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Abstract—A vehicle re-identification method based on match-
ing vehicle signatures obtained from wireless magnetic sensors
was studied on a single lane loop on-ramp. Different modifications
were implemented in the algorithm in order to address limitations
of the system when vehicles stop/move slowly over the detectors.
The original and modified vehicle re-identification algorithm
results were compared against ground truth data obtained from
video. Based on the ground truth data it was possible to determine
the percentage of vehicles that are re-identified and the number
of those vehicles that are misidentified as a function of different
algorithm parameters. For this analysis, vehicles were divided
into two subsets: i) uncongested and ii) congested. The original
method mismatched percentage was around or below 15% for
the uncongested vehicle subset and between 20% to 60% for
the congested one. With the modified method it was possible
to improve the matching rate as well as the accuracy of the
matching algorithm. For the uncongested subset, the modified
method showed a higher vehicle re-identification rate while
maintaining the mismatched percentage around or below 8%.
The main improvement over the original method was achieved
on the congested vehicle subset, since the number of re-identified
vehicles was increased over the original method while keeping
the mismatched percentage around or below 14%.

Keywords: Vehicle Re-Identification; Magnetic Sensors; Signal
Matching

I. INTRODUCTION

The work presented in this paper was motivated by the

results obtained from a queue estimation field test performed

at the Hegenberger Rd. loop on-ramp in the Caltrans Bay

Area District, described in [1]. Four different queue estimation

methods were studied, including one that is based on a vehicle

re-identification algorithm, presented in [2].

The queue estimation method based on the vehicle re-

identification algorithm currently used by Sensys Networks,

Inc. performed better than the other three methods, but it sig-

nificantly under-performed in estimating queue lengths during

congested on-ramp conditions. This was due to the fact that the

number of re-identified vehicles was very low when vehicles

were stoping and moving at low speeds as they were going

over the detectors.

Vehicle re-identification by matching electromagnetic sig-

natures captured from inductive or magnetic sensors appears

as one of the most efficient and cost-effective methods to re-

identify vehicles without raising privacy concerns associated

with vehicle tracking [3]. However, electromagnetic signature

methods tend to be unreliable under congested conditions,

when stop and go traffic is present. Vehicle re-identification

methods based on loop detectors, like the one described in [4],

are not only sensitive to speed changes in between vehicle

detection stations, but also to changes in velocity as the

vehicles go over the detectors. Even when speed normalization

is decoupled from the matching algorithm, as in [3], the

algorithms still rely on the assumption that vehicles go over

the detectors at constant speed. This assumption is unrealistic

for implementations in arterial streets, congested freeways, and

on-ramps where stop-and-go traffic is unavoidable. The vehicle

re-identification method discussed in this paper does not rely

on the constant speed assumption and does not require vehicle

speed. However, the poor performance of the vehicle matching

algorithm in the queue estimation study called for an algorithm

revision, improvement and performance analysis.

The paper is organized as follows: the vehicle re-

identification method is summarized in Section II. The test site

is described in Section III. The ground truth (GT) and vehicle

detection system (VDS) data are explained in Section IV. The

revision details are presented in Section V. Section VI dis-

cusses the modifications. Section VII contains the performance

analysis of the original and modified vehicle re-identification

method. Conclusions are collected in Section VIII.

II. VEHICLE RE-IDENTIFICATION METHOD

The vehicle re-identification method summarized in this

section is described in [2].

A. Vehicle Magnetic Signature

The magnetic vehicle signature consists of a collection of

peak value sequences (local maxima and minima) extracted

from the ’raw’ magnetic signals measured by an array of sen-

sors. Each sensor has a three-axis magnetometer that measures

the x, y and z directions of the earth’s magnetic field as a

vehicle goes over it. Each extracted peak is paired with a

local time stamp, which can be used to determine relative

separation among peaks generated from the same sensor. Each

sensor generates three peak sequences extracted from the

x, y and z component signals, which constitute a signature
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signature. Figure 4 (a) shows two slices of a vehicle’s signature

measured at the entrance and at the exit arrays plotted using the

local time stamp component and the peak amplitudes before

any processing.

The vehicle re-identification algorithm takes two signatures,

Xi = (X1, · · · ,X7) and Yj = (Y 1, · · · ,Y 7) where (Xq,Y r) are

slices, and computes a distance (a measure of dissimilarity)

between each pair of slices componentwise. The distance

δ (Xi,Yj) is defined as the minimum of the distances between

all pairs of slices (Xq,Y r). This method uses a dynamic time

warping approach to calculate the distance between signatures.

B. Vehicle Re-Identification Algorithm Summary

The vehicle re-identification is done in two steps:
1) Signal Processing Step: In this step, each pair (Xi,Yj)

of entrance and exit vehicle signatures is compared to produce

a distance d(i, j) = δ (Xi,Yj) ≥ 0 between them. The smaller

δ (Xi,Yj) the more likely it is that Xi,Yj are signatures of the

same vehicle. This step reduces the two signature arrays X =
{Xi, i = 1, · · · ,N} and Y = {Yj, j = 1, · · · ,M} to the N ×M

distance matrix D = {d(i, j) | 1 ≤ i ≤ N,1 ≤ j ≤ M}.
2) Matching Step: In the second step a matching function

assigns to each distance matrix D a matching µ : {1, . . . ,N}→
{1, . . . ,M,τ},with the following interpretation: µ(i) = j means

that the upstream vehicle i is declared to match (be the same

as) downstream vehicle j; µ(i) = τ means i is declared not to

match any downstream vehicle.

It is assumed that the distance matrix D is characterized

by two probability density functions (pdf), f and g: f is the

pdf of the distance δ (Xv,Yv) between the signatures at the

entrance and exit sensor arrays of the same randomly selected

vehicle v, and g is the pdf of the distance δ (Xv,Yw) between

two different randomly selected vehicles v 6= w. The f and g

pdfs are assumed Gaussian and their statistics, the mean µ and

the standard deviation σ , are part of the algorithm parameters

that must be determine beforehand.

The Probability of Turn (β ) is another matching algorithm

parameter. In an arterial implementation, β can be defined

as the percentage of vehicles that went through the upstream

array but turned before reaching the downstream array, and it

can be determined from field observations or experience. But

another consideration may govern the choice of β . The larger

β is, the more stringent is the requirement of a match, and the

lower is the probability of an incorrect match.

III. TEST SITE

The Hegenberger on-ramp is a suitable location to analyze

the vehicle re-identification method. It is a single lane ramp,

which allows for the testing of the algorithm without having

to take into account multiple lanes on-ramp dynamics.

The vehicle detection system deployed at the Hegenberger

on-ramp for this study was developed by Sensys Networks,

Inc. This system consists of an Access Point (AP240-ESG),

a repeater (RP240-B), and 14 wireless magnetic sensors

(VDS240) installed as shown in Figure 1 (b) and (c). See

[5] for details on this vehicle detection system.

Fig. 1. (a) Hegenberger on-ramp entrance and exit. (b) Entrance Vehicle
Re-Id Array. (c) Exit Vehicle Re-Id Array.

Fig. 2. (a) Camera recording vehicles leaving the on-ramp. (b) Camera
recording vehicles entering the on-ramp. (c) Camera to capture any incident
occurring at the test site.

IV. DATA

A. Ground Truth Data

Ground truth data was obtained from videos recorded on

May 11, 2010 from 4:07 pm to 5:35 pm.

Three independent cameras were used to obtain the ground

truth data (see Figure 2). From the second camera (Figure

2 (b)) it was possible to obtain the time sGTk
when each

entering vehicle k crossed the entrance array, where sGT1
<

sGT2
< · · · sGTNGT

. From the first camera (Figure 2 (a)) it was

possible to get the time tGTl
when each exiting vehicle l went

through the exit array, where tGT1
< tGT2

< · · · tGTMGT
. The GT

data consists of two vectors {sGTk
,k = 1, · · · ,NGT = 543} and

{tGTl
, l = 1, · · · ,MGT = 534}. The GT matching of upstream

to downstream vehicles k → l was done visually and resulted

in 534 matches.

B. Vehicle Detection System Data

Consider the link formed by the entrance and exit arrays

shown in Figure 1. During the video recording time interval,

detection events indexed i = 1, · · · ,N were registered by the

entrance array at times s1 < s2 < · · · sN . Detection events



indexed j = 1, · · · ,M were registered by the exit array at times

t1 < t2 < · · · tM . The upstream sensor measures a signature

Xi each time there is a vehicle detection event i and the

corresponding time si. The downstream sensor measures a

signature Yj each time there is detection event j and the

corresponding time t j. For this study, the vehicle detection

system data consists of two arrays {(si,Xi), i= 1, · · · ,N = 522}
and {(t j,Yj), j = 1, · · · ,M = 527}. Note that due to the nature

of the vehicle detection system, detection errors cannot be

avoided and may create multiple signatures of the same vehicle

at one location or may result on missing signatures due to

undetected vehicles at the entrance and/or exit array [1].

To be able to determine the number of vehicles that are

correctly matched by the algorithm and the percentage of those

vehicles that are mismatched, mappings of the form k → i and

k → l → j were obtained. With them it is possible to determine

if a signature (Xi,Yj) corresponds to the same vehicle or to

different vehicles.

C. Vehicle Subsets

During the video recording period, the ramp presented two

traffic modes: uncongested and congested. For this analysis,

uncongested conditions correspond to the time interval from

4:07 pm to 5:07 pm, when the on-ramp queue was below

on-ramp capacity and vehicles with index k for 1 ≤ k ≤ 399

went through the on-ramp. The uncongested vehicle subset

is constituted by these vehicles. The congested conditions

time interval occurs from 5:07 pm to 5:35 pm, when the

queue length was around or beyond on-ramp capacity, vehicles

were stopping or going slowly over the entrance array, and

vehicles with entering vehicle index k for 400≤ k ≤ 534 went

through the ramp. The congested vehicle subset is composed

of these vehicles. Based on the vehicle detection system data,

it is possible to achieve a maximum correct matching of 477

vehicles assuming a perfect matching algorithm, where 362

vehicles correspond to the uncongested vehicle subset and 115

to the congested one.

D. 23 Chosen Vehicles

In order to be able to analyze the vehicle re-identification

algorithm in detail, 23 vehicles were chosen from the 543 that

entered the ramp, as shown in Table I. The selection criteria

was that their entrance and exiting signatures were available

and unique and that they were traveling through the middle of

the lane when going over the arrays.

V. VEHICLE RE-ID METHOD REVISION

A. Signal Processing Step Revision

The plots on Figure 3 are gray scale coding of the distance

matrix of the 23 chosen vehicles signatures (left) and the dis-

tance matrix of the complete vehicle signatures data set (right)

calculated using the original signal processing algorithm. Each

square in the plots represents a distance between a Xi and Yj

vehicle signature combination; a darker color indicates shorter

distance and a greater chance that Xi and Yj come from the

same vehicle. The gray scale used in Figure 3 and Figure 5
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Fig. 3. Original Distance Matrix from entrance to exit array for the (left)
23 Chosen Vehicles (right) Complete Vehicle Data Set

goes from min(D) to .75median(D), where D represents the

distance matrix being plotted.

Figure 3 (left) shows multiple dark squares along the diag-

onal, where diagonal entries correspond to distances between

signatures of the same vehicle. The distance value of the

diagonal entries are listed in Table I. Note that the diagonal

entries corresponding to the congested vehicle subset are not

as dark (i.e. small) as the uncongested ones. It seems that

phenomena occurring specifically during congestion affect the

f and g probability density functions (pdf). This is further

corroborated by the plot of the distance matrix for the complete

data set, shown on Figure 3 (right). For the uncongested

vehicle subset, a diagonal line is present and is consistently

darker and visually distinguishable from the off-diagonal D

entries. However, dark diagonal entries vanish at the lower

right portion of the plot, where the distances between vehicles

signatures from the congested vehicle subset are plotted.

The original signal processing algorithm produces different

f and g pdfs for different on-ramp modes. The f and g pdfs

become similar during on-ramp congested conditions, which

reduces the effectiveness of the matching algorithm. The signal

processing method should be able to maintain the f and g pdfs

invariant to traffic conditions.

Uncongested Conditions Congested Conditions

Index Veh. Org. Mod. Index Veh Org. Mod.
k Type Dist. Dist. k Type Dist. Dist.

76 minivan .25 .23 449 car .50 .41
135 truck .28 .23 459 SUV .30 .35
140 truck .20 .18 471 pickup .42 .24
187 pickup .29 .24 472 car .28 .16
194 truck .71 .70 490 SUV .40 .38
222 car .15 .18 492 car .33 .29
236 minivan .24 .14 516 car .34 .35
259 SUV .30 .30 517 car .36 .25
282 pickup .45 .32 519 car .35 .18
305 car .46 .28 527 car .53 .15
380 car .29 .25
393 SUV .48 .48
419 van .38 .29

TABLE I
23 CHOSEN VEHICLES.
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Fig. 4. Vehicle k = 527 two sensor signature slice at the entrance and exit
arrays (a) Raw peak values (b) Processed for distance calculation (Original
Method) (c) Processed for distance calculation (Modified Method)

B. Vehicle Signatures Revision

Entrance and exit signatures of the 23 chosen vehicles were

studied in order to explain the different f and g pdfs observed

for the uncongested and congested vehicle subsets.

Figure 4 (b) shows two slices of the entrance and exit

signatures of vehicle k = 527. Note that the upstream slices

show more peaks than the downstream ones. Vehicle 527 went

slowly over the entrance array and at free flow speed over

the exit array. The extra peak phenomenon was observed in

the signatures of vehicles going slowly or stopping over the

entrance arrays. During congestion, vehicle signatures tend to

have more noisy peaks, most of which are small compared to

the dominant peaks of the signatures. A vehicle signature with

noisy peaks leads to a larger µ f and σ f , since the difference

on the number of peaks is penalized in the distance calculation

independently of their magnitude.

Another finding was related to the importance of the x, y

and z component of a vehicle signature slice when calculating

distances. The original distance method assigned the same

weight to the distance obtained between the x, y, and z com-

ponents when calculating distances between signature slices.

By changing this weights, it was observed that it is possible

to increase the dissimilarity between the f and g pdfs during

congestion.

Sometimes signature slice components (x,y and z) of dif-

ferent vehicles look very similar after the peak sequences

have been normalized by the maximum absolute value of

their elements as a preprocessing step before the distance

calculation is performed. The distance between such slices is

small and may leads to significant errors in the matching step.

It was observed that when the raw amplitude of the peaks is

considered in the distance calculation between such signatures,

the distance increases for signatures from different vehicles

and remains unchanged for signatures from the same vehicle.

Default 23 Veh. Iterative

Both Org Mod Org Mod

µ f .125 .36 .27 .30 .28
σ f .058 .12 .09 .09 .08
µg .67 .54 .60 .56 .62
σg .23 .11 .17 .13 .16

TABLE II
DIFFERENT f AND g STATISTICS FOR THE ORIGINAL AND MODIFIED

SIGNAL PROCESSING METHOD

C. Matching Step Revision

The matching algorithm was studied using the 23 chosen

vehicles. It was concluded the match rate and accuracy are

directly related to µ f , σ f , µg, σg and β . Furthermore, it

was observed that one of the reasons that explain the low

matching rate during the queue estimation study, even during

uncongested on-ramp conditions, was directly related to the f

and g parameters used at the Hegenberger on-ramp. The f and

g statistics used at the ramp where assumed to be equal to the

ones satisfactorily used at many arterial installation sites (see

Table II, second column). This assumption was incorrect, since

f and g statistics based on the 23 chosen vehicles distance

matrix (see Table II), show that the default f and g statistics

do not model accurately the signature distances at the on-ramp.

It is important to calculate f and g parameters for each test

site, since they are site dependent and influence the matching

rate. These parameters can be obtained using an iterative

method as the one suggested in [2], which does not require GT.

Note that the iteratively obtained f and g parameter extracted

from the complete vehicle data set are very similar to the ones

extracted from the 23 chosen vehicles for both the modified

and the original signal processing method, and very different

to the default values.

VI. VEHICLE RE-ID METHOD MODIFICATIONS

A. Signal Processing Algorithm Modification

The following modifications were implemented in the orig-

inal signal processing algorithm:

i) There were adjustments in the way vectors of different

sizes are compared using dynamic time warping. This included

modifying the way in which extra peaks are penalized when

vectors being compared are of different sizes. ii) A peak

processing step was implemented before the distance calcu-

lation in order to remove noisy peaks resulting from vehicles

traveling slowly or stopping on top of the arrays. This step uses

the local time stamp component available for each signature

peak described in Section II. See Figure 4 for a comparison

between the preprocessed signature slices for the original and

the modified method. iii) Different weights were assigned to

the x, y and z components of the distance between two vehicle

slices. The x component was assigned the larger weight and

the y component the smaller one. iv) The distance calculation

is performed without normalizing the peak sequences. Once a

distance is obtained between the components of two signature

slices, a normalization step is performed.



B. Signal Processing Improvements

The plot on Figure 5 (left) is a gray scale coding of the

distance matrix of the 23 chosen vehicles signatures using the

modified signal processing algorithm. Note that in contrast

to Figure 3 (left), dark squares are present along the entire

diagonal, thus suggesting that f and g statistics are somehow

invariant to on-ramp traffic conditions. In Figure 5 (right),

where the distance matrix of the complete data set calculated

using the modified distance method is plotted, it is possible to

see a darker diagonal band at the bottom right corner of the

plot. This diagonal band corresponds to distances generated

from the same vehicle belonging to the congested vehicle

subset. This distinction between diagonal and off-diagonal

entries was not present in the original distance matrix shown

in Figure 3 (right), which helps explain why the matching rate

was specially low during congestion.

From Table I it is possible to see that the modified distance

among signatures from the same vehicle, δ (Xk,Yk), are similar

for the uncongested and congested vehicle subsets. Figure 6

shows for each of the 23 chosen vehicles, k, Dk = {d(k, l) =
δ (Xk,Yl) | 1 ≤ l ≤ 23}. For each Dk, the data points given by

δ (Xk,Yl) for l 6= k are plotted as black dots while the δ (Xk,Yk)
distance is plotted as a blue circle. The top plot contains the

distances obtained using the original method. This plot shows

that for vehicles from the congested vehicle set, δ (Xk,Yk) is

generally not the smallest entry of Dk, which is undesired

and affects the performance of the matching algorithm. With

the modified signal processing method, as displayed in Figure

6 (bottom), the δ (Xk,Yk) data point, represented by a blue

circle, is generally the lowest element of Dk for vehicles

belonging to both uncongested and congested vehicle subsets.

This improves the matching algorithm accuracy.

Finally, after comparing the f and g pdfs for the original

and modified method, listed in Table II, it is clear that the

modified distance method f and g statistics will benefit the

matching algorithm performance due to the larger difference

between µ f and µg and the smaller values of σ f and σg.

C. Matching Algorithm Modification

The matching algorithm was not modified. However, it was

observed that the f and g statistics as well as β play an
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23 Chosen Vehicles (right) Complete Vehicle Data Set
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important role in the number of matched vehicles and the

percentage of mismatched vehicles produced by the algorithm.

VII. VEHICLE RE-ID RESULTS

A. Default vs Iterative µ f , σ f , µg, σg Results

In this section, two different sets of µ f , σ f , µg, σg were used

to study the effect of f and g pdfs variations on the matching

algorithm performance for the original and the modified signal

processing methods. The default and the iteratively obtained

set of parameters, listed in Table II, were used.

Table III shows the results obtained with the matching

algorithm for the complete vehicle data set, the uncongested

vehicle subset and the congested vehicle subset. The modified

method has a higher number of re-identified vehicles in com-

parison to the original method for both set of parameters. The

number of matches over the original method results increased

by 56% for the default case and by 13 % for the iterative one.

The increase in vehicle matches did not result in an increase

of the percentage of incorrectly matched vehicles. For the

original method 23 % of vehicles were incorrectly matched

when using the default parameters and 16 % when using

the iterative parameters. For the modified method, from 166

matched vehicles obtained using the default parameters, 7%

were incorrectly matched, while 7 % out of 368 vehicles were

Default Iterative

Org Mod Org Mod

Matched(total) 106 166 325 368
Incorrectly M. 24 11 53 24

Matched(uncong) 90 139 257 279
Incorrectly M. 14 8 32 14

Matched(cong) 16 27 68 89
Incorrectly M. 10 3 21 10

TABLE III
MATCHING RESULTS USING THE DEFAULT AND ITERATIVE f AND g

STATISTICS USING THE MODIFIED AND ORIGINAL METHOD
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Fig. 7. (left) Matched Veh. as a function of β (middle) % of Uncongested
Mismatched Veh. as a function of β (right) % of Congested Mismatched Veh.
as a function of β

misidentified using the iterative values. The modified distance

method seems to increase the matching rate in comparison

with the original distance method while keeping the percentage

of incorrect matches low and constant for significant µ f , σ f ,

µg, σg variations. Note that the use of f and g statistics that

properly model the distance between signatures (e.g. iteratively

obtained parameters), makes a significant difference in the

number of matched vehicle but does not impact the accuracy

of the matches.

When the results of the matching algorithm are analyzed by

vehicle subset, further differences were encountered. First, the

percentage of mismatched vehicles is larger for the congested

vehicle subset in comparison to the uncongested one, for

the original and the modified signal processing methods. The

percentage of incorrectly matched vehicles changes from 15%

to 62.5% when using default parameter values and the original

method. This value changes from 12% mismatched percent-

age to 31% when the iterative parameters are used instead.

The modified distance method also shows differences in the

accuracy obtained for the uncongested and congested vehicle

subset results. The percentage of incorrect matches changes

from 6% to 11% when using the default parameters. This

number changes to 5% incorrect matches for the uncongested

vehicles subset and 11 % for the congested subset when using

the iterative parameters. The decrease in performance of the

matching algorithm during congestion is observed for both the

original and the modified signal processing method. Note that

the original method accuracy is highly dependent on the values

of µ f , σ f , µg, σg while the accuracy of the modified method

seems to remain unchanged.

B. Iterative µ f , σ f , µg, σg with varying β Results

The matching algorithm results presented in this section

were obtained using the iteratively obtained µ f , σ f , µg, σg

parameters and using both the original and the modified

vehicle re-identification method as β was varied.

From Figure 7 (left) it is observed that the modified method

has higher matching rate for all β values considered for this

analysis for the complete vehicle data set, the uncongested

vehicle subset and the congested vehicle subset. Figure 7

(middle) shows the percentage of incorrectly matched vehicles

for the uncongested vehicle subset as function of β . Note

that both methods have a mismatch percentage that remains

somehow constant as β is varied. However, an advantage of the

modified distance method is that the percentage of incorrect

matches is around or below 8% , in comparison to the 15%

obtained with the original method. Figure 7 (right) shows the

percentage of incorrectly matched vehicles for the congested

vehicle subset. The percentage of incorrect matches are larger

for all β for the original and modified methods in comparison

to the uncongested results. Observe that while the original

method mismatch percentage increases from 20% at low β
values to 60% for large ones, the modified distance method

percentage of incorrectly matched vehicles remains around or

below 14% for all β values.

The original algorithm matching rate and accuracy is af-

fected by β variations. The modified distance method match-

ing rate is affected by changes in β , but the accuracy of the

matches seems to remain constant.

VIII. CONCLUSION

The vehicle re-identification method based on matching

vehicle magnetic signatures obtained with wireless magnetic

sensors was studied on a single lane on-ramp. Based on

this study, different modifications were implemented in the

algorithm in order to address limitations of the system when

vehicles travel slowly or stop while going over the detectors.

The original and modified vehicle re-identification algorithm

results were compared against ground truth data obtained from

video. Based on the ground truth data it was possible to de-

termine the percentage of vehicles that were re-identified and

the number of vehicles that were misidentified as a function of

different algorithm parameters. The modified distance method

resulted in an increase in the number of re-identified vehicles

over the original system while keeping an overall incorrectly

matched vehicle percentage below 10% when matching algo-

rithm parameters like µ f , σ f , µg, σg, and β were varied. The

best performance was observe during uncongested on-ramp

conditions, with a percentage of mismatched vehicles around

or below 8%, while during congested on-ramp conditions this

number increased to 14%.
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