
PARTNERS FOR ADVANCED TRANSPORTATION TECHNOLOGY
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

	

	

Connected Corridors: I-210 Pilot
Integrated Corridor Management System
	

Core System High-Level Design	

	
June 21, 2018
v 1.1

	

	

																 	

	

	

	

	

	

	

	

	

	
Partners for Advanced Transportation Technology works with researchers, practitioners, and
industry to implement transportation research and innovation, including products and services
that improve the efficiency, safety, and security of the transportation system.

I-210	Pilot:	Core	System	High-Level	Design	

	

	

ii	

This	page	left	blank	
intentionally	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

iii	

Table	of	Contents	

1.				Introduction	...	1	

1.1.	 Purpose	of	Document	...	1	
1.2.	 Relation	to	Systems	Engineering	Process	..	1	
1.3.	 Intended	Audience	..	2	
1.4.	 Document	Organization	..	2	

2.	 An	Introduction	to	Microservices	Architecture	on	Amazon	Web	Services	5	

2.1.	 Microservices	Definition	...	6	
2.2.	 Why	Use	a	Microservices	Architecture	...	8	
2.3.	 Use	of	the	Cloud	and	Amazon	Web	Services	(AWS)	...	12	
2.4.	 Impact	on	the	Design	Document	...	13	

3.	 System	Primary	Objectives	and	Purpose	...	15	

3.1.	 Project	Goals	and	Objectives	..	16	
3.2.	 Technical	Capabilities	Sought	..	18	

4.	 High	Level	Design	Objectives,	Constraints,	and	Principles	...	21	

5.	 Core	System	High	Level	Design	...	23	

5.1.	 Major	Components	...	23	
5.2.	 Field	Elements	...	24	
5.3.	 Data	Hub	...	25	
5.4.	 Decision	Support	...	27	
5.5.	 Corridor	Management	..	27	
5.6.	 Primary	process	flow	...	30	

6.	 Data	Hub	Design	...	33	

6.1.	 Data	Sources	...	36	
6.2.	 Data	Pipelines	..	38	

6.2.1.	 Sensing	Data	Pipeline	..	38	
6.2.2.	 Heterogeneous	Data	Pipeline	..	39	
6.2.3.	 Homogenous	Data	Pipeline	...	40	
6.2.4.	 Pipeline	Control	...	41	
6.2.5.	 Pipeline	Status	and	Logging	...	43	
6.2.6.	 Corridor	Management	System-Decision	Support	System	(CMS-DSS)	
Communications	Pipeline	..	44	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

iv	

6.3.	 External	Interface/Data	Gateway	..	48	
6.4.	 Data	Hub	Command	Gateway	...	50	

6.4.1.	 Conductor	..	51	
6.4.2.	 Camel	...	52	
6.4.3.	 ActiveMQ	Workflow	Status	Topic	...	52	
6.4.4.	 ActiveMQ	Workflow	Task	Topic	..	52	
6.4.5.	 Monitor	...	52	

7.	 Decision	Support	System	Design	...	53	

7.1.	 DSS	high	level	design	...	54	
7.2.	 DSS	Interface	...	55	
7.3.	 Response	Plan	Management	...	56	
7.4.	 Modeling	...	58	

7.4.1.	 Modeling	techniques	...	59	

8.	 Security	Design	...	63	

8.1.	 Minimize	attack	surface	..	63	
8.2.	 Authentication	..	64	
8.3.	 Data	Encryption	...	64	
8.4.	 Principle	of	Least	Privilege	..	64	
8.5.	 Automated	security	and	process	monitoring	..	65	
8.6.	 Automate	system	launch	processes	..	65	
8.7.	 Validate	all	incoming	data	...	65	

9.	 System	Interface	and	Message	System	Design	..	67	

9.1.	 Data	Hub	Internal	Messaging	..	68	
9.1.1.	 Data	Messaging	and	Kafka	..	68	
9.1.2.	 Command	Messaging	and	ActiveMQ	..	68	

9.2.	 DSS	Internal	Messaging	...	69	

10.	Definition	of	Terms	..	71	

	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

v	

List	of	Figures	

Figure	1-1	–	System	Requirements	Specification	within	Systems	Engineering	Process	..	2	
Figure	2-1	Data	Pipeline	Microservice	Example	..	6	
Figure	5-1	Core	System	High	Level	Design	..	23	
Figure	5-2	Primary	System	Incident	Flow	(Subsystem)	...	31	
Figure	6-1	Data	Hub	High	Level	Design	...	34	
Figure	6-2	Sensing	Data	Pipeline	Design	...	38	
Figure	6-3	Heterogeneous	Data	Pipeline	..	40	
Figure	6-4	Homogenous	Data	Pipeline	..	41	
Figure	6-5	Pipeline	Primary	Control	Layer	...	42	
Figure	6-6	DSS-CMS	Data	Pipeline	Configurations	..	45	
Figure	6-7	Data	Hub	Data	Gateway	–	ActiveMQ	and	Web	Services	Design	Patterns	...	49	
Figure	6-8	Data	Hub	Command	Gateway	..	51	
Figure	7-1	DSS	Architecture	..	54	
Figure	7-2	DSS	Interface	High	Level	Design	...	55	
Figure	7-3	Response	Plan	Management	Design	..	56	
Figure	7-4	Response	Plan	Manager	Workflow	..	58	
Figure	7-5	-	Modeling	Component	Design	..	59	
	
	
	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

vi	

List	of	Tables	

Table	2-1	Example	Component	Tasking	..	7	
Table	2-2	Microservice	Advantage	Examples	..	8	
Table	2-3	AWS	Service	Usage	..	12	
Table	3-1	–	ICM	System	Goals	and	Objectives	..	16	
Table	5-1	Major	System	Components	...	23	
Table	5-2	–	Field	Systems	..	24	
Table	5-3	Response	Plan	Lifecycle	...	28	
Table	5-4	CMS	Management	Capabilities	...	29	
Table	6-1	ICM	Data	Sources	..	36	
Table	6-2	Sensing	Pipeline	Data	Sources	...	38	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

1	

1. INTRODUCTION	

This	Connected	Corridors	High	Level	Design	document	provides	the	high	level	system	architecture	for	
the	system	to	be	deployed	on	the	I-210	corridor.	The	system	architecture	described	here	is	a	direct	
result	of	the	Connected	Corridors	System	Requirements	document	and	the	work	done	at	UC	Berkeley	in	
traffic	modeling	and	control.	This	document	provides	the	system	architecture,	high	level	design	of	the	
primary	subsystems,	the	decisions,	assumptions,	constraints,	and	reasoning	behind	that	architecture,	
and	critical	functions	each	subsystem	provides	for	the	system.	

The	system,	to	be	piloted	along	a	section	of	the	I-210	corridor	in	the	San	Gabriel	Valley	area	of	Los	
Angeles	County,	aims	to	improve	overall	corridor	performance	during	incidents,	unscheduled	events,	
and	planned	events.	This	is	to	be	achieved	by	more	efficiently	managing	existing	systems	and	
infrastructures,	promoting	cross-jurisdictional	operations,	and	using	multi-modal	traffic	and	demand	
management	strategies	that	consider	all	relevant	modes	of	transportation.			

1.1. PURPOSE	OF	DOCUMENT	

This	document	provides	the	high	level	design,	serving	as	the	identification	of	the	primary	subsystems	
and	major	components	as	well	as	the	basis	for	the	selection,	development,	and	integration	of	these	into	
a	system	that	satisfies	the	system	requirements	as	defined	in	the	Systems	Requirements	Document.	This	
high	level	design	will	govern	the	technology	platform	and	direction	of	the	I-210	Pilot	ICM	System	and	
serve	as	the	basis	for	other	Caltrans-led	ICM	efforts	statewide.	

1.2. RELATION	TO	SYSTEMS	ENGINEERING	PROCESS	

The	development	of	high	level	design	is	part	of	the	systems	engineering	process	that	the	Federal	
Highway	Administration	(FHWA)	requires	be	followed	for	developing	Intelligent	Transportation	System	
(ITS)	projects	when	federal	funds	are	involved.	While	not	required	for	projects	only	using	state	or	local	
funds,	use	of	the	systems	engineering	process	is	still	encouraged	in	such	cases.			

The	overall	systems	engineering	process	is	illustrated	in	Figure	1-1.	Developing	high	level	design	
represents	the	next	step	of	the	System	Definition	and	Design	phase	of	a	project	(Phase	2	in	the	figure)	
following	the	completion	of	the	System	Requirements.	High	Level	Design	is	typically	derived	from	the	
requirements.	The	resulting	design	elements	are	in	turn	used	to	inform	and	guide	the	more	detailed	
design	of	the	various	system	and	subsystem	components.			

I-210	Pilot:	Core	System	High-Level	Design	

	

	

2	

	
Figure	1-1	–	System	Requirements	Specification	within	Systems	Engineering	Process	

	 	

1.3. INTENDED	AUDIENCE	

The	primary	audience	for	the	System	High	Level	Design	document	includes	personnel	responsible	for	
designing	and	implementing	the	ICM	system.	The	audience	also	includes	individuals	from	Caltrans	
District	7,	Caltrans	Headquarters,	and	the	University	of	California,	Berkeley,	tasked	with	project	
management	duties.			

1.4. DOCUMENT	ORGANIZATION	

The	remainder	of	this	document	is	organized	as	follows:	

• Section	2	provides	a	high	level	overview	of	micro-services	architectures	and	the	use	of	Amazon	
Web	Services	(AWS)	used	in	the	design	of	this	system	

• Section	3	summarizes	the	primary	system	objectives	identified	within	the	System	Requirements	
that	shape	the	system	design.	

• Section	4	presents	the	primary	guiding	design	principles	and	base	assumptions	that	shape	the	
system	design.	

• Section	5	presents	the	key	system	design	components	and	primary	data	flows.	

System Validation / Strategy Plan

System Verification Plan
(System Acceptance)

Sub-system
Verification Plan

(Subsystem
Acceptance)

Unit/Device
Test
Plan

Systems
Requirements

Document

Design
Documents

Concept of
Operations
Document

I-210	Pilot:	Core	System	High-Level	Design	

	

	

3	

• Section	 6	 presents	 the	 key	 system	 components	 of	 the	 Data	 Hub	 including	 data	 sources,	
interfaces/gateways	and	pipelines.	

• Section	7	presents	the	key	system	components	of	the	Decision	Support	System	(DSS)	including	
the	rules	engine,	modeling	interfaces,	and	response	plan	generation.		

• Section	8	presents	key	security	design	issues	and	implementation	plans.	

• Section	 9	 provides	 design	 information	 for	 the	 system	 interfaces	 and	 the	messaging	 systems,	
describing	how	information	is	exchanged	with	external	systems	and	how	it	is	passed	between	and	
within	subsystems.		

In	addition,	other	supporting	documents	are	available	in	the	Document	Library	of	the	Connected	
Corridors	website	at	https://connected-corridors.berkeley.edu/resources/document-library:		
	
	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

4	

	 	

This	page	left	blank	
intentionally	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

5	

2. AN	INTRODUCTION	TO	MICROSERVICES	ARCHITECTURE	ON	
AMAZON	WEB	SERVICES	

The	Connected	Corridors	system	software	design	is	not	based	on	architectures	and	design	patterns	
typically	found	in	the	transportation	industry.	Many	of	today’s	transportation	systems	have	long	
production	histories	with	significant	operational	experience,	but	as	a	result	are	based	on	system	
architectures	and	code	that	have	been	in	existence	for	a	decade	or	longer.	Current	transportation	
systems	are	often	based	on	a	more	traditional	n-tier,	data	center	hosted	software	architecture	with	a	
user	interface	layer,	application	layer,	and	relational	database	layer.	Such	traditional	designs	are	well	
suited	for	systems	with	moderate	data	volumes	and	limited	size	and	scope.		

The	Connected	Corridors	program	has	begun	with	a	blank	slate,	and	as	a	result	is	not	bound	to	the	
limitations	of	an	existing	system.	Instead,	Connected	Corridors	uses	a	more	recent	software	architecture	
and	associated	design	patterns	more	often	found	in	the	big	data	world,	more	suited	for	high	data	
volumes	and	real-time	processing	at	extremely	large	scale.	The	design	of	the	I-210	system	is	built	
specifically	for	multi-jurisdictional	environments,	large	data	volumes,	and	large	geographic	areas,	
coordinating	large	numbers	of	transportation	elements.	It	is	specifically	designed	for	a	future	of	
connected	vehicles	and	infrastructure	with	the	data	volumes	and	processing	requirements	that	will	be	
present	in	that	future.		

To	do	this,	the	system	makes	use	of	two	key	design	elements:	

• A	microservices	architecture	
• Cloud	technology	and	design	(specifically	Amazon	Web	Services)	

These	two	key	design	elements	are	specifically	designed	to	be	very	responsive	to	both	immediate	and	
long	term	demands	on	the	system.	They	provide	a	very	agile	system	that	can	scale	on	demand	to	react	
to	increases	in	demand	for	processing,	such	as	responding	to	multiple	traffic	incidents	requiring	high	
demands	on	the	Connected	Corridors	predictive	modeling	components.	This	agility	also	provides	long	
term	benefits,	allowing	the	system	to	more	easily	scale	to	additional	corridors	or	larger	geographic	areas	
as	well	as	increases	in	data	volumes	that	can	be	expected	with	new	data	sources,	such	as	connected	and	
automated	vehicles.	Using	microservices	and	cloud	technology	together	means	that	additional	server	
and	computational	resources	can	be	applied	on	demand,	with	the	microservices	architecture	making	the	
software	responsive,	and	cloud	technology	providing	the	resources	to	the	software	to	make	that	
possible.	

As	a	result,	this	document	does	not	provide	information	regarding	the	infrastructure	design	(such	as	
servers	or	data	center	requirements).	There	are	no	on-premise	software	or	hardware	systems	to	specify	
or	purchase.	Hardware	specifications	can	be	altered	on	demand	based	on	system	load	and	configuration	
during	system	operation	and	are	not	fixed	for	the	operating	life	of	the	system.		

This	section	will	provide	some	basic	information	and	explanation	of	these	two	technologies	and	how	
they	work	together	to	provide	significant	benefits	to	the	program.	This	is	provided	to	assist	in	
understanding	the	remaining	sections	of	this	document	and	the	design	choices	made	in	this	system	
architecture.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

6	

2.1. MICROSERVICES	DEFINITION	

Microservices	is	a	term	that	is	used	to	describe	many	different	designs,	but	in	general,	all	microservice	
architectures	have	the	following	elements	in	common:	

• Self-contained,	autonomous	software	components	that	each	provide	a	specific	service	or	
function	(independent	services)	

• Loosely	coupling	of	a	suite	of	such	services	to	provide	one	or	more	system	capabilities	
• Well	defined,	lightweight	communications	(APIs)	between	services	over	network	connections	

In	the	ICM	system,	this	is	the	primary	architectural	pattern	within	the	data	hub	and	DSS,	and	the	
communications	between	the	DSS,	data	hub,	and	CMS	are	also	patterned	on	this	design.	This	
architectural	pattern	is	often	coupled	with	automated	deployment,	configuration,	security,	and	
monitoring	capabilities.	

In	both	the	DSS	and	data	hub,	the	system	is	built	with	individual	services,	each	deployed	separately.	
Each	service	has	a	very	specific	responsibility	within	the	system.	The	individual	services	are	connected	
using	one	or	more	messaging	systems	(Kafka	or	ActiveMQ).	The	communication	between	those	services	
is	defined	by	a	contract,	generally	the	Transportation	Management	Data	Dictionary	(TMDD)	with	some	
modifications	required	to	add	additional	information	and	ensure	interchangeability	between	different	
services	(CMS	vendors	and	TMCs).	

For	example,	the	data	hub	uses	a	design	paradigm	of	a	data	pipeline.	A	typical	data	pipeline	for	high	
volume	data	looks	as	follows:	

	

	

Reader	 Processor	 Interface	Source	 Target	

Persistence	
Worker	 Database	

Figure	2-1	Data	Pipeline	Microservice	Example	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

7	

In	Figure	2-1	the	source	in	green	is	typically	an	external	TMC,	and	the	target	in	purple	is	either	the	DSS	
or	CMS	system.	The	data	hub	components	are	those	components	placed	between	the	source	and	target.	

The	reader,	processor,	interface,	and	persistence	workers	are	all	individual	services	with	a	specific,	
independent	task.	The	light	green	“pipes”	between	the	services	represent	the	messaging	system	used	to	
transport	messages	containing	data	between	the	services.	The	component	tasking	breakdown	is	as	
follows:	

Table	2-1	Example	Component	Tasking	

Component	 Task	

Source	 External	component	–	not	a	system	component.	Source	of	data	elements.	

Reader	 Maintain	SOAP	based	TMDD	conversation	with	source	to	collect	data.	Place	data	
in	TMDD	structured	message	in	messaging	system.	

Processor	 Collect	data	from	processing	system	and	perform	desired	processing.	May	include	
quality	checks,	transformation,	predictive	analysis	or	other	type	of	processing.	

Interface	 Receive	data	from	messaging	system	and	present	to	CMS	or	DSS.	Transform	data	
as	necessary	for	target.	

Messaging	
System	Pipe	

The	data	hub	messaging	system	(Apache	Kafka)	used	to	provide	communication	
between	the	individual	services.	

Target	 Not	a	data	hub	component.	Target	may	be	CMS	or	DSS.	

Persistence	
Worker	

Receive	data	from	the	messaging	system.	Save	data	in	the	database.	Retrieve	data	
from	the	database	when	requested	and	place	data	on	the	messaging	system.	

Database	 Store	data.	

The	readers	maintain	a	SOAP	based	TMDD	conversation	with	the	source	and	place	the	data	received,	in	
a	TMDD	structured	message	on	a	message	topic	(in	light	green).	The	processor,	receiving	the	data	
messages	off	of	the	message	topic,	does	any	type	of	processing	desired	such	as	a	quality	check,	
transformation,	or	other	process,	and	places	its	results	on	another	message	topic.	Multiple	processors	
may	be	used	in	serial	or	parallel	to	provide	the	desired	level	of	granularity	of	the	services.	The	interface	
service	reads	the	results	and	provides	an	interface	where	the	target	can	connect	and	receive	the	
processed	data	results.	A	parallel	path	from	the	processor	to	the	persistence	worker	allows	the	
persistence	worker	service	to	also	read	the	processed	results	and	store	those	results	in	a	database.	

Each	of	the	components	in	red	are	independent,	autonomous	services.	Each	has	a	specific	function	and	
is	independent	of	the	other	services	with	a	specific	desired	input	and	a	specific	output.	By	combining	
these	together	in	different	configurations	via	a	lightweight	messaging	protocol	(loose	coupling)	and	a	
defined	API	such	as	TMDD,	a	specific	application	purpose	is	provided,	namely	the	processing,	quality	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

8	

verification,	and	storage	of	data	from	external	sources	and	making	the	data	available	to	the	CMS	and	
DSS.	

2.2. WHY	USE	A	MICROSERVICES	ARCHITECTURE	

Using	a	microservices	architecture	provides	several	advantages.	In	general,	they	provide	high	levels	of	
scalability,	reliability,	resilience	to	failure,	parallelization,	speed	of	processing,	ability	to	adapt,	and	very	
high	data	throughput	capabilities.		

By	separating	each	of	the	system	tasks	into	separate	services,	and	connecting	them	by	messaging,	some	
significant	benefits	are	realized.	Using	the	example	in	Figure	2-1,	here	are	ways	in	which	these	benefits	
are	realized:	

Table	2-2	Microservice	Advantage	Examples	

Advantage	 Method	of	Realization	

Scalability	 Work	can	be	parallelized	as	load	on	the	system	increases,	either	locally	or	for	an	entire	
pipeline.	For	example,	if	a	specific	task	requires	significant	processing	resources,	multiple	
processors	can	be	used	in	parallel	to	share	the	processing	load.	This	provides	significant	
scalability	advantages.		

	

	

	

	

	

	

	

	

Reader	 Processor	 Interface	

Processor	

Processor	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

9	

Advantage	 Method	of	Realization	

Speed	of	
Processing	

Work	can	be	branched	to	complete	separate	tasking.	For	example,	a	processor	for	predictive	
analysis	and	a	second	processor	for	a	quality	check	can	be	split	into	two	separate	paths,	
with	independent	processors	for	each	task.	This	provides	significant	speed	of	processing	
advantages.	

	

	

	

	

	

	

Reliability	and	
Resiliency	

Failure	of	a	single	task	instance	may	result	in	degraded	performance	for	a	single	
pipeline,	but	will	not	affect	other	system	processes.	Using	multiple	parallel	
instances	of	a	task	can	ensure	that	even	during	failure,	a	process	can	continue	to	
function.	Even	with	a	single	instance	of	the	task,	the	restart	of	a	new	instance	will	
ensure	that	the	pipeline	will	recover	from	the	failure,	usually	within	minutes.	This	
provides	significant	reliability	and	resiliency	advantages.		

	

	

	

	

	

	

	

	

	

Reader	 Predictive	
Analysis	

Quality	
Check	

Processor	

Reader	 Processor	 Interface	

Processor	

Processor	

	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

10	

Advantage	 Method	of	Realization	

Ability	to	
Adapt	-	
Incremental	
Upgrades	and	
Improvements	

A	single	process	task	can	be	upgraded	or	replaced	with	an	alternative	without	
affecting	the	other	system	processes.	Only	the	process	to	be	upgraded	or	replaced	
need	be	affected	in	a	system	upgrade	deployment.	With	proper	procedures,	
upgrades	or	replacements	can	be	achieved	without	interruption	to	system	
operation.	In	the	example	below,	a	source	system	may	be	upgraded	with	the	only	
impact	on	the	system	being	the	replacement	of	the	reader	instance.	The	new	reader	
instance	could	be	brought	up	while	the	old	reader	and	source	continues	to	operate.	
When	the	new	reader	and	source	are	ready,	the	old	reader	is	terminated	and	the	
new	reader	is	allowed	to	communicate	with	the	messaging	system.	New	system	
capabilities	can	be	added	simply	by	adding	the	new	service	or	services	to	the	
existing	system	without	changing	the	current	processing.	This	provides	significant	
advantages	for	the	ability	to	provide	incremental	improvements	with	continuous	
operation.		

	

	

	

	

Old	
Reader	

Processor	 Interface	

New	
Reader	

New	
Source	

Old	
Source	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

11	

Advantage	 Method	of	Realization	

Optimization	
and	Cost	
Efficiency	

Hardware	requirements	can	be	tuned	to	the	specific	needs	of	each	process.	For	
instance,	a	predictive	analysis	may	require	significant	CPU	and/or	memory	
requirements,	whereas	a	reader	or	interface	require	much	smaller	CPU	and	memory	
requirements.	In	the	ICM	system	design,	sensing	data	is	processed	using	an	Apache	
Spark	cluster	running	on	a	cluster	of	several	AWS	EC2	instances.	Readers	are	run	on	
much	smaller	EC2	instances	and	the	data	hub	interface	is	run	on	medium	sized	AWS	
EC2	instances.	The	hardware	is	sized	for	the	individual	process	requirements.	This	
provides	significant	efficiency	and	cost	advantages.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Reader	 Processor	 Interface	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

12	

2.3. USE	OF	THE	CLOUD	AND	AMAZON	WEB	SERVICES	(AWS)	

Using	the	cloud,	and	in	the	I-210	corridor,	specifically	Amazon	Web	Services	(AWS),	enables	many	of	the	
capabilities	inherent	in	the	microservices	architecture.	There	are	additional	benefits	to	using	AWS,	but	
this	section	will	focus	on	those	services	and	benefits	that	are	specific	to	the	microservices	architecture	
implementation	in	the	I-210	ICM	program.		

Primary	AWS	services	and	capabilities	used	to	achieve	the	advantages	of	a	microservices	architecture	
are	detailed	below.		

	
Table	2-3	AWS	Service	Usage	

AWS	Service	 Definition	and	Uses	

Elastic	Cloud	Compute	
(EC2)	

Amazon’s	EC2	service	provides	resizable	compute	capacity	on	demand.	
The	I-210	project	uses	EC2	to	provide	server	resources	for	the	different	
services	within	the	microservices	design.	Using	EC2	services	allows:	

Scalability	–	addition	or	removal	of	EC2	resources	based	on	the	load	
experienced	by	the	system	

Speed	of	processing	–	ability	to	parallelize	work	across	multiple	EC2	
instances	and	size	EC2	instances	according	to	demand	

Incremental	upgrades	and	improvements	–	ability	to	start	and	stop	EC2	
instances	with	different	versions	of	software	and	hardware	as	needed	

Resilience	and	Reliability	–	ability	to	replace	failed	instances	upon	demand	

Optimization	and	Efficiency	–	AWS	provides	a	selection	of	EC2	compute	
instances,	allowing	variation	of	CPU,	memory,	storage,	and	networking	
options	depending	upon	system	need.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

13	

AWS	Service	 Definition	and	Uses	

CloudFormation	 Amazon’s	CloudFormation	service	provides	the	ability	to	provision	and	
initialize	the	I-210	systems	environment,	including	networking,	security,	
EC2,	databases,	virtual	private	cloud	(VPC),	and	other	environment	
resources.	This	service	is	key	to:	

Scalability	–	Cloudformation	is	used	to	ensure	resources	are	brought	up	in	
a	consistent	manner,	ensuring	configuration	management,	security,	and	
consistent	configuration.	

Incremental	upgrades	and	improvements	–	CloudFormation	is	used	to	
manage	and	exectute	the	deployment	of	upgrades	and	improvements.	

Resilience	and	Reliability	–	CloudFormation	is	used	to	ensure	proper	
system	configuration	management	and	reliable,	repeatable	deployment	of	
system	components.	

Optimization	and	Efficiency	–	CloudFormation	provides	automated	
deployment	capabilities	minimizing	manual	human	intervention	in	the	
deployment	process.	

Security	–	CloudFormation	allows	completely	automated	deployment	of	
system	components,	minimizing	human	error	in	system	configuration	and	
consistent	management	of	system	and	security	configuration.	

Relational	Database	
Service	(RDS)	and	Elastic	
Map	Reduce	(EMR)	

RDS	and	EMR	are	managed	services	provided	by	AWS	for	the	Postgres	
database	and	Apache	Spark.	These	services	minimize	the	system	
adminstration	required	for	system	operations	and	maintenance.	The	
specific	application	code	and	database	schemas	are	still	the	responsibility	
of	the	I-210	program,	but	the	purchase,	deployment,	and	management	of	
the	underlying	hardware	and	Postgres	and	Spark	software	is	managed	by	
AWS.	

	

2.4. IMPACT	ON	THE	DESIGN	DOCUMENT	

As	a	result	of	the	flexibility	of	the	microservices	architecture	and	AWS	services,	the	High	Level	Design	
specification	may	be	different	than	what	is	typical	for	other	projects	involving	complex	software	
implementations.	The	design	itself	is	significantly	different,	requiring	both	a	description	of	the	design	
patterns	themselves	as	well	as	their	implementation.	Additionally,	this	document	does	not	provide	
information	regarding	the	infrastructure	design	(such	as	servers	or	data	center	requirements).	There	are	
no	on-premise	software	or	hardware	systems	to	specify	or	purchase.	Hardware	specifications	can	be	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

14	

altered	on	demand	based	on	system	load	and	configuration	during	system	operation	and	are	not	fixed	
for	the	operating	life	of	the	system.		

The	I-210	pilot	is	a	proof	of	concept,	and	the	I-210	ICM	system	is	designed	for	incremental	change	and	
improvement,	with	new	capabilities	being	added	and	existing	functions	improved.	It	is	designed	so	that	
these	changes	can	occur	during	the	pilot	period	and	throughout	the	service	life	of	the	system.	While	the	
breakdown	and	separation	of	services	will	be	defined	in	future	design	documents,	it	is	intended	that	
these	breakdowns,	and	the	way	in	which	they	are	connected	can	be	changed	over	time,	resulting	in	a	
very	dynamic	and	adaptable	system.	

This	document	focuses	on	the	system	and	component	high	level	designs	and	the	high	level	design	and	
architecture	patterns	used	within	the	system.		

	

	

	

	
	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

15	

3. SYSTEM	PRIMARY	OBJECTIVES	AND	PURPOSE	

The	overriding	purpose	of	the	I-210	Pilot	is	to	reduce	congestion	and	improve	mobility	along	a	section	of	
the	I-210	corridor	in	Los	Angeles	County	through	the	coordinated	management	of	its	major	networks:	
the	I-210	freeway,	key	surrounding	arterials,	and	local	and	regional	transit	services.	The	goal	is	to	enable	
all	corridor	“actors”—transportation	system	managers	and	operators,	control	systems,	vehicles,	and	
travelers—to	work	together	in	an	efficient	and	coordinated	way.			

These	improvements	will	be	achieved	by	developing	and	deploying	the	ICM	system	described	in	this	
high	level	design	document.	At	the	heart	of	the	proposed	system	will	be	a	Decision	Support	System	
(DSS)	designed	to	help	corridor	system	operators	manage	incidents,	unscheduled	events,	and	planned	
events	more	effectively.	This	system	will	use	information	gathered	from	monitoring	systems	and	
provided	by	predictive	analytical	tools	to	estimate	current	and	near-future	operational	performance.	
The	information	will	be	used	to	develop	recommended	courses	of	action	to	address	problems	caused	by	
identified	incidents	and	events.	More	specifically,	this	system	is	expected	to:	

• Improve	real-time	monitoring	of	travel	conditions	within	the	corridor	
• Enable	operators	to	better	characterize	travel	patterns	within	the	corridor	and	across	systems	
• Provide	predictive	traffic	and	system	performance	capabilities	
• Be	able	to	evaluate	alternative	system	management	strategies	and	recommend	desired	courses	

of	action	in	response	to	planned	events,	unscheduled	events,	and	incidents	
• Improve	decision-making	by	transportation	system	managers	
• Improve	collaboration	among	agencies	operating	transportation	systems	in	the	corridor	
• Improve	the	utilization	of	existing	infrastructure	and	systems	
• More	efficiently	use	spare	capacity	to	address	non-recurring	congestion	
• Reduce	delays	and	travel	times	along	freeways	and	arterials	
• Improve	travel	time	reliability	
• Help	reduce	the	number	of	accidents	occurring	along	the	corridor	
• Reduce	the	period	during	which	the	congestion	resulting	from	an	incident	or	event	affects	

corridor	operations	
• Reduce	greenhouse	gas	emissions	
• Generate	higher	traveler	satisfaction	rates	
• Increase	the	overall	livability	of	communities	in	and	around	the	I-210	corridor	

While	development	of	the	proposed	system	is	under	the	financial	sponsorship	of	Caltrans	Headquarters,	
the	system	will	be	developed	with	cooperation	of	the	local	transportation	agencies	that	have	agreed	to	
participate	in	its	operation,	in	coordination	with	PATH.	Project	activities	will	include	the	design,	
development,	installation,	testing,	and	operation	of	various	components	of	the	ICM	system,	as	well	as	
the	development	of	interfaces	with	existing	monitoring	and	control	systems.	For	example,	the	ICM	Core	
System	will	be	interfaced	with	traffic	management	systems	owned	by	Caltrans,	such	as	the	Advanced	
Traffic	Management	System	(ATMS).	

It	is	important	to	understand	that	rather	than	having	a	system	delivered	that	meets	all	of	the	
requirements	in	the	system	requirements	specification	on	its	first	day	of	operation,	the	system	is	being	
developed	in	an	iterative	fashion,	allowing	learning	and	feedback	between	operation	and	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

16	

design/implementation.	As	a	result,	this	design	attempts	to	accommodate	all	of	the	various	
requirements	by	providing	a	scalable,	flexible,	and	extendable	platform	that	can	address	these	
requirements	in	various	ways	based	on	the	pilot’s	experience.	It	is	also	expected	that	this	approach	will	
allow	Caltrans	and	local	agencies	to	address	new	discoveries	and	ideas	that	may	be	informed	by	future	
corridor	operations	and	activities.	

3.1. PROJECT	GOALS	AND	OBJECTIVES	

The	primary	goal	of	the	I-210	Pilot	ICM	project	is	to	improve	overall	corridor	performance	along	a	
section	of	the	I-210	corridor.	This	translates	into	the	following	specific	goals:	

1. Improve	operational	situational	awareness	
2. Promote	collaboration	among	corridor	stakeholders	
3. Improve	response	to	incidents	and	events	
4. Improve	travel	reliability	
5. Improve	overall	corridor	mobility	
6. Empower	travelers	to	make	informed	travel	decisions	
7. Facilitate	multi-modal	movements	across	the	region	
8. Promote	transportation	sustainability	by	reducing	impacts	on	the	environment	
9. Improve	corridor	safety	

For	each	of	these	goals,	Table	3-1	further	identifies	the	main	operational	objectives.	Many	of	the	
objectives	are	similar	to	those	of	traditional	transportation	improvement	projects.	Many,	however,	also	
focus	on	implementing	more	comprehensive	travel	and	system	status	monitoring	systems,	improved	
operational	forecasting,	improved	information	dissemination	to	travelers,	enhanced	data-sharing	
capabilities,	demand	management	approaches,	and	improved	collaboration	among	transportation	
system	operators.	

Table	3-1	–	ICM	System	Goals	and	Objectives	

Goals	 Objectives	

1.	Improve	
situational	
awareness		

• Establish	minimum	requirements	for	data	collection	to	support	system	management	
• Increase	data	collection	opportunities	from	arterials	and	local	roads	
• Improve	the	collection	of	real-time	operational	data	from	non-traditional	sources,	such	as	
probe	vehicles	

• Develop	a	comprehensive	corridor	informational	database	covering	all	relevant	travel	modes	
within	the	corridor	

• Improve	the	quality,	accuracy,	and	validation	process	of	collected	data	
• Increase	the	ability	to	estimate	travel	demand	patterns	in	a	multi-modal	environment	
• Improve	the	ability	to	forecast	near-future	travel	conditions	based	on	known	incidents,	road	
conditions,	weather,	and	local	events	

• Develop	performance	metrics	considering	all	available	travel	modes	

2.	Promote	
collaboration	
among	corridor	
stakeholders		

• Strengthen	existing	communication	channels	among	the	corridor’s	institutional	stakeholders	
• Explore	opportunities	for	new	communication	links	between	corridor	stakeholders	
• Improve	cooperation	and	collaboration	among	corridor	stakeholders	
• Develop	regional/joint	operations	concepts	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

17	

Goals	 Objectives	

• Identify	new	methods	of	collaboration	
• Extend	corridor	performance	metrics	to	the	network	level	
• Investigate	new	types	of	agreements	between	participating	agencies	

3.	Improve	
response	to	
incidents	and	
unexpected	
events		

• Reduce	the	time	needed	to	identify	the	existence	of	an	incident	or	unexpected	event	
• Reduce	the	time	needed	to	respond	to	incidents	or	unscheduled	events	
• Enhance	the	coordination	of	activities	among	first	responders,	traffic	management	
agencies,	and	transit	agencies	to	minimize	impacts	on	system	operations	

• Reduce	the	time	needed	to	implement	control	actions	to	address	congestion	resulting	from	
an	incident	or	event	

• Reduce	the	time	needed	to	disseminate	recommended	detours	around	an	incident	or	event	

4.	Improve	
travel	
reliability	

• Improve	travel	time	predictability	along	the	corridor	
• Reduce	the	impacts	of	incidents	and	events	on	network	operations	
• Improve	incident/event	notification	for	first	responders	and	network	operators	
• Improve	incident/event	notification	to	travelers	and	fleet	operators	
• Provide	travelers	and	commercial	vehicle	operators	affected	by	an	incident	or	event	an	
enhanced	ability	to	seek	alternate	routes	or	mode	of	transportation	

5.	Improve	
overall	
corridor	
mobility		

• Reduce	delays	incurred	by	travelers		
• Reduce	the	impacts	of	incidents	and	events	on	network	operations	
• Efficiently	use	spare	capacity	along	corridor	roadways	to	plan	necessary	detours	around	
incidents	or	events	

• Promote	strategies	to	induce	desirable	travel	demand	patterns	
• Coordinate	the	management	of	freeway	and	arterial	bottlenecks	
• Promote	increases	in	vehicle	occupancy	
• Promote	increases	in	transit	ridership	

6.	Empower	
system	users	
to	make	
informed	
travel	
decisions	

• Improve	the	dissemination	of	real-time,	multi-modal	travel	information	
• Enhance	the	use	of	infrastructure-based	informational	devices	(freeway	CMS,	arterial	
trailblazer	signs,	kiosks,	etc.)	to	provide	en-route	information	to	travelers	

• Enable	individuals	to	receive	travel	information	on	connected	mobile	devices	
• Make	archived	historical	data	available	to	511	services	and	information	service	providers	
• Support	the	dissemination	of	travel	information	by	511	services	and	third-party	providers	

7.	Facilitate	
regional	multi-
modal	
movements		

• Promote	the	integration	of	commuter	rail	and	bus	services	with	corridor	operations	
• Facilitate	transfers	across	modes	during	incidents	and	events	
• Provide	relevant	regional	travel	information	to	travelers	
• Direct	travelers	to	park-and-ride	facilities	with	available	spaces	

8.	Promote	
transportation	
sustainability	

• Reduce	fuel	consumption	
• Reduce	vehicle	emissions	
• Identify	financially	sustainable	solutions	for	long-term	system	operations	and	maintenance	
• Encourage	the	use	of	transit,	walking,	and	bicycling	where	appropriate	
• Support	locally	preferred	alternatives	compatible	with	corridor	objectives	
• Develop	and	implement	performance	metrics	reflecting	environmental	goals		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

18	

Goals	 Objectives	

9.	Improve	
corridor	safety		

• Reduce	collision	rates	
• Reduce	the	severity	of	collisions	
• Reduce	the	number	of	fatalities	
• Reduce	the	impacts	of	primary	and	secondary	incidents	on	network	operations	through	
improved	incident	management	

• Improve	safety	for	bicycles,	pedestrians,	and	transit	

3.2. TECHNICAL	CAPABILITIES	SOUGHT	

To	help	manage	travel	activities	within	the	corridor	during	incidents,	unscheduled	events,	and	planned	
events,	the	project	is	seeking	the	following	technical	capabilities	to	support	the	goals	and	objectives	
identified	in	Section	3.1:	

• Gather	and	archive	information	characterizing	traffic	operations,	transit	operations,	and	the	
operational	status	of	relevant	control	devices	within	the	I-210	corridor.	

• Identify	unusual	travel	conditions	on	the	I-210	freeway	or	nearby	arterials	based	on	monitoring	
data	provided	by	various	traffic,	transit,	and	travel	monitoring	systems.	

• Identify	situations	in	which	an	incident	on	roadways	or	transit	facilities	significantly	affects	travel	
conditions	within	the	corridor.		

• Provide	corridor-wide	operational	evaluations	to	traffic	managers,	transit	dispatchers,	and	other	
relevant	system	managers,	including	projected	assessments	of	near-future	system	operations	
under	current	and	alternate	control	scenarios.	

• Identify	recommended	detours	around	incidents	or	routes	leading	to	the	site	of	an	event,	
considering	observed	travel	conditions	within	the	corridor.	Depending	on	the	need,	and	final	
system	capabilities,	specific	detours	may	be	recommended	for	motorists	and	transit	vehicles.	

• Identify	recommended	signal	timing	plans	to	use	at	signalized	intersections	to	improve	and/or	
accommodate	traffic	flow	influx	during	incidents	and	events	and	improve	overall	corridor	
mobility.	

• Identify	recommended	ramp	metering	rates	to	use	on	individual	I-210	freeway	on-ramps	and	
connectors	to	maintain	overall	corridor	mobility.	

• Identify	messages	to	post	on	available	freeway	and	arterial	CMSs	to	inform	motorists	of	
incidents	and	events.	

• Provide	guidance	to	motorists	on	the	I-210	freeway	and	surrounding	arterials	using	available	
freeway	CMSs,	arterial	CMSs,	and	arterial	dynamic	trailblazer	signs	regarding	which	detour	to	
take	to	go	around	an	incident	or	which	route	to	follow	to	reach	the	site	of	an	event.	

• Provide	information	to	motorists	about	the	availability	of	parking	and	transit	services	to	help	
travelers	make	alternate	mode-choice	decisions.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

19	

• Provide	uniform	traffic	management	strategies	across	jurisdictional	boundaries	during	incidents	
and	events.	

• Provide	information	to	motorists	through	third-party	outlets,	such	as	511	services,	navigation	
application	providers,	etc.	

	
	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

20	

	 	

This	page	left	blank	
intentionally	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

21	

4. HIGH	LEVEL	DESIGN	OBJECTIVES,	CONSTRAINTS,	AND	PRINCIPLES	

The	core	system	design	is	governed	by	a	few	key	primary	design	objectives	dictated	by	the	project	and	
the	requirements:	
	

• Real	time	operation	–	The	system	must	operate	in	a	near	real	time	environment.	The	time	
between	an	incident	occurring	and	a	response	plan	implementation	is	a	critical	time	period.	
Response	times	should	be	dictated	primarily	by	the	time	to	notification	and	confirmation	of	the	
incident,	and	the	time	to	fully	implement	a	decision.	The	time	required	by	the	system	to	process	
information	should	be	minimized	so	as	to	have	the	maximum	positive	impact	on	corridor	
operations.	

• Speed	to	decision	–	There	is	a	significant	amount	of	data	processing	required	to	maintain	both	
operator	awareness	and	to	ensure	the	modeling	within	the	decision	support	system	is	updated	
with	the	latest	available	information.	Data	processing	and	decision	processing	time	should	be	
minimized.	

• Quality	of	decision	–	The	quality	of	the	response	plans	is	a	direct	result	of	the	traffic	estimation	
quality,	traffic	prediction	quality,	data	processing	time,	data	quality,	and	rules	used	to	generate	
response	plans.		

• Ability	to	measure	outcomes	–	There	must	be	a	high	level	of	confidence	in	the	system	outcomes,	
and	these	outcomes	must	be	continuously	measured	and	monitored	with	processes	in	place	to	
improve	the	systems	effectiveness	over	time.	

• Incremental	deployment	–	The	system	must	be	able	to	be	deployed	incrementally,	adding	new	
capabilities	over	time.	

• System	flexibility	–	The	system	must	be	built	to	be	flexible,	as	it	is	intended	as	a	pilot	that	is	
adjusted	and	modified	as	experience	is	gained	with	operations.	It	is	intended	that	the	system	
will	also	change	as	new	capabilities	are	added.	In	addition,	this	flexibility	will	be	key	to	future	
implementations	in	other	corridors	with	different	integration	needs	and	different	requirements.	
It	is	also	expected	that	transportation	itself	will	be	changing	radically	over	the	lifetime	of	the	
system,	so	flexibility	is	key	to	its	long	term	viability.	

• Secure	operations	–	As	the	system	has	the	capability	to	request	changes	to	traffic	controls	
across	a	large,	complex	urban	corridor,	security	of	the	system	is	critical	to	its	success.	
	

Core	system	design	is	limited	by	the	following	constraints:	
	

• Ability	to	be	operated	and	maintained	by	Caltrans	without	significant	licensing	costs	–	The	
system	must	be	designed	with	open	source	components	as	much	as	possible.	It	is	not	desired	to	
have	significant	licensing	costs	required	for	subsequent	deployments	for	future	corridors	or	over	
long	periods	of	time.	It	is	intended	that	Caltrans	will	be	capable	of	deploying,	maintaining,	and	
operating	this	and	future	deployments.	

• Limited	time	to	deploy	–	The	deployment	schedule	is	aggressive,	creating	the	need	to	ensure	
significant	reusability	within	the	design	so	that	multiple	data	sources	can	be	incorporated	into	
the	system	without	designing	new	data	pipelines	for	each	one,	utilizing	a	common	set	of	design	
patterns	and	system	libraries	for	new	pipelines.		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

22	

• Constrained	development	resources	–	Caltrans	provided	a	fixed	amount	of	funding	so	the	
system	design	must	not	exceed	our	resources	with	complexity	and	additional	features.			
	

These	core	design	objectives	and	constraints	are	implemented	with	the	following	design	principles:	
	

• Cloud	development,	deployment,	and	operations	–	In	order	to	achieve	maximum	flexibility	in	
both	system	development	and	future	configurations,	minimize	resource	utilization	in	
development	and	deployment,	and	minimize	deployment	time,	the	core	system	is	designed	for	
100%	cloud	operations	within	an	Amazon	AWS	cloud	environment.	

• The	system	is	a	pilot	system	and	it	expected	that	as	we	learn	from	the	deployment	of	the	system	
changes	will	be	needed	and	recommended.	

• Caltrans	shall	be	capable	of	supporting	the	system	with	its	internal	resources.	
• Decisions	produced	in	the	form	of	response	plans	shall	be	based	on	current	corridor	information	

with	limited	delays	in	information	processing.	
• Data	maintained	within	the	core	system	will	be	limited	to	the	data	required	for	system	

operation.	Long	term	data	storage	shall	be	a	function	of	PeMS.	
• The	system	will	be	designed	for	future	growth,	incremental	improvements,	future	

transportation	system	changes,	changes	in	transportation	itself,	geographic	changes,	and	new	
and	updated	information	sources	and	needs.	

• Ease	of	deployment	
• Ease	of	maintenance	
• Portability	of	the	system	design	and	components	to	other	corridors	
• Highly	decoupled	design	for	flexibility,	scalability,	redundancy,	and	reliability	
• Use	available	data	standards	whenever	possible	
• Standardized	external	interfaces	for	ease	of	portability	and	inclusion	of	new	subsystems	
• Maintenance	of	a	separation	of	concerns	between	data	management,	decision	support,	and	

control	functions.	
• Design	with	state,	regional,	and	local	targeted	components	for	future	scalability	and	

standardized	deployment	across	the	state.		
	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

23	

5. CORE	SYSTEM	HIGH	LEVEL	DESIGN	

The	core	system	high	level	design	is	illustrated	in	Figure	5-1.	This	high	level	design	provides	clear	
separation	between	external	systems	providing	data	and	receiving	control	requests	(green),	the	data	
hub	receiving	and	processing	information	from	those	external	systems	(red),	decision	support	providing	
response	plans	for	incidents	(blue),	and	the	corridor	management	system	providing	user	interface,	
response	plan	selection	and	approval,	and	sending	of	control	requests	to	external	systems	(purple).	

	
Figure	5-1	Core	System	High	Level	Design	

	

5.1. MAJOR	COMPONENTS	

As	shown	in	Figure	5-1,	the	ICM	Core	System	is	composed	of	three	major	subsystems:	the	Data	Hub,	the	
Decision	Support	System,	and	the	Corridor	Management	subsystem.	These	subsystems,	plus	the	
external	field	elements	the	Core	System	interacts	with,	are	summarized	in	the	following	table	(color-
coded	to	match	Figure	5-1)	and	described	in	detail	in	the	following	pages.	
	

Table	5-1	Major	System	Components	

Component	 Description	

Data	Hub	 Provides	for	receipt	and	processing	of	all	corridor	data	and	a	method	of	
communication	among	the	three	subsystems,	using	a	common	set	of	data	
definitions.	Provides	operational	data	persistence	and	retrieval.	

Decision	Support	 Provides	current	traffic	state,	response	plan	development,	and	response	plan		
performance	prediction	to	provide	one	or	more	recommended	response	plans	for	
incidents	and	events.	

Corridor	Management	 Provides	the	primary	user	interface	for	system	operators,	a	method	for	users	to	
monitor	current	corridor	and	corridor	asset	states,	interact	with	the	Decision	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

24	

Support	System,	review,	evaluate,	select,	and	approve	response	plans,	and	interact	
with	external	systems,	particularly	for	execution	and	management	of	response	
plans.	

Field	Elements	 Represent	external	providers	and	consumers	of	information	and	requests	for	action	
such	as	intersection	signals,	ramp	meters,	corridor	sensing,	and	other	elements,	
usually	through	respective	transportation	management	systems	and	TMCs.	

The	design	for	the	I-210	Pilot	will	not	have	a	layered	geographic	approach,	but	the	design	is	intended	to	
allow	such	an	approach	in	the	future.	There	are	three	geographic	layers	to	the	design:	state,	regional,	
and	local.	The	intent	is	that	the	Data	Hub	operates	on	a	regional	level	(Caltrans	district),	with	the	
potential	for	serving	multiple	corridors	within	a	region.	Data	would	be	consolidated	and	aggregated	at	a	
state	level	for	multiple	regions	via	PeMS,	to	support	larger	scale	archiving,	business	intelligence	analysis,	
and	continued	improvement	of	corridor	and	ICM	system	capabilities	at	the	state	level.	The	Decision	
Support	and	Corridor	Management	components	operate	on	a	local	level,	within	a	single	corridor.	With	
state	consolidation	of	data,	regional	data	communication,	and	local	decision	support	and	response	plan	
execution,	a	method	of	sharing	information	between	corridors	is	enabled,	while	ensuring	local	
jurisdiction	control	of	traffic	event	and	incident	response.	

5.2. FIELD	ELEMENTS	

Green	elements	in	Figure	5-1	represent	the	various	corridor	field	data	sources	and	field	element	
controls,	including	various	state,	regional,	and	local	transportation	systems,	regional	transportation	data	
networks,	and	private	information	providers.		

• On	the	left	side	of	the	diagram,	these	elements	represent	the	various	data	sources	for	
information	consumed	and	processed	by	the	ICM	system.		

• On	the	right	side,	these	represent	the	various	control	interfaces	to	execute	response	plan	
elements	selected	by	operators	of	the	ICM	system.	

The	systems	that	will	be	providing	the	data	within	the	I-210	corridor	include:	

	
Table	5-2	–	Field	Systems	

Source	 Information	Type	
Pasadena	TMC*	 Pasadena	intersection	signals	
Arcadia	TMC*	 Arcadia	intersection	signals	
County	TMC	-	KITS*	 LA	County	intersection	signals	

Duarte	intersection	signals	
Monrovia	intersection	signals	

Caltrans	ATMS**	 Freeway	vehicle	detection	
Ramp	meters	
Dynamic	message	system	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

25	

Incident	information	
Caltrans	LCS*	 Lane	closures	
Caltrans	TSMSS*	 Intersection	signal	
Trailblazer	System*	 Dynamic	message	system	for	rerouting	
RIITS	 Local	video	

Caltrans	video	
CalPoly	ODS	 Environmental	sensing	

Transit	
HSR	Lane	Closure*	 City	lane	closures	
NextBus	 Gold	line	transit	

*	Indicates	field	system	that	accepts	control	messages	

**	Caltrans’	ATMS	system	accepts	control	messages	and	provides	limited	ICM	core	system	control,	
including	review,	approval,	and	termination	of	response	plans	

Future	field	systems	may	include	probe	data	providers	(GPS	location/speed),	additional	transit	
information,	parking	information,	and	others.		

5.3. DATA	HUB	

Data	from	each	of	the	field	sources	are	received	by	the	ICM	Data	Hub,	represented	in	red	in	Figure	5-1.	
The	primary	functions	of	the	Data	Hub	are:	

• Receive	data	from	field	elements	via	existing	corridor	traffic	management	centers	and	
regional	data	networks:	Various	data	receivers	receive	data	and	prepare	it	for	processing	by	the	
ICM	system.	These	receivers	are	generally	expected	to	be	built	for	the	specific	interfaces	defined	
by	each	field	data	source,	both	in	transmission	method	(REST	or	SOAP	web	services,	socket-
based	streaming,	file-based,	or	others)	and	the	intended	initial	path	required	for	system	data	
processing.	The	preferred	method	of	information	transfer	for	the	system	is	the	Traffic	
Management	Data	Dictionary	(TMDD)	standard	developed	by	the	Institute	for	Traffic	Engineers	
(ITE),	currently	at	version	3.03d	(with	certain	modifications).	

• Process	data	received	from	field	elements:	Data	from	field	elements	must	be	validated	for	
completeness	and	data	quality	prior	to	use	by	downstream	system	components.	With	such	a	
variety	of	data	sources,	often	for	the	same	type	of	field	elements,	data	must	be	transformed	
into	a	common	format	and	set	of	data	semantics.	When	data	is	not	provided	in	a	standardized	
format	by	the	source,	the	Data	Hub	processes	the	data	into	a	standardized	format,	TMDD	for	
transportation	assets,	GTFS	for	transit	information,	or	others	depending	upon	the	data	being	
received.	For	all	data	received,	data	is	transformed	into	a	common	set	of	data	definitions	as	well	
(such	as	a	single	naming	standard	for	all	streets	within	the	corridor).	However,	it	is	critical	to	
note	that	this	transformation	into	a	standardized	format	for	processing	within	the	data	hub,	
while	it	maintains	the	data	structures	within	TMDD,	does	not	generally	maintain	an	XML	data	
format.	Internal	communications	within	the	data	hub	(and	the	DSS)	do	not	use	SOAP	protocols.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

26	

The	data	hub	and	DSS	use	JMS	protocols	for	internal	communications	and	for	communications	
between	the	DSS	and	data	hub,	using	either	an	ActiveMQ	or	Kafka	messaging	system	and	JSON	
messages.	Additional	processing	is	also	completed	within	the	data	hub,	either	for	specific	
metrics,	calculated	parameters,	or	predictive	analytics.		

• Data	messaging	and	communications:	Data	provided	to	downstream	systems,	as	well	as	
internal	system	command,	control,	and	status	data—indeed,	all	data	within	the	ICM	system—is	
made	available	via	an	internal	data	bus.	The	method	of	data	transport	is	via	data	messaging	
technologies,	namely	ActiveMQ	JMS	messaging	or	Kafka	data	messaging	systems.	The	specific	
message	technology	is	based	on	the	type,	size,	frequency,	and	message	persistence	
requirements	of	the	data,	data	producer,	and	data	consumers.	Exceptions	to	these	methods	
within	the	data	hub	are	limited,	and	are	generally	used	for	large	block	bulk	data	archiving/data	
transport	between	persistence	stores.	In	order	to	accommodate	multiple	CMS	vendors,	and	to	
provide	communication	between	the	data	hub’s	Kafka	messaging	system	and	the	DSS	ActiveMQ	
messaging	system,	an	Apache	Camel	based	interface	between	the	data	hub	and	the	DSS	and	
CMS	systems	is	included	within	the	data	hub.	The	Camel	interface	has	the	ability	to	provide	
SOAP	and	REST	based	services	as	necessary,	and	translation	between	messaging	systems.		

• Data	persistence:	The	Data	Hub	also	provides	data	persistence	capabilities,	allowing	for	
persistence	of	raw	and	processed	data,	system	command/control/status,	and	other	system	
information	in	a	central	repository.	This	data	persistence	is	broken	into	different	time	layers,	
including	live	real-time	data,	recent	data	(0-90	days),	aggregated	data,	and	archived	data.	It	
includes	leveraging	state	EDW	and	BI	resources	as	a	component	of	the	data	persistence	
capabilities,	specifically	as	the	single	data	store	for	non-operational	data	(data	older	than	90	
days).	Since	data	persistence	within	the	data	hub	is	limited	to	operational	uses,	and	the	
architecture	is	based	on	a	pattern	of	core	services	connected	by	messaging,	multiple	data	
persistence	technologies	are	utilized	specific	to	the	needs	of	the	system	and	the	data	being	
stored.	Large	collections	of	time	series	data,	such	as	sensor	data,	is	stored	in	a	Cassandra	
database;	large	relational	structures	with	smaller	update	frequencies	are	stored	within	a	
Postgres	database,	and	MongoDB	is	used	within	data	translation	pipelines	when	multiple	
sources	provide	the	same	type	of	information	in	differing	formats	and	implementations.	NOTE:	
MongoDB	may	be	used	in	development	and	early	versions	of	the	system	instead	of	Postgres	for	
the	relational	data	stores	in	order	to	accommodate	cost	and	schedule	constraints.	

• Orchestration	of	services	and	workflows	between	the	three	primary	ICM	systems:	The	three	
primary	ICM	sub-systems,	data	hub,	CMS,	and	DSS,	while	they	are	independently	operating	
systems,	must	coordinate	actions	between	the	three	in	order	to	operate	as	required.	In	
addition,	all	communication	between	the	three	systems	passes	through	the	data	hub.	This	is	
done	to	provide	a	standard	interface	and	interchangeability	of	DSS	and	CMS	components	for	
future	corridors.	To	do	this,	the	data	hub	provides	the	ability	to	manage	workflows,	both	for	
orchestration	of	its	own	data	pipelines	and	services,	but	also	between	DSS	and	CMS	systems.		

An	example	of	this	orchestration	is	responding	to	an	incident.	Consider	a	workflow	where	a	CMS	
system	informs	the	system,	via	a	user	initiated	event	in	the	CMS,	of	a	confirmed	incident.	The	
data	hub	receives	that	incident	and	begins	management	of	services	within	the	data	hub	and	
between	the	DSS	and	CMS.	First	it	ensures	that	the	required	data	pipelines	are	up	and	running,	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

27	

starts	them	if	necessary,	and	ensures	persistence	of	all	data	being	captured	during	the	time	
period	of	the	incident.	Second,	it	informs	the	DSS	of	the	incident	and	requests	a	response	plan.	
It	also	informs	the	CMS	of	the	status	of	the	incident	workflow	as	it	progresses.	When	the	DSS	
responds	with	the	need	for	a	response	plan,	the	response	plans,	and	the	results	of	evaluation	
and	selection	of	response	plans,	the	data	hub	ensures	this	data	is	captured	and	stored,	and	
forwards	the	selected	response	plan	to	the	CMS	with	its	evaluation	and	ranking.	If	the	response	
plan	is	rejected	by	the	CMS,	the	data	hub	stores	that	result	and	forwards	the	next	response	plan	
(if	another	response	plan	is	suitable	–	ranks	high	enough	above	a	do-nothing	response	plan).	If	
that	response	plan	is	selected,	it	then	is	provided	that	information	from	the	CMS	and	stores	it.	
Then	the	data	hub	continues	the	workflow	either	with	updates	based	on	new	information	
regarding	the	incident	received	from	the	CMS,	or	based	on	a	periodic	evaluation	based	on	
parameters	governing	the	incidence	response	workflow	within	the	data	hub.	

5.4. DECISION	SUPPORT	

The	Decision	Support	System,	portrayed	in	blue	in	Figure	5-1,	provides	the	following	capabilities:	

• Corridor	traffic	state	determination:	The	Decision	Support	System	provides	corridor	traffic	state	
estimation,	providing	both	geospatial	traffic	state	information	and	traffic	state	metrics.	Separate	
arterial	and	freeway	traffic	models	are	used	and	merged	to	provide	full	corridor	traffic	state	at	
all	times.	

• Corridor	traffic	state	prediction:	The	Decision	Support	System	provides	corridor	traffic	state	
predictions	for	use	by	corridor	operators	and	for	prediction	of	incident	and	event	response	plan	
performance.	A	commercial	simulation	engine	(TSS	Aimsun)	is	used	to	provide	traffic	
predictions.	Traffic	predictions	are	generated	with	an	initial	state	incorporating	the	estimated	
traffic	state	as	well	as	the	current	state	of	corridor	assets	from	the	data	hub.	

• Response	plan	development	and	evaluation:	The	Decision	Support	System,	upon	notification	of	
a	confirmed	incident,	will	use	a	rules-based	approach	along	with	traffic	state	estimation	and	
prediction	capabilities	to	develop,	evaluate,	and	rank	response	plans	for	use	by	corridor	
operators.	

5.5. CORRIDOR	MANAGEMENT	

The	Corridor	Management	subsystem,	portrayed	in	purple	in	Figure	5-1,	shall	provide	the	following	
primary	capabilities:	

• Presentation	of	corridor	state:	Display	of	corridor	state,	including	corridor	assets	(signals,	
ramps,	cameras,	dynamic	messaging,	transit,	etc.),	estimated	traffic	state,	traffic	visualization	
(camera	output),	human	assets,	and	physical	assets	(vehicles,	response	crews).	Asset	state	
includes	current	operational	capabilities,	current	operating	state,	current	functional	state	
(operating,	failed,	degraded	states),	time	availability,	controllability,	etc.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

28	

• Control	of	corridor	assets:	The	Corridor	Management	subsystem	provides	the	capability	to	
control	corridor	assets,	taking	response	plans	approved	for	execution	and	executing	each	of	the	
individual	response	plan	elements	by	sending	commands	to	the	appropriate	state,	regional,	and	
local	systems	and	entities.	The	Corridor	Management	subsystem	does	not	directly	control	
corridor	assets,	but	only	sends	commands	to	the	state,	regional,	or	local	systems	that	directly	
command	corridor	assets.	

• Presentation	of	response	plans:	The	Corridor	Management	subsystem	presents	each	response	
plan	developed	by	the	Decision	Support	System,	displaying	in	meaningful	ways	the	various	
response	plan	elements,	how	they	will	change	from	the	current	corridor	state,	how	they	change	
during	response	plan	execution,	what	the	predicted	outcomes	are	for	each	response	plan,	what	
the	actual	outcomes	are	for	a	response	plan,	as	well	as	the	various	metrics	on	how	the	response	
plans	are	evaluated	and	their	effectiveness	measured.	This	presentation	is	expected	to	be	in	
multiple	presentation	formats,	including	geospatial,	tabular,	comparative,	graphical,	and	other	
solution-specific	formats.	

• Response	plan	lifecycle	management:	Each	response	plan	developed	by	the	system	has	a	
specific	lifecycle	that	includes:	

	
1. Initiation	
2. Development	
3. Evaluation	
4. Selection	
5. Approval	

	

6. Execution	
7. Monitoring	
8. Close	
9. Post-incident/event	analysis	

The	Corridor	Management	subsystem	provides	a	management	interface	for	this	lifecycle:	
	

Table	5-3	Response	Plan	Lifecycle	

Initiation	 The	Corridor	Management	subsystem	presents	incident	and	event	information	
received	from	the	Data	Hub	for	review,	edit,	and	confirmation	by	the	corridor	
operators.	

Development	 The	Corridor	Management	system	provides	display	of	status	information	
received	from	the	Decision	Support	System	(DSS)	regarding	its	decision	to	
develop	a	set	of	response	plans	to	an	incident	or	event,	as	well	as	the	
development	of	those	response	plans.	In	addition,	it	can	send	commands	to	
the	Decision	Support	System	to	initiate	specific	DSS	functions,	such	as	mock	
incident	evaluation,	or	other	functions	required	for	the	ICM	system.	

Evaluation	 The	Corridor	Management	subsystem	receives	the	results	of	response	plan	
evaluation	and	traffic	state	prediction	and	displays	those	results,	along	with	
the	response	plans,	to	the	corridor	user.	Display	shall	include	individual	plan	
analysis,	as	well	as	ranking	and	comparative	analysis	of	response	plans.	

Selection	 The	Corridor	Management	subsystem	provides	the	user	the	capability	to	select	
a	specific	response	plan	for	subsequent	approval	and	implementation.		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

29	

Modification	 The	Corridor	Management	subsystem	shall	provide	users	the	ability	to	make	
minor	modifications	to	response	plans.	NOTE:	Initial	versions	of	the	software	
will	not	have	this	capability.	

Approval	 The	Corridor	Management	subsystem	provides	a	selected	response	plan	to	the	
corridor	stakeholders	at	the	state,	regional,	and	local	levels	for	review	and	
approval	or	rejection.		

Execution	 The	Corridor	Management	subsystem	is	the	sole	component	in	the	system	
capable	of	sending	commands	to	the	various	systems	in	control	of	corridor	
assets	for	individual	response	plan	component	execution.	It	shall	have	displays	
that	allow	control	and	monitoring	of	corridor	assets	via	the	state,	regional,	and	
local	traffic	management	systems	and	assets.	

Monitoring	 Given	the	capability	to	display	asset	state,	manage	corridor	assets,	and	execute	
response	plan	elements,	the	Corridor	Management	subsystem	shall	provide	an	
integrated	display	of	response	plan	monitoring	once	the	execution	commands	
are	sent	to	the	field	systems.	Monitoring	shall	include	displaying	when	
commands	have	been	executed	and	are	complete	at	the	field	asset	level,	
alerting	users	when	commands	or	assets	have	failed,	identifying	and	displaying	
variances	between	expected	and	actual	traffic	state,	and	the	ability	to	take	
action	in	the	event	of	response	plan	element	failure	for	any	specific	corridor	
asset.	

Close	 The	Corridor	Management	subsystem	shall	be	able	to	return	corridor	assets	to	
their	normal	state	once	traffic	has	returned	to	a	normal	state.	

Post-incident/event	
analysis	

The	Corridor	Management	subsystem	shall	display	a	corridor	post-event	
analysis	for	each	incident	or	event.	The	analysis	shall	include	information	from	
the	Corridor	Management	subsystem	itself,	especially	with	regard	to	the	
corridor	asset	response	plan	execution,	response	plan	execution	issues	and	
failures,	traffic	analysis	(expected	vs.	actual),	and	other	system	performance	
measures.	The	post-event	analysis	is	primarily	limited	to	information	used	by	
the	ICM	system	and	its	components,	as	well	as	metrics	calculated	post	
incident/event	regarding	response	plan	and	system	performance.	It	is	not	
intended	to	be	an	exhaustive	analysis	with	extensive	additional	modeling	
analysis	and	“what-if”	scenarios.	

	

• ICM	System	management:	The	Corridor	Management	subsystem	provides	management	
capabilities	for	the	ICM	system,	including:	

	
Table	5-4	CMS	Management	Capabilities	

Rules	management	 The	Corridor	Management	subsystem	provides	a	user	interface	for	the	
management	of	the	rules	used	within	the	rules	engine.	This	will	include	the	
ability	to	create	basic	rules	and	rule	sets,	edit	rules	and	rule	sets,	archive	rules	
and	rule	sets,	provide	configuration	management	for	rules	and	rule	sets,	make	
rules	active,	execute	rules	and	rule	sets,	and	import	rules	and	rule	sets.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

30	

Generally,	rules	that	can	be	edited	will	be	simpler	rules	and	rules	sets,	as	more	
complex	rules	are	likely	to	require	professional	development	effort	and	
integration.	NOTE:	The	initial	implementation	of	the	system	will	not	include	
this	capability.	

Response	plan	
management	

The	Corridor	Management	subsystem	provides	users	the	ability	to	update	the	
available	response	plans	and	response	plan	elements.	This	includes	adding,	
archiving,	updating,	and	activation	or	deactivation	of	response	plans	or	
response	plan	elements	for	use	within	the	corridor.	NOTE:	The	initial	
implementation	of	the	system	will	include	only	limited	response	plan	
management	capability.	

System	monitoring	 The	Corridor	Management	subsystem	provides	users	the	ability	to	monitor	the	
ICM	system	and	components.	Systems	logs,	alerts,	status	information,	control	
and	execution	of	system	functions	shall	be	accomplished	by	the	Corridor	
Management	subsystem.	NOTE:	The	initial	implementation	of	the	system	may	
not	include	this	capability.	

Security	 The	Corridor	Management	subsystem	provides	user	authentication	and	
authorization	for	the	Corridor	Management	subsystem	and	all	functions	
available	within	the	Corridor	Management	subsystem	that	affect	other	ICM	
system	functions,	including	Decision	Support	and	the	Data	Hub.	This	does	not	
include	user	authentication	and	authorization	of	individual	components	such	
as	Cassandra,	Postgres,	or	messaging;	rather,	it	provides	these	services	for	the	
functions	that	use	those	components.	NOTE:	The	initial	implementation	of	the	
system	will	include	capabilities	limited	to	security	of	the	CMS	and	its	interface.	

Configuration	 The	Corridor	Management	subsystem	provides	methods	and	interface	for	
allowing	users	to	change	any	and	all	configuration	elements	within	the	ICM	
system.	As	with	security,	this	does	not	include	configuration	of	individual	
system	components	such	as	Cassandra	and	Postgres,	but	rather	for	the	
functions	that	use	these	components.	NOTE:	The	initial	implementation	of	the	
system	will	have	minimal	capabilities	for	this	function.	

5.6. PRIMARY	PROCESS	FLOW	

Figure	5-2	provides	the	primary	system	workflow	illustrating	the	basic	integration	between	each	of	the	
subsystems.	While	this	illustration	is	not	intended	to	capture	all	of	the	details	of	the	interactions	
between	systems,	and	the	process	lifetimes	are	not	intended	to	be	accurate	within	this	sequence	
diagram,	it	does	provide	the	basic	sequence	of	events	and	primary	communication	channels	for	the	
primary	workflow	within	the	system,	a	response	to	an	incident	on	the	corridor.	Secondary	actions	such	
as	persistence,	logging,	communication	dialogs,	and	others	are	not	depicted	in	this	diagram.	Also	note	
that,	as	described	in	Figure	5-1,	all	communication	between	the	DSS	and	CMS	is	via	the	Data	Hub’s	data	
bus,	although	the	specifics	of	the	communication	channel	are	not	illustrated	in	Figure	5-2.	

	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

31	

	
Figure	5-2	Primary	System	Incident	Flow	(Subsystem)	

The	basic	workflow	described	in	this	diagram	is	as	follows:	

• An	incident	occurs	within	the	corridor.	The	diagram	shows	the	incident	information	being	
processed	through	the	data	hub.		

• The	incident	is	confirmed	by	an	operator	within	the	CMS	or	Caltran’s	ATMS.	The	initial	pilot	
system	will	always	use	an	operator	to	confirm	an	incident	and	the	process	will	be	started	from	
this	confirmation.		

• The	incident	information	is	passed	to	the	DSS’s	response	plan	development	component.		
• The	response	plan	development	component	requests	a	prediction	of	the	impact	of	the	incident	

on	the	corridor.		
• The	prediction	engine	uses	the	current	estimated	traffic	state	and	corridor	asset	state	to	

initialize	and	run	a	prediction	with	no	response	plan	execution	(“do	nothing”	prediction).	
• The	response	plan	development	component	uses	the	“do	nothing”	prediction	and	the	rules	

engine	to	determine	if	a	response	plan	should	be	developed.	If	the	result	is	no	response	plan	
should	be	developed,	execution	of	the	workflow	would	end	with	notification	to	the	CMS	of	that	
result.		

• If	the	result	is	that	a	response	plan	should	be	developed,	the	response	plan	development	
component	again	uses	the	rules	engine,	results	of	the	“do-nothing”	prediction,	current	corridor	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

32	

state,	and	a	set	of	fixed	response	plan	components	to	develop	a	limited	number	of	response	
plans	for	evaluation.	It	submits	those	response	plans	to	the	prediction	engine.	

• The	prediction	engine	runs	a	prediction	for	each	response	plan,	along	with	another	“do	nothing”	
prediction”	based	on	current	corridor	conditions.	It	provides	the	results	of	those	predictions	to	
the	response	plan	development	component.	

• The	response	plan	development	component	uses	the	results	of	each	prediction,	current	corridor	
state,	and	the	rules	engine	to	evaluate,	rank,	and	select	a	response	plan	to	recommend.	

• The	results	of	the	response	plan	predictions	and	evaluation	is	provided	to	the	CMS	for	operator	
selection.	

• The	CMS	provides	the	results	to	an	operator,	who	selects	the	response	plan	to	be	implemented	
and	obtains	approval	for	the	response	plan	implementation.	

• If	the	response	plan	is	approved,	the	CMS	executes	the	response	plan	by	submitting	C2C	
commands	to	the	TMCs	and	other	systems	required	to	execute	commands	to	individual	corridor	
assets.		

• The	individual	TMCs	and	other	systems	executing	the	response	plan	commands	report	the	
success	or	failure	to	execute	the	desired	response	plan	elements,	and	continue	to	report	
corridor	asset	state.	

Upon	completion	of	this	primary	workflow,	further	processes	involved	in	response	plan	lifecycle	
management	will	occur,	such	as	response	plan	evaluation,	response	plan	generation	to	adjust	to	current	
conditions,	response	plan	cancellation,	and	response	plan	closeout.	
	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

33	

6. DATA	HUB	DESIGN	

The	data	hub	has	six	primary	roles	within	the	system:	

1. Receive	information	from	external	providers	of	the	corridor	state.	
2. Process	information	received	from	providers	of	the	corridor	state,	evaluating	the	data	for	

quality,	providing	common	metrics	and	analysis	of	the	data	received,	conducting	predictive	
analytics	to	support	estimation	and	prediction	within	the	DSS,	and	standardizing	the	format	and	
content	for	downstream	consumption	by	the	DSS	and	CMS	systems.	

3. Persist	information	received,	results	of	processing,	and	overall	system	state	and	command	
information.	Persist	operationally	required	information	locally	and	send	to	archive	older	
information	for	longer	term	storage.	Retrieve	information	stored	upon	demand	(operational	
data	for	immediate	retrieval,	archived	data	for	later,	scheduled	retrieval).	

4. Secure	information	received,	processed	and	stored.	
5. Provide	data	communications	between	the	primary	systems	of	the	ICM	core	system.	
6. Orchestration	of	services	between	the	DSS	and	CMS.	

In	order	to	fulfill	these	roles,	the	data	hub	provides	a	series	of	data	pipelines	to	receive	information,	
process	the	information,	persist	the	information,	and	secure	the	information.	The	pipelines	use	Kafka	
and	ActiveMQ	messaging	systems	to	transmit	information	that	can	be	tapped	by	persistence	workers	to	
persist	information	to	the	various	data	stores	within	the	data	hub,	and	retrieve	the	information	and	
place	the	information	back	on	the	messaging	systems	for	downstream	consumption.	External	interfaces,	
using	Apache	Camel,	provide	information	and	communication	between	the	data	hub,	the	DSS,	and	CMS	
systems.	The	data	hub	command	gateway,	consisting	of	Netflix	Conductor,	coupled	with	Camel,	provides	
orchestration	and	workflow	services	for	data	hub	processes	as	well	as	CMS,	data	hub,	and	DSS	
operations.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

34	

	
Figure	6-1	Data	Hub	High	Level	Design	

This	design	consists	of	individual	services	connected	via	messaging.	It	is	a	highly	decoupled	design	based	
on	a	group	of	independent	services	connected	by	two	messaging	platforms.	Figure	6-1	provides	a	
generalized	diagram	that	illustrates	three	basic	types	of	data	pipelines.	Sensor	data	is	generally	a	high	
frequency,	larger	data	volume	pipeline	that	handles	a	larger	number	of	smaller	messages.	The	
heterogeneous	data	pipeline	type	handles	larger	sized	messages	at	lower	message	processing	
frequencies.	Heterogeneous	data	is	characterized	by	multiple	sources	providing	the	same	type	of	data	in	
varying	degrees	of	format	and	content	differences.	The	homogeneous	data	pipelines	are	similar	to	the	
heterogeneous	data	pipelines,	but	generally	are	built	for	a	single	data	source	that	provides	all	of	a	
specific	type	of	data.		

A	description	of	the	different	types	of	components	is	provided	below:	

Reader	–	Readers	are	the	beginning	of	the	data	pipeline.	Their	role	is	simple	–	to	connect	and	gather	the	
data	from	a	data	source	using	the	protocol	and	format	native	to	that	data	source,	and	to	place	the	
information	within	a	data	messaging	channel	for	downstream	processing.	In	general,	it	does	little	or	no	
processing	of	the	data,	with	any	processing	generally	limited	to	simple	parsing	of	large	batches	into	
individual	messages.	

Spark	–	Spark	is	an	Apache	Spark	cluster	that	provides	high	speed,	high	volume,	real-time	data	
processing	for	sensor	data.	Its	role	is	to	provide	data	transformation,	data	quality,	data	processing,	and	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

35	

predictive	analytics	for	sensor	data.	It	receives	data	from	readers,	processes	that	data,	and	places	the	
data	into	Kafka	message	topics	for	use	by	downstream	processes.	

Cassandra	–	Cassandra	is	an	Apache	Cassandra	cluster	that	provides	storage	for	time	series	data,	
primarily	sensing	data.	Cassandra	provides	high	speed,	high	volume,	clustered	storage	for	sensing	data.	
This	data	is	limited	to	operational	data	storage	and	is	not	intended	as	a	long-term	data	store.	

MongoDB	(Persist)	–	MongoDB	(Persist)	is	an	instance	of	MongoDB	dedicated	for	persistence	of	the	
more	complex	relational	data,	such	as	intersection	signal	plans,	ramp	meter	plans,	road	networks,	asset	
inventories,	and	organizational	information.	It	is	an	operational	data	store	and	not	intended	as	a	long	
term	data	store.	It	is	expected	that	long-term,	this	instance	of	MongoDB	would	be	replaced	with	
Postgres,	an	open	source	relational	database.	

Persistence	workers	–	Persistence	workers	provide	both	storage	and	retrieval	services	for	both	
MongoDB	and	Cassandra	data	stores	(and,	in	the	future,	Postgres).	Persistence	workers	listen	to	
assigned	message	channels	in	both	Kafka	and	ActiveMQ,	and	store	the	information	in	the	appropriate	
data	store.	Requests	can	be	sent	to	a	persistence	worker	via	a	command	message	channel	to	retrieve	
data	and	place	that	data	on	a	specified	message	channel	for	replay	purposes.		

Processors	–	Processors	are	used	in	the	homogeneous	and	heterogeneous	data	pipelines	to	process	data	
received	from	the	various	data	sources.	Processors	provide	data	transformation,	quality	verification,	and	
data	processing	services	for	data	received	from	these	sources.	

MongoDB	(Transform)	–	MongoDB	(Transform)	is	an	instance	of	a	MongoDB	database	and	is	used	to	
transform	data	received	on	a	heterogeneous	data	pipeline.	Readers	store	the	data	received	from	a	
source	into	MongoDB.	Processors	then	query	Mongo	for	the	information	required	for	processing	and	
downstream	processes	including	decision	support	and	corridor	management	systems.	MongoDB	
provides	an	ideal	platform	for	storing	information	retrieved	in	a	native	format	and	fast	querying	of	this	
information	with	minimal	maintenance	required	when	the	source	format	is	changed.		

Data	hub	command	gateway	(DH	command	gateway)	–	The	data	hub	command	gateway	provides	
routing	and	management	of	control	and	status	messages	for	the	data	hub	along	with	the	ability	to	
define	and	manage	workflows	that	govern	communications	and	processes.	Its	role	is	to	receive	
messages	routed	from	the	interfaces	for	the	DSS	and	CMS,	as	well	as	internal	data	hub	control	and	
status	channels,	provide	configurable	workflow	processes,	and	dynamically	route	command	messages	to	
the	appropriate	channels	for	the	receiving	process.	This	provides	encapsulation	of	individual	services	
and	ensures	that	new	services,	service	changes,	and	message	system	modifications	can	be	accomplished	
without	impacting	other	systems,	and	is	key	to	the	decoupling	of	the	system	services	for	the	entire	ICM	
system.	This	gateway	uses	an	implementation	of	Apache	Camel	and	Netflix	Conductor.	

External	interface/Data	gateway	–	The	external	interface/data	gateway	encapsulates	the	functions	of	
the	data	hub,	providing	a	sort	of	switchboard	for	use	by	the	CMS	and	DSS	systems.	CMS	and	DSS	
systems	are	not	required	to	know	the	internals	of	the	data	hub.	Instead	they	both	rely	on	the	external	
interface/data	gateway	to	provide	communication	services	with	the	data	hub.	This	external	
interface/data	gateway	uses	Apache	Camel	to	provide	both	routing	and	translation	services.	Internal	
data	hub	messages	(Kafka	or	ActiveMQ)	are	translated	into	the	ActiveMQ	or	SOAP	protocols	used	by	the	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

36	

CMS	and	DSS.	Common	TMDD	and	GTFS	message	formats	are	used	in	most	communications,	so	no	
translation	of	data	formats	is	required	by	the	gateway.	

PeMS	–	PeMS	is	a	California	state	system	that	currently	provides	state	transportation	data	services.	
PeMS	will	provide	long	term	storage	for	system	data,	and	reporting	services	for	non-real	time	data	and	
reporting	needs.	

S3	and	Glacier	–	S3	and	Glacier	are	AWS	storage	services.	These	two	services	will	be	used	to	provide	long	
term	data	archiving	for	the	purpose	of	retrieving	information	for	replay	or	analysis	within	the	ICM	
system.	They	are	not	intended	as	long	term	storage	for	PeMS	related	services.	

NOTES:		

Data	hub	logging	is	provided	via	a	common	instance	of	Graylog	shared	with	the	DSS.	Graylog	collects	
and	indexes	all	logs	for	each	individual	component	within	the	data	hub,	and	captures	control	and	
workflow	status	log	messages.	Its	role	is	to	capture	system	state	and	error	messages	for	monitoring	and	
troubleshooting	needs.	This	will	include	data	exceptions	for	data	not	received	or	received	late	from	each	
of	the	data	sources	for	the	ICM	system.	

6.1. DATA	SOURCES	

The	following	data	sources	have	been	defined	for	the	I-210	ICM	project:	
	

Table	6-1	ICM	Data	Sources	

Source	 Information	
Type	

System	 Vendor	 Product	 C2C	
TMDD	

Pasadena	 Intersection	
signal	

Pasadena	
TMC	

McCain	 Transparity	 Planned	

Duarte	 Intersection	
signal	

County	
TMC	-	KITS	

Kimley	
Horn	

KITS	 Planned	

Monrovia	 Intersection	
signal	

County	
TMC	-	KITS	

Kimley	
Horn	

KITS	 Planned	

Arcadia	 Intersection	
signal	

Arcadia	
TMC	

Transcore	 Transuite	 Planned	

Caltrans	FW	Traffic	 Vehicle	
detection	

Caltrans	
ATMS	

Parsons	 Custom	 Planned	

Caltrans	FW	Ramps	 Ramp	meters	 Caltrans	
ATMS	

Parsons	 Custom	 Planned	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

37	

Caltrans	FW	CMS	 DMS	 Caltrans	
ATMS	

Parsons	 Custom	 Planned	

Corridor	Trailblazer	 DMS	 Not	yet	
identified	

 Custom Planned	

Caltrans	
Intersections	

Intersection	
signal	

TSMSS	 Transcore	 Transuite	 Planned	

Travel	time	sensing	
1	

Travel	time	 Vendor		 Iteris	 		 Unknown	

Travel	time	sensing	
2	

Travel	time	 County	
TMC	

	 	 Unknown	

Environmental	
sensing	

Environmental	 	 Cal	Poly ODS	 Unknown	

RIITS	Transit	 Transit	 	 Cal	Poly		 ODS		 No	

RIITS	Video*	 Video	
Metadata	

RIITS	 Unknown

Caltrans	Video*	 Video	
Metadata	

via	RIITS	 Unknown

Caltrans	FW	Lane	
closure	

Lane	status	 LCS	 		 		 Planned	

City	Lane	closure	 Lane	status	 State	HSR	
system	

State	of	
CA	

Custom	 Planned	

LA	County	 Intersection	
signal	

County	
TMC	-	KITS	

Kimley	
Horn	

KITS	 Planned	

CHP	CAD	 Incident	 CAD	 manual	input	by	operator	

Caltrans	incident	 Incident	 Caltrans	
ATMS	

Parsons	 Custom	 Planned	

Gold	line	transit	 Transit	 NextBus	 NextBus	 	 No

*	Video	is	not	passed	
through	or	stored	
within	the	data	hub.	
	

*	Video	is	not	passed	through	or	stored	within	the	data	hub.	
	
	
	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

38	

	

6.2. DATA	PIPELINES	

6.2.1. SENSING	DATA	PIPELINE	

The	sensing	data	pipeline	design	is	provided	in	Figure	6-2.	In	this	illustration,	the	different	sensor	feeds	
can	be	seen	on	the	left.	This	illustration	shows	the	reader	receiving	data	from	a	data	source,	placing	that	
data	on	a	Kafka	topic,	Spark	consuming	that	data	and	processing	the	data	utilizing	the	MLLib	and	
Streaming	Spark	libraries,	and	then	placing	the	processed	data	on	a	Kafka	topic.	Decision	Support	and	
Corridor	Management	systems	can	access	that	processed	data	directly	via	the	data	hub	data	interfaces.	
Spark	also	stores	results	on	the	Cassandra	cluster.	Persistence	workers	can	be	used	to	retrieve	
processed	data	when	requested,	and	data	that	is	stored	in	Postgres,	such	as	sensor	inventories,	is	
available	to	Spark	if	needed	for	processing	that	may	require	such	data.	

	
Figure	6-2	Sensing	Data	Pipeline	Design	

The	data	sources	listed	in	Section	6.1	that	will	be	processed	using	this	type	of	pipeline	include:	

	
Table	6-2	Sensing	Pipeline	Data	Sources	

Source	 Information	
Type	

System	 Data	Type	 C2C	
TMDD	

Pasadena	 Intersection	
signal	

Pasadena	
TMC	

Vehicle	
detection	

Planned	

Duarte	 Intersection	
signal	

County	KITS	 Vehicle	
detection	

Planned	

Monrovia	 Intersection	
signal	

County	KITS	 Vehicle	
detection	

Planned	

Stream	
Reader

Freeway	Sensors

Probes

Kafka Spark

MLlib

Streaming

Kafka

Cassandra

Decision	Support

Corridor	
Monitoring/Control

Intersection	
Signal/Arterial
Sensors

Persistence	
Worker

Postgres/
PostGIS

Stream	
Reader

Freeway	Sensors

Probes

Kafka Spark

MLlib

Streaming

Kafka

Cassandra

Decision	Support

Corridor	
Monitoring/Control

Intersection	
Signal/Arterial
Sensors

Persistence	
Worker

Postgres/
PostGIS

I-210	Pilot:	Core	System	High-Level	Design	

	

	

39	

Arcadia	 Intersection	
signal	

Arcadia	TMC	 Vehicle	
detection	

Planned	

Caltrans	FW	Traffic	 FW	Traffic	 Caltrans	
ATMS	

Vehicle	
detection	

Planned	

Caltrans	FW	Ramps	 Ramp	meters	 Caltrans	
ATMS	

Vehicle	
detection	

Planned	

Caltrans	Intersections	 Intersection	
signal	

TSMSS	 Vehicle	
detection	

Planned	

Travel	time	sensing	1	 Travel	time	 Vendor		 Travel	time	 Unknown	

Travel	time	sensing	2	 Travel	time	 County	TMC	 Travel	time	 Unknown	

RIITS	Environmental	
sensing	

Environmental	 	 Environmental	
Sensing	

RIITS	Transit	 Transit	 	 	Transit	
location	
(future)	

		

LA	County	 Intersection	
signal	

County	KITS	 Vehicle	
detection	

Planned	

Gold	line	transit	 Transit	 NextBus	 Transit	location	
(future)	

	

6.2.2. HETEROGENEOUS	DATA	PIPELINE	

The	heterogeneous	data	pipeline	design	is	provided	in	Figure	6-3.	In	this	illustration,	the	different	
intersection	signal	feeds	can	be	seen	on	the	left.		

This	illustration	shows	the	reader	receiving	data	from	a	data	source	and	inserting	that	data	in	a	raw	
message	format	into	MongoDB.	The	reader	retrieves	data	from	the	data	source	using	the	data	source’s	
native	protocols	and	formats.	The	preferred	communication	standard	is	TMDD,	using	a	SOAP	protocol,	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

40	

using	either	a	request/receive	or	subscription	method.	The	reader	transforms	the	message	from	a	
SOAP/XML	format	to	a	JSON	format	prior	to	inserting	into	Mongo.		

A	message	is	sent	from	the	reader	to	the	processor	to	inform	the	processor	of	the	availability	of	new	
data	(not	shown	in	the	diagram).	

The	processor	then	queries	Mongo	to	obtain	a	desired	document	with	the	specific	attributes	required	to	
make	a	TMDD	message	containing	a	standardized	set	of	information	required	for	downstream	
processing.	The	processor	also	utilizes	a	standard	dictionary	of	data	values	so	that	data	from	different	
sources	that	may	be	different	when	received,	but	that	represent	the	same	value,	are	standardized	for	
downstream	consumption.	For	example,	if	one	source	abbreviates	boulevard	as	Blvd,	and	a	second	does	
not	abbreviate	the	word,	the	processor	will	standardize	to	a	single	form	that	can	be	understood	by	the	
downstream	processes.	The	processor	also	conducts	data	quality	checks	and	any	other	processing	
required.	

Once	the	TMDD	transformation,	quality	checks,	and	any	processing	is	completed,	the	processor	
constructs	the	final	TMDD	structured	JSON	message	and	places	it	on	the	outgoing	Kafka	topic.	
Persistence	workers	listening	to	the	topic	persist	the	information	for	later	analysis	or	replay.	The	CMS	
and	DSS	systems	receive	the	message	from	the	data	gateway.	

	
Figure	6-3	Heterogeneous	Data	Pipeline	

6.2.3. HOMOGENOUS	DATA	PIPELINE	

The	homogenous	data	pipeline	design	is	provided	in	Figure	6-4.	In	this	illustration,	a	ramp	meter	
inventory	and	state	source	is	used	as	the	example	feed	on	the	left.	The	homogenous	data	pipeline	is	
identical	to	the	heterogeneous	data	pipeline	with	only	one	difference.	Homogenous	data	pipelines	are	
used	when	there	is	only	a	single	data	source	for	the	type	of	information	being	processed.	When	this	
occurs,	there	is	no	need	to	store	the	documents	received	in	a	“schema-less”	MongoDB	database,	since	

ActiveMQ/Kafka

ActiveMQ/Kafka

Intersection	
Signal	Reader

Intersection	Signal	
Inventory/State

Postgres/
PostGIS

Decision	Support

Corridor	
Monitoring/Control

Mongo

Intersection	
Signal	

Processor

Persistence	
Worker

Persistence	
Worker

I-210	Pilot:	Core	System	High-Level	Design	

	

	

41	

there	are	not	multiple	data	standards	and	implementations	to	accommodate.	Because	of	this,	the	
homogenous	data	pipeline	does	not	use	MongoDB	in	the	pipeline,	and	the	reader	and	processor	directly	
communicate	for	any	data	transformation,	quality	checks,	or	processing	required.	

	
Figure	6-4	Homogenous	Data	Pipeline	

6.2.4. PIPELINE	CONTROL	

All	pipelines,	regardless	of	pipeline	type,	are	provided	with	the	same	base	control	set.	The	controls	
available	for	each	pipeline	include:	

1. Start	pipeline	processing	
2. Stop	pipeline	processing	
3. Pipeline	status	
4. Replay	data	

All	external	pipeline	control	requests	are	handled	by	the	data	hub	command	gateway	and	routed	via	
ActiveMQ	messaging.	Requests	received	by	the	gateway	are	routed	to	an	appropriate	endpoint.	Figure	
6-5	provides	a	version	of	Figure	6-1	with	the	control	elements	and	pathways	for	pipeline	control	
emphasized.	

ActiveMQ/Kafka

ActiveMQ/Kafka

Ramp	Meter	ReaderRamp	Meter	
Inventory/State

Postgres/
PostGIS

Decision	Support

Corridor	
Monitoring/Control

Ramp	Meter	Processor

Persistence	
Worker

Persistence	
Worker

I-210	Pilot:	Core	System	High-Level	Design	

	

	

42	

	
Figure	6-5	Pipeline	Primary	Control	Layer	

6.2.4.1. Start	Pipeline	Processing	

The	start	pipeline	processing	request	will	be	routed	via	the	data	hub	command	gateway	to	the	
appropriate	reader	within	a	pipeline.	The	request	will	result	in	these	possible	outcomes:	

1. If	the	pipeline	is	currently	not	started,	the	reader	will	begin	reading	data	and	inserting	it	into	the	
pipeline.		

2. If	the	pipeline	is	already	started,	an	error	will	be	returned	from	the	command	gateway	
indicating	the	process	is	already	started.	

3. If	the	pipeline	cannot	be	started	for	any	reason,	an	error	will	be	returned	from	the	data	hub	
command	gateway.	

6.2.4.2. Stop	Pipeline	Processing		

The	stop	pipeline	processing	request	will	be	routed	via	the	data	hub	command	gateway	to	the	
appropriate	reader	within	a	pipeline.	The	request	will	result	in	these	possible	outcomes:	

1. If	the	pipeline	is	currently	running,	the	reader	will	stop	reading	new	data	and	will	complete	
insertion	of	any	data	currently	in	process	into	the	pipeline.		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

43	

2. If	the	pipeline	is	not	currently	running,	an	error	will	be	returned	from	the	command	gateway	
indicating	the	process	is	already	stopped.	

3. If	the	pipeline	cannot	be	stopped	for	any	reason,	an	error	will	be	returned	from	the	data	hub	
command	gateway.	

6.2.4.3. Pipeline	Status		

The	pipeline	status	request	is	a	request	for	a	subscription	to	pipeline	status	messages	that	are	produced	
by	the	Command	Gateway.		

For	each	pipeline	status	request,	the	data	hub	command	gateway	will	provide	a	channel	for	a	
subscription	to	an	ActiveMQ	topic	containing	all	status	messages	for	a	specific	pipeline.	

The	following	responses	are	possible	when	requesting	a	pipeline	status:	

1. A	response	with	the	current	pipeline	status.	
2. If	the	status	is	not	currently	available,	an	error	will	be	returned.	
3. If	the	request	is	invalid	(such	as	the	pipeline	does	not	exist	or	that	the	request	is	not	properly	

formatted),	an	error	will	be	returned.	

6.2.5. PIPELINE	STATUS	AND	LOGGING	

All	pipeline	components	provide	logging	and	status	information,	regardless	of	pipeline	type	or	
component.	Logging	includes	the	logging	at	the	application	level	that	is	published	to	the	Graylog	
instance	shared	with	the	DSS.		

Logging	shall	be	configurable	and	set	on	component	start	and	logging	levels	may	include	the	following:	

1. All	
2. Debug	
3. Fatal	
4. Error	
5. Warn	
6. Info	

Logging	level	will	be	set	upon	component	initialization	when	it	is	started.	In	general,	during	normal	
operation,	the	following	levels	shall	report	–	Error,	Fatal,	and	Warn.	The	information	generated	by	
logging	shall	only	be	available	via	Graylog.	

Status	information	is	produced	by	the	components	and	published	to	a	pipeline	status	ActiveMQ	topic.	
This	information	is	available	to	external	consumers	via	the	data	hub	data	gateway	(using	a	data	hub	
status	request)	or	Graylog.	At	a	minimum,	data	pipeline	status	messages	shall	be	provided	for	the	
following:	

1. Pipeline	heartbeat	–	a	status	message	indicating	the	pipeline	is	running	sent	at	a	regular	
interval.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

44	

2. Pipeline	error	message	–	a	status	message	sent	indicating	that	an	error	has	occurred.	Generally,	
this	will	include	Fatal	or	Error	log	messages.	

3. Pipeline	warning	message	–	a	status	message	sent	providing	a	warning	indicating	potential	
issues	in	operation.		

Pipeline	components	may	include	other	status	messages	as	needed.	

6.2.6. CORRIDOR	MANAGEMENT	SYSTEM-DECISION	SUPPORT	SYSTEM	(CMS-DSS)	
COMMUNICATIONS	PIPELINE	

Communication	between	the	Decision	Support	System	and	the	Corridor	Management	System	is	
provided	via	the	data	hub	and	managed	using	the	same	data	and	communication	pipeline	strategy	used	
throughout	the	data	hub,	providing:	

• Traffic	estimation	results,	including	geospatial	information	and	traffic	metrics	
• Traffic	prediction,	including	geospatial	information	and	traffic	metrics	
• Incident	information	
• Response	plans	and	response	plan	evaluations	
• DSS	Status	
• CMS	Status	
• DSS	Control	
• Traffic	estimation	and	prediction	scenario	information	

In	addition,	the	pipeline	provides	persistence	within	the	data	hub	of	all	DSS	–	CMS	communications.	The	
pipeline	does	not	include	any	communications	to	or	from	the	Corridor	Management	System	that	do	not	
involve	the	Decision	Support	System.		

All	CMS-DSS	pipelines	support	TMDD	compliant	SOAP	dialogs	in	accordance	with	the	Connected	
Corridors	Data	Communication	Specification.	SOAP	endpoints	are	presented	at	the	Data	Hub	Gateway	to	
support	these	conversations	and	are	exposed	to	the	CMS.	The	data	for	these	SOAP	interfaces	are	
available	for	the	DSS	via	the	Data	Hub	Data	Gateway.	All	command	requests	and	responses	are	also	
provided	from	the	Data	Hub	Command	Gateway	for	required	workflow	management	and	data	hub	
control	actions.	While	only	to	be	provided	as	necessary	to	support	the	different	CMS	vendors,	ActiveMQ	
messaging	may	also	be	provided	as	interfaces	to	the	CMS	instead	of	SOAP	interfaces.	

All	CMS-DSS	communications	are	managed	on	data	hub	pipelines.	For	future	use,	data	hubs	may	support	
multiple	CMS	and	DSS	instances,	so	all	individual	pipelines	are	created	for	each	CMS/DSS	pair.	All	
messages	between	CMS	and	DSS	instances	shall	be	communicated	only	through	pipelines	designated	for	
that	specific	CMS-DSS	pair	and	shall	include	the	source	and	target	system	identifiers	within	the	
messages.	

CMS-DSS	data	pipelines	will	generally	be	in	one	of	the	following	basic	configurations:	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

45	

	
Figure	6-6	DSS-CMS	Data	Pipeline	Configurations	

In	Figure	6-6,	two	of	many	possible	combinations	of	data	exchange	between	the	DSS	and	CMS	are	
illustrated.	The	processor	based	DSS->	CMS	data	pipeline	illustrated	at	the	top	of	the	figure	is	a	
configuration	used	when	the	information	provided	by	the	DSS	requires	transformation	or	some	other	
processing	before	being	passed	to	the	CMS.	Any	processing	is	always	completed	within	a	processor	in	
the	data	hub	and	is	never	done	in	the	data	gateway.	This	is	done	to	provide	higher	reliability	to	the	data	
gateway	as	well	as	higher	scalability	and	reliability	within	the	processor.		

The	lower	diagram	in	the	figure	shows	a	pipeline	without	any	transformation	or	processing,	used	when	
the	formatting	and	content	of	the	data	requires	no	transformation	or	other	processing	before	being	
passed	to	the	CMS.	The	data	gateway	routes	the	data	directly	to	the	CMS	from	the	receiving	channel	in	
the	data	gateway	while	also	routing	the	data	to	a	topic	in	the	data	hub	for	persistence	within	the	data	
hub.		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

46	

In	both	cases,	the	command	gateway	manages	any	workflows	required	by	either	pipeline	as	well	as	the	
pipelines	themselves.	It	also	manages	the	data	gateway,	dynamically	creating	the	data	routing	within	
the	data	gateway.	This	allows	the	system	to	be	modified	without	static	changes	to	the	data	gateway,	
simply	by	modifying	the	workflow	definitions	within	the	Conductor	component	of	the	command	
gateway.	New	processes	can	be	added	independently	of	any	other	processes	within	the	system.	

Figure	6-8	provides	an	illustration	of	a	potential	configuration	of	the	CMS	–	DSS	pipeline,	and	its	
associated	primary	data	topics,	including:	

• Incidents	
• Response	Plans	
• Decision	Results	
• Status	Request	
• Status	Response	
• Estimation	Request	
• Estimation	Metrics	
• Estimation	Results	
• Estimation	Network	
• Estimation	Scenario	
• Prediction	Request	
• Prediction	Result	
• Prediction	Metrics	
• Prediction	Network	
• Prediction	Scenario	

Specific	pipeline	configurations	will	be	defined	in	the	detailed	design.	Note	that	the	command	gateway	
can	listen	to	any	of	the	pipelines,	allowing	event-based	workflows.	An	example	of	an	event-based	
workflow	is	the	incident	response	workflow.	The	command	gateway,	listening	to	the	event	pipeline	that	
receives	events	from	the	CMS,	can	initiate	a	response	plan	workflow	upon	receiving	the	event	message.	
In	this	situation,	the	incident	received	from	the	CMS	will	not	be	routed	directly	to	the	DSS,	but	rather,	it	
will	be	received	by	the	command	gateway,	and	the	command	gateway	will	initiate	a	response	plan	
workflow.	The	workflow	definition	will	define	a	response	plan	initiation	request	to	the	DSS	that	passes	
through	the	data	gateway	to	the	DSS,	providing	the	incident	information,	as	well	as	any	dynamic	routing	
information	or	other	workflow	related	information	required	by	the	data	gateway	and	DSS	interface	to	
process	the	request	and	manage	communications	with	the	DSS	and	CMS.	

6.2.6.1. Incident	

The	incident	pipeline	provides	confirmed	incident	information	from	the	CMS	to	the	DSS.	This	pipeline	
may	start	as	an	ActiveMQ	message,	or	SOAP	incident	message	at	the	data	gateway.	Also	note	that	this	
pipeline	represents	a	TMDD	event	class	dialog	set	with	both	request/response,	and	subscriptions.	
Subscriptions	are	the	preferred	method	of	communication.	The	incident	pipeline	includes	an	incident	
subscription	request	to	the	CMS,	as	well	as	the	corresponding	subscription	responses.	The	responses	are	
provided	to	the	DSS	via	the	data	hub	as	ActiveMQ	messages.		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

47	

6.2.6.2. Response	Plan	

The	response	plan	pipeline	provides	response	plans	to	the	CMS.	As	there	is	no	TMDD	dialog	for	response	
plans,	this	is	a	Connected	Corridors	custom	communication.	Response	plans	are	provided	as	an	
ActiveMQ	message	via	the	CMS	Data	Gateway.	Response	plans	are	provided	in	accordance	with	the	
Connected	Corridors	Data	Specification,	and	include	the	response	plan	elements,	event/incident	
information,	and	associated	performance	indicators	and	metrics.	

6.2.6.3. Status	Request	

The	status	request	pipeline	is	a	communication	channel	for	requesting	DSS	and	data	hub	status.	It	is	an	
ActiveMQ	queue/message.	Requests	must	include	an	identifier	for	the	requesting	system.	A	response	
will	include	an	address	for	receiving	status	messages.	Status	requests	are	essentially	a	subscription	
request,	with	the	response	simply	a	location	for	subscribing	to	a	continuous	stream	of	status	messages.	

6.2.6.4. Status	

The	status	pipeline	provides	the	results	from	a	status	request.	

6.2.6.5. Estimation	Request	

The	estimation	request	pipeline	provides	a	method	for	the	CMS	to	request	an	estimation.	If	an	
estimation	is	currently	running,	the	response	to	the	request	shall	indicate	the	address	where	estimation	
results	are	published.	If	the	estimation	is	not	currently	running,	the	DSS	shall	start	an	estimation	and	the	
response	shall	include	a	message	indicating	the	DSS	is	beginning	an	estimation,	and	the	address	where	
estimation	results	are	published.	

6.2.6.6. Estimation	Result	

The	estimation	result	pipeline	provides	the	raw	results	of	an	estimation	request,	including	for	freeways	
the	estimated	density,	flow,	and	speed	for	each	network	link	within	the	freeway	estimation	network,	
and	for	arterials,	the	estimated	density	for	each	network	link	within	the	arterial	estimation	network.	

6.2.6.7. Estimation	Metrics	

The	estimation	metrics	pipeline	provides	estimation	metric	results,	including	travel	time	and	current	
delay	estimates	for	the	freeway	and	arterial	networks.	

6.2.6.8. Estimation	Network	

The	estimation	network	pipeline	provides	the	current	estimation	network	in	TMDD	format.	This	pipeline	
supports	TMDD	messaging.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

48	

6.2.6.9. Prediction	Request	

The	prediction	request	pipeline	provides	a	method	for	the	CMS	to	request	a	prediction.	The	response	to	
the	request	shall	indicate	the	address	where	prediction	results	are	published.	In	the	initial	version	of	the	
software,	predictions	shall	only	be	provided	either	as	a	response	to	an	incident	as	part	of	the	DSS	
process,	or	shall	be	provided	as	a	replay	to	a	previous	prediction.	

6.2.6.10. Prediction	Result	

The	prediction	result	pipeline	provides	the	raw	results	of	a	prediction	request.		

6.2.6.11. Prediction	Metrics	

The	prediction	metrics	pipeline	provides	prediction	metric	results,	included	travel	time	and	current	
delay	predictions.	

6.2.6.12. Prediction	Network	

The	prediction	network	pipeline	provides	the	current	prediction	network	in	a	TMDD	format.	This	
pipeline	supports	TMDD	messaging.	

6.2.6.13. CMS	Command	Status	Pipeline	

Communications	between	the	CMS	and	external	systems	or	centers	are	captured	by	the	Data	Hub.	They	
can	also	be	provided	to	the	data	hub	command	gateway	so	that	the	data	hub	may	respond	to	
commands	issued	by	the	CMS	system	to	external	systems.		

This	CMS	Command	Status	pipeline	is	a	simple	implementation	of	an	ActiveMQ	topic	that	is	provided	a	
copy	of	all	CMS	communications	with	any	external	center	or	system.	All	such	communications	are	
provided	via	ActiveMQ	message	containing	a	text	representation	of	any	message	sent	or	received.	
Messages	are	keyed	with	the	external	system	or	center	communicated	with,	as	well	as	either	send	or	
receive	to	indicate	whether	the	message	was	sent	to	the	external	center	or	system	(send)	or	received	
from	the	external	center	or	system	(receive)	as	well	as	the	time	of	message	sent	or	receipt,	as	
appropriate.		

6.3. EXTERNAL	INTERFACE/DATA	GATEWAY	

The	data	gateway	provides	an	external	interface	for	the	data	hub	to	the	Corridor	Management	System	
and	the	Decision	Support	System.	The	purpose	of	this	data	gateway	is:	

• Provide	for	two-way	communication	between	the	Data	Hub	and	the	Decision	Support	System.	
• Provide	for	two-way	communication	between	the	Data	Hub	and	the	Corridor	Management	

System.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

49	

• Provide	for	indirect	communication	between	the	Decision	Support	System	and	the	Corridor	
Management	System.	

• Encapsulate	the	functions	of	the	data	hub	from	other	ICM	component	systems.	
• Provide	a	secure	interface	to	the	data	hub.	
• Allow	for	the	change	from	Kafka	or	ActiveMQ	protocols	used	within	the	data	hub	to	ActiveMQ	

messaging	or	SOAP	based	services	that	may	be	required	by	other	ICM	component	systems.	
• Allow	for	a	switchboard	like	functionality	that	can	be	configured	for	different	Corridor	

Management	System	providers	or	Decision	Support	Systems.	
• Provide	for	multiple	output	channels	to	publish	information	to	multiple	downstream	consumers.	
• Provide	event-time	or	processing-time	based	ordering	of	information	passed	to	the	CMS	or	DSS	

(this	is	provided	as	a	result	of	either	multiple	parallel	processors	being	used	within	a	single	data	
stream,	multi-threaded	processing	of	data	within	a	processor	in	the	data	hub,	or	multiple	Kafka	
partitioned	messaging	may	result	in	data	message	sequence	issues).	

The	Data	Hub	Data	Gateway	uses	Apache	Camel	to	provide	these	services.	Two	primary	design	patterns	
are	used	as	shown	in	Figure	6-7,	first	for	communication	to	external	ActiveMQ	brokers,	and	second	to	
external	SOAP	or	REST	web	services	endpoints.	

	
Figure	6-7	Data	Hub	Data	Gateway	–	ActiveMQ	and	Web	Services	Design	Patterns	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

50	

Each	of	the	two	designs	uses	Apache	Camel	and	implements	a	Kafka	consumer	to	retrieve	messages	
from	a	defined	Kafka	topic.	Each	also	provides	for	a	processor	for	transformation,	sequencing,	and	
routing	of	messages.	For	passing	data	using	an	ActiveMQ	topic	or	queue	hosted	by	an	external	broker,	
Camel’s	Seda	component	is	used	for	asynchronous	messaging	and	message	flow	regulation.	For	passing	
data	via	SOAP	or	REST	web	services,	an	appropriate	SOAP	or	REST	endpoint	is	provided	for	
communication	with	an	external	SOAP	or	REST	endpoint.		
NOTE:	All	internal	data	communications	within	the	data	hub	are	conducted	via	Kafka	or	ActiveMQ	data	
messaging	and	JSON	formatting.	Native	data	communications	are	implemented	using	TMDD	or	other	
appropriate	standard	formats	when	available.	While	the	TMDD	or	other	standards	may	not	use	JSON	
formatting,	the	messages	within	the	data	hub	that	contain	this	information	are	JSON	formatted,	
retaining	the	data	structures	and	relationships	within	TMDD	or	other	applicable	standard.	When	
externally	exposed,	these	data	messages	are	converted	back	to	the	appropriate	data	format	dictated	by	
the	standard	used	(TMDD	or	other).	

6.4. DATA	HUB	COMMAND	GATEWAY	

The	data	hub	command	gateway	is	an	internal	data	hub	component	that	manages	all	command,	
communication,	and	coordination	activities	of	the	data	hub	and	orchestrates	communication	and	
control	of	the	three	core	ICM	system	components.	Since	the	DSS	and	CMS	do	not	communicate	directly,	
the	data	hub	orchestrates	workflows	and	communications	between	the	two	components	and	the	
internal	components	of	the	data	hub.	Similar	to	the	data	hub	data	gateway,	it	uses	Apache	Camel	to	
route	and	process	core	ICM	System	commands.	In	addition,	it	uses	a	workflow	component	designed	for	
a	microservice	architecture	used	by	Netflix	in	its	own	production	environment	called	Conductor.	The	
command	gateway	provides	the	following	capabilities:	

• Receive	all	core	system	requests	for	services.	
• Provide	execution	management	of	all	requests	for	data	hub	services.	
• Provide	execution	management	of	workflow	processing	for	requests	involving	simple	single	step	

workflows	or	complex	multi-step	workflows.	
• Persist	service	requests	and	their	outcomes	(success	or	failure).	
• Manage	internal	operations	of	the	data	hub	(starting/stopping	services,	restart	on	failure,	etc).	
• Orchestrate	actions	between	the	DSS,	CMS,	and	data	hub.	

NOTE:	The	data	hub	command	gateway	is	an	internal	data	hub	component.	At	no	time	are	the	message	
queues	and	topics	that	it	communicates	with	directly	connected	to	external	systems.	All	queues	and	
topics	that	communicate	with	this	component	are	internal	queues	and	topics	connected	to	data	hub	
components	or	the	data	hub	data	gateway	(for	communication	with	external	systems).	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

51	

	
Figure	6-8	Data	Hub	Command	Gateway	

The	data	hub	command	gateway	consists	of	just	a	few	primary	component	types.	These	include:	

• Conductor	and	related	workflow	components	
• Camel	and	related	routing	and	transformation	components	
• ActiveMQ	workflow	status	topic	
• ActiveMQ	workflow	task	topic	
• Monitor	

6.4.1. CONDUCTOR		

Conductor	is	used	for	orchestration	of	the	individual	pipelines	and	both	internal	and	external	requests	
for	services.	Conductor	is	an	open	source	project	developed	by	Netflix	to	manage	some	of	its	own	
production	workflows,	particularly	with	a	micro-service	architecture.	There	are	a	number	of	similarities	
between	the	use	cases	for	which	Conductor	is	designed	and	the	orchestration	of	the	individual	pipelines	
and	the	requests	for	services	from	the	DSS	and	CMS,	as	well	as	orchestration	of	the	communications	
between	DSS	and	CMS	that	make	it	well	suited	for	use.		

Conductor	is	used	in	an	“as-is”	configuration	“out-of-the-box”.	The	data	hub	implementation	uses	the	
REST	interfaces	and	in-memory	database	that	comes	with	Conductor.	No	modifications	are	made	to	
Conductor.	It	provides	workflow	management	and	control,	with	workflow	definitions	described	in	JSON	
format.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

52	

6.4.2. CAMEL		

To	adapt	Conductor	to	the	data	hub	interfaces,	Camel	is	used	as	an	interface	to	the	ActiveMQ	and	Kafka	
data	hub	messaging	services.	Camel	provides	the	interface	between	Conductor’s	native	REST	interface	
and	the	data	hub’s	Active	MQ	and	Kafka	data	bus	elements.		

6.4.3. ACTIVEMQ	WORKFLOW	STATUS	TOPIC	

The	ActiveMQ	workflow	status	topic	is	used	to	allow	individual	data	hub	components	to	provide	
workflow	status	messages	to	Conductor,	via	the	Camel	interface.	It	also	is	used	to	provide	general	
system	and	component	status	information	for	use	in	workflow	management.	The	data	hub	data	gateway	
also	provides	workflow	and	external	system	status	(CMS	and	DSS)	messages	via	the	workflow	status	
topic.	The	CMS	and	DSS	systems	are	never	required	(or	allowed)	to	directly	message	via	the	Workflow	
status	topic,	but	instead,	their	communications	are	managed	by	the	data	hub	data	gateway.	

6.4.4. ACTIVEMQ	WORKFLOW	TASK	TOPIC	

The	ActiveMQ	workflow	task	topic	is	how	workflow	tasks	are	dispatched	from	Conductor	to	the	
individual	data	hub	components,	or	the	DSS	and	CMS	systems	(via	the	data	hub	data	gateway).	As	with	
the	workflow	status	topic,	DSS	and	CMS	systems	are	never	directly	allowed	to	communicate	with	the	
workflow	task	topic.	Instead,	the	data	hub	data	gateway	manages	the	distribution	of	tasks	and	the	
resulting	responses	via	the	DSS	and	CMS	APIs.	

6.4.5. MONITOR		

The	monitor	listens	to	the	workflow	status	topic	for	system	and	component	status	messages,	always	
providing	data	hub,	DSS,	and	CMS	state	and	status	information	to	the	Conductor	workflow	manager.	
This	allows	Conductor	to	respond	to	degraded	system	state,	either	by	disabling	specific	workflows	or	
starting	other	workflows	to	respond	to	system	component	failures.	
	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

53	

7. DECISION	SUPPORT	SYSTEM	DESIGN	

The	decision	support	system’s	(DSS)	primary	roles	include:	

• Provide	response	plans	following	receipt	of	a	confirmed	incident.	
• Evaluate	response	plans	and	rank	them	based	on	user	defined	criteria.	
• Provide	one	or	more	recommendations	to	corridor	operators	and	stakeholders	via	the	Corridor	

Management	System,	whether	to	implement	a	response	plan	and	which	response	plan	to	
implement	for	each	received	confirmed	incident.	

• Provide	response	plan	evaluation	results	for	corridor	operators	review	via	the	Corridor	
Management	System.	

• Evaluate	implemented	response	plan	effectiveness	and	recommend	new	response	plans	when	
appropriate.	

The	DSS	accomplishes	this	with	three	primary	components:	

• DSS	Interface	
• Response	Plan	Management		
• Modeling	

The	DSS	interface	provides	an	interface	for	sending	and	receiving	information	with	the	data	hub,	
providing	routing	and	transformation	services	for	the	other	DSS	components.	The	response	plan	
management	component	receives	incident	information	and	coordinates	the	development	and	
evaluation	of	response	plans,	using	a	rules	engine	that	provides	configurable	logic	and	rules	to	create	
response	plans,	evaluate	response	plans,	and	rank	response	plans.	The	modeling	component	provides	
traffic	estimation	and	prediction	capabilities	to	support	response	plan	creation,	evaluation,	and	ranking.	
	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

54	

7.1. DSS	HIGH	LEVEL	DESIGN	

The	DSS’s	three	primary	components	are	described	in	Figure	7-1.	The	DSS	is	one	of	the	three	primary	
ICM	system	subsystems,	and	communicates	with	the	ICM	system	via	the	data	hub’s	data	gateway.		

	
Figure	7-1	DSS	Architecture	

All	corridor	information	is	received	by	the	DSS	interface	from	the	data	hub	data	gateway.	The	modeling	
and	response	plan	management	components	receive	all	corridor	data	and	system	status	via	a	series	of	
data	channels	available	from	the	DSS	interface.		

All	commands	to	the	DSS	and	requests	for	DSS	status	are	received	via	a	set	of	command	channels	
exposed	on	the	data	hub	data	gateway.	These	commands	are	in	turn	forwarded	by	the	DSS	interface	to	
either	the	modeling	or	response	plan	management	components.		

All	communications	with	the	DSS	via	the	Data	Hub	Data	Gateway	are	managed	via	ActiveMQ	messaging.	
Communications	between	the	DSS	interface,	Response	Plan	Management,	and	Modeling	are	enabled	via	
REST	or	ActiveMQ	messaging.	The	response	plan	management	and	rules	engine	are	tightly	coupled	via	
their	java	based	APIs.	

Output	from	the	DSS	consists	primarily	of	response	plans	and	their	evaluations	from	the	response	plan	
management	system,	and	estimation	and	prediction	results	from	the	modeling	system.		

	
	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

55	

7.2. DSS	INTERFACE	

The	DSS	interface	provides	a	bridge	between	information	from	the	data	hub’s	data	gateway	and	the	
internal	components	of	the	DSS.	Figure	7-2	provides	the	method	for	passing	information	between	the	
data	hub	and	the	modeling	and	response	plan	management	components	of	the	DSS.	

	
Figure	7-2	DSS	Interface	High	Level	Design	

	The	primary	data	flow	is	as	follows:	

• Data	is	placed	on	DSS	ActiveMQ	topics	by	the	data	hub	data	gateway.	
• Data	is	pulled	from	these	topics	by	processors	specific	to	the	type	of	data	on	each	topic.	The	

data	may	receive	any	desired	computation,	aggregation,	splitting,	quality	checks	or	other	
processing	required	by	the	DSS	here.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

56	

• The	data	is	passed	to	a	consumer-specific	transformer.	This	transformer	prepares	standardized	
TMDD	data	(or	other	format	when	TMDD	is	not	appropriate)	for	the	consumer,	transforming	it	
into	any	consumer	specific	object	required	for	the	consumer.	

• The	processed	and	transformed	data	is	passed	into	a	consumer	specific	ActiveMQ	topic	for	use	
by	the	consumer.	

Request	processors	provide	routing	of	requests	from	the	data	hub	to	specific	DSS	components	as	well	as	
providing	initial	receipt	status	back	to	the	data	hub	for	each	request.	

Response	plan	and	estimation	transformers	prepare	the	response	plans,	prediction	results,	and	
estimation	results,	transforming	them	from	DSS	specific	objects	(modeling	objects	or	response	plan	
manager	objects)	to	TMDD	or	other	standardized	objects.	

7.3. RESPONSE	PLAN	MANAGEMENT	

Response	plan	management	provides	functions	for	the	development	and	selection	of	response	plans,	
including	coordination	of	the	actions	of	the	response	plan	management	and	modeling	components	of	
the	DSS.		

The	response	plan	management	component	responds	to	commands	from	the	data	hub,	and	upon	
receipt,	orchestrates	actions	between	itself	and	modeling	components	to	determine	if	a	response	plan	
might	positively	impact	traffic	conditions	and	if	so,	develop	several	response	plans,	evaluate	them,	and	
recommend	a	response	plan	for	implementation.	The	response	plan	management	component	also	has	a	
limited	selection	of	methods	implemented	so	that	other	specific	requests	can	be	made	via	the	data	hub.		

The	response	plan	management	also	monitors	the	Decision	Support	System	and	its	components.	It	has	
limited	capabilities	to	perform	specific	startup	activities	required	for	DSS	operation	and	monitor	DSS	
component	status.	

	
Figure	7-3	Response	Plan	Management	Design

I-210	Pilot:	Core	System	High-Level	Design	

	

	

57	

On	the	left	of	the	response	plan	management	component	in	the	figure	is	the	transformed	data	received	
from	the	DSS	interface.	This	provides	asset	information,	route	information,	and	incident	information	to	
the	response	plan	management	component.	This	information	is	maintained	in	a	local	data	store.		

The	response	manager,	upon	receipt	of	a	specific	request	or	incident	manages	the	specific	workflows	
required	to	respond	to	the	request	or	to	provide	a	response	plan	recommendation.	This	includes	
requesting	decisions	and	results	from	the	rules	engine,	information	regarding	current	traffic	state	from	
the	modeling	system,	or	specific	predictions	for	response	plans	received	from	the	rules	engine.	The	
response	plan	manager	also	assembles	the	complete	response	plan,	and	provides	it	as	a	response	to	
send	to	the	data	hub	for	storage	and	distribution	to	the	CMS.	

The	rules	engine	used	within	response	plan	management	is	a	combination	of	java	components	and	the	
open	source	Drools	rules	engine.	It	is	designed	to	respond	to	a	limited	number	of	primary	questions	that	
can	be	asked	by	the	response	plan	manager.	These	limited	questions	include:	

• Does	the	current	confirmed	incident,	with	the	results	of	a	“do-nothing”	prediction,	require	
development	and	evaluation	of	response	plans?	

• What	response	plans	should	be	evaluated?	Create	those	response	plans	from	a	limited	set	of	
response	plan	components.	

• Which	response	plan,	given	the	response	plans	developed	and	their	respective	predictions,	
should	be	recommended,	listed	in	a	ranked	order?	

A	flow	diagram	illustrates	the	basic	logic	used	in	developing	response	plans:	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

58	

	
Figure	7-4	Response	Plan	Manager	Workflow	

The	rules	engine	is	a	Java	library	that	is	included	in	the	response	plan	manager	component	with	a	
defined	API	specific	to	answering	these	defined	questions,	given	the	current	state	of	the	corridor	assets,	
defined	limits	within	a	set	of	user	specified	rules	(such	as	“do	not	use	this	route	between	the	hours	of	3	
and	5	pm”),	current	traffic	state,	current	time,	and	incident	information.	

It	is	intended	that	the	final	user	interface	for	developing,	editing,	testing,	and	evaluating	rules	and	their	
performance	will	be	in	the	CMS.	However,	initially,	this	will	be	limited	and	require	IT	support	to	assist	
with	rules	development	and	uploading	spreadsheets	of	rules	to	a	known	location.	

7.4. MODELING	

The	modeling	system	provides	two	primary	services:	traffic	state	estimation	and	traffic	prediction.		

I-210	Pilot:	Core	System	High-Level	Design	

	

	

59	

7.4.1. MODELING	TECHNIQUES	

Three	traffic	models	are	used	within	the	modeling	system.	These	include:	

• A	custom	freeway	traffic	estimation	model	developed	by	UC	Berkeley	using	a	cell	transmission	
model	(CTM).	

• A	custom	arterial	traffic	estimation	model	developed	by	UC	Berkeley	using	an	intersection	
queue	model.	

• A	commercial	prediction	model	using	TSS’s	Aimsun	modeling	system	and	a	micro-modeling	
behavioral	model.	

	

	
Figure	7-5	-	Modeling	Component	Design	

The	system	is	composed	of	several	primary	subsystems	–		
• Data	management	(in	blue)	–	receives	and	processes	traffic	and	traffic	infrastructure	data	so	

that	it	can	be	consumed	by	the	modeling	software.	
• Estimation	modeling	system	(in	pink)	–	builds	and	runs	estimations,	produces	output	of	

estimated	traffic	state.	
• Prediction	modeling	system	(in	orange)	–	builds	and	runs	predicted	traffic	state,	in	particular	

predicted	response	plan	performance,	including	performance	metrics.	
• Calculation/metrics	(in	light	orange)	–	consumes	estimated	traffic	state	and	produces	current	

traffic	and	network	performance	measures.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

60	

• Project	Manager	(in	brown)	–	provides	overall	system	orchestration,	cloud	scaling	and	EC2	
management,	workflow,	and	external	REST	interfaces.	A	user	interface	is	available	for	
estimation	model	development.	This	is	currently	used	for	internal	testing	and	QA.	

• Persistence	–	(green/gray)	–	persists	traffic/traffic	infrastructure	data,	model	and	model	building	
definitions,	raw	and	processed	results.	

Communication	between	the	DSS	interface	and	the	modeling	system	is	via	a	REST	API	exposed	by	the	
Project	Manager.	Data	feeds	from	the	data	hub	provide	data	via	ActiveMQ	data	topics.	Internal	
component	communication	between	modeling	system	components	is	via	ActiveMQ	topics	(data)	or	
queues	(command).	

Technology	stack:	
• Primary	components	are	built	using	Java	with	the	Spring	framework.	Hibernate	is	used	with	

components	requiring	Postgres	access.	
• Persistence	is	built	with	Java	based	persistence	workers	(both	for	store	and	retrieve	operations)	

and	Postgres	or	Cassandra	for	persistence.		
• Messaging	via	ActiveMQ		
• Project	Manager	REST	services	hosted	on	Tomcat		
• Log	Management	via	Graylog	
• Amazon	Web	Services,	including	the	following	AWS	services:	

o EC2	
o RDS	(Postgres)	
o S3	
o VPC	
o IAM	
o Other	services	are	used	for	code	repository,	build,	and	deployment	services.	

Platform/Application	Servers/OS	
• Most	any	version	of	Linux	OS	is	acceptable,	Ubuntu	is	currently	used	
• Amazon	Web	Services		
• Tomcat		

General	Architectural	Approach:	

The	approach	used	has	been	to	develop	specific	application	components	targeted	to	specific	tasks,	
connect	them	to	each	other	via	messaging	or	REST	services	depending	upon	their	application	role	(back	
end	processing	or	service	delivery),	and	provide	scaling	capabilities	that	detect	load	on	each	component	
(CPU/thread	utilization	and	its	feeding	queue	state)	and	scale	the	number	of	instances	of	that	
component	based	on	demand.	

Primary	component	descriptions:	

Model	Engine	–	There	are	two	methodologies	applied	within	the	model	engine.	The	first	is	used	for	
freeway	estimation	and	implements	the	CTM	algorithm	for	simulation	and	an	ensemble	Kalman	filter	to	
assimilate	real-time	road	sensor	data.	This	implementation	uses	a	user	defined	road	network,	
accompanying	infrastructure	elements	including	ramp	meters	and	sensors,	traffic	demand,	traffic	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

61	

behavior	information	(split	ratios	at	intersections	and	freeway	ramps),	and	road/traffic	characteristics	
required	by	the	CTM	algorithm	(fundamental	diagrams).	CTM	based	simulation	can	be	used	both	in	
estimations	of	current	state	and	predictions	of	future	state,	but	is	used	only	for	estimating	current	
traffic	state	on	freeways	within	the	ICM	system.	

The	second	methodology	applied	in	the	model	engine	is	used	for	arterial	estimation.	This	method	uses	
an	algorithm	using	intersection	sensing,	signal	timing,	and	cycle	information	to	produce	an	estimated	
traffic	state	on	the	corridor	arterials.		

For	either	estimation	methodology,	the	model	engine	receives	a	request	for	a	model	run	containing	the	
scenario	to	be	run	and	the	desired	configuration	parameters.	The	model	engine	then	starts	a	continuing	
run	of	the	model	and	outputs	the	link	state	(traffic	density	and	speed)	for	each	road	network	link.		

Prediction	Engine	–	The	prediction	engine	is	an	implementation	of	TSS’s	Aimsun	software.	It	includes	the	
Aimsun	simulation	software	as	well	as	a	component	that	builds	simulation	models	for	use	in	the	
prediction	workflow.	To	build	a	simulation	model,	this	component	combines	a	base	simulation	model	
with	data	from	the	data	hub	indicating	current	corridor	asset	state	(signals,	ramps,	signs,	etc),	current	
traffic	state	from	the	freeway	and	arterial	model	engines,	and	the	response	plans	from	the	response	
plan	management	system	to	create	a	model	that	can	be	used	to	evaluate	a	response	plan.	It	also	
provides	the	prediction	metrics	for	that	response	plan	that	are	required	for	presentation	to	the	user	and	
passed	to	the	rules	engine	for	response	plan	recommendation	and	selection.	

Project	Manager/Project	Manager	App	-	The	project	manager	app	allows	external	systems	to	interact	
with	the	modeling	system.	Project	manager	app	provides	REST	services	and	messaging	to	initiate	actions	
by	the	rest	of	the	system.	The	project	manager	app	is	served	via	a	Tomcat	application	server.	

Scenario	Builder	-	The	scenario	builder	is	used	to	create	a	CTM	model	scenario	to	be	run.	It	is	rarely	
used,	but	may	be	used	when	corridor	infrastructure	elements	are	modified,	such	as	a	ramp	meter.	It	is	a	
back-end	component	that	receives	model	components	(road	networks,	intersection	signals,	ramp	
meters,	traffic	demand	and	split	sets,	etc)	from	the	project	manager	app	and	builds	a	model	suitable	for	
running	in	the	freeway	model	engine.	

Calculators	-	The	calculators	are	used	to	take	the	model	engine	link	state	data	and	process	it	for	
consumption,	combining	arterial	and	freeway	estimation,	calculating	specific	metrics	for	analysis,	and	
providing	visualization	information	for	the	CMS.	

Persistence	Worker	-	Persistence	workers	are	components	that	are	designed	to	either	take	data	from	a	
queue	or	topic	(model	engine	data,	model/scenario	information,	or	calculator	output)	and	persist	it	in	
one	of	the	data	stores	(Postgres	or	Cassandra)	or,	upon	request,	retrieve	data	from	one	of	the	data	
stores	and	place	it	on	the	appropriate	queue	or	topic	for	consumption	by	downstream	processes.	

Readers	and	Processors	-	These	components	are	used	to	retrieve	data	pushed	from	the	data	hub	and	
place	it	into	a	queue	or	topic	for	consumption	(reader),	or	to	retrieve	data	from	a	queue	or	topic	and	
process	it	for	consumption	by	the	estimation	or	prediction	engines	(processor).	

	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

62	

	

This	page	left	blank	
intentionally	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

63	

8. SECURITY	DESIGN	
Security	design	for	the	ICM	system	is	based	upon	the	following	principles:	

• Minimize	attack	surface	
o Minimal	exposure	to	public	networks	
o Isolate	network	subnets	to	protect	sensitive	data	and	processes	and	use	DMZ	for	publicly	

exposed	communication	points	
o Limit	or	eliminate	access	to	all	internal	system	servers	

• Authenticate	all	connections	
o Use	certificate	based	authentication	between	systems	
o Users	limited	to	CMS	system	access	and	CMS	system	authentication	protocols	

• Encrypt	all	external	facing	communications	(data-in-motion)	and	sensitive	data	stores	(data-at-
rest)	

• Isolate	 individual	 processes	 and	 access	 only	 by	 those	 processes	 or	 people	 that	 require	 access	
(principle	of	least	privilege)	

• Automated	security	and	process	monitoring	
o Kill	all	failed	or	non-responding	processes	
o Verify	configuration	of	all	launched	processes	
o Monitor	system	and	process	access	and	access	violations	

• Automate	system	launch	processes		
• Validate	all	incoming	data	

The	 system	 design,	 based	 on	 independent	 services,	 limited	 access	 to	 data	 stores,	 segmented	
responsibilities,	and	cloud	deployment,	provides	significant	opportunity	for	enhanced	security.	Each	of	
the	areas	listed	above	are	described	below.	

8.1. MINIMIZE	ATTACK	SURFACE	

There	are	several	methods	to	be	employed	to	minimize	the	systems	attack	surface.	These	 include	the	
following:	

• Secure	network	connections	to	the	ICM	system.	
o Use	of	dedicated	fiber	connections	and/or	secure	VPN	connections	to	the	various	TMCs	

involved	in	providing	information	and	executing	response	plans.	
o Use	of	a	secure	AWS	DirectConnect	connection	provided	by	AT&Ts	NetBond	service.	
o All	 connections	 to	 external	 systems	 pass	 through	 District	 7	 TMC	 Foreign	 Entity	 (FE)	

firewall.	
o All	connections	are	secured	via	VPC	security	group	inbound	and	outbound	access	rules.	

• No	direct	connections	to	the	public	internet.		
• The	system	runs	within	a	Virtual	Private	Cloud,	separated	into	“public”,	“shared”,	and	“private”	

subnets.	 Two	 “public”	 subnets	 exist,	 one	 to	 receive	data	 from	TMCs,	 and	one	 for	 the	CMS	 to	
manage	 and	 execute	 response	 plans.	 “Public”	 subnets	 are	 exposed	 only	 to	 private,	 protected	
networks	within	TMCs	and	only	through	secure	connections	(described	above).	“Shared”	subnets	
are	used	for	the	messaging	systems,	providing	a	secure	bridge	between	“public”	and	“private”	
subnets.	“Private”	subnets	are	used	for	system	processing	and	data	storage	components.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

64	

• One	goal	of	this	deployment	 is	 to	use	automation	for	system	launch	and	deployment,	with	no	
human	intervention	required.	This	allows	for	deployment	without	SSH	keys	on	individual	AWS	EC2	
instances,	since,	in	the	case	of	system	failure,	the	response	is	to	isolate	or	kill	the	failed	system,	
and,	using	automation,	deploy	a	new	system	in	its	place.	Without	SSH	keys,	there	is	no	access	to	
the	OS	of	any	deployed	system.		

8.2. AUTHENTICATION	

Strong	authentication	shall	be	required	for	all	system	access,	including	all	connections	to	internal	services.	
This	will	include:	

• Two-factor	authentication	required	for	AWS	administration	
• Use	certificate	based	authentication	for	external	systems	communication	

The	users	will	be	limited	to	access	of	the	CMS	system	interface.	No	other	access	shall	be	granted	to	system	
users.	 Authentication	 of	 users	 shall	 be	 based	 on	 the	 security	 protocols	 and	 implementation	 of	 each	
individual	vendor.	Since	there	are	three	different	CMS	systems	that	will	be	deployed	at	different	times	
based	on	their	evaluation	period,	authentication	methods	may	differ	and	implementation	shall	certainly	
differ.		

8.3. DATA	ENCRYPTION	

Encryption,	 via	 SSL,	 shall	 be	 used	 for	 all	 communications	 with	 external	 systems.	 This	 includes	
communication	with	all	data	hub	readers	from	TMCs	and	with	each	CMS	solution	to	TMCs.		

In	addition,	while	it	is	not	expected	to	be	required,	all	data	stored	in	any	of	the	databases,	or	AWS	data	
store	such	as	S3	shall	be	reviewed	with	Caltrans	for	the	need	to	encrypt	the	data	store.	If	any	data	element	
is	to	be	encrypted	in	storage,	it	shall	be	encrypted	when	transported	internally	via	the	messaging	systems.	

8.4. PRINCIPLE	OF	LEAST	PRIVILEGE	

The	 principle	 of	 least	 privilege	 is	 defined	 as	 ensuring	 that	 every	machine,	 process,	 and	 user	 are	 only	
allowed	to	access	the	information	and	resources	required	for	its	operation	and	purpose.	All	other	access	
is	prohibited.		

The	ICM	system	shall	adhere	to	this	principle,	using	the	following	design	elements:	

• Access	to	EC2	instances	containing	databases	are	only	granted	to	persistence	workers,	specific	
readers	(for	MongoDB	transformation	pipelines),	Spark,	and	PMA	(modeling).	

• EC2	 instances	 requiring	 only	 access	 to	message	 brokers	 are	 restricted	 to	 only	 those	message	
brokers	required.	

• No	SSH	access	to	EC2	instances.		
• TMC	 and	 any	 other	 external	 access	 is	 limited	 to	 specific	 data	 hub	 readers	 designated	 for	

communication	with	that	TMC	and	CMS	components	required	for	communication	with	the	TMC.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

65	

• DSS,	CMS,	and	data	hub	systems	shall	encapsulate	all	access	to	internal	components	through	their	
specific	 gateways	 and	 interfaces	either	 in	public	 (externally	 facing	 communications)	or	 shared	
(internal	communications).	No	other	access	shall	be	granted.	

• AWS	 IAM	 groups,	 users,	 and	 roles	 shall	 be	 configured	 in	 accordance	 with	 principle	 of	 least	
privilege.	

• Access	to	Graylog,	database,	and	message	broker	administration	shall	be	granted	only	to	system	
administrators	for	each	specific	service.	
	

NOTE:	CMS	security	is	dependent	upon	specific	implementation	of	each	CMS	system	and	configuration	of	
security	within	the	CMS	system.	

8.5. AUTOMATED	SECURITY	AND	PROCESS	MONITORING	

While	 automated	 security	 and	 process	monitoring	 is	 not	 likely	 to	 be	 configured	 fully	 upon	 the	 initial	
launch,	 it	 is	 intended	that	this	will	be	 implemented	during	production	operations	 in	close	cooperation	
with	Caltrans	IT.	This	shall	include	the	use	of	CloudTrail	and	CloudWatch	to	accomplish	the	following:	

• Kill	all	failed	or	non-responding	processes	
• Verify	configuration	of	all	launched	processes	
• Monitor	system	and	process	access	and	access	violations	
• Quarantine	or	kill	and	relaunch	any	suspected	compromised	systems	or	operations	
• Conduct	regular	automated	AWS	inspections	of	the	system	configuration	

8.6. AUTOMATE	SYSTEM	LAUNCH	PROCESSES	

To	ensure	consistent	system	launch,	delivery	of	system	services,	and	secure	system	configurations,	all	
system	launch	processes	will	be	automated	using	CloudFormation	or,	in	the	case	of	some	modeling	
components,	use	of	the	EC2	APIs	and	programmatic	launch	of	components	from	controlled	system	
images.	This	will	include	the	automation	of	system	upgrades	and	patches.	This	will	minimize	the	
possibility	of	the	introduction	of	inconsistent	and	incorrect	security	and	system	configurations,	and	
provide	the	ability	to	more	easily	monitor	for	and	correct	system	deficiencies.	

8.7. VALIDATE	ALL	INCOMING	DATA	

To	prevent	denial	of	system	services	or	security	issues,	as	well	as	ensure	proper	operation	of	the	system,	
all	data	received	by	the	data	hub	shall	be	validated	to	ensure	that	is	well-formed	and	within	reasonable	
tolerances	for	system	processing	(volume,	content,	timing,	etc.)	

	

	

	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

66	

This	page	left	blank	
intentionally	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

67	

9. SYSTEM	INTERFACE	AND	MESSAGE	SYSTEM	DESIGN 	

There	are	several	primary	interfaces	defined	for	the	ICM	system.	These	include:	

• Data	hub	interface	to	external	data	sources,	primarily	the	different	TMCs	providing	corridor	asset	
information	such	as	asset	inventories	or	asset	state	(such	as	intersection	signal	cycle	information).	

• Data	hub	to	DSS	interface	
• Data	hub	to	CMS	interface	
• CMS	to	external	command	targets,	primarily	the	different	TMCs	that	will	execute	response	plan	

actions	based	on	TMDD	commands	received	from	the	CMS.	

In	 general,	 communications	with	external	 TMCs	and	data	providers	or	 consumers	 is	 accomplished	 via	
TMDD	SOAP	based	messaging,	using	the	Connected	Corridors	modified	version	of	TMDD.	This	 includes	
the	data	hub	communication	with	external	data	sources	which	provide	the	data	necessary	to	operate	the	
ICM	system	and	the	CMS	interface	to	the	command	target	TMCs	which	execute	commands	received	from	
the	CMS.	The	data	hub	to	CMS	interface	has	a	SOAP	interface	using	the	same	modified	TMDD	specification	
for	use	if	desired	by	CMS	vendors.	Extensions	to	the	TMDD	specification	for	response	plan	exchange	and	
approval	workflows	have	also	been	added	for	data	hub	to	CMS	and	CMS	to	Caltrans	ATMS	interfaces.	

The	data	hub	to	DSS	interface	uses	ActiveMQ	and	JSON	formatted	TMDD-like	messages.	The	data	hub	to	
DSS	 interface	uses	 the	data	hub’s	data	gateway	and	 the	DSS	 interface	 to	communicate,	with	 the	data	
gateway’s	Apache	Camel	implementation	pushing	messages	onto	the	DSS’s	ActiveMQ	broker	topics	and	
queues,	and	the	DSS	interface	providing	transformation	and	routing	for	the	messages	within	the	DSS,	as	
well	as	providing	a	corresponding	path	for	messages	from	the	DSS	to	the	data	hub’s	data	gateway.	

In	addition	to	the	SOAP	interface	provided	by	the	data	hub	data	gateway	for	the	CMS,	optionally	the	CMS	
may	use	ActiveMQ	and	the	data	gateway	will	communicate	with	the	CMS	in	the	same	manner	as	the	DSS.			

Within	data	hub	and	DSS,	the	use	of	independent	processes	communicating	via	messaging	is	a	key	design	
element,	which	used	properly	provides	a	number	of	significant	benefits.	

• Parallelization	of	processing	
• Scalability	of	services	for	high	data	volumes	
• Improved	resilience,	simplified	redundancy,	and	fast	failover	
• Improved	flexibility	with	the	ability	to	add	additional	capabilities	or	change	system	configuration	

without	interruption	to	existing	services	
• Ability	to	add	additional	corridors	with	minimal	effort,	cost,	and	disruption	
• Ability	to	maintain,	patch,	or	upgrade	the	system	with	minimal	or	no	disruption	in	service	

A	critical	element	of	this	design	is	the	messaging	systems	that	link	the	independent	services.	There	are	
two	 primary	 messaging	 systems	 used	 to	 accomplish	 the	 linking	 of	 these	 services	 and	 maintain	
communication	within	and	between	system	components:	

• ActiveMQ	
• Kafka	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

68	

9.1. DATA	HUB	INTERNAL	MESSAGING	

The	data	hub	uses	both	Apache	ActiveMQ	and	Apache	Kafka	messaging	systems	for	connecting	its	internal	
services.	 It	 is	 important	 to	 note	 that	 the	 design	 of	 the	 data	 hub	 is	 based	on	 loosely	 coupled	 services	
connected	by	messaging,	and	orchestrated	by	the	command	gateway.	The	messaging	only	provides	data	
transport	and	command	communications.	The	services	the	messaging	provides	have	no	knowledge	of	the	
other	services	either	providing	the	data	used	by	those	services,	nor	the	services	consuming	the	data	they	
provide.	Only	the	orchestration	service	provided	by	the	command	gateway	has	any	knowledge	of	the	full	
suite	of	services,	and	as	a	result	of	the	workflows	inherent	in	the	connections	made	and	defined	within	its	
workflow	 engine	 (Conductor).	 This	 has	 significant	 advantages	 in	 scalability,	 speed	 of	 processing,	 and	
flexibility,	but	also	comes	without	transactionality.	There	is	the	potential	for	message	loss	that	must	be	
addressed	within	the	workflows	defined	within	Conductor	and	within	the	design	of	service	recovery	in	the	
event	of	system	failure.	

9.1.1. DATA	MESSAGING	AND	KAFKA	

Kafka	 is	a	clustered,	high	volume,	high	speed,	highly	scalable,	persistent	messaging	system	engineered	
specifically	 for	 real	 time	 data	 pipelines	 and	 streaming	 data	 applications.	 It	was	 developed	 initially	 by	
LinkedIn,	and	released	as	an	open-source	product	in	2011.		

The	data	hub	uses	Kafka	for	moving	data	between	its	various	services,	as	a	data	transport	mechanism	for	
its	data	pipelines.	The	data	hub	will	use	the	following	configurations	for	Kafka	messaging:	

• A	minimum	of	three	Kafka	nodes,	scaled	by	message	volume	experienced	
• The	use	of	multiple	Kafka	partitions	per	message	topic	is	preferred,	however,	single	partitions	are	

used	when	messages	are	to	remain	event-time	ordered	per	data	source	
• Zookeeper	for	process	coordination	

Data	may	be	encrypted	in	transit	if	necessary.	

A	naming	convention	for	data	hub	topics	will	be	utilized:	

Host.Org.Corridor.AssetType.Description	

An	example	of	this	might	be:	CT.D7.210.IntersectionSignal.ProcessedPlanInventory,	where	the	Host	is	CT	
(Caltrans),	 the	Org	 is	D7	 (District	 7),	 the	Corridor	 is	 210,	 the	AssetType	 is	 Intersection	 Signal,	 and	 the	
Description	 is	 Processed	 Plan	 Inventory.	 This	 allows	 for	 deployment	 in	multiple	 districts	 and	multiple	
corridors	and	maintains	a	human	readable	naming	convention.	

9.1.2. COMMAND	MESSAGING	AND	ACTIVEMQ	

ActiveMQ	provides	a	robust	and	reliable	messaging	system	that	has	been	in	use	in	production	systems	
since	2004.	It	has	been	an	Apache	project	since	2007,	with	many	years	of	reliable	operation.	

The	data	hub	uses	ActiveMQ	for	its	command	messaging,	providing	a	communication	mechanism	for	the	
orchestration	of	services	conducted	by	its	command	gateway.	The	general	mechanism	is	to	have	a	topic	
for	services	to	provide	status	to	the	command	gateway,	and	a	virtual	task	topic	used	for	the	command	
gateway	 to	 send	 commands	 to	 the	 individual	 services.	 This	 extends	 also	 to	 the	 data	 gateway	 for	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

69	

configuration	 of	 dynamic	 endpoints	 required	 for	workflows	 that	 involve	 the	DSS	 and	 CMS,	 as	well	 as	
communication	of	requests,	responses,	and	status	information	exchange	with	the	CMS	and	DSS.	

9.2. DSS	INTERNAL	MESSAGING	

The	DSS	uses	Apache	ActiveMQ	as	its	only	messaging	method.	As	with	the	data	hub,	 it	 is	 important	to	
note	that	the	design	of	the	DSS	is	also	based	on	loosely	coupled	services	connected	by	messaging.	The	
primary	difference	from	the	data	hub	however,	is	that	the	DSS	is	a	combination	of	subsystems	–	primarily	
the	 modeling	 and	 the	 response	 plan	 management	 components.	 Orchestration	 is	 not	 centralized.	
Orchestration	of	the	modeling	system	is	provided	by	the	Project	Manager	Application.	The	response	plan	
management	does	not	require	orchestration	of	independent	services,	and	workflows	are	governed	by	the	
response	plan	management	component.	The	DSS	Interface	provides	a	critical	function	of	distribution	and	
transformation	of	messages	for	each	consuming	system.	A	shared	ActiveMQ	messaging	system	provides	
all	messaging	for	the	DSS	and	its	subsystems	for	data,	command,	and	status	information.	

As	with	the	data	hub,	the	messaging	only	provides	data	transport	and	command	communications.	The	
services	the	messaging	provides	have	no	knowledge	of	the	other	services	either	providing	the	data	used	
by	 those	 services,	 nor	 the	 services	 consuming	 the	 data	 they	 provide.	 Only	 the	 orchestration	 service	
provided	by	the	Project	Manager	Application	for	modeling,	or	the	response	plan	management	component	
of	 the	 response	 plan	 management	 system	 has	 any	 knowledge	 of	 the	 full	 suite	 of	 services	 of	 their	
respective	subsystems.	The	DSS	interface	provides	the	gateway	to	the	data	hub,	and	ActiveMQ	provides	
the	bridge	between	response	plan	management	and	modeling.	In	the	same	manner	as	the	data	hub,	this	
has	 significant	 advantages	 in	 scalability,	 speed	 of	 processing,	 and	 flexibility,	 but	 also	 comes	 without	
transactionality.	There	 is	 the	potential	 for	message	 loss	 that	must	be	addressed	within	 the	workflows	
defined	within	Project	Manager	Application	 and	within	 the	design	of	 service	 recovery	 in	 the	event	of	
system	failure.	
	
	 	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

70	

	 	

This	page	left	blank	
intentionally	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

71	

	

10. DEFINITION	OF	TERMS	

	
Term	 Definition	

ActiveMQ	 Apache	ActiveMQ,	activemq.apache.org	is	an	open	source	software	messaging	system	
Aimsun	 Aimsun	(aimsun.com)	is	a	commercial	traffic	simulation	software	system.	

Alert	
Notification	sent	by	the	ICM	system	to	individuals	or	units.	Alerts	may	be	displayed	on	
screen,	sent	by	email,	sent	by	text	message,	sent	by	radio	message,	or	sent	by	
telephone.	

Amazon	Web	
Services	(AWS)	 A	commercial	cloud	computing	service	-	www.aws.amazon.com	

API	 Application	Programming	Interface	(API)	is	a	definition	of	how	a	software	component	
communicates	with	external	components	

Application	layer	 A	software	architecture	or	design	layer	that	provides	core	application	functions	for	a	
software	system.	

Archive	
Data	that	has	been	stored	for	historical	purposes	and	can	be	retrieved	upon	request,	
usually	to	a	location	and	using	a	storage	method	that	has	large	capacity	and	slower	
retrieval	times.	

ATMS	 Advanced	Traffic	Management	System	
Authentication	 Verifying	a	user's	identity.	

Authorization	 Verifying	a	user's	permissions	to	view	specific	data	elements	or	perform	specific	
functions.	

Availability	 A	description	of	whether	an	asset	is	available	for	use	in	a	response	plan	or	not.	

Camel	 Apache	Camel,	camel.apache.org,	is	an	open	source	enterprise	integration	platform,	
providing	software	components	for	routing	of	system	messages.	

Cassandra	 Apache	Cassandra,	cassandra.apache.org,	is	an	open	source	table	based	NoSQL	
database	system.	

CloudFormation	 An	AWS	service	that	provides	the	ability	to	code	and	automate	AWS	services	
provisioning	and	ultimtimately,	system	environments	and	components.	

CloudTrail	 An	AWS	service	that	logs	user	actions	within	an	AWS	environment.	
CloudWatch	 An	AWS	service	that	provides	monitoring	services	within	an	AWS	environment.	
CMS	 Changeable	message	sign.	Includes	both	fixed	and	mobile	devices.	

Command	Gateway	
A	component	of	the	data	hub	that	provides	service	orchestration	and	workflow	
services	for	the	data	hub	and	for	processes	that	cross	data	hub/DSS	and	data	
hub/CMS	boundaries.	

Configuration	
Management	

Maintaining	a	timeline	of	changes	to	an	entity,	ensuring	traceability	of	changes	in	
time,	content,	and	author	of	the	change.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

72	

Term	 Definition	

Corridor	Asset	

Any	corridor	element	available	for	use	within	a	response	plan	or	that	provides	
information	to	the	ICMS.	Assets	include	the	following	types	of	elements:	

• Intersection	traffic	signals
• Ramp	meters
• Organizational	units	or	individuals	(people	resources)
• Equipment
• Mobile	or	stationary	CMS	elements
• Traffic	sensors	and	other	measurement	devices
• Communication	elements	(511,	HAR,	third	party	information	providers)
• Parking	facilities

• Transit	elements

Corridor	
Management	
System	

One	of	the	three	primary	ICM	system	components.	The	corridor	management	system	
provides	a	user	interrface	and	resulting	way	for	all	of	the	program	stakeholders	to	
interact	with	the	system	and	provides	the	ability	to	execute	response	plans	through	
the	various	stakeholder	systems.	

Corridor	State	

Information	describing	the	state	of	the	corridor	at	a	specific	point	in	time.	State	
information	includes:	

• Corridor	road	network	closures
• Corridor	road	network	lane	blockages
• Incident	information

• Event	information

• Asset	inventory

• Asset	state

• Sensor	information

• Transit	information

• Transit	state

• Traffic	conditions	(density,	flow,	velocity)	on	the	road	network

• Response	plans	currently	implemented	or	in	the	process	of	being	
implemented

Current	Traffic	State	

Determining	a	value	of	traffic	density,	flow,	and	velocity	for	each	link	in	the	road	
network	at	the	current	time	and	with	the	data	available	at	the	current	time.	Also	
includes	values	for	current	turn	volumes	and	ratios	at	each	turn	movement	within	the	
road	network.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

73	

Term	 Definition	

Data	Gateway	

A	component	of	the	data	hub	that	provides	an	interface	between	the	data	hub	and	
the	DSS	as	well	as	between	the	data	hub	and	CMS	systems.	The	data	gateway	also	
provides	routing	services	for	messages	sent	or	received	to	the	DSS	or	CMS	and	
internal	data	hub	components.	

Data	Hub	 A	core	component	of	the	ICM	system	which	has	primary	responsibility	for	receiving,	
processing,	storing,	and	providing	data	for	all	ICM	system	components.	

Data	Quality	

A	measure	of	the	quality	of	data	being	received	by	the	ICM	system.	Factors	
considered	in	data	quality	of	a	specific	asset	or	type	of	assets	include:	

• Percent	of	working	assets
• Individual	asset	state,	including	level	of	asset	degradation

• Percent	of	time	reliable	data	is	provided	by	the	asset

• Specific	filtering	or	algorithmic	verification	of	incoming	data	specific	to	
the	asset	or	asset	type

Database	Layer	 A	software	architecture	or	design	layer	that	provides	long	term	data	storage	for	a	
software	system.	

Decision	Support	
System	

A	core	component	of	the	ICM	system,	providing	traffic	conditions,	incident	and	event	
information,	forecasts	of	traffic,	proposed	response	plans	and	associated	traffic	
forecasts,	asset	inventories	and	asset	availability,	maintenance	information,	
organizational	information,	road	network	conditions,	and	previous	corridor	planning	
and	study	information	to	users	to	support	corridor	operations	and	decision	making.	

Delay	 A	measure	of	the	typical	time	a	traveler	would	experience	along	a	route	over	and	
above	the	time	the	traveler	would	experience	at	free-flow	traffic	conditions.	

Demand	 A	measure	of	traffic	demand	(flow)	at	an	entrance	to	the	road	network	or	between	
specify	entry	and	exit	points.	

DMS	 Dynamic	Message	Sign.	This	is	the	same	as	a	CMS	(see	above).	

DMZ	
A	method	of	providing	security	for	enterprise	systems	by	providing	a	physical	or	
logical	network	that	separates	external	or	public	facing	software	system	layers	from	
private	software	system	layers.	

Do	Nothing	
Prediction/Response	

A	traffic	prediction	based	on	a	response	plan/the	response	plan	itself	that	includes	no	
changes	to	any	corridor	assets'	normal,	preprogrammed,	responses	to	traffic	
behavior.	

Drools	 An	open	source	Java	based	rules	engine	software	component.	(drools.org)	

EC2	 An	AWS	service	providing	computing	capabilities	(virtual	or	dedicated	server	
resources)	on	demand	

EDW	 Enterprise	Data	Warehouse	is	a	type	of	software	system	that	provides	consolidation,	
reporting,	and	analysis	services	for	a	business,	usually	with	multiple	data	sources.	

Elastic	Map	Reduce	
(EMR)	

An	AWS	service	that	provides	hosted	high	volume,	high	speed	data	processing	
services.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

74	

Term	 Definition	
ensemble	Kalman	
filter	

A	Monte	Carlo	implementation	of	the	Bayesian	update	problem,	used	within	the	
traffic	estimation	system	

Event	

A	planned	or	unplanned	occasion	or	activity	occurring	within	the	corridor	that	is	not	
caused	by	traffic	activity	but	affects	traffic	conditions.	Examples	include	road	
maintenance	activity,	a	major	sports	event,	a	public	event	such	as	a	parade,	and	a	
concert	or	arts	activity.	

Geospatial	 Relating	to	location	on	the	earth.	

Glacier	 An	AWS	service	providing	archival	data	storage	services.	

Graylog	 Graylog	(graylog.org)	is	an	open	source	software	system	log	storage,	management,	
and	reporting	services.	

GTFS	 General	Transit	Feed	Specification.		This	is	a	data	format	used	to	represent	transit	
routes	and	schedules	on	electronic	maps.	

HAR	 Highway	Advisory	Radio,	used	for	communicating	to	travelers.	

IAM	 An	AWS	service	that	provides	user	security	services	within	an	AWS	environment	
(Identity	Access	Management)	

ICM	 Integrated	Corridor	Management	

ICM	Core	System	
The	core	technical	functionalities	of	the	ICM	system.	The	Core	system	is	comprised	
primarily	of	the	decision	support,	data	hub,	and	corridor	management	system	
components.	

ICM	Environment	 All	the	components—including	people,	organizations,	hardware,	and	software—
involved	in	the	functioning	ICM	system	

Incident	 Traffic-related	incident,	such	as	an	accident	or	disabled	vehicle.	

Incident	
Confirmation	 Positive	confirmation	within	the	system	of	an	identified	traffic	incident.	

Incident	
Identification	 Identification	of	a	traffic	incident.	

Inventory	 A	collection	of	assets.	

JMS	
Java	Message	Services,	JMS,	is	a	component	of	the	Java	Enterprise	Edition	that	
provides	a	messaging	standard	and	components	and	libaries	for	use	in	software	
systems	to	implement	that	standard.	

JSON	 Javascript	Object	Notation	-	a	method	of	describing	data	or	javascript	software	
objects	for	exchange	between	software	systems	

Jurisdiction	 Geographic	and	asset	ownership	or	control	by	a	specific	organizational	or	
governmental	entity.	

Jurisdictional	
Restriction	

A	restriction,	generally	on	a	corridor	asset	or	road	network	element,	imposed	by	an	
organizational	or	governmental	agency.	

Kafka	 Apache	Kafka,	kafka.apache.org,	is	an	open	source	software	messaging	system	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

75	

Term	 Definition	

LCS	 Lane	Control	Signal.	Same	acronym	is	also	used	for	Lane	Closure	System.	

Link	 A	defined	section	of	road.	

Microservices	
Architecture	

A	method	of	software	system	architecture,	using	a	combination	of	software	
components	and	messaging	to	meet	its	objectives,	that	is	characterized	by	the	
following:	
1.	Utilization	of	smaller,	independent	software	components	with	singular	or	
very	limited	functions	and	purpose.	
2.	Loosely-coupled	connection	of	those	software	components	by	messaging,	
generally	REST,	JMS	or	similar	technology.	
3.	Well	defined,	lightweight	communications	between	services	over	network	
communications	

MLLib	 An	Apache	Spark	software	library	that	provides	machine	learning	services	within	the	
Spark	framework.	

MongoDB	 An	open	source	document	based	NoSQL	database	system	(mongodb.com).	

n-tier	

A	method	of	software	system	architecture	that	is	characterized	by	"n"	layers	of	
software	functional	breakdown.	A	typical	n-tier	architecture,	characterized	as	3-tier	
architecture	has	three	independent	software	design	layers	-	user	interface,	
application,	and	database	layers.	

Netflix	Conductor	
Netflix	Conductor	is	an	open	source	service	orchestration	software	system	that	
provides	workflow	management	and	service	coordination	for	microservice	based	
systems.	

Node	
A	point	of	connection	between	two	or	more	links,	often	located	at	intersections,	
freeway	ramp	diversions	or	ends,	changes	in	lane	configuration,	or	changes	in	road	
attributes	(such	as	speed	limits).	

Operational	Status	 The	working	state	of	a	corridor	asset—generally	working,	degraded,	or	not	functional,	
depending	upon	the	capabilities	of	the	asset.	

Persistence	 Storage	of	information	in	a	permanent	store,	such	as	a	database	or	file	system.	

Pipeline	 A	series	of	software	components	connected	via	a	well	defined	API	that	together	
process	a	stream	of	data.	

Post-event	 An	event	or	action	taken	after	a	traffic	incident	and	removal	or	release	of	response	
plan	elements	and	after	the	end	of	the	response	plan	duration.	

Postgres	 An	open	source	relational	database,	www.postgreSQL.org.	

Probe	Vehicle	
A	vehicle	equipped	with	sensors	allowing	them	to	record	the	position,	speed,	and	
travel	direction	of	the	vehicle	at	regular	intervals	or	when	coming	into	proximity	of	
roadside	devices.		

Project	Manager	
Application	

A	DSS	component	that	provides	an	API	to	the	estimation	modeling	components	as	
well	as	management	and	orchestration	of	estimation	modeling	services.	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

76	

Term	 Definition	

Real-Time	Data	

Real-time	data	denotes	information	that	is	delivered	immediately	after	measurement.		
Depending	on	the	system	providing	the	data,	this	may	include	data	that	was	
measured	a	few	seconds	or	a	few	minutes	ago.		In	transportation	systems,	this	
typically	means	data	that	15-minute	old	or	less.	

Relational	Database	
Service	(RDS)	 An	AWS	service	that	provides	hosted	relational	database	services.	

Response	Crew	 Any	organizational	(human	and	equipment)	assets	that	respond	to	an	incident	or	
event.	

Response	Plan	

A	collection	of	actions	prepared	and	evaluated	by	the	ICM	system	for	implementation	
in	response	to	an	event	or	incident.	Response	plans	may	be	in	the	following	states:	

• Development	-	The	selection	and	assembly	of	response	plan	elements
• Evaluation	-	System	generation	of	traffic	forecast	based	on	the	response	

plan	and	analysis	of	the	forecast	and	other	response	plan	components

• Proposed	-	Recommended	by	the	system	for	implementation	based	on	
the	evaluation	of	the	plan

• Selection	-	Selection	of	a	plan	to	be	submitted	for	approval
• Active	-	Approved	and	in	implementation

		
Response	plans	may	include	one	or	more	of	the	following	deployment	elements:	

• Recommended	traffic	reroutes	around	an	incident	or	event
• Intersection	traffic	signal	changes
• Ramp	meter	changes
• Organizational	asset	deployments
• Equipment	deployments
• CMS	changes
• Communications

		
Required	additional	supporting	elements	of	a	response	plan	include:	

• Approval	requests	and	responses	(if	the	response	plan	is	proposed	for	
implementation)

• Traffic	state	at	the	time	of	response	plan	development	initiation

• Traffic	forecast	based	on	the	response	plan	deployment	elements
• Geographic	area	of	impact	(also	known	as	area	of	influence)
• Corridor	asset	state	at	the	time	of	response	plan	development	initiation

• Initiating	incident	or	event	information

I-210	Pilot:	Core	System	High-Level	Design	

	

	

77	

Term	 Definition	

• Implementation	results,	including	success	or	failure	of	each	response	
plan	action	and	traffic	state	information	throughout	the	response	plan	duration	(if	the	
response	plan	is	deployed)

Response	Plan	
Development	

Creation	of	one	or	more	response	plans	in	response	to	an	incident	or	event	by	the	
ICM	system.	

Response	Plan	
Implementation	 Execution	of	response	plan	deployment	elements.	

Response	Plan	
Manager	

A	component	of	the	DSS	that	provides	control	and	orchestration	services	for	the	
development	of	response	plans	

REST	 Representational	State	Transfer	(REST)	is	a	software	design	method	that	provides	
communication	between	software	components	via	HTTP	protocol.	

Route	 An	interconnected	collection	of	road	links	that	create	a	single	continuous	path	
between	any	two	points	in	the	road	network.	

Rule	 A	single	element	of	logic,	expressed	within	a	format	and	dialog	that	the	rules	engine	
can	understand	and	process.	

Rule	set	 A	collection	of	rules	and	any	instructions	for	their	execution	intended	to	be	executed	
as	a	group	within	the	rules	engine.	

Rules	Engine	

A	core	component	of	the	ICM	system	that	includes	an	off-the-shelf	(commercial	or	
open-source)	software	system	that	allows	users	to	define,	edit,	or	delete	rules	that	
govern	specific	logic	applied	to	specific	processes.	The	rules	engine	executes	those	
rules	at	run	time	in	the	context	of	a	process	when	the	process	is	invoked.	A	rules	
engine	is	specified	within	the	ICM	system	to	allow	users	to	define	identification	of	
traffic	incidents,	when	response	plans	are	to	be	developed,	what	response	plan	
elements	will	be	included	within	a	response	plan,	and	to	allow	the	logic	of	these	
processes	to	be	redefined	by	the	users	over	the	lifetime	of	the	system.	

S3	 An	AWS	service	provide	data	storage	services.	

Seda	
An	Apache	Camel	component	that	provides	Staged	Event	Driven	Architecture	
behavior,	essentially	providing	a	blocking	queue	to	exchange	messages	between	
producer	and	consumer	components	within	Camel.	

Sensor	 A	corridor	asset	that	senses	and	reports	to	the	ICMS	a	measurement	of	the	state	of	
the	asset	or	traffic.	

SOAP	 Simple	Object	Access	Protocol	(SOAP)	is	an	XML	based	communication	method	for	
exchange	of	information	using	HTTP	protocols	

Spark	 Apache	Spark,	spark.apache.org,	is	an	open	source	cluster	computing	platform.	
SSH	 Secure	Shell	-	a	cryptographic	protocol	for	operating	network	services	

SSL	 Secure	Sockets	Layer	-	a	cryptographic	protocol	for	communicating	over	a	computer	
network	

TMC	 Traffic	Management	Center	

I-210	Pilot:	Core	System	High-Level	Design	

	

	

78	

Term	 Definition	

TMDD	 Traffic	Management	Data	Dictionary,	which	is	a	standard	for	communications	
between	traffic	centers.	

Tomcat	 An	open	source	Apache	web	application	server	(tomcat.apache.org)	

Traffic	Forecast	 A	prediction	of	the	future	state	of	traffic	density,	velocity,	and	flow	for	each	link	in	the	
road	network.	

Traffic	State	 The	current	traffic	density,	velocity,	and	flow	for	each	link	in	the	road	network.	

Transit	State	 The	state	of	one	or	more	transit	providers,	including	the	transit	inventory	in	
operation,	the	working	state	of	each	asset,	and	each	asset's	location.	

Travel	Time	

The	time	it	takes	to	travel	between	two	defined	points	along	a	specified	route	on	the	
traffic	network.	Three	types	of	travel	time	can	be	distinguished:	

• Point	travel	time—Travel	time	observed	at	a	given	point	in	time	within	
the	road	network

• Predicted	travel	time—Expected	future	travel	time	along	a	given	route	
based	on	a	traveler	or	vehicle	starting	a	trip	at	the	current	time	and	encountering	
various	predicted	traffic	conditions	along	his	trip

• Experienced	travel	time—Travel	time	obtained	by	measuring	the	time	it	
actually	took	for	a	person	or	vehicle	to	travel	along	a	given	route.

Two-Factor	
Authentication	

Authentication	method	that	requires	two	forms	of	identification.	A	common	two-
factor	authentication	method	is	to	use	a	username/password	combination	with	an	
additional	method,	such	as	an	additional	hardware	key	device.	

User	interface	layer	 A	software	architecture	or	design	layer	that	provides	a	visual	interface	and	
corresponding	controls	to	interact	with	the	software	system	

Virtual	Private	Cloud	
(VPC)	

An	AWS	service	providing	isolation	of	cloud	computing	components	into	a	contained,	
defined	computing	environment	

Visualization	 The	collection	and	display	of	information	by	the	system	for	the	user.	

	

	
	

