- Junction geometry/control
- Ready for Vissim export
Pasadena Model Environment

- Visum Dynamic User Equilibrium (DUE) assignment module
 - Multi-class assignment
 - Analytical DTA model on link flows

- Spatial and temporal scope
 - Weekday AM 3 hours (6-9)
 - Weekday PM 4 hours (3-7)

- “Cross-walk” to travel demand model (TransCAD)
 - Zoning/connectors
 - SOV/HOV by segments, e.g. HBW/HBO/NHB, etc. (12 segments)

- Up to date calibration data
 - 2013 traffic counts
 - Corridor travel times
Pasadena Model Architecture

- **Vissim for any sub-area of city model**
 - Arterial traffic
 - SCATSim adaptive control (existing)
 - Light rail
 - Bus transit
 - Freeways (incl. ramp meters)

- **City of Pasadena 3-step model**
 - Trip generation and distribution
 - DTA
 - Control + geometry details
 - GTFS transit data

- **Regional travel model**
 - 24/7 demand data (from cell phone data)
Analysis Goals and Objectives

- Functional Identification and Description
- Use Cases
- Research Questions and Hypotheses
- Performance Indicators (PI)
- Study Design
- Measures and Sensors
- Data Acquisition
- Data Decoding
- Operationalization
- Data Analysis & PI Validation
- Analysis of Research Questions and Hypotheses
- Socio-Economic Impact Assessment
- System and Functional Analysis
- Specification
- Close Relation
- Implementation
- Close Relation
- Close Relation
- Database
- Measurements → PI
- System and Functional Analysis
- Study Design
- Operationalization
- Close Relation
- Close Relation
- Close Relation
- Data Analysis & PI Validation
- Analysis of Research Questions and Hypotheses
- Socio-Economic Impact Assessment
- System and Functional Analysis
- Specification
- Close Relation
- Close Relation
- Close Relation
- Database
- Measurements → PI
- System and Functional Analysis
- Study Design
- Operationalization
- Close Relation
- Close Relation
- Close Relation
- Data Analysis & PI Validation
- Analysis of Research Questions and Hypotheses
- Socio-Economic Impact Assessment
- System and Functional Analysis
- Specification
- Close Relation
- Close Relation
- Close Relation
- Database
- Measurements → PI
- System and Functional Analysis
- Study Design
- Operationalization
- Close Relation
- Close Relation
- Close Relation
- Data Analysis & PI Validation
- Analysis of Research Questions and Hypotheses
- Socio-Economic Impact Assessment
- System and Functional Analysis
- Specification
Research Questions – Synergies and Conflicts

- Are ATDM strategies more beneficial when implemented in isolation or in combination (e.g., combinations of ATM, ADM, or APM strategies)?
 - The Pasadena testbed will allow for the simulation analysis of any combination of ATDM strategies.

- Which ATDM strategy or combinations of strategies yield the most benefits for specific operational conditions?
 - The Pasadena testbed will allow for testing of specific ATDM combinations under any of the four assumed operational conditions.

- What ATDM strategies or combinations of strategies conflict with each other?
 - Through the evaluation of different ATDM strategy combinations, any potential conflicts of strategies with each other will be identified.
Research Questions – Prediction Accuracy

- Which ATDM strategy or combination of strategies will benefit the most through increased prediction accuracy and under what operational conditions?
 - Analyzing specific ATDM combinations under any of the four assumed operational conditions with different levels of prediction accuracy will help answer this research question.

- Are all forms of prediction equally valuable, i.e., which attributes of prediction quality are critical (e.g., length of prediction horizon, prediction accuracy, prediction speed, and geographic area covered by prediction) for each ATDM strategy?
 - The Pasadena testbed will allow for testing each specific ATDM strategy under various forms of prediction performance.
Research Questions – Active Management or Latency

- Are the investments made to enable more active control cost-effective?
 - The Pasadena testbed will provide performance measures that will allow for answering this research question.

- Which ATDM strategy or combinations of strategies will be most benefited through reduced latency and under what operational conditions?
 - Analyzing specific ATDM combinations under any of the four assumed operational conditions with different levels of latency will help answer this research question.

- Which ATDM strategy or combinations of strategies will be most beneficial for certain modes and under what operational conditions?
 - The Pasadena testbed will provide performance measures by traveler type that will allow for answering this research question.

- Which ATDM strategy or combinations of strategies will be most beneficial for certain facility types (freeway, transit, arterial) and under what operational conditions?
 - The Pasadena testbed will provide performance measures by traveler type that will allow for answering this research question.

- Which ATDM strategy or combinations of strategies will have the most benefits for individual facilities versus system-wide deployment versus region-wide deployment and under what operational conditions?
 - This research question will be difficult to answer as most ATDM strategies will have to be “virtually deployed” on a subset of all possible locations. For example, adaptive signal control will be modeled at the corridor in downtown Pasadena where it is currently deployed in the field, but an expansion of that system may not be possible.
Research Questions – Prediction, Latency, and Coverage

- What is the tradeoff between improved prediction accuracy and reduced latency with existing communications for maximum benefits?
 - The Pasadena testbed will allow for testing scenarios that will provide answers to this research question.

- What is the tradeoff between prediction accuracy and geographic coverage of ATDM deployment for maximum benefits?
 - The Pasadena testbed will allow for testing scenarios that will provide answers to this research question.

- What is the tradeoff between reduced latency (with existing communications) and geographic coverage for maximum benefits?
 - The Pasadena testbed will allow for testing scenarios that will provide answers to this research question.

- What will be the impact of increased prediction accuracy, more active management, and improved robust behavioral predictions on mobility, safety, and environmental benefits?
 - With the exception of safety benefits, the Pasadena testbed will allow for testing scenarios that will provide answers to this research question.

- What is the tradeoff between coverage costs and benefits?
 - The Pasadena testbed will provide performance measures that will allow for answering this research question.
Research Questions – CV Technology and Prediction

- Are there forms of prediction that can only be effective when coupled with new forms of data, such as connected vehicle data?
 - The Pasadena testbed would allow for testing the effectiveness of different forms of prediction methods if they are supplied to the modeling team. The current assumption is that the testbed will only include one prediction method. However, this method can be configured for various levels of accuracy, coverage, quality, etc.
Research Questions – ST and LT Behaviors

- Which ATDM strategy or combinations of strategies will have the most impact in influencing short-term behaviors versus long-term behaviors and under what operational conditions?
 - The Pasadena testbed will NOT provide performance measures that will allow for answering this research question.

- Which ATDM strategy or combinations of strategies will yield most benefits through changes in short-term behaviors versus long-term behaviors and under what operational conditions?
 - The Pasadena testbed will NOT provide performance measures that will allow for answering this research question.
Analysis Hypotheses

- ATDM strategies are most effective if deployed in combinations and not in isolation.

- ATDM strategies yield benefits under all operational conditions.

- There are no ATDM strategies that conflict with each other.

- All ATDM strategies relying on prediction benefit from increased prediction accuracy under all operational conditions.

- ATDM strategies benefit the most from increased prediction accuracy and geographic coverage.

- The investments to enable more active control are very cost-effective.

- ATDM strategies affecting facility and lane choice and operation benefit the most from reduced latency; however, this applies to all operational conditions.
Analysis Hypotheses

- ATDM strategies are most effective for the modes and facilities they are designed for; i.e., ATM and APM for traffic and ADM for transit. However, secondary cross-benefits between the modes and their respective ATDM strategies can be measured as well.

- The ideal situation is to achieve perfect prediction accuracy without any latency for the entire region. However, as this is not possible, there are minimum requirements for accuracy, latency and geographic coverage that need to be fulfilled in order not to render ATDM strategies ineffective.

- Mobility and environmental benefits will increase with increased prediction accuracy, more active management, and improved robust behavioral predictions.

- Increased coverage increases ATDM benefits, but also cost. There is a level of coverage that will provide the highest value by maximizing the benefit/cost ratio.
ANALYSIS SCENARIOS
Baseline Description
Baseline Description
Baseline Description

Current ITS Deployment

- Over 25 miles of fiber
- 4 Central Traffic Control Systems (all on the IEN)
- 31 CCTV Cameras
- 5 Fixed CMS (6 legacy CMS no longer operational)
- SMART Signal Pilot
- Transit Vehicle Arrival Information System
- Bluetooth Pilot
- SCATS Adaptive System on Fair Oaks Ave
- Video Detection (65 intersections)
- System Detection (80 intersections)
Baseline Description
Baseline Description
Baseline Description

- **Transit Arrival Information System**
 - Displays at stops, IVR, Web-based
 - Real-time bus position
 - On-time performance data by stop

- **Parking Guidance System**
 - Real-time off-street parking availability
 - Integrate with wayfinding signage
 - Provide dynamic guidance

- **Emergency Vehicle Preemption**
Baseline Description
Type of Travelers

- Transit riders
- Rideshare participants
- HOV passengers
- Passenger car drivers
Vehicle Modes

<table>
<thead>
<tr>
<th></th>
<th>Macroscopic</th>
<th>Mesoscopic</th>
<th>Microscopic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light rail</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Bus transit</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rideshare</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SOV</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Active Traffic Management: Dynamic Shoulder Lanes

- Algorithms and models used
 - Shoulder lane utilization based on predicted traffic conditions

- Input data required
 - Analysis scenario
 - Predicted traffic conditions

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor
Active Traffic Management: Dynamic Lane Use Control

- Algorithms and models used
 - Lane utilization based on predicted traffic conditions

- Input data required
 - Analysis scenario
 - Predicted traffic conditions

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor
Active Traffic Management: Dynamic Speed Limits

- Algorithms and models used
 - Speed limits based on traffic conditions

- Input data required
 - Analysis scenario

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor
Active Traffic Management: Queue Warning

- Algorithms and models used
 - Queue warning based on traffic conditions
 - Effect on microsimulation model unclear

- Input data required
 - Analysis scenario

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor
Active Traffic Management: Adaptive Ramp Metering

- Algorithms and models used
 - ALINEA
 - Ramp metering rates based on predicted traffic conditions

- Input data required
 - Analysis scenario

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor, if using ALINEA, otherwise Medium
Active Traffic Management: Dynamic Junction/Merge Control

- Algorithms and models used
 - Freeway junction lane allocation based on predicted traffic conditions

- Input data required
 - Analysis scenario

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor
Active Traffic Management: Adaptive Signal Control

- Algorithms and models used
 - SCATS

- Input data required
 - Analysis scenario

- Tools used to model strategy
 - Vissim
 - SCATSim

- Development effort and risk
 - Minor
Active Traffic Management: Transit Signal Priority

- Algorithms and models used
 - TSP as embedded in D4 2070 signal controller firmware

- Input data required
 - Analysis scenario

- Tools used to model strategy
 - Vissim
 - D4 SIL (equivalent to Vissim’s RBC controller)

- Development effort and risk
 - Minor
Active Traffic Management: Dynamic Lane Reversal

- Algorithms and models used
 - Dynamic lane reversal based on predicted traffic conditions

- Input data required
 - Analysis scenario
 - Predicted traffic conditions

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Medium
Active Demand Management: Dynamic Ridesharing

- Algorithms and models used
 - Aggregate tour based destination choice model

- Input data required
 - Demographic data/person types
 - Typical work/school locations

- Tools used to model strategy
 - Visum (tour based demand module)

- Development effort and risk
 - Medium
Active Demand Management: Dynamic Transit Capacity Assignment

- Algorithms and models used
 - Timetable based transit assignment
 - Line blocking, capacity indicators

- Input data required
 - Transit fleet (buses, rail cars etc.)
 - Transit schedules
 - Passenger demand

- Tools used to model strategy
 - Visum (line blocking module)

- Development effort and risk
 - Medium

Scherr, W. Fisher. I "Regional Application of 24-Hour Dynamic Transit Assignment", 12th TRB Transportation Planning Application Conference, Houston TX, May 2009
Active Demand Management: On-demand Transit

- Algorithms and models used
 - Traveling salesman problem (TSP)
 - Fast heuristic solution methods

- Input data required
 - Transit fleet
 - Depot location
 - Passenger demand

- Tools used to model strategy
 - Visum
 - PTV xTour

- Development effort and risk
 - Medium
Active Demand Management: Predictive Traveler Information

- Algorithms and models used
 - Mode choice model

- Input data required
 - DTA model
 - Predicted traffic conditions

- Tools used to model strategy
 - Visum (incl. tour based demand module)

- Development effort and risk
 - Medium
Active Demand Management: Dynamic Pricing

- Algorithms and models used
 - Adaptation of Vickrey’s departure time choice model
 - Mode choice model

- Input data required
 - Price elasticity (surveys)
 - Demographic data for market segmentation

- Tools used to model strategy
 - Visum (incl. tour based demand module)

- Development effort and risk
 - Medium/High
Active Demand Management: Dynamic Fare Reduction

- Algorithms and models used
 - Mode choice model
 - Rule based adjustments

- Input data required
 - Passenger demand
 - Price elasticity

- Tools used to model strategy
 - Visum (incl. tour based demand module)

- Development effort and risk
 - Minor
Active Demand Management: Transfer Connection Protection

- Algorithms and models used
 - Transit system manager decision support system

- Input data required
 - Transit fleet and schedule
 - Passenger demand

- Tools used to model strategy
 - Visum (transfer display tool)

- Development effort and risk
 - Minor
Active Demand Management: Dynamic HOV/Managed Lanes

- Algorithms and models used
 - Dynamic HOV/Managed Lane operation based on predicted traffic conditions
 - Facility choice model
 - Heuristic pricing model

- Input data required
 - Predicted traffic conditions
 - Pricing elasticity

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Medium
Active Demand Management: Dynamic Routing

- Algorithms and models used
 - Dynamic Routing for select OD bundles based on predicted traffic conditions
 - Use of “dynamic routes” concept in Vissim

- Input data required
 - Predicted traffic conditions

- Tools used to model strategy
 - Vissim
 - GeoDyn2-Control

- Development effort and risk
 - Minor
Active Parking Management: Dynamically Priced Parking

- Algorithms and models used
 - Mode and departure time choice
 - Simulation based parking choice model/shadow pricing

- Input data required
 - Pricing strategy
 - Pricing elasticity
 - Parking supply

- Tools used to model strategy
 - Visum (incl. tour based demand module)
 - Vissim

- Development effort and risk
 - Medium
Active Parking Management: Dynamic Parking Reservation

- Algorithms and models used
 - Simulation based parking choice model with dynamic availability

- Input data required
 - Parking supply

- Tools used to model strategy
 - Vissim

- Development effort and risk
 - Minor
Active Parking Management: Dynamic Overflow Transit Parking

- Algorithms and models used
 - Bi-level parking lot allocation model modeled as optimal lot assignment and capacity reallocation

- Input data required
 - Available parking lots
 - Park and ride demand

- Tools used to model strategy
 - Visum (upper level model)
 - Python (overflow reallocation)

- Development effort and risk
 - Minor
Operational Conditions

- Operational conditions that can be modeled by the Pasadena testbed
 - Peak/Off-peak
 - Available cell phone sighting based demand profiles cover 24 hours and three different day types
 - Incident
 - Incidents are modeled by placing them in the microsimulation model with the ATM system manager and the traffic prediction system responding to them
 - Work Zone
 - Work zones are modeled by the ATM system manager and the microsimulation model and the traffic prediction system responding to them
 - Planned Special Event
 - Available cell phone sighting based demand profiles cover special events at the Rose Bowl
 - Response ATDM strategies are modeled by all tools
Any combination of Operational Condition and ATDM Strategies is feasible!

<table>
<thead>
<tr>
<th>Included Strategies</th>
<th>Excluded Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Shoulder Lanes</td>
<td>Dynamic Lane Reversal</td>
</tr>
<tr>
<td>Dynamic Lane Use</td>
<td>Dynamic Overflow Transit Parking</td>
</tr>
<tr>
<td>Dynamic Speed Limits</td>
<td>Dynamic Ridesharing</td>
</tr>
<tr>
<td>Queue Warning</td>
<td>Dynamic Transit Capacity Assignment</td>
</tr>
<tr>
<td>Adaptive Ramp Metering</td>
<td>Dynamic Pricing</td>
</tr>
<tr>
<td>Dynamic Junction Control</td>
<td>Dynamic Fare Reduction</td>
</tr>
<tr>
<td>Adaptive Signal Control</td>
<td>Dynamic Transfer Protection</td>
</tr>
<tr>
<td>Transit Signal Priority</td>
<td>Dynamic Overflow Transit Parking</td>
</tr>
<tr>
<td>Dynamic Parking Reservation</td>
<td></td>
</tr>
<tr>
<td>On-demand Transit</td>
<td></td>
</tr>
<tr>
<td>Predictive Traveler Information</td>
<td></td>
</tr>
<tr>
<td>Dynamically Priced Parking</td>
<td></td>
</tr>
</tbody>
</table>

Peak/Off-peak
Analysis Scenarios

Included Strategies
- Dynamic Shoulder Lanes
- Dynamic Lane Use
- Dynamic Speed Limits
- Queue Warning
- Adaptive Ramp Metering
- Dynamic Junction Control
- Adaptive Signal Control
- Dynamic Lane Reversal
- Dynamic Overflow Transit Parking
- Dynamic Ridesharing
- Dynamic Transit Capacity Assignment
- Dynamic Pricing
- Dynamic Fare Reduction
- Dynamic Transfer Protection
- Dynamic Overflow Transit Parking
- Predictive Traveler Information

Excluded Strategies
- Transit Signal Priority
- Dynamic Parking Reservation
- On-demand Transit
- Dynamically Priced Parking
Analysis Scenarios

Included Strategies
- Dynamic Shoulder Lanes
- Dynamic Lane Use
- Dynamic Speed Limits
- Queue Warning
- Adaptive Ramp Metering
- Dynamic Junction Control
- Adaptive Signal Control
- Transit Signal Priority
- Dynamic Lane Reversal
- Dynamic Overflow Transit Parking
- Dynamic Ridesharing
- Dynamic Pricing
- Dynamic Fare Reduction
- Dynamic Overflow Transit Parking
- Predictive Traveler Information

Excluded Strategies
- On-demand Transit
- Dynamically Priced Parking
- Dynamic Parking Reservation
- Dynamic Transfer Protection
- Dynamic Transit Capacity Assignment
Analysis Scenarios

Included Strategies:
- Dynamic Shoulder Lanes
- Dynamic Lane Use
- Dynamic Speed Limits
- Queue Warning
- Adaptive Ramp Metering
- Dynamic Junction Control
- Adaptive Signal Control
- Dynamic Lane Reversal
- Dynamic Overflow Transit Parking
- Dynamic Ridesharing
- Dynamic Pricing
- Dynamic Fare Reduction
- Dynamic Overflow Transit Parking
- Predictive Traveler Information
- Dynamically Priced Parking
- Dynamic Parking Reservation
- Dynamic Transfer Protection
- Dynamic Transit Capacity Assignment

Excluded Strategies:
- On-demand Transit
- Transit Signal Priority

Planned Special Event
ANALYSIS FRAMEWORK
Pasadena Testbed Description

Visum
- Travel demand, DTA, transit, line blocking, tour based demand

GeoDyn2
- ATM control and system manager

Vissim
- Vehicle movements, parking, facility choice, etc.

SCATSim
- Adaptive signal control

PTV xTour
- On-demand transit

Transit Syst Mgr
- Transit strategies

PTV Optima
- Traffic prediction

System Analyst
- Performance measures

Communication
- Data loss and latency

Scenario Manager
- Operational condition, analysis selection

VSimRTI
- Data bus
Traffic Prediction

- Model-based short-term (30 min) prediction of
 - Traffic volume
 - Traffic speed

- Input data required
 - Calibrated DTA model (available)

- Tools used to model strategy
 - PTV Optima

- Development effort and risk
 - Medium
Adaptive Signal Control

- SCATS currently deployed on downtown core parallel to LRT
- Existing SCATSim model integrated with Vissim
- SCATSim licensing arrangement to be determined
- Development effort and risk – Minor
Communication Model

- Low-fidelity model focused on ATDM requirements

- Representation of
 - Data loss
 - Latency

- Model options
 - Existing tool
 - Custom program
Scenario Manager

- Graphical user interface for run-time control

- Selection of
 - Operational condition
 - ATDM strategy bundle
 - Other parameters
System Analyst

- Performance measure
 - Definition
 - Aggregation
 - Reporting

- Feature of VSimRTI
DATA BUS IMPLEMENTATION
VSimRTI Based on IEEE High Level Architecture HLA
Off-the-Shelf Data Bus Software

- **Communication Network**: ad-hoc or mobile
- **Vehicle Dynamics**: Torque, speed, etc.
- **Driver Behavior**: driving patterns, reactions
- **Traffic**: vehicle movements, traffic signals, etc.
- **Applications**

Ingenuity in action.
General Architecture of Data Bus (VSimRTI)
Example Traffic, Communication, and Application Simulator

V2X Simulation Runtime Infrastructure (VSimRTI)
Opportunistic Synchronization of Simulators

Processing of local events regardless of dependencies
Rollback if event is scheduled in the past
Time Warp: Save/Restore States, anti-messages

Result: overall simulation time significantly shorter than sequential simulation
Tools Needed for Analysis

<table>
<thead>
<tr>
<th>Tool</th>
<th>Modes</th>
<th>Performance Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vissim</td>
<td>GP traffic, HOV, transit</td>
<td>Travel time, delay, throughput</td>
</tr>
<tr>
<td>Visum DTA</td>
<td>GP traffic, HOV</td>
<td>Volume, travel time, throughput</td>
</tr>
<tr>
<td>Visum</td>
<td>GP traffic, HOV, transit, ride-share</td>
<td>Trips, volume, travel time, throughput</td>
</tr>
</tbody>
</table>
Analysis Phases

Phase
- Trip planning
 - Departure time choice
 - Destination choice
 - Mode choice
 - Transit
 - Rideshare
 - HOV
 - SOV
- En-route
 - Route choice
 - Facility choice
 - Parking lot choice

ATDM Strategies
- Dynamic Ridesharing
- Dynamic Transit Capacity Assign.
- On-demand Transit
- Predictive Traveler Information
- Dynamic Pricing
- Dynamic Fare Reduction
- Dynamic Transfer Prot.
- Dynamic HOV/Managed Lanes
- Dynamically Priced Parking
- Dynamic Parking Reservation
- Dynamic Shoulder Lanes
- Dynamic Lane Use
- Dynamic Speed Limits
- Queue Warning
- Adaptive Ramp Metering
- Dynamic Junction Control
- Adaptive Signal Control
- Transit Signal Priority
- Dynamic Lane Reversal
- Dynamic Parking Reservation
- Dynamic Overfl. Transit Parking

Tools
- **Visum**
 - Travel demand, DTA, transit, line blocking, tour based demand
- **Vissim**
 - Vehicle movements, facility choice, parking, etc.
Analysis Process

PTV xTour
On-demand Transit

Visum
- Tour based demand
- Traffic Assignment
- Transit Assignment
- DTA Assignment
 - Dyn. Transit Capacity Assign.
 - Dynamic Transfer Protection
 - Dynamically Priced Parking

Vissim
- Traffic Simulation
- Transit Simulation
- Transit Signal Priority
 - Dynamic Parking Reservation
 - Dynamically Priced Parking

SCATSim
Adaptive Signal Control

GeoDyn2
- Dynamic Shoulder Lanes
- Dynamic Lane Use
- Dynamic Speed Limits
- Queue Warning
- Adaptive Ramp Metering
- Dynamic Junction Control
- Dynamic Lane Reversal
- Dynamic HOV/Managed Lanes

PTV Optima
Short-term prediction

Communication
Data loss and latency

15 min resolution

1 sec resolution

5 min resolution

Booz | Allen | Hamilton
DATA NEEDS AND AVAILABILITY
Historical Data: Cell Phone Based Travel Demand

- Mobile phone sightings
 - Collection period: 12:00AM 09/01/2010 through 11:59PM 10/31/2010
 - Total number of sightings: 6.4 billion
 - Encrypted Sprint subscribers: 1.8 million

- Identified trips mapped to TAZs
 - 308,988 for weekdays
 - 102,571 for weekends
 - 158,617 for event days
Historical Data: Google Transit Feed

- Routes
- Stops
- Schedules
Historical Data: MTA Transit Data

- Transit trip table
- Transit station count data (on/off/transfer)
- Transit fleet
- Depot locations
Historical Data: Travel Survey

- Travel survey data
 - Price elasticities
 - Demographic data

- Potential sources
 - SCAG travel survey 2001
 - Caltrans household survey 2010-2012
 - SCAG activity-based model development (ongoing)
Historical Data: Caltrans Ramp Metering Rates

- Ramp metering rates by
 - Location
 - Time of day
 - Day of week

![Ramp Meter Dynamic Capacity](image)
Real-time Data

- It is necessary to analyze not only historical data trends but also real-time data and the system’s response to various events. The Testbed team needs to list all possible real-time data necessary for the analysis; some examples can be listed below:
 - Sensor detector vehicle count and speed data
 - Video surveillance data, including vehicle occupancy data
 - Signal plans and traffic control device data and real-time operations data (e.g., toll prices, HOV restrictions, turn restrictions, parking restrictions, shoulder lane operations)
 - Work zone data
 - Incident information.
Real-time Data: Caltrans PeMS

- PeMS detector stations

- Categories
 - Freeway mainline
 - On/off ramps
 - HOV lanes
 - Freeway to freeway connectors
Real-time Data: Caltrans LCS

- Caltrans maintains a state wide lane closure system (LCS) data
 - Arranged by Districts
 - Updates every 10-11 minutes
 - Publically available, also authorized for this project
Real-time Data: LA County IEN

- LA County Information Exchange Network
 - Open architecture intersection data sharing
 - Monitoring and control
 - Signal timing and phasing
 - Publically available, need to apply for access for this project
MODEL CALIBRATION APPROACH
Model Calibration Parameters and Approach

- Models to be calibrated
 - Visum
 - Visum DTA
 - Vissim

- Operational scenarios calibrated for
 - Peak/Off-peak
 - Incident
 - Work Zone
 - Planned Special Event

- Calibration data sources
 - Caltrans PeMS
SYSTEM EVALUATION
System Performance Measures

- Proposed system performance measures include:
 - Vehicle Throughput
 - Vehicle/Person Delay
 - Travel Time reliability
 - Fuel consumption and emissions