BERKELEY TRANSPORTATION SYSTEMS, INC.

Visualizing Bus Schedule Adherence and Passenger Oct 2011 Load through Marey Graphs

ITS World Congress

BTS BERKELEY TRANSPORTATION SYSTEMS, INC.

Constructing Marey Graphs

Depicting Passenger Load

transportation business intelligence

For ICM: Bay Tripper Current Technology Research

Raja Sengupta

510 717 0632, sengupta@ce.berkeley.edu

Bay Tripper Research ICM Task: Port from Iphone to Android

Bay Tripper Claim to Fame

Cool client design – Eric Mai

Real-time Transit Routing – Jerry Jariyasunant

Based on NextBus relationship (Jerry)

BayTripper: Client Side Features and Usage

September 28, 2011

Thanks for checking out BayTripper!

We are a couple students from UC Berkeley who created this app to help users in San Francisco get around by finding their way through transit and bike routes. This is part of a research project trying to understand how to get more people to get out of their cars and onto bikes, public transportation, or just walk!

Media

Feedback

Download BayTripper now for FREE!

Our app lets you...

- · Get real-time arrivals for MUNI and BART
- Plan a trip with our Real-time Transit Trip Planner
- · Plan a bike trip with your own personal preferences for safety and hill tolerance (powered by www.bikesy.com)
- Look up schedules for Caltrain, BART, and Bay Area Ferries (Blue and Gold Fleet, Golden Gate Ferry, Alameda Harbor Bay Ferry) to Sausalito, Larkspur, Alameda, Oakland, Vallejo, and more
- Look up local transit maps from Muni, BART and Caltrain
- Call a taxi from a list of popular cab companies in San Francisco

The transit trip planner uses real-time data provided by NextBus, which takes into consideration the actual location of buses, delays and tries to help users avoid missed transfers. At this time, users can only plan trips within San Francisco (including Treasure Island).

Follow us on Twitter for updates on BayTripper!

Usage Statistics

Week

BayTripper Weekly Active Users

Active Users represent 11.3% of total downloads.

"Users stop using the average applications quickly. Long term audiences are generally 1% of total downloads" - Pinch

Media <u>http://www.techcrunch.com/2009/02/19/pinch-media-data-</u>shows-the-average-shelf-life-of-an-iphone-app-is-less-than-30-days

BayTripper Weekly Sessions

Usage Statistics

UCB Mode Choice Research Group

(systems.berkeley.edu/jerry/ModeChoiceWebsite) -

BayTripper Features

UCB Mode Choice Research Group

¥

Free App

Category: Navigation Updated: Mar 23, 2011 Version: 2.43 iOS 4.0 Tested Size: 4.8 MB Language: English Seller: Jerald Jariyasunant © 2009 UC Berkeley

Rated 4+

Requirements: Compatible with iPhone, iPod touch, and iPad. Requires iOS 3.0 or later

(systems.berkeley.edu/jerry/ModeChoiceWebsite) -

Description

BayTripper is an easy and fun way to get around the whole Bay Area on bike and also tap into real-time routing information for San Francisco, California on BART and MUNI.

Civil Systems @ UC Berkeley Web Site > BayTripper Support > Application License Agreement >

What's New in Version 2.43

Fixed the favorites problem: you can favorite SF Muni stops again.

iPhone Screenshots

UCB Mode Choice Research Group

...More

BayTripper Demo

BayTripper Reviews

"Thanks for the fix with that MUNI bug! Awesome app, I use this everyday and sometimes to plan long bike rides on the go." shuffleman "Hey this app is the beat sf app hands down! It's got everything you need and a map!" - klok99ah "Loveeeee it. Just let me rearrange my faves. A+" Pont0005

UCB Mode Choice Research Group

(systems.berkeley.edu/jerry/ModeChoiceWebsite)

Bay Tripper: Server Side

Real-time Transit Routing – Jerry Jariyasunant

Based on NextBus relationship (Jerry)

Real-time Routing: Challenges

High dimension Routing Problem

Bus data provider web API limits data per request

Cannot ask for database dump

Serve the customer within 2-3 seconds (R. Jain, T. Raleigh, C. Graff, and M. Bereschinsky,

"Mobile internet access and qos guarantees using mobile ip and rsvp with location registers," IEEE Int. Conf. Commun., vol. 3, pp. 1690–1695, 1998.

T. Erl, Ed., Service-oriented architecture (SOA): concepts, technology, and design. Prentice Hall, 2005

Solution: Querying NextBus per customer query

Complexity of real-time transit routing 1

Technical Approach: Real-time routing for transit

Map user O-D to set of networks OD's

For each network OD pre-compile a list of routes

Based on GTFS specification and schedule (off-line)

Hundreds to thousands of routes for each O-D

Real-time Query NextBus for data for each list

Reduces hundreds of routes to 10's of stops

Pick the minimum off each list and return to client

Similar to: H. Bast, S. Funke, P. Sanders, and D. Schultes, "Fast routing in road networks with transit nodes," Science, vol. 316(5824):566, 2007. Geisberger, R. Sanders, P. Schultes, D. and Delling, D., "Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks",: Experimental Algorithms, Lecture Notes in Computer Science(2008) 319-333

Complexity of real-time transit routing 2

Server Tools

- Behind the scenes of BayTripper: Routing Algorithms
- Custom Tools to import any transit agency (GTFS) into our system and run a real-time transit trip planner (If they use NextBus). Currently hold data on 77 agencies nationwide.
- Use Graphserver, an open-source multi-modal trip planner to do custom biking directions for personalized hill tolerance and safety level
- Recently ran 10,000 simulations per agency to test robustness
- Walking/Driving directions next

San Francisco MTA with 87 routes

Bay Area AC Transit with 73 routes Lafayett Orinda 24) Moraga Town Emen < Oakl .nd Oakland/US Nava. Supply Center Alameda/US-Nava Air Station 280 Metrop United States Navy Reservation (112) tropolita Oakla 1 mile Metropolita

Current Technology Development Research

2

Behavior Change Technology

Past: Safer Driving

Networked Traveler – Slow Traffic Ahead

Changing Mode Choice Behavior

JCTC, Caltrans

Shopping Behavior

CITRIS Seed

Mode Choice Behavior

The Quantified Traveler Visualizing GPS Data but for the traveler

Raja Sengupta CEE: Systems, UC Berkeley

Civil and Environmental Engineering

University of California at Berkeley

Nudging Behavior Quantified Self

- Applications that
 - Record behavior
 - Process data
 - Feed it back
- Goals
 - Better understand patterns
 - Adapt behavior more intelligently
- Examples
 - Fitness
 - Mood
 - Sleep
 - Spending habits

Our Quantified Traveler System

1997 - 1997

Quantified Traveler

Smartphone tracking

Trip determination

Website feedback

Social **Comparisons**

Missing a trip? Add it here.	Origin Address	Destination Address	Mode	Start Time	Duration (min)	Miles
September 2011	1304-1306 Solano Ave, Albany, CA 94706, USA	A 2100-2148 Hearst Ave, Berkeley, CA 94704, USA	Bus	08:52 AM	10	2.3
Su Mo Tu We Th Fr Sa	1797 Shattuck Ave, Berkeley, CA 94709, USA	2451-2483 Hearst Ave, Berkeley, CA 94709, USA	Walk	09:04 AM	7	0.5
4 5 6 7 8 9 10 11 12 13 14 15 16 17	2451-2483 Hearst Ave, Berkeley, CA 94709, USA	1810 Shattuck Ave, Berkeley, CA 94709, USA	Walk	12:29 PM	20	0.5
18 19 20 21 22 23 24	1810 Shattuck Ave, Berkeley, CA 94709, USA	Haviland Rd, Berkeley, CA 94709, USA	Walk	01:00 PM	33	0.6
25 26 27 28 29 30	Haviland Rd, Berkeley, CA 94709, USA	S Hall Rd, Berkeley, CA 94720, USA	Walk	01:50 PM	11	0.4
9 trips recorded for September 23, 2011.	Frank Schlessinger Way, Berkeley CA 94709, USA	, 1820-1834 Euclid Ave, Berkeley, CA 94709, USA	Walk	03:15 PM	8	0.4
	1820-1834 Euclid Ave, Berkeley, CA 94709, USA	2091-2099 Addison St, Berkeley, CA 94704, USA	Walk	05:28 PM	19	0.7
	2091-2099 Addison St, Berkeley, CA 94704, USA	1810 Shattuck Ave, Berkeley, CA 94709, USA	Walk	06:07 PM	20	0.2
	1810 Shattuck Ave, Berkeley, CA 94709, USA	831-835 Stannage Ave, Albany, CA 94706, USA	Walk	06:58 PM	62	2.5

Quantified Traveler

Quantified Traveler

Quantified Traveler: Social Comparisons

July Field Test: Procedure

- Participant group: 28 young professionals
- Duration: 2 weeks of self-tracking
 - First 5 days: No feedback.
 - 5th day: Users receive feedback website link information on environmental, health, financial and time footprint of travel behavior.
 - Day 6 to 14: Regular updates by e-mail.
- Survey administered before and after experiment Questions on:
 - awareness of impacts of transportation behavior
 - attitudes toward sustainable travel behavior

Travel Patterns of 25 Subjects

Figure 3: Mode split by number of trips made (Drive: 30.34%, Walk: 43.65%, Bike: 13.50%, Bus: 4.63%, Train: 7.49%, Light Rail: 0.39%)

Figure 4: By total travel time (Drive: 45.11%, Walk: 24.63%, Bike: 10.49%, Bus: 11.39%, Train: 8.12%, Light Rail: 0.25%)

Sample Survey Questions

Category	Sample Question
Awareness	I know how much CO_2 I emit from my daily transportation.
Self-Efficacy	I can get exercise when traveling.
Perceived Norms	My friends actually engage in sustainable transportation
	behavior (carpooling/biking/walking/taking public transit)
Setting Goals	I would consider setting a goal to reduce my carbon footprint.
Attitudes on Sustainable Behavior	I value the benefits to society when I take sustainable modes of
	transportation.

Table 2: Sample questions given to participants at the beginning and end of the study

Survey Results

	Mean (before)	Mean (after)	Standard Deviation (before)	Standard Deviation (after)	t-statistic	p-value
Awareness	2.91	3.75	0.22	0.27	2.8210	0.0106
Perceived norms	5.64	5.60	1.17	0.98	0.2483	0.8065
Setting goals	4.14	4.36	0.90	1.05	1.0141	0.2060
Attitudes toward	5.12	5.38	1.18	0.95	2.2326	0.0372
sustainable behavior						

Table 3: Comparison of participants' survey answers before and after tracking and feedback

Results

- 1016 trips logged during the 2 weeks (approx. 2.9 per day and person)
- All users visited website at least once; good user feedback on website
- Survey results:
 - All awareness questions (environment, health, money, time) showed positive change; environmental awareness was strongest.
 - E.g., "I know how much CO2 I emit from transportation"
 - Statistically significant positive changes attitudinal questions on sustainable transportation
 - E.g., "We should raise the price of gasoline to reduce congestion and air pollution
 - Positive correlation between car use and attitudes toward sustainable travel

Evaluations to Date

- 45,000+ miles of travel collected
- 10 Students in DeCal class
- 25 Subjects in July Experiment
- 25 BetaTesters recruited by <u>MileSense</u>

Quantified Traveler: Under the hood

- July Field Test System
 - 1 Hz GPS data
 - 25% battery drain per hour (Nexus One)
 - Iphone- 7% (moving, 3% not moving)
 - Not deployable at scale
 - Mode Determination Excellent
- Can we bring energy consumption down to make it deployable at scale while maintaining accuracy of trip determination, mode determination, GHG estimates,
 - October design now being evaluated

The Mode Determination Problem

Computer science community's definition

 Instant mode determination: identify the transportation mode used <u>at each time instant</u> (as walking, biking, driving etc.)

Transportation community needs

 Trip mode determination: identify the main transportation mode used (as walk, bike, shared ride, walk-transit etc.)

Eighteen modes defined for the Bay Area*

 Activity-based travel model specifications: Coordinated travel - regional activity based modeling platform (ct-ramp) for the San Francisco Bay Area

Identifying the Trip Mode (HMM)

Mapmatching

July 2011: Playing with Sampling Rates

Results – detecting trips

(a)	Confusion Ma	atrix before Map	Matching (%)	}
		Predic	rted	
Actual	Auto-trip	Transit-trip	Bike-trip	Walk-trip
Drive-trip	77.0	20.2	0.1	2.7
Transit-trip	44.0	56.0	0	0
Bike-trip	0	0	97.5	2.5
Walk-trip	0	3.9	3.0	93.1
(b) Confusion M	latrix after Map	Matching (%)	
		Predic	rted	
Actual	Auto-trip	Transit-trip	Bike-trip	Walk-trip
Auto-trip	85.9	11.3	0.1	2.7
Transit-trip	0	100	0	0
Bike-trip	0	0	97.5	2.5
Walk-trip	3.9	0	3.0	93.1

Accl 5 Hz, GPS 1 min

Current Solutions: Energy

Trip Explorer

0		- 34	dy 20	ii		0
54	Мо	$T_{\rm M}$	We	${\rm Tr}_{\rm T}$	Pr-	2α
					194	2
	124	1.5	1	127		1
- 20	- 11	: 32	1.13	144	3.6	1.36
17	1.6	15	20	-21	22	23
24	25	- 25	27	120	619	110

Cele	r Origin Address	Destination Address	Mode	Start Time	Duration (min) Notes	
	Mission Bay, San Francisco	South Beach, San Francisco	🥜 Light Pail	0914 AM	16	
	Downtown, San Francisco	Tenderloin, San Francisco	Walk	05:47 PM	6	
	Downtown, San Erancisco	Mission Bay, San Francisco	Bus	10:29 PM	30	

Battery Depletion – Quick and Dirty Calculations

- Looking at 44298 50-second increments (4908 of which were in transit modes) one can ascertain delation rates in an unsophsticated but reasuring manner
- All data has been filtered of screen, phone call, SMS usage and charging periods

	Observed (per hour)	Esimated depletion per hour	Std Error
Not Transit Modes	-2.37%	-0.45%	0.04%
Transit Modes	-5.48%	-4.57%	0.27%

~25% per day if one's commute is 2 hours

The Price of Battery Efficiency: Sparsity of data

Load Traces

S	how	on	ly	cus	sto	m	ers	5

User	dvizzini	\$
Start Time	09/18/2011	00:00
Trip length (mins):	1440	
Accuracy (meters):	99999	
Highlight Accuracy?	Θ	
Load Traces		
Loaded 371 traces		
Hide raw data		
Hide vis data		
Hide state machine	data	

Download data

Download labeled data

Click to download labeled data for the selected time period.

The Price of Battery Efficiency: Hotspots

July Solution: Mode Determination

- Combination of accelerometer features and GPS speed
 - Examples of accelerometer features:
 - Sum of features centered around 1 Hz
 - Normalized variance
 - Spectrum peak value and frequency
 - 1,2,3 hz power
- Map Matching
 - Source Data: GTFS (Google Transit Feed Specification)
 - Buses: look at stop sequences (and locations of bus stops)
 - Trains: look at shape files for track locations

Trip & Mode Determination: Accuracy

- How many people in Quantified Traveler
 6 people
- How much time being spent on correction?
 - Mike and John 1 minute a day/person
 - Stasa and Adam 10 minutes a day/person
 - No accelerometer in background
 - No routes for the Google Shuttle
 - BART underground system problem
 - Jerry 20 seconds per person per day (drivers)
 - 4 months, 25 people

Collaborators

- Adam Bemo
- Andre Carrel
- Venky Ekambaram
- DJ Gaker
- John Gunnison
- Jerry Jariyasunant
- Mike Nole
- Siddika Partak
- Daniel Vizzini

Professor Joan
Walker

Engineering Challenges

Motivation

- NetDiary instead of Travel Diary
 - Can smartPhones improve travel demand surveys?
- Education and Awareness
 - How sustainable am I? What are my alternatives?

Persuasion

- Change mode-choice for sustainable travel
- Travel feedback programs
- People persuade people. Can computational systems persuade people?