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Single-loop detectors provide the most abundant source of traffic data
in California, but loop data samples are often missing or invalid. A 
method is described that detects bad data samples and imputes missing
or bad samples to form a complete grid of clean data, in real time. The
diagnostics algorithm and the imputation algorithm that implement this
method are operational on 14,871 loops in six districts of the California
Department of Transportation. The diagnostics algorithm detects bad
(malfunctioning) single-loop detectors from their volume and occupancy
measurements. Its novelty is its use of time series of many samples, instead
of basing decisions on single samples, as in previous approaches. The im-
putation algorithm models the relationship between neighboring loops as
linear and uses linear regression to estimate the value of missing or bad
samples. This gives a better estimate than previous methods because it
uses historical data to learn how pairs of neighboring loops behave. Detec-
tion of bad loops and imputation of loop data are important because they
allow algorithms that use loop data to perform analysis without requiring
them to compensate for missing or incorrect data samples.

Loop detectors are the best source of real-time freeway traffic data
today. In California, these detectors cover most urban freeways. But
loop detector data contain many holes (missing values) or bad (incor-
rect) values and require careful cleaning to produce reliable results.
Bad or missing samples present problems for any algorithm that uses
the data for analysis. Therefore, one must both detect when data are
bad and throw them out and then fill holes in the data with imputed val-
ues. The goal is to produce a complete grid of reliable data. Analyses
that use such a complete data set can be trusted.

Bad data must be detected from the measurements themselves. The
problem has been studied by FHWA, the Washington State Depart-
ment of Transportation, and others. Existing algorithms usually work
on the raw 20-s or 30-s data and produce a diagnosis for each sample.
But it is difficult to tell if a single 20-s sample is good or bad unless it
is very abnormal. Fortunately, loop detectors do not just give random
errors—some loops produce reasonable data all the time, while others
produce suspect data all the time. By examining a time series of
measurements, one can readily distinguish bad behavior from good.
The diagnostics algorithm presented here examines a day’s worth of
samples together, producing convincing results.

Once bad samples are thrown out, the resulting holes in the data
must be filled with imputed values. Imputation with time series analy-
sis has been suggested, but these imputations are effective only for
short periods of missing data; linear interpolation and neighborhood

averages are natural imputation methods, but they do not use all the
relevant data that are available. The imputation algorithm presented
here estimates values at a detector by using data from its neighbors.
The algorithm models each pair of neighbors linearly and fits its
parameters on historical data. It is robust and performs better than
other methods.

DESCRIPTION OF DATA

The freeway performance measurement system (PeMS) collects,
stores, and analyzes data from thousands of loop detectors in six
districts of the California Department of Transportation (Caltrans)
(Transacct.eecs.berkeley.edu, 1). The PeMS database currently has
1 terabyte of data online, and it collects more than 2 GB data per day.
PeMS uses the data to compute freeway usage and congestion delays,
measure and predict travel time, evaluate ramp-metering methods,
and validate traffic theories. There are 14,871 mainline loops in the
PeMS database from six Caltrans districts. The results presented here
are for mainline loops. Each loop reports the volume q(t), the number
of vehicles that cross the loop detector during a 30-s interval t, and
occupancy k(t), the fraction of this interval during which there is a
vehicle above the loop. Each pair of volume and occupancy observa-
tions is called a sample. The number of total possible samples in 1 day
from mainline loops in PeMS is therefore (14,871 loops) × (2,880
sample per loop per day) = 42 million samples. In reality, however,
PeMS never receives all the samples. For example, Los Angeles has
a missing sample rate of about 15%. While it is clear when samples
are missed, it is harder to tell when a received sample is bad or incor-
rect. A diagnostics test needs to accept or reject samples on the basis
of the assumption of what good and bad samples look like.

EXISTING DATA-RELIABILITY TESTS

Loop data errors have plagued their effective use for a long time. In
1976, Payne et al. identified five types of detector error and presented
several methods to detect them from 20-s and 5-min volume and
occupancy measurements (2). These methods place thresholds on
minimum and maximum flow, density, and speed and declare a sam-
ple to be invalid if they fail any of the tests. Later, Jacobson et al.
defined an “acceptable region” in the k-q plane and declared samples
to be good only if they fell inside the region (3). This is called the
Washington algorithm in this paper. The boundaries of the acceptable
region are defined by a set of parameters, which are calibrated from
historical data or derived from traffic theory.

Existing detection algorithms (2–4) try to catch the errors described
by Payne et al. (2). For example, chattering and pulse breakup cause
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q to be high, so a threshold on q can catch these errors. But some errors
cannot be caught this way, such as a detector stuck in the off (q = 0, 
k = 0) position. Payne’s algorithm would identify this as a bad point,
but good detectors will also report (0, 0) when there are no vehicles in
the detection period. Eliminating all (0, 0) points introduces a positive
bias in the data. On the other hand, the Washington algorithm accepts
the (0, 0) point, but doing so makes it unable to detect the stuck type
of error. A threshold on occupancy is similarly hard to set. An occu-
pancy value of 0.5 for one 30-s period should not indicate an error, but
a large number of 30-s samples with occupancies of 0.5, especially
during nonpeak periods, points to a malfunction.

The Washington algorithm was implemented in Matlab and tested
on 30-s data from two loops in Los Angeles for 1 day on August 7,
2001. The acceptable region is taken from Jacobson et al. (3). The data
and their diagnoses are shown in Figure 1. Visually, Loop 1 looks good
(Figure 1b), and Loop 2 looks bad (Figure 1d). Loop 2 looks bad
because there are many samples with k = 70% and q = 0 as well as
many samples with occupancies that appear too high, even during non-
peak periods, and when Loop 1 shows low occupancy. The Washing-
ton algorithm, however, does not make the correct diagnosis. Of 2,875
samples, it declared 1,138 samples to be bad for Loop 1 and 883 bad
for Loop 2. In both loops, there were many false alarms. This is
because the maximum acceptable slope of q/k was exceeded by many
samples in free flow. This suggests that the algorithm is very sensitive
to thresholds and needs to be calibrated for California. Calibration is
impractical because each loop will need a separate acceptable region,
and ground truth would be difficult to get.

There are also false negatives—many samples from Loop 2 appear
to be bad because they have high occupancies during off-peak times,
but they were not detected by the Washington algorithm. This illus-

trates a difficulty with the threshold method—the acceptable region
has to be very large, because there are many possible traffic states
within a 30-s period. On the other hand, much more information can
be gained by looking at how a detector behaves over many sample
times. This is why Loop 1 is easily recognized as good and Loop 2 as
bad by looking at their k(t) plots, and this is a key insight that led to
the diagnostics algorithm.

PROPOSED DETECTOR 
DIAGNOSTICS ALGORITHM

Design

The algorithm for loop-error detection uses the time series of flow and
occupancy measurements instead of making a decision based on an
individual sample. It is based on the empirical observation that good
and bad detectors behave very differently over time. For example, at
any given instant, the flow and occupancy at a detector location can
have a wide range of values, and one cannot rule out most of them;
but over a day, most detectors show a similar pattern—flow and
occupancy are high in the rush hours and low late at night. Figures 2a
and 2b show typical 30-s flow and occupancy measurements at Vehi-
cle Detector Station 759531. Most loops have outputs that look like
this, but some loops behave quite differently. Figures 2c and 2d give
an example of a bad loop (Vehicle Detector Station 759518). This
loop has zero flow and an occupancy value of 0.7 for several hours
during the evening peak period—clearly, these values must be in-
correct. Four types of abnormal time series behavior were found,
and these are given in Table 1. Types 1 and 4 are self-explanatory;

FIGURE 1 Washington algorithm on two loops: Loop 1 (a) volume versus
occupancy and (b) occupancy; Loop 2 (c) volume versus occupancy and 
(d) occupancy. Occupancy is in percent. Loops are in Los Angeles, Interstate 5
North, postmile 7.8, Lanes 1 and 2.
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Types 2 and 3 are illustrated in Figures 2c, 2d, and 1b. The errors in
Table 1 are not mutually exclusive. For example, a loop with all zero
occupancy values exhibits both Type 1 and Type 4 errors. A loop is
declared bad if it is in any of these categories.

No significant number was found of loops with chatter or pulse
breakup, which would produce abnormally high volumes. There-
fore, the current form of the detection algorithm does not check for
this condition. However, a fifth error type and error check can easily
be added to the algorithm to flag loops with consistently high counts.

The daily statistics algorithm (DSA) was developed to recognize
error Types 1 through 4. The input to the algorithm is the time series
of 30-s measurements q(d, t) and k(d, t), where d is the index of the
day and t = 0, 1, 2, . . . , 2,879 is the 30-s sample number; the output
is the diagnosis ∆(d) for the dth day: ∆(d) = 0 if the loop is good and
∆(d) = 1 if the loop is bad. In contrast to existing algorithms that oper-
ate on each sample, DSA produces one diagnosis for all the samples
of a loop on each day.

Only samples between 5:00 a.m. and 10:00 p.m. were used for the
diagnostics, because outside this period, it is more difficult to tell the
difference between good and bad loops. There are 2,041 30-s samples

in this period; therefore, the algorithm is a function of 2,041 × 2 =
4,082 variables. Thus the diagnostic ∆(d) on day d is a function, ∆(d)
= f(q(d, a), q(d, a + 1), . . . , q(d, b), k(d, a), k(d, a + 1), . . . , k(d, b)),
where a = 5 × 120 = 600 is the sample number at 5:00 a.m. and b = 22
× 120 = 2,640 is the last sample number, at 10:00 p.m. To deal with
the large number of variables, first reduce them to four statistics,
S1, . . . , S4, which are appropriate summaries of the time series. Their
definitions are given in Table 2, where Sj(i, d) is the jth statistic com-
puted for the ith loop on the dth day. The decision ∆ becomes a func-
tion of these four variables. For the ith loop and dth day, the decision
whether the loop is bad or good is determined according to the rule
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FIGURE 2 (a, c) Typical and abnormal 30-s flow; (b, d) occupancy measurements.

Error Type Description Likely Cause Fraction of Loops in
District 12 

1 Occupancy and flow are mostly zero Stuck off 5.6% 
2 Non-zero occupancy and zero flow, see 

Figure 2c and 2d 
Hanging on 5.5% 

3 Very high occupancy, see Figure 1d Hanging on 9.6% 
4 Constant occupancy and flow Stuck on or 

off 
11.2% 

All Errors 16% 

TABLE 1 Loop Detector Data Error
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where s*j are thresholds on each statistic. These four statistics sum-
marize the daily measurements well because they are good indicators
of the four types of loop failure given in Table 1. This is seen in the
histogram of each statistic displayed in Figure 3. The data were col-
lected from Los Angeles on April 24, 2002. The distribution of each
statistic shows two distinct populations. In S1, for example, there are
two peaks, at 0 and 2,041. This shows that there are two groups of
loops—one group of about 4,700 loops has very few samples that
report zero occupancy, and another group of about 300 reports almost
all zeros. The second group is bad, because they have Type 1 error.
Since all four distributions are strongly bimodal, Equation 1 is not very
sensitive to the thresholds s*j , which just have to be able to separate the
two peaks in the four histograms in Figure 3. The default thresholds
are given in Table 2. The only other parameters for this model are the
time ranges and the definition of S3, where an occupancy threshold of
0.35 is specified. The DSA uses a total of seven parameters, listed in
Table 3. They work well in all six Caltrans districts.

Performance

The DSA algorithm is implemented and run on PeMS data. The last
column in Table 1 shows the distribution of the four types of error in
District 12 (Orange County) for 31 days in October, 2001. Because
the ground truth of which detectors are actually bad is not available,
the performance of this algorithm must be verified visually. Fortu-
nately, this is easy for most cases, because the time series show dis-
tinctly different patterns for good and bad detectors. A visual test was
performed on loops in Los Angeles, on data from August 7, 2001.
There are 662 loops on Interstate 5 and Interstate 210, of which 142
(21%) were declared to be bad by the algorithm. The plots of occu-
pancy were then checked manually to verify these results. Fourteen
loops were found that were declared good, but their plots suggested
they could be bad. This suggests a false negative rate of 14/(662 −
142) = 2.7%. There were no false positives. This suggests that the
algorithm performs very well.
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the “randomness” of a random variable. If ki(d,t) is constant
in t, for example, its entropy is zero. 

TABLE 2 Statistics for Diagnostics
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FIGURE 3 Histograms of (a) S1, (b) S2, (c) S3, and (d) S4.
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Real-Time Operation

The described detection algorithm gives a diagnosis on samples from
an entire day, but real-time detection—the validity of each sample as
it is received—is also of interest. Therefore, a decision ∆̂i(d, t), where
d is the current day and t is the current sample time, is wanted. Use the
simple approximation

where ∆i is defined in Equation 1. Equation 2 has two consequences.
First, a loop is declared good or bad for an entire day. As a result, some
flexibility is lost because good data from a partially bad loop may be
thrown away (this point is discussed in the conclusions section). Sec-
ond, there is a 1-day lag in the diagnosis, which introduces a small
error. The probability of loop failure given the loop status on the pre-
vious day was estimated, and Equation 2 was found to be true 98% of
the time. Therefore, it is a good approximation.

IMPUTATION OF MISSING AND BAD SAMPLES

Need for Imputation

The measurement of each detector is modeled as either the actual
value or an error value, depending on the status ∆:

where qmeas,i and kmeas,i are the measured values, qreal,i and kreal,i are the
true values, and �i and φi are error values that are independent of qreal,i

and kreal,i. An estimate of the loop status was obtained in Equation 2.
It says to discard the samples from detectors that are declared bad.
This leaves holes in the data, in addition to the originally missing sam-
ples. This is a common problem—at each sample time, the user must
determine whether the sample is good. An application that analyzes
the data must deal with both possibilities.

An approach to missing data is to predict them by using time series
analysis. Nihan modeled occupancy and flow time series as auto-
regressive moving average processes and predicted values in the near
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future (5); Dailey presented a method for prediction from neighbor
loops by using a Kalman filter (6). In the case here, the errors do not
occur randomly but persist for many hours and days. Time series pre-
dictions become invalid very quickly and are inappropriate in such sit-
uations. An imputation scheme was developed that uses information
from good neighbor loops at only the current sample time. This is a
natural way to deal with missing data and is used by traditional impu-
tation methods. For example, to find the total volume of a freeway
location with four lanes and only three working loops, one may rea-
sonably use the average of the three lanes and multiply it by four. This
imputes the missing value by using the average of its neighbors. Lin-
ear interpolation is another example. Suppose detector i is bad and is
located between detectors j and k, which are good. Let xi, xj, xk be their
locations and xj < xi < xk; then

is the linear interpolation imputation. While these traditional imputa-
tion methods are intuitive, they make naive assumptions about the
data. The proposed algorithm, on the other hand, models the behavior
of neighbor loops better because it uses historical data.

Linear Model of Neighbor Detectors

A linear regression algorithm for imputation is proposed that models
the behavior of neighbor loops by using historical data. It was found
that occupancies and volumes of detectors in nearby locations are
highly correlated. Therefore, measurements from one location can be
used to estimate quantities at other locations, and a more accurate
estimate can be formed if all the neighboring loops are used in the esti-
mation. Two loops are defined as neighbors if they are in the same
location in different lanes or if they are in adjacent locations. Figure 4
shows a typical neighborhood. Both volume and occupancy from
neighboring locations are strongly correlated. Figure 5 shows two
pairs of neighbors with linearly related flow and occupancies.

Figure 6 plots the distribution of the correlation coefficients
between all neighbors in Los Angeles. It shows that most neighbor
pairs have high correlations in both flow and occupancy.

The high correlation among neighbor loop measurements means
that linear regression is a good way to predict one from the other. It is
also easy to implement and fast to run. The following pairwise linear
model relates the measurements from neighbor loops:
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Parameter Value

k* 0.35

s1
*  1200

s2
*  50

s3
*  200

s4
*  4 

a 5 a.m.

b 10 p.m.

TABLE 3 Parameters
of Daily Statistics
Algorithm and Default
Settings

FIGURE 4 Example of neighboring loops.
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For each pair of neighbors (i, j), the parameters α 0(i, j), α1(i, j),
β0(i, j), β1(i, j) are estimated by using 5 days of historical data. Let qi(t),
qj(t), t = 1, 2, . . . , n be the historical measurements of volume; then

The parameters for density are fitted the same way. Parameters can
be found for all pairs of loops that report data in the historical data-
base, but some loops never report any data. For them, a set of global
parameters α*0(δ, l1, l2), α*1(δ, l1, l2), β*0(δ, l1, l2), β*1(δ, l1, l2) is used that
generalize the relationship between pairs of loop in different config-
urations. For each combination of (relative location, lane of Loop 1,
lane of Loop 2), the linear model is as follows:

where

δ = 0 if i and j are in the same location on the freeway, 1 other-
wise;

li = lane number of loop i;
lj = lane number of loop j; and

li, lj = 1, 2, 3, . . . , 8.

The global parameters are fitted to data similar to the local param-
eters. In Los Angeles, there are 60,760 pairs of neighbors (i, j) for
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5,377 loops; in San Bernardino, there are 3,896 pairs for 466 loops.
The four parameters for each pair are computed for these two districts
and stored in database tables.

When values are imputed for loop i by using its neighbors, each
neighbor provides an estimate, and the final estimate is taken as the
median of the pairwise estimates. Both volume and occupancy
imputation are performed the same way. The imputation for volume is

Here, ∆̂ j (d, t), obtained from Equation 2, is the diagnosis of the jth
loop—only estimates from good neighbors are used in the imputation.
Equation 12 is a way to combine information from multiple neigh-
bors. While this method is suboptimal compared with those with joint
probability models, such as multiple regression, it is more robust.
Multiple regression models all neighbors jointly, unlike the pairwise
model adopted here. Dailey presented an estimation method based on
all neighbors jointly (6), but here, the pairwise model was chosen for
its robustness—it generates an estimate as long as there is one good
neighbor. In contrast, multiple regression needs values at each sam-
ple time from all the neighbors. Robustness is also increased by use
of the median of q̂ ij instead of the mean, which is affected by outliers
and errors in ∆j.

After one iteration, the imputation algorithm generates estimates
for all the bad loops that have at least one good neighbor. Something
remains to be done for the bad loops that do not have good neighbors.
A scheme for this has not been chosen, but there are several alter-
natives. The current implementation simply iterates the imputation
process. After the first iteration, a subset of the bad loops is filled with
imputed values—these are the loops with good neighbors. In the sec-
ond iteration, the set of good loops grows to include those that were
imputed in the previous iteration, so some of the remaining bad loops
now have good neighbors. This process continues until all loops are
filled or until all the remaining bad loops do not have any good neigh-
bors. The problem with this method is that the imputation becomes
less accurate with each succeeding iteration. Fortunately, most of the
bad loops are filled in the first iteration. In District 7 on April 24, 2002,
for example, the percentages of filled loops in the first four iterations
are 90%, 5%, 1%, and 1%; the entire grid is filled after eight iterations.
Another alternative is to use the current imputation only for the first n
imputations. After that, if there are still loops without values, another
method can be used, such as historical mean. In any case, an alterna-
tive imputation scheme is required for sample times when there are
no good data for any loop.
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FIGURE 5 Scatter plot of occupancies and flows from two pairs of neighbors.
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Performance

The performance of this algorithm was evaluated for data from April
24, 2002. To run this test, 189 loops were found that are themselves
good and also had good neighbors. From each loop i, the measured
flows and occupancies qi(t) and ki(t) were collected; the algorithm
was then run to compute the estimated values q̂i (t) and k̂i (t), based
on neighbors. From these, the root-mean-square errors for each loop
were found; see Table 4. This table shows that the estimates are un-
biased, as they should be. The standard deviation of imputation error
is small compared to the mean and standard deviation of the measure-
ments. Figure 7 compares the estimated and original values for one
loop. They show good agreement.

The performance of the algorithm was also compared against that
of linear interpolation. Fifteen triplets of good loops were chosen for
this test. Ten of the triplets are loops in the same lane, different loca-
tions, while five triplets have their loops in the same location, across
three lanes. In each triplet, two loops were used to predict the volume
and occupancy of the third loop by using linear interpolation. In every
case, the neighborhood method produced a lower error in occupancy
estimates; it produced smaller errors in flow estimates in 10 of 15 loca-
tions. Overall, the neighborhood method performed better in the mean
and median, as expected.

CONCLUSIONS

Algorithms were presented to detect bad loop detectors from their
outputs and to impute missing data from neighboring good loops.
Existing methods of detection evaluate each 20-s sample to deter-
mine if it represents a plausible traffic state, but it was found that
there is much more information about how detectors behave over

time. The presented algorithm makes diagnoses based on the sequence
of measurements from each detector over a whole day. Visually,
bad data are much easier to detect when viewed as a time series.
The algorithm found almost all the bad detectors that could be
found visually.

The imputation algorithm estimates the true values at locations with
bad or missing data. This is an important functionality, because almost
any algorithm that uses the data needs a complete grid of data. Tradi-
tionally, the way to deal with missing data is to interpolate from nearby
loops. The presented algorithm performs better than interpolation
because it uses historical information on how the measurements from
neighbor detectors are related. The volume and occupancy between
neighbor loops were modeled linearly, and the linear regression co-
efficients of each neighbor pair were found from historical data. This
algorithm is simple and robust.

There remain many possibilities for improvements to the algo-
rithms described here. The detection algorithm has a time lag. To
address this, a truly real-time detection algorithm is being developed
that will incorporate neighbor loop measurements as well as the past
day’s statistics. While the linear model describes most neighbor pairs,
some pairs have nonlinear relationships, so a more general model may
be better. Another area for improvement is the handling of entire
blocks of missing data. The current imputation algorithm needs a large
number of good loops to impute the rest, but it does not work if most
or all the loops are bad for a sample time. A method is needed for
addressing this situation.

Single-loop data diagnostics is an important area of research. While
loop detectors are the most abundant source of traffic information,
the data are sometimes bad or missing. The algorithms presented con-
struct a complete grid of clean data in real time. They simplify the
design of upper-level algorithms and improve the accuracy of analysis
based on loop data.

Quantity Mean Standard 
Deviation 

Mean Absolute
Error 

Standard 
Deviation of 
Error 

Mean
Error

Occupancy 0.085 0.061 0.013 0.021 0.001
Volume (vph) 1220 527 132  201  6 

FIGURE 7 Original and estimated (a) occupancies and (b) flows for a good loop.
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