AMS and DSS concepts in the Connected Corridors Program

Gabriel Gomes
Joe Butler

2013 TRB Simulation Workshop
Analysis, Modeling, and Simulation in Support of Real-Time Operations and Management
January 13, 2013
Enable existing transportation infrastructure and vehicles to work together in a highly coordinated manner

Deliver improved corridor performance (safety and mobility)

Improve accountability

Evolve Caltrans to Real-Time operations and management

Enhance regional, local, and private sector partnerships
• Previous/Ongoing Efforts
 – USDOT ICM Efforts
 – PEMS – California Performance Measurement
 – TOPL – Tools for Operational Planning (Macro Modeling)
 – Mobile Millennium - Big Data fusion with probes
• Concurrent Efforts
 – Organizational Analysis for Corridor Mgmt
 – San Diego and Dallas ICM Implementations
 – Connected Vehicles
• New Research Efforts
 – Machine Learning
 – Corridor Control with highly fused data
 – Demand Mgmt with crowd sourced decisions
 – True Collaborative Commuting – People, Infrastructure and Vehicles
Some key concepts from the FHWA foundational research program

- Components
 - Scenario generator
 - Data generator
 - Network simulator
 - Decision gate
- Phases
 - Monitor
 - Assess system performance
 - Evaluate strategies
- Analysis plan: 4 packages
Freeway-Arterial coordination in CC

- We are taking a proactive, dynamic, simulation-based approach.
- Coordination to us means that,
 a) controllers on each side can access the measurements and calculations of the other side, and
 b) there is a high-level decider.
- Coordination does not mean that we solve a single, monolithic control problem.
- We will focus on four solving/simulating scenarios,
 1. Fwy congestion → suspend the onramp queue override,
 2. Fwy congestion → store more on the arterial,
 3. Art congestion → increase flow to the freeway,
 4. Freeway incident → divert traffic to the arterial.
Scenario #1

Trigger
- The freeway is congested and the onramps are full.
- The queue override prevents ramp metering from being effective.

Action
- Suspend queue override; allow the queue to spill into the streets.

Predict
- Net effect on the system.
Scenario #2

Trigger
- The freeway is congested and the onramps are full.
- The queue override prevents ramp metering from being effective.

Action
- Adjust arterial signals to decrease the flow on critical onramps.

Predict
- Net effect on the system.
Scenario #3

Trigger
- Demand surges on the arterial (e.g. ball game is over).
- Ramp metering is responsive to freeway demand only.

Action
- Increase metering rate to accommodate the surge.

Predict
- Net effect on the system.
Scenario #4

Trigger
- Accident on the freeway.

Action
- Put a message on a freeway CMS.

Predict
- Response to the message, impact on the streets.

Diagram:*
- Accident ahead. Use side streets.
ATDM/DSS flow

1. How to define/measure activating events?
2. What are the actions related to each event?
3. How do we predict the impacts of the actions?
4. What are the criteria for taking action?

- Select action
- Predict impacts
- Perf. assess
- Monitor
- Deploy
Simulation environment

- BeATS : BErkeley Advanced Traffic Simulator.
- BeATS builds upon TOPL’s Aurora Road Network Modeler.
- Based on the Link-Node Cell Transmission Model (LNCTM).

Network parameters:
- Link parameters
 - capacity (*),
 - free-flow speed (*)
 - etc.
- Demand profiles (*),
- Split ratio matrices (*),
- Sensor locations,
- Freeway and arterial control,
- Events (e.g. accidents)

- Simulation start and end time,
- Number of runs.

Predicted performance distributions
Architecture

Database
Raw data feeds:
• PeMS • Weather
• Probes • CHP
• Bluetooth • etc…
Architecture

Fundamental diagram
parameters

Initial condition

Boundary conditions

Data check and filters

Model calibration

Freeway state estimation

Arterial state estimation

Split ratio estimation

Demand prediction

Stochastic Network simulation & Performance prediction

Database
Architecture

Database

Fundamental diagram parameters

Initial condition

Boundary conditions

Data check and filters

Model calibration

Freeway state estimation

Arterial state estimation

Split ratio estimation

Demand prediction

Stochastic Network simulation & Performance prediction

Action plan
Architecture

- Data check and filters
- Model calibration
- Freeway state estimation
- Arterial state estimation
- Split ratio estimation
- Demand prediction
- Stochastic Network simulation & Performance prediction

Action plan

Database

Visualization
System monitoring
Architecture

Monitor & Assess → Plan bank → Decision gate

trigger

Data check and filters → Model calibration → Freeway state estimation → Split ratio estimation → Stochastic Network simulation & Performance prediction

Model calibration → Arterial state estimation

Split ratio estimation → Demand prediction

Stochastic Network simulation & Performance prediction → Action plan

Action plan

Database

Visualization

System monitoring

Simulated world (e.g. microsim)
Summary

• Connected Corridors program
• TOPL’s Aurora → BeATS
• Freeway/arterial coordination with 4 scenarios.
• Critical components,
 • Automatic model calibration,
 • Freeway and arterial state estimation,
 • Split ratio estimation,
 • Demand prediction,
 • Massive simulation,
• Performance distributions.