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Detecting Errors and Imputing Missing
Data for Single-Loop Surveillance Systems

Chao Chen, Jaimyoung Kwon, John Rice, Alexander Skabardonis, and

Pravin Varaiya

Single-loop detector s provide the most abundant sour ce of traffic data
in California, but loop data samples are often missing or invalid. A
method isdescribed that detects bad data samplesand imputes missing
or bad samplesto form a complete grid of clean data, in real time. The
diagnosticsalgorithm and theimputation algorithm that implement this
method ar e operational on 14,871 loopsin six districts of the California
Department of Transportation. The diagnostics algorithm detects bad
(malfunctioning) single-loop detector sfrom their volumeand occupancy
measur ements. | tsnovelty isitsuseof timeseriesof many samples, instead
of basing decisionson single samples, asin previous approaches. Theim-
putation algorithm modelstherelationship between neighboringloopsas
linear and useslinear regression to estimatethe value of missing or bad
samples. This gives a better estimate than previous methods because it
useshistorical datatolearn how pair sof neighboringloopsbehave. Detec-
tion of bad loopsand imputation of loop data areimportant becausethey
allow algorithmsthat useloop datato perform analysiswithout requiring
them to compensatefor missing or incorrect data samples.

Loop detectors are the best source of real-time freeway traffic data
today. In California, these detectors cover most urban freeways. But
loop detector data contain many holes (missing values) or bad (incor-
rect) values and require careful cleaning to produce reliable results.
Bad or missing samples present problems for any algorithm that uses
the data for analysis. Therefore, one must both detect when data are
bad and throw them out and then fill holesin the datawith imputed val-
ues. The goal isto produce acomplete grid of reliable data. Analyses
that use such acomplete data set can be trusted.

Bad datamust be detected from the measurementsthemselves. The
problem has been studied by FHWA, the Washington State Depart-
ment of Transportation, and others. Existing algorithms usually work
ontheraw 20-sor 30-s dataand produce adiagnosisfor each sample.
Butitisdifficult totedl if asingle 20-s sampleisgood or bad unlessit
isvery abnormal. Fortunately, loop detectors do not just give random
errors—some | oops produce reasonabledataall thetime, while others
produce suspect data all the time. By examining a time series of
measurements, one can readily distinguish bad behavior from good.
The diagnostics algorithm presented here examinesaday’ sworth of
sampl es together, producing convincing results.

Once bad samples are thrown out, the resulting holes in the data
must befilled with imputed values. Imputation withtime seriesanaly-
sis has been suggested, but these imputations are effective only for
short periods of missing data; linear interpolation and neighborhood
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averages are natural imputation methods, but they do not use al the
relevant data that are available. The imputation algorithm presented
here estimates values at a detector by using data from its neighbors.
The algorithm models each pair of neighbors linearly and fits its
parameters on historical data. It is robust and performs better than
other methods.

DESCRIPTION OF DATA

The freeway performance measurement system (PeMS) collects,
stores, and analyzes data from thousands of loop detectors in six
districts of the California Department of Transportation (Caltrans)
(Transacct.eecs.berkeley.edu, 1). The PeM S database currently has
1 terabyte of dataonline, and it collects more than 2 GB data per day.
PeM S usesthe datato compute freeway usage and congestion delays,
measure and predict travel time, evaluate ramp-metering methods,
and validate traffic theories. There are 14,871 mainline loopsin the
PeM S database from six Caltrans districts. Theresults presented here
arefor mainlineloops. Each loop reportsthe volume q(t), the number
of vehicles that cross the loop detector during a 30-sinterval t, and
occupancy k(t), the fraction of this interval during which thereisa
vehicle above the loop. Each pair of volume and occupancy observa-
tionsiscalled asample. The number of total possible samplesin 1 day
from mainline loops in PeMS is therefore (14,871 loops) x (2,880
sample per loop per day) = 42 million samples. In redlity, however,
PeM S never receives al the sasmples. For example, Los Angeles has
amissing sample rate of about 15%. Whileit is clear when samples
aremissed, it is harder to tell when areceived sampleisbad or incor-
rect. A diagnostics test needs to accept or reject samples on the basis
of the assumption of what good and bad sampleslook like.

EXISTING DATA-RELIABILITY TESTS

Loop data errors have plagued their effective use for along time. In
1976, Payneet d. identified five types of detector error and presented
several methods to detect them from 20-s and 5-min volume and
occupancy measurements (2). These methods place thresholds on
minimum and maximum flow, density, and speed and declare a sam-
ple to beinvalid if they fail any of the tests. Later, Jacobson et al.
defined an “ acceptable region” in the k-g plane and declared samples
to be good only if they fell inside the region (3). Thisis called the
Washington algorithmin this paper. The boundaries of the acceptable
region are defined by a set of parameters, which are calibrated from
historical dataor derived from traffic theory.

Existing detection algorithms (2—4) try to catch the errors described
by Payneet d. (2). For example, chattering and pul se breakup cause
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gto behigh, so athreshold on g can catch these errors. But someerrors
cannot be caught this way, such as a detector stuck in the off (q =0,
k = 0) position. Payne's algorithm would identify this as a bad point,
but good detectorswill also report (0, 0) when thereare no vehiclesin
the detection period. Eliminating al (0, O) pointsintroducesapositive
biasin thedata. On the other hand, the Washington algorithm accepts
the (0, 0) point, but doing so makes it unable to detect the stuck type
of error. A threshold on occupancy is similarly hard to set. An occu-
pancy vaue of 0.5 for one 30-s period should not indicate an error, but
alarge number of 30-s samples with occupancies of 0.5, especially
during nonpesak periods, pointsto amalfunction.

The Washington agorithm was implemented in Matlab and tested
on 30-s data from two loops in Los Angeles for 1 day on August 7,
2001. The acceptableregion istaken from Jacobson et a. (3). Thedata
andtheir diagnosesare showninFigure 1. Visually, Loop 1 1ooksgood
(Figure 1b), and Loop 2 looks bad (Figure 1d). Loop 2 looks bad
because there are many samples with k = 70% and q = 0 as well as
many sampleswith occupanciesthat appear too high, even during non-
pesk periods, and when Loop 1 shows low occupancy. The Washing-
ton agorithm, however, does not makethe correct diagnosis. Of 2,875
samples, it declared 1,138 samplesto be bad for Loop 1 and 883 bad
for Loop 2. In both loops, there were many false alarms. Thisis
because the maximum acceptable slope of g/k was exceeded by many
samplesin freeflow. This suggeststhat the agorithm isvery sensitive
to thresholds and needs to be calibrated for California. Calibration is
impractical because each loop will need a separate acceptable region,
and ground truth would be difficult to get.

There are a so fal se negatives—many samplesfrom Loop 2 appear
to be bad because they have high occupancies during off-peak times,
but they were not detected by the Washington algorithm. Thisillus-
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trates a difficulty with the threshold method—the acceptable region
has to be very large, because there are many possible traffic states
within a 30-s period. On the other hand, much more information can
be gained by looking at how a detector behaves over many sample
times. Thisiswhy Loop 1 iseasily recognized asgood and Loop 2 as
bad by looking at their k(t) plots, and thisis akey insight that led to
the diagnostics a gorithm.

PROPOSED DETECTOR
DIAGNOSTICS ALGORITHM

Design

Thealgorithm for loop-error detection usesthetime series of flow and
occupancy measurements instead of making a decision based on an
individual sample. It is based on the empirical observation that good
and bad detectors behave very differently over time. For example, at
any given instant, the flow and occupancy at a detector location can
have a wide range of values, and one cannot rule out most of them;
but over a day, most detectors show a similar pattern—flow and
occupancy are highintherush hoursand low late at night. Figures 2a
and 2b show typical 30-sflow and occupancy measurementsat Vehi-
cle Detector Station 759531. Most loops have outputs that look like
this, but some loops behave quite differently. Figures 2c and 2d give
an example of a bad loop (Vehicle Detector Station 759518). This
loop has zero flow and an occupancy value of 0.7 for several hours
during the evening peak period—clearly, these values must be in-
correct. Four types of abnormal time series behavior were found,
and these are given in Table 1. Types 1 and 4 are self-explanatory;
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Types2 and 3 areillustrated in Figures 2c, 2d, and 1b. Theerrorsin
Table 1 arenot mutually exclusive. For example, aloop with all zero
occupancy values exhibits both Type 1 and Type 4 errors. A loop is
declared bad if it isin any of these categories.

No significant number was found of loops with chatter or pulse
breakup, which would produce abnormally high volumes. There-
fore, the current form of the detection algorithm does not check for
this condition. However, afifth error type and error check can easily
be added to the algorithm to flag loops with consistently high counts.

The daily statistics algorithm (DSA) was devel oped to recognize
error Types 1 through 4. Theinput to the algorithm isthe time series
of 30-s measurements q(d, t) and k(d, t), where d is the index of the
day andt=0,1,2,.. ., 2,879 isthe 30-s sample number; the output
isthediagnosis A(d) for the dth day: A(d) =0if theloop isgood and
A(d) =1if theloopisbad. In contrast to existing algorithmsthat oper-
ate on each sample, DSA produces one diagnosis for al the samples
of aloop on each day.

Only samples between 5:00 am. and 10:00 p.m. were used for the
diagnostics, because outside this period, it ismore difficult to tell the
difference between good and bad loops. Thereare 2,041 30-ssamples
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FIGURE 2 (a, ¢) Typical and abnormal 30-s flow; (b, d) occupancy measurements.

in this period; therefore, the algorithm is a function of 2,041 x 2 =
4,082 variables. Thusthe diagnostic A(d) on day disafunction, A(d)
=f(q(d, @), q(d,a+1),...,q(d, b), k(d, a), k(d,a+1),...,kd,b),
wherea =5 x 120 = 600 isthe sample number at 5:00 am. and b =22
x 120 = 2,640 is the last sample number, at 10:00 p.m. To ded with
the large number of variables, first reduce them to four statistics,
S, ..., S, which are appropriate summaries of thetime series. Their
definitionsare givenin Table 2, where S (i, d) isthe jth statistic com-
puted for theith loop on the dth day. The decision A becomes afunc-
tion of these four variables. For theith loop and dth day, the decision
whether the loop isbad or good is determined according to the rule

B S(i,d) > s, or
E{ " S(,d) > s or
Aldr=1 SG,d) > s or @
. SG.d) <s
Eb otherwise

TABLE 1 Loop Detector Data Error
Error Type  Description Likely Cause Fraction of Loopsin
District 12
1 Occupancy and flow are mostly zero Stuck off 5.6%
2 Non-zero occupancy and zero flow, see Hangingon  5.5%
Figure2c and 2d
3 Very high occupancy, see Figure 1d Hangingon  9.6%
4 Constant occupancy and flow Stuck on or 11.2%

All Errors

off
16%
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TABLE 2 Statistics for Diagnostics
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Name Definition

Description

Su(i,d) 1(k; (d, ) =0)
. a;b
S(i,d) Zuk. (d,t)>0)1(q; (d,t) =0)
ast<b
S(i,d)

z](ki d,)>k"), k" =035

astsb

Sd) (-1 T P log(p(x),

number of samples that have occupancy = 0
number of samples that have occupancy > 0 and flow =0
number of samples that have occupancy > K™ (= 0.35)

entropy of occupancy samples —a well-known measure of

x x>0 the “randomness’ of arandom variable. If ki(d,t) is constant
B(X) = Zl(k' @dt= X)/ zl int, for example, its entropy is zero.
ast<b

ast<h

where s} are thresholds on each statistic. These four statistics sum-
marize the daily measurementswell because they are good indicators
of the four types of loop failure givenin Table 1. Thisis seenin the
histogram of each statistic displayed in Figure 3. The data were col-
lected from Los Angeles on April 24, 2002. The distribution of each
statistic shows two distinct populations. In S, for example, there are
two peaks, at 0 and 2,041. This shows that there are two groups of
loops—one group of about 4,700 loops has very few samples that
report zero occupancy, and another group of about 300 reportsa most
all zeros. The second group is bad, because they have Type 1 error.
Sincedll four distributionsare strongly bimodal, Equation 1isnot very
sendtiveto thethresholds s}, which just haveto be ableto separate the
two peaks in the four histogramsin Figure 3. The default thresholds
aregivenin Table2. Theonly other parametersfor thismodel arethe
time ranges and the definition of S;, where an occupancy threshold of
0.35is specified. The DSA uses atotal of seven parameters, listed in
Table 3. They work well in all six Caltrans districts.
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Performance

The DSA algorithm isimplemented and run on PeM S data. The last
columnin Table 1 shows the distribution of the four types of error in
Digtrict 12 (Orange County) for 31 days in October, 2001. Because
the ground truth of which detectors are actually bad is not available,
the performance of this algorithm must be verified visually. Fortu-
nately, thisis easy for most cases, because the time series show dis-
tinctly different patternsfor good and bad detectors. A visual test was
performed on loops in Los Angeles, on data from August 7, 2001.
There are 662 loops on Interstate 5 and Interstate 210, of which 142
(21%) were declared to be bad by the agorithm. The plots of occu-
pancy were then checked manually to verify these results. Fourteen
loops were found that were declared good, but their plots suggested
they could be bad. This suggests a false negative rate of 14/(662 —
142) = 2.7%. There were no false positives. This suggests that the
algorithm performs very well.
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TABLE 3 Parameters
of Daily Statistics
Algorithm and Default

Settings
Parameter Value
K 0.35
S 1200
S 50
S 200
S 4
a 5am.
b 10 p.m.

Real-Time Operation

The described detection algorithm gives adiagnosis on samplesfrom
an entire day, but real-time detection—the validity of each sample as
itisreceived—isalso of interest. Therefore, adecision A, (d, t), where
disthecurrent day and tisthe current sampletime, iswanted. Usethe
simple approximation

A(d,t) = A -D @)

where A is defined in Equation 1. Equation 2 has two consequences.
Firgt, aloop isdeclared good or bad for an entireday. Asaresult, some
flexibility islost because good data from a partially bad loop may be
thrown away (this point is discussed in the conclusions section). Sec-
ond, thereis a 1-day lag in the diagnosis, which introduces a small
error. The probability of loop failure given the loop status on the pre-
vious day was estimated, and Equation 2 was found to be true 98% of
thetime. Therefore, it isagood approximation.

IMPUTATION OF MISSING AND BAD SAMPLES
Need for Imputation

The measurement of each detector is modeled as either the actual
value or an error value, depending on the status A:

Omess (0, 1) = Oea (d, 1)[1 — A (d)] + € (d, A (d)
Kreasi (0, 1) = K (d, D[1 = A;(d)] + @ (d, 1)A;(d)
0<t<2879 ©)]

WhEre Qe @nd Kyeasi @€ the measured values, ge; and ko are the
truevalues, and ; and @ are error valuesthat are independent of Qeq;
and ke j. AN estimate of the loop status was obtained in Equation 2.
It says to discard the samples from detectors that are declared bad.
Thisleavesholesinthedata, in additionto the originally missing sam-
ples. Thisisacommon problem—at each sampletime, the user must
determine whether the sample is good. An application that analyzes
the datamust deal with both possibilities.

An approach to missing dataisto predict them by using time series
analysis. Nihan modeled occupancy and flow time series as auto-
regressive moving average processes and predicted valuesin the near
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future (5); Dailey presented a method for prediction from neighbor
loops by using aKaman filter (6). In the case here, the errors do not
occur randomly but persist for many hoursand days. Time seriespre-
dictionsbecomeinvalid very quickly and areinappropriatein such sit-
uations. An imputation scheme was devel oped that uses information
from good neighbor loops at only the current sample time. Thisisa
natural way to deal with missing dataand is used by traditional impu-
tation methods. For example, to find the total volume of a freeway
location with four lanes and only three working loops, one may rea-
sonably usethe average of thethreelanesand multiply it by four. This
imputes the missing value by using the average of its neighbors. Lin-
ear interpolation is another example. Suppose detector i isbad and is
located between detectorsj and k, which aregood. Let x;, X, X betheir
locations and x; < X < X; then

- (% = x)GM + (% — x)q;®
X~ X

G (4

isthelinear interpolation imputation. While these traditional imputa-
tion methods are intuitive, they make naive assumptions about the
data. The proposed a gorithm, on the other hand, modelsthe behavior
of neighbor loops better because it uses historical data.

Linear Model of Neighbor Detectors

A linear regression algorithm for imputation is proposed that models
the behavior of neighbor loops by using historical data. It was found
that occupancies and volumes of detectors in nearby locations are
highly correlated. Therefore, measurements from onelocation can be
used to estimate quantities at other locations, and a more accurate
estimate can beformed if al the neighboring loopsare used inthe esti-
mation. Two loops are defined as neighbors if they are in the same
location in different lanes or if they arein adjacent locations. Figure 4
shows a typical neighborhood. Both volume and occupancy from
neighboring locations are strongly correlated. Figure 5 shows two
pairs of neighborswith linearly related flow and occupancies.

Figure 6 plots the distribution of the correlation coefficients
between al neighborsin Los Angeles. It shows that most neighbor
pairs have high correlationsin both flow and occupancy.

The high correlation among neighbor loop measurements means
that linear regression isagood way to predict onefrom the other. Itis
also easy to implement and fast to run. The following pairwise linear
mode relates the measurements from neighbor loops:

G ® = afi, j) +a,(i, j)g;® + noise
k® = Bo(i, j) + Bu(i, j)k; (O + noise (5

FIGURE 4 Example of neighboring loops.
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FIGURE 5 Scatter plot of occupancies and flows from two pairs of neighbors.

For each pair of neighbors (i, j), the parameters a o(i, j), a4(i, j),
Bo(i, j), Ba(i, j) areestimated by using 5 daysof historical data. Let g (),
g(t),t=1,2,...,nbethehistorical measurements of volume; then

SN M < — u
ool 1)1, J) = agmaxz § [a® —aj ~aig®©°Y  (©)

The parametersfor density arefitted the sameway. Parameterscan
be found for al pairs of loops that report data in the historical data-
base, but some loops never report any data. For them, a set of global
parametersa’y(s, I, 1), a’y(8, 14, 1), BE(S, 11, 12), B3(S, I, 1) isused that
generalize the relationship between pairs of loop in different config-
urations. For each combination of (relative location, lane of Loop 1,
lane of Loop 2), the linear model isasfollows:

q® = as(3,1;,1;) + ap (3,1;,1;)q,(® + noise 0
k® = Bs(3,1,1,) + B (8 1,1k ® + noise

where

0 =0if i andj arein the same location on the freeway, 1 other-
wise
I; = lane number of loop i;
I; = lane number of loopj; and
I, ,=223,...,8

The global parameters are fitted to data similar to the local param-
eters. In Los Angeles, there are 60,760 pairs of neighbors (i, j) for
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FIGURE 6 Cumulative distribution of correlation
coefficients between neighbors.

5,377 loops; in San Bernardino, there are 3,896 pairs for 466 loops.
Thefour parametersfor each pair are computed for thesetwo districts
and stored in database tables.

When values are imputed for loop i by using its neighbors, each
neighbor provides an estimate, and thefinal estimate istaken asthe
median of the pairwise estimates. Both volume and occupancy
imputation are performed the sameway. Theimputation for volumeis

ﬁli,-(d.t) = 0o(i, j) +ayi, j)g;(d,t)

. ®
G(d,t) = median {§,(d, t), j : neighbor of i, A, (d, 1) = ¢

Here, A,- (d, t), obtained from Equation 2, isthe diagnosis of thejth
loop—only estimates from good neighborsare used in theimputation.
Equation 12 is away to combine information from multiple neigh-
bors. Whilethismethod is suboptimal compared with thosewith joint
probability models, such as multiple regression, it is more robust.
Multiple regression models dl neighborsjointly, unlike the pairwise
model adopted here. Dailey presented an estimation method based on
all neighborsjointly (6), but here, the pairwise model was chosen for
its robustness—it generates an estimate as long as there is one good
neighbor. In contrast, multiple regression needs values at each sam-
ple time from all the neighbors. Robustness is also increased by use
of the median of g instead of the mean, which is affected by outliers
and errorsin A,

After one iteration, the imputation algorithm generates estimates
for al the bad loops that have at |east one good neighbor. Something
remainsto be donefor the bad loopsthat do not have good neighbors.
A scheme for this has not been chosen, but there are several alter-
natives. The current implementation simply iterates the imputation
process. After thefirst iteration, asubset of the bad loopsisfilled with
imputed values—these are the loops with good neighbors. In the sec-
ond iteration, the set of good loops grows to include those that were
imputed in the previousiteration, so some of the remaining bad |oops
now have good neighbors. This process continues until all loops are
filled or until al the remaining bad loops do not have any good neigh-
bors. The problem with this method is that the imputation becomes
less accurate with each succeeding iteration. Fortunately, most of the
bad loopsarefilledin thefirstiteration. In District 7 on April 24, 2002,
for example, the percentages of filled loops in the first four iterations
are 90%, 5%, 1%, and 1%; theentiregridisfilled after eight iterations.
Another dternativeisto use the current imputation only for thefirst n
imputations. After that, if there are still loops without values, another
method can be used, such as historical mean. In any case, an alterna-
tive imputation scheme is required for sample times when there are
no good data for any loop.
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TABLE 4 Performance of Imputation

Transportation Research Record 1855

Quantity Mean Standard Mean Absolute  Standard Mean
Deviation Error Deviation of Error
Error
Occupancy 0.085 0.061 0.013 0.021 0.001
Volume (vph) 1220 527 132 201 6

Performance

The performance of this agorithm was eva uated for datafrom April
24, 2002. To run this test, 189 loops were found that are themselves
good and aso had good neighbors. From each loop i, the measured
flows and occupancies q; (t) and k; (t) were collected; the agorithm
was then run to compute the estimated values § (t) and k (t), based
on neighbors. From these, the root-mean-square errors for each loop
were found; see Table 4. This table shows that the estimates are un-
biased, asthey should be. The standard deviation of imputation error
issmall compared to the mean and standard deviation of the measure-
ments. Figure 7 compares the estimated and original valuesfor one
loop. They show good agreement.

The performance of the agorithm was also compared against that
of linear interpolation. Fifteen triplets of good |oops were chosen for
thistest. Ten of the triplets are loops in the same lane, different loca-
tions, while five triplets have their loops in the same location, across
threelanes. In each triplet, two loops were used to predict the volume
and occupancy of thethird loop by using linear interpolation. In every
case, the neighborhood method produced alower error in occupancy
estimates; it produced smaller errorsin flow estimatesin 10 of 15 loca-
tions. Overal, the neighborhood method performed better in the mean
and median, as expected.

CONCLUSIONS

Algorithms were presented to detect bad |oop detectors from their
outputs and to impute missing data from neighboring good loops.
Existing methods of detection evaluate each 20-s sample to deter-
mineif it represents a plausible traffic state, but it was found that
there is much more information about how detectors behave over
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time. The presented algorithm makes diagnoses based on the sequence
of measurements from each detector over awhole day. Visualy,
bad data are much easier to detect when viewed as atime series.
The algorithm found almost all the bad detectors that could be
found visually.

Theimputation algorithm estimatesthetrue valuesat locationswith
bad or missing data. Thisisanimportant functionality, because almost
any algorithm that uses the data needs acomplete grid of data. Tradi-
tionally, theway to deal with missing dataistointerpolate from nearby
loops. The presented algorithm performs better than interpolation
becauseit uses historical information on how the measurementsfrom
neighbor detectors are related. The volume and occupancy between
neighbor loops were modeled linearly, and the linear regression co-
efficients of each neighbor pair were found from historical data. This
algorithm is simple and robust.

There remain many possibilities for improvements to the algo-
rithms described here. The detection algorithm hasatimelag. To
addressthis, atruly real-time detection algorithm is being devel oped
that will incorporate neighbor loop measurements as well as the past
day’ sstatistics. Whilethelinear model describes most neighbor pairs,
some pairs have nonlinear relationships, so amore general model may
be better. Another area for improvement is the handling of entire
blocks of missing data. The current imputation algorithm needsalarge
number of good loops to impute the rest, but it does not work if most
or al the loops are bad for a sample time. A method is needed for
addressing this situation.

Single-loop datadiagnosticsisanimportant areaof research. While
loop detectors are the most abundant source of traffic information,
the dataare sometimes bad or missing. The a gorithms presented con-
struct a complete grid of clean datain real time. They simplify the
design of upper-level agorithmsand improvethe accuracy of analysis
based on loop data.
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FIGURE 7 Original and estimated (a) occupancies and (b) flows for a good loop.
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