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Abstract

Wireless Magnetic Sensor Applications in Transportation Infrastructure

by

Rene Omar Sanchez

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

Intelligent Transportation Systems (ITS) are cost-effective measures to manage congestion due to
increasing demand by improving the efficiency of existing transportation infrastructure. Traffic
detection and surveillance play a pivotal role in deploying these technologies in the field. This
dissertation continues the work that has been done in recent years in relation to the use of wireless
magnetic sensor networks in transportation systems. As part of the effort to improve vehicle detec-
tion system technologies so that better management strategies can be implemented in the field, the
work presented here focuses on advancing the use of wireless magnetic sensors in Intelligent Trans-
portation Systems. This dissertation addresses improvements in algorithmic tools that advance the
use of wireless magnetic sensors for both freeways and arterials. The applications addressed here
include on-ramp queue estimation, arterial link vehicle-count, travel time estimation on heavily
congested arterial streets, travel time and link vehicle-count in freeways, truck re-identification
along long freeway segments, as well as cost-effective vehicle classification. The overall goal of
this dissertation is to advance the use of these basic detection technologies to roles that extend
beyond basic vehicle detection.

A vehicle re-identification system, which relies on matching vehicle signatures from wireless
magnetic sensors is modified to improve its performance for stop-and-go traffic conditions and is
extended so that it can be used for truck re-identification along long freeway segments. The mod-
ifications to the algorithm address problems observed when vehicles stop or accelerate/decelerate
as they go through the sensors. The modified system was tested to ensure that it overcame the
deficiencies imposed by the original system. The extension of the vehicle re-identification system,
presented as the iterative vehicle re-identification system, addresses traffic dynamics observed
when vehicles travel along long road segments, in particular, vehicle overtaking. The system was
tested extensively to ensure that it can be deployed for truck re-identification along long freeway
segments, e.g., in between weigh-in-motion (WIM) stations.

A link vehicle-count and a travel time estimator based on flow-measurements and vehicle re-
identification data were studied at a freeway on-ramp, arterial segments as well as at freeway
segments. The results show that the estimators are reliable and accurate, and are suitable for real-
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time traffic responsive management strategies that require precise link vehicle-count and/or vehicle
travel time information, such as ramp metering, speed control and traffic intersection control.

Vehicle classification, which utilizes a single wireless magnetic sensor installed in the middle
of a freeway lane is also presented. The approach uses a two stage binary support vector machine
(SVM) classifier based on features extracted from vehicle signatures. This is a cost effective clas-
sification system that uses a small subset of data efficiently extracted from the magnetic signal
measured by the sensor. The results showed that vehicles can be reliably and accurately classified
into passenger vehicles and trucks, and once trucks are extracted, this group can be further divided,
with lower accuracy and consistency, into two groups: small trucks and large trucks.

Finally, this dissertation presents a systematic tool for tuning vehicle re-identification parame-
ters and evaluating performance. This tool uses different plots, metrics and algorithms to evaluate
the output of the vehicle re-identification algorithm as well as estimates based on it, i.e., link
vehicle-count and vehicle travel time.
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Chapter 1

Introduction

Traffic congestion is a very large problem, and has been increasing across the world, particularly
in cities with large and growing populations. Transportation agencies are unable to keep up with
the increase in demand, especially at peak commuting times, due to deficient infrastructure, lack
of space or funds for infrastructure expansion, and/or poor traffic management. According to the
2011 Urban Mobility Report [17], in U.S. urban areas, congestion led to an increase on the average
yearly delay per auto commuter from about 14 hours in 1982, to about 34 hours in 2010. This is
not only an appreciable increase in delay to the average commuter, but also a significant increase
in costs related to vehicle operating expenses (e.g., wasted fuel and wear), stress on transporta-
tion infrastructure, and environmental degradation as the result of significant pollution emissions.
Strategic infrastructure expansion helps reduce or contain traffic congestion in metropolitan areas,
but it is usually not enough, and alternative measures are needed. Intelligent Transportation Sys-
tems (ITS) emerged as cost-effective measures to accommodate increasing demand and manage
congestion by improving the efficiency of existing transportation infrastructure. Here is where
traffic surveillance technologies play a key role.

In recent years, transportation agencies have seen the usefulness of data collection and archiv-
ing tools such as the Caltrans Performance Measurement System (PeMS) [40]. These systems store
and process traffic data from roadway detectors installed throughout a traffic network. PeMS has
proven extremely useful for real-time monitoring of traffic conditions, as well as for the analysis
of the performance of highway systems in California. Having access to such a database has also
allowed researchers and traffic engineers around the world to develop reliable tools for quantitative
assessment of congestion relief strategies such as demand and incident management, traffic con-
trol, and traveler information. For example, historical data is used for calibration and validation of
traffic simulators used in studies that address concerns about new control strategies, infrastructure
expansion plans, or emergency management strategies without expensive and time consuming val-
idation efforts in the field. PeMS illustrates the value of having quick and easy access to traffic data
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for the advancement of ITS measures that increase transportation systems’ efficiency. However,
it is well known that limitations of systems like PeMS are often associated with data availability
and quality. Data are not reliable (e.g., faulty detectors) or may be scarce in certain parts of the
road network due to lack of adequate sensor technology (e.g., at arterial streets) or because existing
technologies are not cost-effective.

Vehicle detection on the road network is also extremely important for real-time traffic respon-
sive management strategies such as ramp metering, variable speed limit control, or traffic inter-
section control. Traffic agencies understand the importance of data for such applications and, in
recent years, have made an effort to extend vehicle detection penetration in the road infrastructure.
Nevertheless, the reality of transportation systems around the world, including the U.S., where it
is well known that detector coverage on urban streets is poor (National Traffic Operation Coalition
in 2005, 2007 and 2012 gives urban traffic monitoring in the U.S. an ‘F’ grade) [3], is that traffic
road networks are undermonitored. This is the result of a combination of limited resources, few
detection technologies that can be used for sophisticated real-time traffic control as well as draw-
backs in the existing technologies. Work in the development of new cost-effective vehicle detection
technologies, as well as on the improvement and extension of existing vehicle detection technolo-
gies, will help increase the penetration and quality of traffic detection for monitoring and control
purposes. These will ultimately translate in the implementation of better and more sophisticated
traffic management strategies that will help avoid, alleviate, or at least manage congestion.

The research presented in this dissertation continues the work that has been done in recent
years in relation to the use of wireless magnetic sensor networks in transportation systems. In [8],
wireless magnetic sensor networks were presented as an attractive low-cost alternative to inductive
loops for traffic measurement in freeways and at intersections. In particular, this work focused
on showing the reliability of wireless magnetic sensors for flow-measurements and their potential
for vehicle classification applications using an arterial experiment. [7] studied the feasibility of
traffic surveillance by wireless sensor networks using magnetometers. The hardware and software
specifications of sensor node prototypes, as well as communication protocols and lifetime analysis
are provided. Vehicle classification and re-identification schemes based on this vehicle detection
system are also developed. Finally, the feasibility of large scale deployment of such a system is
discussed, and its impact on a number of Intelligent Transportation Systems are considered. The
analysis presented in [7] relied on data from test sites that were in a controlled environment and
not on operational freeway or main arterial roads. In [19], a commercial vehicle detection system
based on wireless magnetic sensors is presented as a reliable measurement system for vehicle
counts, speed and occupancy, comparable to that of well-tuned loops. Furthermore, it is predicted
that due to the ability of each sensor to report individual vehicle events, it is possible to use such
sensors for new traffic applications. Finally, in [41, 28, 27], a vehicle re-identification method
based on wireless magnetic sensors is developed, studied and validated using data from wireless
magnetic sensor arrays installed in arterial segments. This vehicle re-identification method was
shown to be reliable at estimating vehicle arterial travel time distributions, and it was anticipated
that it could be used for estimation of travel time distribution along freeway and congested arterial
links as well as for accurate real-time link vehicle-count estimation.
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As part of the effort to improve vehicle detection system technologies so that more and better
management strategies can be implemented in the field, in this dissertation we focus on advancing
the use of wireless magnetic sensors in Intelligent Transportation Systems. This includes improve-
ments that directly impact and benefit traffic control strategies like ramp metering and arterial
traffic control, traveler information systems, as well as freeway and arterial monitoring systems.
In particular, we study the application of wireless magnetic sensors for on-ramp queue estima-
tion, arterial link vehicle-count, travel time estimation on heavily congested arterial streets, travel
time and link vehicle-count in freeways, truck re-identification along long segments, as well as
cost-effective vehicle classification.

Dissertation Outline

This dissertation is organized as follows.

In Chapter 2, we review concepts and previous research that are closely related to the analyses
presented in this dissertation. First, we survey vehicle detection technologies and common traffic
measurements available for traffic monitoring and control. We also describe the vehicle detection
system based on wireless magnetic sensors used for the different studies presented in this disser-
tation and review in detail a vehicle re-identification algorithm based on this system. Finally, we
explain how vehicle travel time estimation across links and link vehicle-count can be derived from
the results of the vehicle re-identification algorithm.

In Chapter 3, five queue estimation methodologies are described and studied using the vehicle
detection system presented in Chapter 2 and installed on a single-lane loop freeway on-ramp.
Queue length estimation based on (i) occupancy measurements at the ramp entrance, (ii) vehicle
counts at the on-ramp entrance and exit, (iii) speed measurements at the ramp entrance, (iv) vehicle
counts and speed measurements at the on-ramp entrance as well as vehicle counts at its exit and
(iv) vehicle re-identification were considered. These queue estimation methods were evaluated
with available sensor data retrieved from the test site through mobile data communication and
downloaded from a server. The accuracy and reliability of the queue estimation methods and their
feasibility for applications that involved ramp metering with accurate queue control were studied
with ground truth data obtained from videos. Finally, we point out some of the main factors that
affect the performance of queue estimation methods at freeway on-ramps.

In Chapter 4, the vehicle re-identification method reviewed in Chapter 2 is studied using sensor
data from the single lane loop freeway on-ramp presented in Chapter 3. We present a detailed de-
scription of the different areas of the algorithm that were revised and taken into consideration for
performance improvement. Then we list the different modifications that were done to the original
vehicle re-identification algorithm which results in the modified version. The modified algorithm
addresses limitations of the system when vehicles stop/move slowly over the detectors. The origi-
nal and modified vehicle re-identification algorithm results were compared against detailed ground
truth data obtained from the same videos used in Chapter 3, making it possible to quantify the
percentage of re-identified vehicles for each of the methods as well as the number of the vehicles
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that were misidentified as a function of different algorithm parameters. Finally, both vehicle re-
identification methods, i.e., original and modified, were used for link vehicle-count estimation at
two different locations, the freeway on-ramp and an arterial segment. We show that the modified
version of the vehicle re-identification algorithm improves link vehicle-count estimation perfor-
mance in comparison to the original method when stop-and-go traffic is present, as it is the case
for the on-ramp site, while the performance of both methods is comparable when vehicles go over
the detectors without stopping, as it occurs in the arterial segment.

In Chapter 5, an arterial travel time estimation method based on the two versions of a vehicle
re-identification algorithm were studied across an arterial segment with multiple intersections. The
original vehicle re-identification method is based on the algorithm described in Chapter 2, while
the modified algorithm is based on the results presented in Chapter 4. Both methods were tested
on a 0.51 km (0.32 mile)-long segment of West 34th Street in New York, NY, under harsh driving
conditions (i.e., right after a winter storm). The original and modified system results were com-
pared against ground truth data obtained from video. Using the ground truth data, it was possible
to determine the travel time distribution and the percentage of vehicles that each of the different
methods was able to re-identify. Based on comparisons of travel time distribution and empirical
cumulative distribution functions, it was observed that the modified method travel time distribution
is closely related to the ground truth distribution, while the original method travel time distribution
significantly diverges from the ground truth at long travel times.

In Chapter 6, we present three applications of the vehicle detection system reviewed in Chapter
2 for freeways. First we show that it is possible to calculate vehicle travel time and link vehicle-
count estimates in freeway segments under uncongested and congested conditions using the system
and algorithms summarized in Chapter 2. To illustrate this, we used an installation spanning the
Caldecott Tunnel, a 0.68-mile long tunnel located in the San Francisco Bay Area, U.S., for dif-
ferent days and under different traffic conditions. For the second application, we show that it is
possible to use a single wireless magnetic sensor located in the middle of a freeway lane for ve-
hicle classification. The vehicle classification analysis was conducted using data coming from a
sensor installation near the I-80 Pinole weigh-in-motion (WIM) system also located in the San
Francisco Bay Area. Finally, we show that it is feasible to re-identify vehicles along long freeway
segments, e.g., 145-mile segments, using the vehicle detection system and extensions of the ve-
hicle re-identification algorithm presented in Chapter 2. The results focus on the re-identification
of trucks as they go through a long segment. This analysis was completed using vehicle magnetic
signature data coming from an upstream and downstream sensor installation at the I-80 freeway
site and extending the vehicle re-identification algorithm to take into account phenomena such as
vehicles going through long links and, in particular, vehicles overtaking each other.

In Chapter 7, we present a tuning tool for the vehicle re-identification system presented in
Chapter 2. Initially, the vehicle re-identification system was installed at few locations, mostly for
pilot projects, and tuning and monitoring of the sites was simple. As the number of implementa-
tions has increased, together with their complexity, the calibration process and validating system
performance became cumbersome. For this reason, it was crucial to develop a set of metrics, plots
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and analysis tools that would allow a systematic evaluation of vehicle re-identification installations.
In this chapter, we show the different components of the tuning tool that was developed for this
purpose and explain their role in helping calibrate, study and validate an installation. Furthermore,
we illustrate how the tuning tool is used with data coming from an arterial installation in Missouri,
containing 12 consecutive segments, spanning 12 miles of arterial streets, with different lengths,
geometries and traffic conditions. The tuning tool is able to identify if the data coming from the
sensor is reasonable, it helps set up algorithm parameters and is useful to determine if vehicle
matching results are reasonable or if results are unfeasible and further investigation is required.

In Chapter 8, we present a summary of the contributions of this research project together with
conclusions and potential future developments.

A preliminary version of the results in Chapter 3 have been presented in [44]. [46] describes the
vehicle re-identification algorithm revision, modifications and performance analysis that is part of
the results presented in Chapter 4. Finally, the results described in Chapter 5 have been presented
in [45].
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Chapter 2

Background and Review of Previous Work

In this chapter, we review different vehicle detection system technologies, traffic state measurement
and the vehicle detection system used in this dissertation. We also present a detailed description
of the vehicle re-identification algorithm based on this vehicle detection system with subsequent
explanations of how this algorithm is used for travel time and vehicle link-count estimation.

2.1 Traffic Detection Technologies and Traffic State

Measurement

Traffic Surveillance Technologies
Different vehicle detection technologies exist, but historically loop detectors have been the most
widely used. However, with recent improvements in electronics, communication and computer
power, new alternatives which are both reliable and cheaper are available.

The different types of vehicle detection technologies are generally divided into two categories,
in-roadway and over-roadway. In-roadway detectors are embedded, taped or mounted on the road-
way surface, e.g., loop detectors, magnetic sensors, pneumatic tubes, while over-roadway sensors
are placed above the surface of the roadway or on structures adjacent to it, e.g., video detection,
microwave radar, ultrasonic, infrared. The following list describes commonly found detection
technologies in transportation systems, explained in detail in [24].

Inductive loops - Inductive loop detectors sense the presence of vehicles by inducing electrical
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currents in the vehicle’s conducting metal parts, which creates a change in loop inductance
that can be registered by electronic equipment.

Magnetic Sensors - Magnetic sensors detect the presence of vehicles through the disturbance they
cause on the Earth’s magnetic field as vehicles go over the magnetometer’s detection zone.

Pneumatic Tubes - Pneumatic tubes detect vehicle axles as the tires run over the tube and a pulse
of air pressure is transferred along the tube. This closes an air switch, generating an electric
signal.

Video Detection - Video image processing is used to automatically analyze the scene of interest
to detect and/or track vehicles.

Microwave Radar - Microwave radar detects vehicles by transmitting electromagnetic signals
and receiving vehicle echoes within its volume of coverage.

Infrared Sensors - Active and passive infrared sensors, used mainly for traffic flow applications,
detect vehicles as they go through the sensors detection zone by measuring energy reflected
or scattered by them.

There are other detection technologies deployed for specific applications, but the ones listed
are the ones widely used for traffic monitoring and control. From this list, inductive loops stand
out as the most widely used sensor in modern traffic control systems [24], while magnetic sensors
stand out for their increasing deployment as loop detector replacements.

Loop detectors have a flexible design that can be incorporated in a large variety of applications.
The technology is mature and well understood. There are many vendors that supply the technology.
Loop detectors are insensitive to inclement weather such as snow, fog or rain. They also provide
reliable vehicle counting and time-occupancy measurements in comparison to other commercial
detection technologies, and they can even be used for vehicle re-identification and classification.
On the other hand, these sensors have important disadvantages like installation requirements that
affect pavement (they require pavement cutting, and improper installation decreases pavement life),
installation and maintenance is time consuming and involves lane closure, and large amount of
wiring may be required to connect the loop detectors to their electronics unit located in the nearest
controller cabinet.

Magnetic sensors have been around since the late 1960s as an alternative to the inductive-loop
detectors for specific applications [24]. An example of the use of magnetic sensors for vehicle de-
tection can be seen in [31], which dates back to the 1970s. Note that originally, magnetic sensors
were wired sensors that many times required cutting the pavement. Even though installation gener-
ally needed fewer linear feet of sawcut in comparison to inductive loops, they still used significant
wiring. This limitation was overcome with the commercialization of wireless magnetic sensor net-
works. As it can be seen from [31], extracting information from the sensor’s ‘raw’ magnetic signal
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to infer traffic information is not a new concept, but in recent years, advances in battery technol-
ogy, communication protocols, electronics, and data processing capabilities has transformed this
technology into a wireless cost effective alternative to inductive loops. Nowadays these sensors are
often looked upon favorably by transportation agencies as an alternative to inductive loops to elim-
inate saw cuts on pavement and reducing installation time, while maintaining sensor compatibility
with legacy equipment that has been largely tailored for inductive loops.

There have been numerous studies documenting the use of loop detectors for occupancy mea-
surement, vehicle counting, vehicle speed and length estimation, travel time estimation based on
vehicle re-identification, vehicle classification, etc [36, 10, 11, 13, 18]. As wireless magnetic sen-
sors have become widely used as replacements of loop detectors for occupancy and count estima-
tion, applications and detailed analysis of more sophisticated functionality of this vehicle detection
technology on freeways and arterials is an active area for research, and is where the work presented
in this dissertation falls into.

Traffic State Measurement
Traffic networks are formed by interconnected on-ramp, off-ramp, freeway and arterial links. As
explained in [53], these links can either be uninterrupted- or interrupted-flow facilities. Indepen-
dently of the type of facility, according to Papageorgiou and Varaiya [38], the state of every link
in a traffic network is given by link density and speed. Traffic density (or link vehicle-count) is
the most crucial traffic flow variable, but its measurement is difficult and it is usually indirectly
estimated from other quantities that are easier to measure [53].

Many of the vehicle detection systems used in today’s traffic infrastructure for traffic monitor-
ing and control are point detectors, since they measure the traffic properties only at the location
where they are located. The most commonly obtained traffic measurements by point detection
technology are

Volume - volume is the total number of vehicles that go over a sensor’s detection zone during a
given time interval.

Occupancy - occupancy (or time-occupancy) is defined as the fraction of time over a calculation
interval when the sensor’s detection zone is occupied by a vehicle.

Speed - speed is defined as a rate of motion expressed as distance per unit time, and many detec-
tion technologies, usually directly or indirectly, measure it at or close to the detector location.
These point speeds are typically used to compute more statistical relevant measures related
to the average speed of vehicles as they go through the link or link travel time.

These measured quantities are used to infer the state of a link by using time-occupancy as a
surrogate of link vehicle-count and speed at a specific point of the link as a surrogate of average
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speed of vehicles as they go through the entire length of the link, which can be used to obtain
the vehicle travel time. These are approximations that in many cases, especially for congested or
interrupted-flow facilities, lead to large discrepancies between link state estimates and their actual
state.

For better management and control of traffic infrastructure it is necessary to have realistic and
reliable information about the state of the traffic network, and it would be ideal to be able to not
only measure the link density directly, but also get distributions of vehicle travel time across links.
As discussed in [38], the vehicle re-identification system discussed in detail in [28, 27, 41] and
based on the wireless magnetic sensors presented in [19], can be used to measure link vehicle-
count and vehicle travel times across links. This system has the potential to advance the type of
traffic monitoring and control that can be implemented in transportation systems. However, the use
of this technology in many of the applications suggested in [38, 28] has not been studied in detail,
e.g., on-ramp queue estimation, freeway link vehicle-count and travel time estimation, arterial link
vehicle-count or travel time estimation across heavily congested arterial streets with heterogeneous
traffic. The work presented in this dissertation addresses the use of this vehicle re-identification
system for the listed applications and advances its use to new ones such as truck re-identification
across long freeway links.

2.2 Wireless Magnetic Sensors Vehicle Detection System
There are different commercial magnetic sensors, some of them mentioned in [24], as well as new
prototypes, such as the ones described in [47], that could have been used for most of the research
presented in this dissertation and that could have resulted in comparable results. Nevertheless,
the work presented in this dissertation used data coming exclusively from the Sensys Networks
VDS240 wireless vehicle detection system because it was easy to deploy and cost effective. There
was also a working vehicle re-identification system based on their wireless magnetic sensors, and
most importantly, because Sensors Networks Inc. was willing to collaborate and work closely in
the completion of this study.

The Sensys Networks VDS240 wireless vehicle detection system is based on three main com-
ponents, a wireless magnetic sensor, an access point (AP) and a repeater. The sensor is a wireless
magneto-resistive device that detects the presence and movement of vehicles and transmits de-
tection data in real-time using low power radio technology to a nearby access point. From the
access point, vehicle detection data can be further relayed to traffic controllers, traffic management
centers, local data storage units, or other systems. For some configurations, a repeater is used to
extend the range of the access point. See [19, 9] for details on this vehicle detection system.

The sensor data used in the different analysis presented in this dissertation comes from the
same type of wireless magnetic sensor, the VSN240-F wireless flush mount sensor. Different
quantities were derived from the measured x-, y- and z-axis components of the Earth’s magnetic
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field, sampled at 128 Hz, whenever vehicles went over the detector. The VSN240-F wireless flush
mount sensor was used in four configurations

Raw Single Sensor - In the raw single sensor configuration, the wireless magnetic sensor is ca-
pable of measuring the x-, y-, and z-axis component of the Earth’s magnetic field as vehicles
go over the sensor and of sending the data to an access point. The access point receives the
data and relays it to a server or data storage unit for subsequent analysis. Example of sensor
raw data sent from sensors to an access point is shown in Figure 2.1, which corresponds to a
truck traveling on a freeway at free-flow speed and going over an upstream sensor (raw data
shown in black) and a downstream sensor (raw data shown in blue).

Single Sensor - In the single sensor configuration, the wireless magnetic sensor provides data that
can be used to calculate vehicle volume and time-occupancy. The raw data sent from the
sensor to the access point and available for subsequent analysis are related to the sensor
activation and deactivation state transitions, and include a time stamp of the instance when
the event takes place and the state of the sensor after the transition occurs, i.e., activated or
deactivated.

Speed Trap - In the speed trap configuration, the data sent from the sensors to the access point and
available for processing is the same as the one described for the single sensor configuration.
However, in the speed trap configuration it is possible to obtain volume and time-occupancy
as well as accurate estimates of vehicle point speed and length. In this configuration, a pair of
sensors is usually installed in the middle of the traffic lane and separated by a known distance
along the direction of flow. The vehicle speed is obtained by dividing the distance between
the sensors over the difference between the activation times of the leading (upstream) sensor
and the trailing (downstream) sensor. The length of the vehicle can be derived from the
speed, the total time the speed trap sensors are activated and the effective detection zone
length.

Sensor Array - In the sensor array configuration, up to seven sensors are aligned perpendicular to
the flow and separated by one feet. In this configuration it is possible to obtain volume and
time-occupancy, since all the sensors in an array are or-gated and function as a single sensor
for volume and time-occupancy purposes. However, each sensor also extracts a vehicle
signature slice from the sampled raw magnetic signals and sends the slice data to the access
point for subsequent retrieval and analysis. Sensors in this configuration would extract the
sequence of peaks of the raw magnetic signals, as illustrated by the dots in the raw magnetic
signals shown in Figure 2.1, which result in magnetic vehicle signature slices like the ones
in Figure 2.2. In this dissertation, the sensor array configuration is used for all the analysis
that involve vehicle re-identification.
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2.3 Vehicle Re-Identification Using Wireless Magnetic Sensors
The vehicle re-identification method summarized in this section is described in detail in [28]. This
method is referred in this dissertation as the original method. In Chapter 4, modifications to this
method are presented, which improve vehicle re-identification matching performance under certain
traffic conditions and results in the modified method.

Vehicle Magnetic Signature
The system relies on matching vehicle signatures from wireless sensors. The magnetic vehicle
signature consists of a collection of peak value sequences (local maxima and minima) extracted
from the ‘raw’ magnetic signals measured by an array of sensors. Each sensor has a three-axis
magnetometer that measures the x, y and z directions of the earth’s magnetic field as a vehicle goes
over it. Each extracted peak is paired with a local time stamp, which can be used to determine
the relative separation among peaks generated from the same sensor. Each sensor generates three
peak sequences extracted from the x, y and z component signals, which constitute a signature
slice X i = (X i

x,X
i
y,X

i
z). The number of slices that constitute the vehicle’s signature is given by the

number of magnetometers used in the sensor arrays. In the analysis presented in this dissertation,
the number of sensors per array will range from one to seven.

Figure 2.1 shows an example of ‘raw’ magnetic signals generated by the same vehicle, a truck,
at upstream and downstream sensor arrays. In this figure it is possible to observe the collections of
peak values that are extracted from the ’raw’ magnetic signals by the peak extraction algorithm and
that would constitute the upstream and downstream signature slices. For a given component (i.e.
x, y or z), the signal amplitudes and the number of extracted peaks at the two locations may not
be the same. These phenomena are taken into account when determining the similarity between
signature slices. Figure 2.2 shows the upstream and downstream signature slices extracted from
the ’raw’ signals shown in Figure 2.1, where the horizontal axis indicates the peak index and the
vertical axis indicates the normalized amplitude.

In the original method, local time stamp information, i.e., time separation among continuous
peaks, is not taken into account. Furthermore, each signature peak sequence is normalized by the
maximum absolute value of its elements before any calculation is performed. Finally, this method
assigns the same weight to the x, y and z signature slice components when determining similarities
among signatures.

Vehicle Re-Identification Algorithm Summary
In this section, the vehicle re-identification algorithm is presented in detail. A five vehicle example
is used to illustrate how the algorithm works with real data. The data for the five vehicle example
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Figure 2.1: Upstream and downstream middle sensor raw signals with extracted peak value se-
quences (dots)
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Figure 2.2: Upstream and downstream middle sensor signature slices
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was generated from two seven sensor arrays located at the entrance and the exit of a freeway on-
ramp.

The vehicle re-identification is done in two steps:

Signal Processing Step

In the signal processing step, each pair (Xi,Y j) of upstream and downstream vehicle signatures is
compared to produce a distance d(i, j) = δ (Xi,Yj) ≥ 0 between them. The smaller δ (Xi,Yj) the
more likely it is that Xi,Y j are signatures of the same vehicle. This distance metric is used to create
an N ×M distance matrix D = {d(i, j) | 1 ≤ i ≤ N,1 ≤ j ≤ M} from the two signature arrays
X = {Xi, i = 1, · · · ,N} and Y = {Yj, j = 1, · · · ,M}.

In order to calculate a measure of dissimilarity between signatures, the signal processing algo-
rithm takes two signatures, Xi = (X1

i , · · · ,Xn
i ) and Yj = (Y 1

j , · · · ,Y m
j ) where n and m are the number

of sensors in the upstream and downstream array, respectively, and (Xq
i ,Y

r
j ) for 1 ≤ q ≤ n and

1 ≤ r ≤ m are signature slice pairs. The algorithm then computes a distance between each slice
pair componentwise. A dynamic time warping algorithm is used to calculate distances between
slices and the results is an n×m matrix S. The distance δ (Xi,Yj) is defined as the minimum of the
distances between all pairs of slices (Xq,Y r), i.e., min(S).

Figure 2.3 shows X3 = (X1
3 , · · · ,X7

3 ) and Y3 = (Y 1
3 , · · · ,Y 7

3 ), which are the upstream and down-
stream signatures generated by the third vehicle in the five vehicle example, where slice X2

3 is miss-
ing. Missing signature slices or slice components (i.e., x, y and/or z) occur due to malfunctioning
sensors, communication problems, vehicles missing a sensor’s detection zone or peak extraction
algorithm failure due to small amplitude raw magnetic signals. The distance between signature
slice pairs (Xq,Y r) that include missing slices is set to infinity. This is exemplified in Figure 2.3,
where it can be seen that S2,r for 1≤ r≤ 7 are set to infinity. Missing signature slices are expected,
and the vehicle re-identification algorithm is robust to this phenomenon. The distance between the
two signatures shown in Figure 2.3, δ (X3,Y3) = min(S) = S6,4, is equal to 0.195, which corre-
sponds to the componentwise distance between the sixth upstream signature slice, X6

3 , and the
fourth downstream signature slice, Y 4

3 , highlighted in gray.

Figure 2.3 illustrates the case where the upstream and downstream signatures generated by the
same vehicle at different locations are very similar, and as a result, the distance between them is
small. Figure 2.4, which shows X5 = (X1

5 , · · · ,X7
5 ) and Y5 = (Y 1

5 , · · · ,Y 7
5 ), illustrates the situation

where two signatures generated by the same vehicle, in this case the fifth vehicle from the five
vehicle example, at different locations is large, i.e., 0.711, and is likely to result in the inability
to match the upstream signature to its corresponding downstream signature. The y -component in
slice X2

5 and the x -component in slice Y 7
5 are missing and this results in S2,r for 1≤ r≤ 7 and Sq,7

for 1≤ q≤ 7 to be set to infinity, as shown in Figure 2.4.

Distances between signatures generated by different vehicles are expected to be ‘large’, while
distances between signatures generated by the same vehicle are expected to be ‘small’. For the free-
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d(3,3) = δ(X3, Y3) = min(S) = 0.195 , where S = 
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Figure 2.3: Third vehicle upstream and downstream signatures (five vehicle example)

way on-ramp installation where the five vehicle example data was obtained, δ (X3,Y3) = 0.195 is
considered a ‘small’ distance, while δ (X5,Y5) = 0.711 is considered a ‘large’ one. As it was shown
with Figure 2.4, there are situations where the distance between signatures generated by the same
vehicle are ‘large’, and this usually results in unmatched corresponding signatures. There may
also be situations where the distance between signatures generated by different vehicles is ‘small’,
increasing the chances of having incorrectly re-identified, i.e., mismatched or misidentified, vehi-
cles. Finally, there is a common situation where the distances are neither ‘small’ nor ‘large’ and
it is not easy to determine if the upstream and downstream signatures were generated by the same
or by different vehicles. Figure 2.5, which shows X1 = (X1

1 , · · · ,X7
1 ) and Y4 = (Y 1

4 , · · · ,Y 7
4 ), with

a distance δ (X1,Y4) = 0.39 , illustrates one such scenario. An adequate matching function, dis-
cussed in the following section, takes these cases into account and seeks to maximize the number
of re-identified vehicles while minimizing the number of mismatched vehicles.

Figure 2.6 (a) shows the distance matrix generated by the two signature arrays X = {Xi, i =
1, · · · ,5} and Y = {Yj, j = 1, · · · ,5} corresponding to the five vehicle example. For this particular
case, the diagonal entries of the distance matrix D = {d(i, j) | 1 ≤ i ≤ 5,1 ≤ j ≤ 5} correspond
to the distance among signatures generated by the same vehicle at the upstream and downstream
location. Figure 2.6 (b) shows a gray scale coding of the distance matrix, which is darker when the
distance among signatures is small. In the figure it is clear that, as expected, most diagonal entries
are smaller than the off-diagonal entries. In this dissertation, distance matrices will be presented
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Figure 2.4: Fifth vehicle upstream and downstream signatures (five vehicle example)

as gray scale heat maps.

Matching Step

In the second step, a matching function assigns to each distance matrix D a matching

µ : {1, . . . ,N}→ {1, . . . ,M,τ}, (2.1)

with the following interpretation: µ(i) = j means that the upstream vehicle i is declared to match
(be the same as) downstream vehicle j, i.e., Xi→Yj; µ(i) = τ means i is declared not to match any
downstream vehicle, i.e., Xi→ τ . In this dissertation, the output of any matching function can be
represented by the color map of the matched vehicles matrix, which is the N×M matrix with (i, j)
elements set to one if Xi→ Y j, and set to zero otherwise.

Before describing matching functions that can be used with the output of the signal process-
ing step described in the previous section, a statistical model of the signature distance will be
summarized. Afterwards, a description of different matching functions will be outlined, includ-
ing the matching function µuMAP used in the original, the modified and the iterative vehicle re-
identification algorithms.
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Figure 2.5: First vehicle upstream signature and fourth vehicle downstream signature (five vehicle
example)

Statistical Model of Distance It is assumed that the distance matrix D is characterized by two
probability density functions (pdf), f and g: f is the pdf of the distance δ (Xv,Yv) between the
signatures at the upstream and downstream sensor arrays of the same randomly selected vehicle v,
and g is the pdf of the distance δ (Xv,Yw) between two different randomly selected vehicles v 6= w.
The f and g pdfs are assumed Gaussian and their sufficient statistics, the mean µ and the standard
deviation σ , are part of the algorithm parameters that must be determined beforehand. The vehicle
re-identification algorithm performance, irrespective of which matching function is used, increases
as |µg−µ f | � σ f and |µg−µ f | � σg.

Conditional on the true matching µ̄ , the entries in the random distance matrix D have the pdf

d(i, j)≈

{
f if µ̄(i) = j
g if µ̄(i) 6= j or µ̄(i) = τ

. (2.2)

It is assumed that conditional on µ̄ , d(i, j) are independent random variables. Let Di =
{d(i, j),1 ≤ j ≤ M} be the distances between the upstream signature Xi and all the downstream
signatures Y , then the following equations constitute the signature distance statistical model:

p(D|µ̄) = ∏
i

p(Di|µ̄(i)), (2.3)
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Figure 2.6: Five vehicle example (a) distance matrix, (b) distance matrix gray scale heat map and
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p(Di|µ̄(i)) =

{
f (d(i, j))∏k 6= j g(d(i,k)) if µ̄(i) = j

∏k g(d(i,k)) if µ̄(i) = τ

=

{
L(d(i, j))γ(Di) if µ̄(i) = j
γ(Di) if µ̄(i) = τ

,

(2.4)

where

L(d(i, j)) = f (d(i, j))
g(d(i, j)) , γ(Di) =

M
∏

k=1
f (d(i,k)). (2.5)

The f and g statistics might not be known a priori, in which case it is calculated from data.
There are different methods that could be used to estimate these parameters, as outlined in [28]. A
new simple estimation approach, i.e, the distance matrix f and g method, is described to illustrate
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how f and g statistics may be calculated. This method is based only on D, and produces conserva-
tive estimates for µ f and σ f and very accurate estimates for µg and σg. The first step is to remove
zero and infinity entries from the matrix D and sort the remaining entries in ascending order pro-
ducing the vector dreduced . Since the maximum number of matches of the form µ(i) = j in µ̄ is
upper bounded by min(N,M), the statistics for f are approximated by the mean and the standard
deviation of dreduced f = {dreduced(k) | 1 ≤ k ≤ min(N,M)} while those for g are approximated by
the mean and standard deviation of dreducedg = {dreduced(k) | min(N,M)+ 1 ≤ k ≤ end}. For the
five vehicle example, the procedure is illustrated with Figure 2.6 (c). In this particular case, D does
not have zero or infinity entries and f statistics are calculated using the smaller five entries of D,
while g statistics are calculated with the 20 larger ones. The figure shows the empirical distribution
as well as the Gaussian approximations for the f and g pdfs. Chapter 7 will illustrate the use of
this method as part of a vehicle re-identification system tuning tool.

Matching Functions There are different matching functions that can be used in the vehicle re-
identification matching step. The following matching functions have been described in [28, 27, 41]

Minimum Distance (µminD) -

This function matches the ith upstream signature to the jth downstream signatures based on
the following criteria

µminD(i) =

{
j if d(i, j)≤ d(i,k) ∀k; d(i, j)≤ d∗

τ if d(i,k)> d∗ ∀k
, (2.6)

where d∗ is a distance threshold. µminD is an unconstrained matching function, since ve-
hicles are allowed to overtake other vehicles as they travel between arrays. Furthermore,
µminD allows duplicates, i.e., it allows matching of multiple upstream vehicles to the same
downstream vehicle, which is undesirable and leads to significant matching performance
degradation as d∗, N and M increase.

Optimal Unconstrained Matching (µuMAP) -

This is a matching function that maximizes the (unconstrained) posterior probability

p(µ̄|D) =
p(D|µ̄)p(µ̄)

p(D)
, (2.7)

which results in

µuMAP(i) =

{
j if L(d(i, j))≥ L(d(i,k)) ∀k; L(d(i, j))≥ β

τ if L(d(i,k))< β ∀k
, (2.8)

where β , commonly called the probability of turn, is another matching algorithm parame-
ter. In an arterial implementation, β can be defined as the percentage of vehicles that went
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through the upstream array but turned before reaching the downstream array, and it can be
determined from field observations or experience. Another consideration may govern the
choice of β ; the larger β is, the more stringent is the requirement of a match, and the lower
is the probability of an incorrect match. Depending on the application, one should choose a
larger value for β if the cost of an incorrect match is high.

This matching function has similar limitations to µminD, i.e., it allows vehicle overtaking
and duplicates and matching performance degrades as N, M increase. Even though µminD
and µuMAP have a similar structures, µuMAP takes the uncertainty in the distance matrix into
account, which results in a more reliable matching function.

Optimal Constrained Matching (µcMAP) -

This is a matching function that maximizes the (constrained) posterior probability

p(µ̄|D) =
p(D|µ̄)pc(µ̄)

p(D)
, (2.9)

in which pc(µ̄) denotes the prior probability that µ̄ is the true constrained matching. The
µcMAP is given by

µcMAP = arg max
µ̄∈Mc

p(D|µ̄)p(µ̄)
p(D)

, (2.10)

where Mc denotes the set of constrained matchings, where duplicates and vehicle overtaking
are not permitted. Solving the maximization problem in Eq. (2.10) is equivalent to finding a
matching function that minimizes

− ln p(D|µ̄)p(µ̄) = ∑
i

∑
j

λ (i, j)1(µ̄(i) = j)+∑
i

λ (i,τ)1(µ̄(i) = τ), (2.11)

and that belongs to Mc. In Eq. (2.11), 1(·) denotes the indicator function,

λ (i, j) =− lnL(d(i, j))− lnγ(Di)− ln(1−β ), (2.12)

and
λ (i,τ) =− lnγ(Di)− lnβ , (2.13)

where β is defined as in the previous section.

In [28] it was shown that finding µcMAP is equivalent to finding the minimum weight path in
an edit graph G (N,M), as defined in [33]. For the sequences of vehicle signatures X and Y ,
G (N,M) has nodes at each point in the grid (x,y), x ∈ [0,N] and y ∈ [0,M]. These nodes are
connected by horizontal, vertical, and diagonal directed edges, with weights given by

w((i−1, j−1)→ (i, j)) = λ (i, j)
w((i−1, j−1)→ (i, j−1)) = λ (i,τ)
w((i−1, j−1)→ (i−1, j)) = 0

(2.14)
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Figure 2.7: Edit graph edge weights (five vehicle example)

as shown in Figure 2.7 (a), to form a directed acyclic graph. The diagonal edge (i− 1, j−
1)→ (i, j) indicates the signature match Xi→ Yj, the vertical edge (i−1, j−1)→ (i, j−1)
indicates that the upstream signature Xi was not matched to any downstream signature, i.e.,
Xi→ τ , and the the horizontal edge (i−1, j−1)→ (i−1, j) indicates that the downstream
signature Yi was not matched to any upstream signature, i.e., τ → Yi. Each path in G (N,M)
from node (0,0) to (N,M) corresponds to a constrained matching in Mc. Figure 2.7 (b) shows
the five vehicle example edit graph G (5,5) with its corresponding edge weights calculated
using the f and g statistics from Figure 2.6 (c) and β set to 0.5.

It is possible to obtain µcMAP from the diagonal, vertical and horizontal edges of the shortest
path between (0,0) to (N,M). In order to illustrate this, let us consider the problem of
finding µcMAP for the five vehicle example. Figure 2.8 shows the minimum weight paths
cost from node (0,0) to (N,M) in G (N,M), as well as the two shortest paths from (0,0) to
(N,M) shown in gray and black. From the edges in the shortest paths shown in Figure 2.8,



21

(0,0) 

(5,5) 

  0 0 0 0  0 

1.7 -4.4 -4.4 -4.4 -4.4 -4.4 

5.0 -1.1 -6.4 -6.4 -6.4 -6.4 

6.8 0.7 -4.6 -11.9 -11.9 -11.9 

6.4 0.3 -5.1 -12.3 -17.3 -17.3 

3.5 -2.6 -7.9 -15.2 -20.1 -20.1 

Figure 2.8: Shortest paths (five vehicle example)

it follows that

µcMAP =



X1→ Y1

X2→ Y2

X3→ Y3

X4→ Y4

X5→ τ

τ → Y5

. (2.15)

As expected, only the first 4 vehicles were matched to a downstream signature, since the
distance between the upstream and downstream signatures for the fifth vehicle in the five
vehicle example, as shown in Figure 2.4, was significantly larger than µ f . Figure 2.8 shows
that the shortest path for the five vehicle example is not unique, since there are two different
minimum weight paths, shown in black and gray, connecting node (0,0) to (5,5). The
shortest path from (0,0) to (N,M) is not unique if there are non-diagonal edges in the path.
However, it can be assumed that the set of shortest paths have common diagonal edges, and
any path in this set can be used to obtain the optimal constrained matching. For the five
vehicle example, the matching shown in Eq.(2.15) could be obtained using either the black
or the gray shortest paths shown in Figure 2.8. In Chapter 7, a k-shortest paths algorithm will
be discussed as part of the vehicle re-identification tuning tool, and in that context, k refers
to the first k shortest paths from node (0,0) to (N,M) that have a different set of diagonal
edges. Figure 2.9 shows the 6-shortest paths and their costs for the five vehicle example.

The algorithm to find the minimum weight path for µcMAP, described in [28], recursively
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Figure 2.9: k-Shortest paths (five vehicle example)

computes W (i, j), the weight of the shortest path from node (0,0) to (i, j). This algorithm
requires a single pass thought MN nodes taken in topological order. As a result, its complex-
ity is O(NM). Furthermore, the algorithm is efficient and permits real-time computation.
This algorithm is similar to the k-shortest path algorithm presented in Chapter 7 for k = 1.
Figure 2.8 shows W (i, j) at every node in the five vehicle example edit graph.

The matchings µuMAP or µminD are independently determined for each upstream vehicle, while
in the constrained matching µcMAP they are all jointly determined. Furthermore, µcMAP does not
permit vehicle overtaking and matches the largest number of vehicles that satisfy the First In, First
Out (FIFO) condition. Note that this constraint slightly affects the matching rate (e.g., less potential
vehicles available for re-identification) but greatly improves accuracy if vehicle overtaking is not
significant [28]. As a result, the vehicle re-identification algorithms used in the analyses presented
in this dissertation use the optimal constrained matching µcMAP, with the exception of Chapter 7,
where a new constrained matching algorithm is proposed as part of the vehicle re-identification
tuning tool.

Finally, in a deployment where road segments are composed of multiple lanes, the vehicle
re-identification algorithm is traditionally used with upstream and downstream sensor array data
coming from the same lane. This practice is based on the assumption that for the most part, vehicles
tend to stay in their same lane as they go through the segment.
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2.4 Travel Time Estimation and Vehicle Link-Count Using

Wireless Magnetic Sensors
In this dissertation, travel time and link vehicle-count estimation based on vehicle re-identification
relies on matching vehicle signatures from wireless sensors using the magnetic signatures and
algorithms explained in the previous section. As a vehicle goes over a sensor array, the array
consecutively numbers the vehicle, registers the time, and records its magnetic signature. The
upstream sensor array generates the triples (i,si,Xi) while the downstream array generates the
triples ( j, t j,Yj), as illustrated in Figure 2.10 (b).

The following sections describe how the triplet sequences X and Y are used to calculate travel
time and link vehicle-count.

Travel Time
A re-identification of signatures between two locations gives the corresponding travel time of the
vehicle. When two signatures (Xi,Yj) are determined to be a match by the vehicle re-identification
algorithm, the travel time across the segment for that vehicle is determined to be t j− si. The travel
times for all matched vehicles yield a travel time distribution.

Link Vehicle-Count
By having (I,sI,XI) and (J, tJ,YJ) of a re-identified vehicle v, it is possible to calculate the number
of vehicles in a link at tJ . Assuming that vehicles only enter and exit the link at its start and end
location, one can see that the number of vehicles in the link at tJ can be approximated by the
number of vehicles that were recorded to have entered the link during the time intergal [sI, tJ].
Letting K represent the index of the most recent upstream vehicle that was registered before tJ , it
follows that

Nest(tJ)≈ N(tJ) = K− I + e(tJ), (2.16)

where e(tJ) represents the upstream array counting error for the time interval [sI, tJ], which is
assumed to be a zero mean random variable. Assuming all the vehicles in Figure 2.10 (b) go
through the segment, i.e., ignoring τ , the figure illustrates the procedure for I = 7, J = 23, K = 28
and tJ = t23, represented by a green line. Assuming no counting errors on the interval [s7, t23], the
link vehicle-count in the example is given by N(t23) = 28−7 = 21.

When vehicles are also allowed to enter or leave the link in between the upstream and down-
stream array, as would be the case for the link shown in Figure 2.10 (a) as a result of lane changing
or vehicles entering and leaving the link at the intersections, Eq. (2.16) becomes

Nest(tJ)≈ N(tJ) = K− I−nout +nin + e(tJ), (2.17)



24

Upstream  

Sensor Array 

(b) (a) 

Downstream  

Sensor Array 

upstream   

time 

downstream  

time 

X5 

s5 

X6 

s6 

X7 

s7 

τ 

X32 

s32 

Xi 

si 

t26 

Y26 

tj 

Yj 

t21 

Y21 

t22 

Y22 

X28 

s28 

X29 

s29 

X30 

s30 

t24 

Y24 

t25 

Y25 

t 

t23 

Y23 

X31 

s31 

tJ 

X8 

s8 

τ 

K-I F-K 

P-J 

τ 

τ 

τ 

Figure 2.10: Link vehicle-count based on vehicle re-identification by signature matching (colored
squares represent vehicles that have been matched before t)

in which nout is the measured number of upstream vehicles with index between I and K (e.g., i = 8
in Figure 2.10 (b)) that turned before reaching the downstream array, nin is the measured number
of vehicles with index larger than J that came into the link without crossing the upstream sensor
array before tJ (e.g., j = 24 in Figure 2.10 (b)) and with e(tJ) defined as the net counting error
over [s7, t23]. Note that it is not always possible to measure nout and nin. In such situations, it is
assume that nnet = nout −nin can be expressed as a function of K− I. In the analyses presented in
this dissertation, the link vehicle-count at any tJ will be estimated with

Nest(tJ) = (1+η)× (K− I), (2.18)

where it is assumed that η ≥−1.

Sometimes it is desired to calculate the link vehicle-count at an arbitrary time t. This may be
the case for ramp metering or arterial traffic control implementations, where real-time link vehicle-
count estimates are needed every time controllers are updated. An extension of Eq. (2.18) that finds
the link vehicle-count estimate at any t is given by

Nest(t) = (1+η)× (K− I)+(F−K)− (P− J), (2.19)



25

where η , I,J and K are defined as before, F is the index of the most recent upstream vehicle
that was registered before t, and P is the index of the most recent downstream vehicle that was
registered before t. In Eq. (2.19), the term K−F represents the number of vehicles that entered
the link between tJ and t at the upstream location, while the term P− J is the number of vehicles
leaving the link at the downstream location during the same time interval. Figure 2.10 (b) illustrates
the case when I, J and K are defined as before with F = 31 and P = 25. The link vehicle-count
estimate at t for this example, setting the parameter η = 0, results in Nest(t) = 22.

It is assumed that the matching rate of vehicles that go through the link is large, usually above
70%, which results in a small time interval [tJ, t] over which upstream and downstream counting
errors do not significantly degrade Nest(t). Even if the counting errors were significant for a given
time interval [tJ, t], their impact on the link vehicle-count estimate vanishes as time increases and
new vehicles are re-identified. With this method, counting errors do not propagate over time, as it
would be the case if link vehicle-count was calculated using flow-measurements at the upstream
and downstream location without any correction mechanism.
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Chapter 3

Analysis of On-Ramp Queue Estimation

Methods

3.1 Introduction
Ramp metering is an effective traffic control strategy for managing freeway congestion [37]. It
consists of restricting the flow of vehicles into the mainline with the objective to improve freeway
efficiency, leading to an overall system performance improvement.

In freeways, ramp metering is usually employed along with queue control. This form of ramp
metering regulates traffic conditions at the mainline while taking into account the vehicle queue
length formed at the on-ramps. The queue control part of the algorithm regulates the length of
the queues as to maximize the utilization of storage available at the on-ramps during peak traffic
hours while avoiding queues spilling into adjacent arterial streets. In order to implement this type
of queue control, it is necessary to have a reliable and accurate estimate of the queue length [50].

Queue control has been addressed in the literature and used extensively in traffic simulation
studies. However, when ramp metering with queue control is implemented in the field, the per-
formance of the queue control algorithm has been undermined by the queue estimation methods
employed, which results in an inaccurate regulation of the queue length and underutilization of
on-ramp storage space [50].

The work presented in this chapter was conducted as the initial stage of a ramp metering field
test. This field test has been proposed in order to implement ramp metering with queue control
on the Hegenberger Rd. Loop on-ramp to 880 southbound in the Caltrans Bay Area District (Fig-



27

ure 3.1) to study its effect in minimizing queue and mainline density oscillations and enhancing
performance. The queue regulation methods to be used for the field test seek to improve ramp
storage utilization with respect to queue override, which is currently used in California freeways
to regulate queues.

In order to implement better queue regulation algorithms in the field, it is important to have an
accurate and reliable estimate of the number of vehicles in the on-ramp at the time when the meter-
ing rate is updated, usually every 30 seconds. As mentioned in Chapter 2, direct measurement of
link vehicle-count (the terms queue length, queue and link vehicle-count are used interchangeably
in this chapter) is difficult, and even though it could be obtained using video, this is not always
practical or possible due to visibility constraints, video image processing accuracy and cost. In
this chapter, five different queue estimation algorithms, including the one commonly used with
queue override, are analyzed using the cost effective wireless magnetic sensor vehicle detection
system presented in Chapter 2. The objective of the analysis is to show the advantages and disad-
vantages of the different queue estimation methods for implementation in ramp metering control
applications.

This chapter is organized as follows: A summary of the different queue estimation methods is
presented in Section 3.2. The test site is described in Section 3.3. The vehicle detection system
and sensor installation are presented in Section 3.4. The ground truth data collection method
is explained in Section 3.5. Section 3.6 contains the results obtained with the different queue
estimation methods. Section 3.7 discusses factors affecting different queue estimation methods. A
discussion of the queue estimation results is presented in Section 3.8.

3.2 Queue Estimation Methods
This section describes the five queue estimation methods that will be analyzed in this chapter.

Queue Estimation Based on Occupancy - This is the queue estimation method used with queue
override, as described in [54]. It determines if the on-ramp is saturated by comparing the
occupancy measured at the entrance of the on-ramp with an occupancy threshold. This
method is not expected to yield an accurate estimate of the number of vehicles in the queue
length; it’s usually implemented to determine if the vehicle queue is around or beyond the
on-ramp entrance. The sensor requirements for this queue length estimation method can be
observed in Figure 3.2 (a).

Queue Estimation Based on Vehicle Counts - The second method counts vehicles entering and
leaving the on-ramp. The difference between the counts gives the queue length, provided the
initial number of vehicles at the ramp when the counting is initiated can be accounted for.
This queue estimation method has been explored in detail, and has been known to introduce
significant errors due to the inability of the method to correct for offset [30, 57, 55]. Work



28

Hegenberger on-ramp 

Downstream 

Intersection 
Upstream 

Intersection 

a b 

Hegenberger 

on-ramp 

Hegenberger on-ramp 

c 

 

Figure 3.1: Photos showing (a) aerial view of Hegenberger on-ramp with saturated queue, (b) side
view of Hegenberger on-ramp with saturated queue, and (c) arterial streets and intersections around
Hegenberger on-ramp

has been done in order to improve the performance of this queue estimation approach by
incorporating occupancy measurements from the on-ramp [55, 56, 57], or by introducing
heuristic volume adjustment mechanisms [30, 57]. Two flow-measuring detectors at the
respective extreme points of the on-ramp are needed for the implementation of this method,
as illustrated in Figure 3.2 (b).

Queue Estimation Based on Speed - The third method is a queue-length estimator based on a
simplified model for the driving behavior of a vehicle that is approaching the end of the
queue: the vehicle decelerates at a constant rate from its cruising speed, until it stops. This
method was proposed in [50, 49] and relies on speed measurements at the entrance of the
on-ramp and curve fitting. The relationship between the queue length estimate Nest and the
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speed measurement at the ramp entrance v at time t is given by

Nest(t) = c0− c2v(t)2, (3.1)

in which c0 and c2 are coefficients that can be determined from a curve fitting procedure
using queue length vs speed data. This method can be implemented by installing two flow-
measuring detectors in a speed trap configuration at the on-ramp entrance, as shown in Figure
3.2 (c). This estimation approach has been studied using microscopic simulations yielding
promising results, but its performance has not been studied in the field using direct speed
measurements.

Queue Estimation Based on Vehicle Counts and Speed - This method combines flow-measuring
detector data at the entrance and exit of the on-ramp with speed measurements at the entrance
of the on-ramp. It is based on a simple Kalman-Filter estimator derived in [55] to estimate
the number of vehicles included in a signalized link using two boundary detectors that pro-
vide flow measurements and at least one sensor that provides time-occupancy measurements
inside the link. The Kalman-Filter estimator from [55] is given by

Nest(k) = Nest(k−1)+T [qm
in(k−1)−qm

out(k−1)]+K[Nm(k−1)−Nest(k−1)], (3.2)

in which Nest(k) represents the link vehicle-count at time kT and T is the measurement and
update period (or sampling time); qm

in and qm
out are the measured flows entering and exiting the

link during the time interval [(k−1)T,kT ], respectively, Nm is the “measured” link vehicle-
count derived from time-occupancy measurements and K is the (stationary) gain parameter
of the filter. This filter was studied in detail in [55] using microscopic simulations, and has
been studied in field tests with promising results [56, 57].

For the queue estimator based on vehicle counts and speed used in this chapter, the “mea-
sured” link vehicle-count Nm is obtained with speed measurements instead of occupancy
measurements and is given by Eq. (3.1). K was chosen following recommendations on [55],
and the results presented in Section 3.6 correspond to K = 0.10. T was set to thirty sec-
onds, a common update period used in California’s ramp metering controllers. The wireless
magnetic sensor installation required for this estimator is shown in Figure 3.2 (d).

Queue Estimation based on Vehicle Re-Identification - The fifth method estimates the length
of the queue using the link vehicle-count algorithm described in Section 2.4 and is originally
presented in [28]. The queue length estimate at t is given by Eq. (2.19), in which η = 0. This
scheme is based on matching individual vehicle signatures obtained from wireless magnetic
sensor arrays placed at the two ends of an on-ramp, as shown in Figure 3.2 (e). It relies upon
counting vehicles entering and leaving the on-ramp with the possibility to correct for errors
using the entering (upstream) and exiting (downstream) times of re-identified vehicles. The
vehicle re-identification scheme used with this queue estimation method and presented in
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Figure 3.2: Wireless magnetic sensors (shown as blue dots) setup for different queue estimation
methods at a single lane freeway on-ramp

Section 2.3 has been validated on arterial streets and has yielded satisfactory results; never-
theless its performance has not been studied at freeway on-ramps.

3.3 Test Site
The Hegenberger on-ramp is suitable for the field test because it is under local control and it is
subject to heavy demand and long on-ramp queues that frequently go beyond the on-ramp capacity.
Furthermore, it is a single-lane ramp, which allows for the testing of the queue estimation methods
without having to take multiple-lanes on-ramp dynamics (e.g., lane changing) into account.

The length of the Hegenberger on-ramp is 616 ft (187.8 m), which corresponds to a capacity
ranging from 17 to 25 vehicles. The capacity varies due to vehicle type and intervehicle spacing or
headway, which fluctuates throughout the day. For this study, the analysis is concerned with queue
estimation performance from the entrance to the exit of the ramp (see Figure 3.3 (a)). When the
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Figure 3.3: Photos showing (a) Hegenberger on-ramp entrance (bottom square) and exit (top
square), (b) vehicle detection system installation at ramp entrance, and (c) sensor array installation
at ramp exit (Re-Id = re-identification)

ramp was saturated and vehicles were beyond the ramp entrance, the ground truth queue lengths
presented in this analysis corresponded to the number of vehicles located between the exit and the
entrance of the on-ramp.
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Figure 3.4: Configuration of wireless magnetic sensors at entrance of Hegenberger on-ramp

3.4 Vehicle Detection System
The vehicle detection system deployed at the Hegenberger on-ramp is described in Section 2.2.
The system installed at the on-ramp consists of an access point (AP240-ESG), a repeater (RP240-
B), and 18 wireless magnetic sensors (VSN240-F) arranged as shown in Figure 3.3 (b) and (c).
See [19, 9] for more details on this vehicle detection system.

Two arrays of 7 sensors separated by 1 ft, and installed at the center of the lane, were located at
the entrance and at the exit of the on-ramp. These entrance and exit arrays were necessary for the
implementation of queue estimation based on the vehicle re-identification algorithm explained in
detail in Section 2.3. These arrays are also used for the analysis of the queue estimation method-
ologies using vehicle counts, even though a single detector placed at the center of the lane at each
end of the ramp would have been enough.

Four sensors are installed at the entrance of the on-ramp and are arranged in a speed trap con-
figuration, as shown in Figure 3.4. Two sensors were used for leading vehicle detection (SL1 and
SL2), and another two for trailing vehicle detection (ST1 and ST2). This configuration increases
the lateral detection zone to capture vehicles that may be traveling off-center of the lane. The
speed trap sensors were used in the study of queue estimation methodologies that required speed
or occupancy measurements at the entrance of the on-ramp and to compare the vehicle counting
performance of a single sensor and a sensor array.

3.5 Ground Truth Data Collection
Vehicles at the on-ramp were videotaped to obtain ground truth data to validate the queue estima-
tion methods. Video was recorded on three different days: April 13, May 5, and May 11, 2010.
Observations on those three days were important for the conclusions drawn for this analysis; how-
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Figure 3.5: (a) Video camera recording vehicles leaving on-ramp, (b) cassette video camera record-
ing vehicles entering on-ramp, and (c) video camera to capture vehicle behavior and queue dynam-
ics

ever, the ground truth data that is presented in Section 3.6 corresponds to the day of May 11, 2010,
from 4:07 p.m. (16.1 h) to 5:35 p.m. (17.6 h), when ramp metering was active. The data collected
on this day is adequate for the analysis presented in Section 3.6 because different queue lengths
(zero, intermediate sized, as well as capacity) were observed during the recording time. This al-
lows for the analysis of the queue estimation methods under saturated and unsaturated on-ramp
conditions.

Three independent cameras were used to obtain the ground truth data. The first camera recorded
vehicles leaving the on-ramp and passing the exit sensor array (Figure 3.5 (a)). The second camera
recorded vehicles entering the on-ramp and passing through the speed trap and the entrance sensor
array (Figure 3.5 (b)). The third camera was used to capture queue dynamics during the ground
truth data-collection period (Figure 3.5 (c)). The three cameras were synchronized with a common
clock so that data extracted from different videos could be compared with the vehicle detection
system data.

Ground truth queue length was obtained with Cameras 1 and 2. From the video recorded
with these cameras, it was possible to extract the time at which the frontal part of all the vehicles
entering and leaving the ramp was aligned with the entrance and exit sensor array, respectively.
Ground truth queue length was calculated by adding and subtracting one to the queue length every
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time a vehicle was registered entering or leaving the on-ramp, respectively.

Ground truth data for queue estimation based on vehicle speed was obtained with the second
video camera. The time instances of vehicle alignment with leading dual sensors (Figure 3.4,
SL1 and SL2) and trailing dual sensors (Figure 3.4, ST1 and ST2) were extracted. The ground
truth speed was calculated by dividing the distance between the leading and trailing sensors [12 ft
(3.7m)] over the difference between the two time stamps extracted from the video for each vehicle.
Camera 2 is a cassette video camera with a recording rate of 30 frames per second, which affects
the resolution of the speed ground truth data. The largest discrepancies between ground truth data
and the vehicle detection system data were expected at greater speeds because of quantization.

3.6 Queue Estimation Results

Occupancy-Based Queue Estimation Method
Occupancy measured with speed trap sensor SL1 over a 30-s calculation interval is shown in Figure
3.6 (top). Before 17 h, occupancy magnitude correlates with the ground truth queue length. Higher
occupancies are observed when queue lengths are larger and vice versa. However, under on-ramp
saturation conditions, after 17.2 h, very low occupancies are observed even though the queue
length was around or beyond the on-ramp entrance. This phenomenon, a so-called zero-speed,
zero-occupancy (ZSZO) situation [39], makes queue estimation based on short calculation interval
occupancy unreliable.

Figure 3.6 (bottom) shows the scatter plots of queue length versus occupancy for multiple
calculation intervals. In these scatter plots it is evident that occupancy measured at the entrance
of the ramp may only be used to predict if the on-ramp is either saturated or unsaturated using an
occupancy threshold as a reference. Based on these scatter plots, less data points are present in the
upper left corner of the plot as the calculation interval is increased. This shows that the accuracy
(or applicability) of the occupancy threshold method increases with larger calculation intervals
(e.g. less chances of ZSZO-phenomenon to occur). However, increasing the calculation interval
introduces a delay in detecting queue saturation (see Figure 3.6 (top) between 17.1 h and 17.2 h),
which is an undesirable queue estimation characteristic for accurate queue control.

Queue Estimation Method Based on Vehicle Counts

Array Vehicle Counts

A total of 543 vehicles entered the on-ramp and 522 left the on-ramp during the time interval con-
sidered for the study presented in this chapter. The data coming from the sensor arrays registered
that 527 vehicles entered and 520 left the on-ramp during the same time period. It would seem
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Figure 3.6: (top) Occupancy and queue length graphed as a function of time of day, and scatter
plots of queue length versus occupancy for (bottom, left) 15-s, (bottom, middle) 30-s, and (bottom,
right) 60-s intervals
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Figure 3.7: (top) Graph of queue length based on ground truth data and arrays raw data

that the accuracy of the counting method is adequate, with only 3% error for entering vehicles
and less than 1% error for exiting vehicles. This conclusion would be erroneous. When the queue
estimation is calculated as a function of time and compared with the ground truth, it is clear that
vehicle under- and overcounting exists.

Figure 3.7 shows large discrepancies between the estimated and ground truth queue lengths.
At 17 h, the estimated queue reaches a value of about -10, which suggests considerable offset
due to miscounting, even before ramp saturation. When the ramp is saturated, which occurs after
17.1 h, the error between both queue lengths is more pronounced. When the sensor array data
detection events are analyzed (Table 3.1), it is evident that there are some vehicles that are not
detected, while others are counted multiple times (e.g., trucks). It should be noted that the entrance
array has twice as many undetected vehicles as the exit array, from which 11 were undetected due
to merging. During congestion, vehicles tend to travel slower and closer together as they move
through the entrance array, which sometimes results in multiple vehicles being registered as a
single vehicle. The exit array does not present any case in which multiple vehicles are merged into
a single detection event, since there is significant spacing between vehicles as they exit the ramp
because the exit array is located after the ramp-metering light.

Entrance Vehicle Count Comparison

Wireless magnetic sensors installed in the single sensor configuration, as described in Section 2.2,
were not installed at the exit of the on-ramp. They were only installed at the entrance of the ramp as
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ENTRANCE EXIT
TOTAL VEHICLES (Ground Truth) 543 522

Trucks 21 20
Motorcycles 1 1

TOTAL VEHICLES (Arrays) 527 520
Repeated Detection 21 15

due to Trucks 9 5
Undetected Vehicles 40 19

due to merging into one detection event 11 0

Table 3.1: Table showing total vehicle counts for ground truth and arrays data between 16.13 h and
17.6 h
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Figure 3.8: (left) Graph of entrance vehicle counts based on ground truth, entrance array and SL1,
SL2, ST1, and ST2 sensors, and (right) table showing total entrance vehicle counts between 16.13
h and 17.6 h

part of the speed trap sensor arrangement (SL1, SL2, ST1 and ST2). As a result, it is not possible
to calculate queue length using the minimum installation requirements for this queue estimation
method, shown in Figure 3.2 (b). Nevertheless, it is possible to investigate the reliability of using
a single sensor per location for vehicle counting by comparing vehicle counts gathered using the
speed-trap sensors with the entrance array and the ground truth vehicle counts.

The comparison of the entrance vehicle counts based on speed-trap sensors, the entrance array,
and ground truth is shown in Figure 3.8 (left). If vehicles traveled through the middle of the lane,
a similar count would be expected from all the speed trap sensors. However, it was observed that
vehicles tended to travel on the right side of the lane, which is reflected in Figure 3.8, since sensors
SL2 and ST2, which are located on the left side of the lane, register significantly fewer vehicle
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counts over the complete time interval. The discrepancies in vehicle counts for sensors SL1 and
ST1 and the ground truth vehicle counts becomes evident only after 17.1 h, which corresponds to
the time when the ramp goes into saturation mode. It seems that congestion affects the counting
performance of both single sensors and sensor arrays.

As with the sensor array data, single sensors sometimes register multiple detections for the
same vehicle as well as a single detection event for multiple vehicles. Nevertheless, the total
count for sensors SL1 and ST1 exceeded the ground truth data, which is the opposite of the total
entrance array vehicle count. This suggests that the single sensor arrangement may be more likely
to generate multiple detections for the same vehicle as compared to an array of sensors.

For the most part, leading and trailing detectors on the same side of the lane were expected to
have very similar vehicle counts; however, trailing sensors register higher total vehicle counts than
the leading sensors. This suggests that vehicle counting performance for single sensors depends
on the lateral as well as the longitudinal location of the sensor in the on-ramp lane.

Queue Estimation Method Based on Speed
Before analyzing the queue estimation method based on vehicle speed measured at the entrance of
the ramp, it was necessary to make sure that speed determined with the speed trap was accurate.
Figure 3.9 (top) shows the comparison between the speed trap and the ground truth speed data
sets. Even though both data sets correlate well, it was not possible to calculate a speed for all the
vehicles that entered the on-ramp. The ground truth data set has 543 data points while the speed-
trap data set only has 425 data points, which means that it was not possible to determine the speed
of 22 % of the vehicles that entered the on-ramp during the ground truth recording time. During
on-ramp saturation, there were a larger number of consecutive vehicles for which speed was not
calculated. Figure 3.9 (top) shows clear examples of this problem at around 17.25 h and 17.4 h.
Inability to determine the speed of every entering vehicle affects the applicability of this method
for queue estimation, as several minutes could pass before a vehicle speed could be calculated
again to update the queue estimate.

Speed measurements correlate well with the on-ramp mode. When the queue is unsaturated,
the speeds are larger, usually above 20 mph, and when the queue is large, speed tends to drop
accordingly. However, there are multiple factors that result in speed drop at the entrance of the
ramp that are unrelated to the queue dynamics. This is the case for large trucks entering the on-
ramp, which, independent of the queue length, usually slow down. Figure 3.9 (top) shows drops
of speed at unsaturated queue conditions, before 17.1 h, for most of the instances when trucks
entered the ramp. Another factor that affects the speed of vehicles in a similar way is the presence
of pedestrians crossing the street and blocking the entrance of the on-ramp.

Figure 3.9 (bottom, left) is a scatter plot of queue length vs speed that shows that a wide range
of entrance speeds correspond to a given queue length value. Taking a moving average of the speed
data, as done on Figure 3.9 (bottom, right), decreases the range of speed that corresponds to a given
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Figure 3.9: (top) Speed-trap measurements and ground truth speed graphed as a function of time of
day, (bottom, left) scatter plot of queue lengths versus speed at entrance of on-ramp, and (bottom,
right) scatter plot of queue lengths versus three trailing point moving average of speed
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Figure 3.10: (top) Queue length estimate for every speed measurement and (bottom) speed based
queue estimate for a 30-s calculation interval

queue length, but it does not allow the finding of a relationship between queue length and speed
that could be used for precise queue estimation. Using the queue length vs speed data shown in
Figure 3.9 (bottom, left), it was possible to determine Eq. (3.1) coefficients, resulting in

Nest(t) = 23−0.02v(t)2. (3.3)

Figure 3.10 (top) shows the speed based queue estimate calculated at every time t when the
speed of an entering vehicle was recorded using Eq. (3.3). Note that the queue estimate does
not closely follow the ground truth data during uncongested conditions, when speed variation for
a given queue length is significant. However, when the on-ramp state is transitioning from the
uncongested mode into the congested mode, the queue length estimate tracks the ground truth
queue length closely. Once in congestion, the estimate does not fluctuate as much due to the
structure of Eq. (3.1), and seems to be reliable at indicating that the ramp is full. Note that if
this method was to be used for traffic control applications, the queue length would be calculated
for every calculation interval (typically 30-s). The proposed approach in such cases is to use
Eq. (3.3) with the most recent speed measurement. There may be instances, especially during
congestion, when speed measurements for entering vehicles are not available due to the vehicle
detection system limitations, which may lead to significant errors in the estimate. Figure 3.10
(bottom) shows the queue length calculated every 30-s using the most recent speed measurement.
Both queue estimates shown in Figure 3.10 track the ground truth data in a similar way.
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Figure 3.11: Queue estimation based on vehicle counts and speed (top) with no restrictions and
(bottom) with estimates constrained to [0,25]

It is not possible, based on these results, to obtain an accurate relationship between queue
length and speed as suggested in [50]. Nevertheless, using speed at the entrance of the on-ramp
seems to be a good approach to determine if the queue is saturated, unsaturated or transitioning
from one mode to the other in an almost instantaneous way, an improvement over queue estimates
based on occupancy measurements at the entrance of the on-ramp.

Queue Estimation Method Based on Vehicle Counts and Speed
Figure 3.11 (top) shows a comparison between the ground truth queue length and the queue esti-
mate based on flow-measurements at the entrance and exit of the on-ramp and speed measurements
at the on-ramp entrance calculated with Eq. (3.2). This method combines queue estimation based
on vehicle counting with the queue estimation based on speed, both of them presented in previous
sections. The queue estimate is calculated every calculation interval, which for this analysis was
chosen to be 30-s. The figure shows the queue estimate that results from Eq. (3.2) without im-
posing any constraints. In an actual implementation, the fact that the queue length can never be a
negative or go beyond its capacity can be exploited to bound the estimation errors, as suggested
in [55]. However, in Figure 3.11 (top) the queue estimate has no such constraints. As it can be
seen from the figure, the estimate follows the ground truth queue length closely, with a tendency
to overestimate the value of the queue during unsaturated on-ramp conditions. This seems to be
the effect of using the queue estimate based on speed and shown in Figure 3.10 (bottom), which



42

during uncongested conditions consistently overestimated the length of the queue. During con-
gested conditions, the estimate error is larger at about 17.25 h and at about 17.45 h, which are time
instances when larger flow-measurement errors were observed. Even when the error at about 17.3
h was one of the largest ones observed, the estimator was able to recover and track the ground truth
closely for the time interval [17.35 h,17.43 h]. This method seems to have a reliable correction
mechanism that makes it suitable for queue control applications where accurate queue estimates
are needed.

Figure 3.11 (bottom) shows the queue estimate based on Eq. (3.2), but with the constraint that
the queue estimate must be on the interval [0,25]. For every calculation interval, if the queue is
negative, then the queue is modified and set to zero. If the queue estimate is in the range [0,25],
no modification is performed. Finally, if the estimate is greater than 25, the queue is set to 25. The
figure shows that for this particular on-ramp and time period, these constraints do not influence
significantly the performance of the estimator. There is a short time interval when the queue
estimate differs from the one presented in Figure 3.11 (top), which occurs at about 17.25 h.

Queue Estimation Method Based on Vehicle Re-Identification
Figure 3.12 shows a comparison between the ground truth queue length and the queue estimate
calculated with Eq. (2.19) at every time t when a vehicle was registered entering or leaving the
on-ramp. During on-ramp uncongested conditions, both correlated properly, and even when some
notorious estimation errors appeared (e.g., at about 16.35 h), the method was able to compensate
for the offsets as expected. However, when on-ramp saturation occurred, the queue estimator per-
formance dropped, and eventually collapsed at about 17.2 h. During congestion, vehicle counting
is more inaccurate, as shown earlier, and it becomes very difficult to make appropriate corrections
when a vehicle is re-identified, since this method is relying on vehicle counting to estimate the
vehicle queue. However, flow-measurement errors do not account for the abrupt increases in the
queue estimate error, for example at about 17.3 h, or the lack of correction of these errors as time
increased. This suggests that on top of the flow-measurement errors, there was a significant per-
centage of mismatched vehicles during the congested period, which is expected to introduce large
errors when the queue estimate is updated using Eq. (2.19) with incorrect vehicle re-identification
data.

Figure 3.12 also shows the instances when exiting vehicles were re-identified (matched). From
the 543 vehicles that entered the on-ramp, only 107 vehicles were matched. The matching rate
obtained accounts for about 20% of the vehicles that went through the ramp, which is significantly
lower than the 70% that has been reported for arterials [28], and that it is desired for reliable link
vehicle count estimates, as explained in Section 2.4.

Despite its underperformance during saturation, during uncongested on-ramp conditions this
method did significantly better than the queue estimation method based only on flow-measurements
(see Figure 3.7 (top)), and slightly better than the queue estimator based on speed and flow-
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Figure 3.12: Queue length based on vehicle re-identification versus time of day

measurements presented in the previous section (see Figure 3.11).

The vehicle re-identification system used for this queue estimation method was implemented
on the Hegenberger on-ramp as it has been implemented on arterial streets. The assumption that
this system would perform similarly on arterial streets and loop on-ramps seems to be incorrect.
Loop on-ramps have characteristics that affect the performance of this method, and need to be
taken into account. In order to make this system reliable for queue estimation and regulation, it
would be necessary to work on a vehicle re-identification algorithm that takes on-ramp specific
factors into account like ramp curvature, slope, vehicle headway, location of sensors, etc.

As a consequence of the results obtained in this analysis, an improved version of the original
vehicle re-identification algorithm used for this analysis is presented in Chapter 4. With the result-
ing modified re-identification algorithm, the matching rate and matching accuracy during on-ramp
saturated conditions was significantly improved. A higher matching rate and a small percentage
of mismatched vehicles allow for rapid correction of errors, which results in a significantly bet-
ter queue length estimator for congested on-ramps. The new queue estimation results using the
modified vehicle re-identification algorithm are presented in Section 4.6.



44

3.7 Sources of Error
Even though the number of motorcycles using the on-ramp is very low in comparison to the total
number of vehicles, they can introduce important queue estimation errors over time. Motorcycles
are more likely to be undetected due to their smaller size and because they tend to miss the vehicle
detection station at the exit of the ramp. Figure 3.13 (a) shows a motorcycle entering the on-ramp,
bypassing the queue, and finally missing the exit sensor array.

There have been multiple observations of cars bypassing the queue. This affects the queue
estimation methods because vehicles bypassing the queue tend to miss the detection sensors at the
exit of the on-ramp. They usually travel off-center of the lane, as shown in Figure 3.13 (b).

Trucks are consistently using the on-ramp, even though they account for a small percentage of
the vehicles going through it. When they appear, they can affect the queue dynamics considerably
because they are longer, slower and have to maneuver to make the turn properly. Figure 3.13 (c)
shows an example of a large truck maneuvering at the entrance of the on-ramp. It was observed
with the sensor array data and speed trap sensor data that trucks like this one tend to introduce a
counting error of one or two vehicles.

Loop on-ramps have wide lanes that allow drivers to maneuver as they go through. The result
of the extra lateral space is that vehicles travel highly off center. Figure 3.13 (d) shows multiple in-
stances when vehicles were at different positions with respect to the center of the lane. Sometimes
vehicles are off center and completely miss the vehicle detection station. This phenomenon is an
important source of error in queue estimation methods that rely on counting vehicles.

As it was shown in Section 3.6, queue estimation methods tend to have their worst performance
during saturated on-ramp conditions. One of the reasons for this phenomenon is that two adjacent
vehicles close to each other are likely to stop on top of or very close to the detection zone of the
sensors. This creates undercounting problems because two vehicles close to each other may be
registered as one. Figure 3.13 (e) shows examples of adjacent cars resting on top of the sensor
arrangements at the entrance of the on-ramp. This results in errors for queue estimation methods
relying on vehicle counting. It may also occur that vehicles are completely stopped at the on-ramp
and none of them are within the sensor detection zone. When waiting time is large in compari-
son to the occupancy calculation interval, occupancy measurements do not reflect on-ramp queue
conditions (the ZSZO phenomenon). This situation was observed in Figure 3.6 (top) at about 17.4
h.

Note that the sources of error mentioned here also apply to vehicle detection systems based on
inductive loops and some of them have been addressed on [39].
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Figure 3.13: (a) Motorcycle bypassing queue, (b) vehicle bypassing queue, (c) large truck entering
on-ramp, (d) off-centered vehicles with respect to lane, and (e) adjacent vehicles simultaneously
stopped on top of leading and trailing speed-trap sensors
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3.8 Discussion
Five queue estimation methodologies were studied using wireless magnetic sensors installed on
a single lane loop on-ramp. Queue length estimation based on (i) occupancy measurements at
ramp entrance, (ii) vehicle counts at on-ramp entrance and exit, (iii) speed measurements at ramp
entrance, (iv) speed and flow-measurements and (v) vehicle re-identification were considered. The
accuracy and reliability of the queue estimation methods were studied using ground truth data
obtained from video.

The occupancy-based queue estimation method may be used to determine if the ramp is either
empty or full, but it cannot be used to estimate the vehicle queue length accurately. This approach
is highly dependent on the time calculation interval over which occupancy is calculated, and under
on-ramp saturated conditions may yield misleading results due to vehicle tendency to miss the
sensor detection zone while at rest.

Estimating queue length on the basis of counting on-ramp entering and exiting vehicles based
on flow-measurements from wireless magnetic sensors, as it has been the case with loop detectors,
is not an acceptable method because of its inability to correct for errors like detector miscounts and
offsets resulting from initial conditions.

The speed based queue estimation method appears to be capable of instantaneously determining
the mode of the on-ramp queue: unsaturated, saturated, or in transition. Nevertheless, based on the
results obtained in this study, this queue estimation approach is not suitable to accurately estimate
queue lengths.

The queue estimator based on flow-measurements and speed measurement appears to be suit-
able for ramp metering applications where accurate queue control is desired. This method seems
better than the other four estimators studied, since it has consistent performance during uncon-
gested and congested conditions, it can compensate from drifts in the queue estimate due to mea-
surement errors, it is able to track the ground truth queue length closely, and even when significant
estimation errors are observed, the estimate is able to recover fairly quickly.

The vehicle re-identification based queue estimation method counts vehicles that enter and
leave the on-ramp, while relying on vehicle re-identification information to prevent drifts in the
queue estimate. This queue estimation method performed better than the other four methods dur-
ing uncongested on-ramp conditions, but it was unable to accurately estimate queue lengths during
saturated on-ramp conditions. One of the reasons was related to an increase in flow-measurement
errors during on-ramp congested conditions. Another reason was the low vehicle matching rate
observed at this site, which affects the ability of the method to correct for errors regularly, Finally,
and most importantly, it is suspected that there was a large percentage of mismatched vehicles,
which created the presence of abrupt large errors in the estimate. The unexpected poor results
obtained with this method during congested conditions, and the potential of this method for ac-
curate link vehicle-count, as predicted in [38], motivated the development of the modified vehicle
re-identification algorithm presented in Chapter 4.
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Chapter 4

Vehicle Re-Identification: Algorithm

Revision, Modifications and Performance

Analysis

4.1 Introduction
The work presented in this chapter was motivated by the results obtained from the queue estimation
field test performed at the Hegenberger Rd. loop on-ramp in the Caltrans Bay Area District and
presented in Chapter 3. Five different queue estimation methods were studied, including one that
is based on the vehicle re-identification algorithm described in detail in Section 2.3.

The queue estimation method based on this vehicle re-identification algorithm was expected to
be extremely accurate and reliable, as predicted on [28, 38]. As explained in Section 2.4, the link
vehicle-count algorithm relies on a high percentage of correctly re-identified vehicles for accurate
estimation results. At the Hegenberger on-ramp, this requirement was not met, since the number
of re-identified vehicles was very low and inaccurate when vehicles were stoping and moving at
low speeds as they were going over the detectors. For this reason, the vehicle re-identification
based queue estimation method significantly under-performed in estimating queue lengths during
congested on-ramp conditions.

Vehicle re-identification by matching electromagnetic signatures captured from inductive or
magnetic sensors appears as one of the most efficient and cost-effective methods to re-identify
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vehicles without raising privacy concerns associated with vehicle tracking [34]. However, electro-
magnetic signature methods tend to be unreliable under congested conditions when stop and go
traffic is present. Vehicle re-identification methods based on loop detectors, like the one described
in [48], are not only sensitive to speed changes in between vehicle detection stations, but also to
changes in velocity as the vehicles go over the detectors. Even when speed normalization is de-
coupled from the matching algorithm, as in [34], the algorithms still rely on the assumption that
vehicles go over the detectors at constant speed. This assumption is unrealistic for implementa-
tions in arterial streets, congested freeways, and on-ramps where stop-and-go traffic is unavoidable.
The vehicle re-identification method discussed in Section 2.3 does not rely on the constant speed
assumption and does not require vehicle speed. However, the poor performance of this vehicle
matching algorithm in the queue estimation study presented in Chapter 3 called for an algorithm
revision, improvement and performance analysis.

This chapter is organized as follows: The ground truth (GT) and vehicle detection system
(VDS) data from the Hegenberger on-ramp used for this analysis is explained in Section 4.2. The
revision details are presented in Section 4.3. Section 4.4 discusses the algorithm modifications.
Section 4.5 contains the performance analysis of the original and modified vehicle re-identification
method based on data from the Hegenberger on-ramp. Section 4.6 shows vehicle link-count esti-
mation at two different locations, the Hegenberger on-ramp and a San Pablo Avenue segment in
Albany, CA, using both versions of the vehicle re-identification algorithm. A discussion of the
results is presented in Section 4.7.

4.2 Data

Ground Truth Data
Ground truth data was obtained from videos recorded on May 11, 2010 from 4:07 p.m. to 5:35
p.m., the same videos used in Chapter 3. However, additional extraction of ground truth data from
the videos was required for the research discussed in this chapter.

The three independent cameras shown in Figure 3.5 were used to obtain the ground truth data.
From the second camera (Figure 3.5 (b)) it was possible to obtain the time sGTk when each entering
vehicle k crossed the entrance array, where sGT1 < sGT2 < · · ·sGTNGT

. From the first camera (Figure
3.5 (a)) it was possible to get the time tGTl when each exiting vehicle l went through the exit array,
where tGT1 < tGT2 < · · · tGTMGT

. The Hegenberger on-ramp ground truth data used in this chapter
consists of two vectors {sGTk ,k = 1, · · · ,NGT = 543} and {tGTl , l = 1, · · · ,MGT = 534} and the
matching of upstream to downstream vehicles k→ l. The matching k→ l was done visually and
resulted in 534 matches.
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Vehicle Detection System Data
Consider the link formed by the entrance and exit arrays shown in Figure 3.3. During the video
recording time interval, detection events indexed i = 1, · · · ,N were registered by the entrance array
at times s1 < s2 < · · ·sN . Detection events indexed j = 1, · · · ,M were registered by the exit array
at times t1 < t2 < · · · tM. The upstream sensor array measures a signature Xi each time there is
a vehicle detection event i and the corresponding time si. The downstream sensor measures a
signature Yj each time there is detection event j and the corresponding time t j. For this study, the
vehicle detection system data consists of two arrays {(si,Xi), i = 1, · · · ,N = 522} and {(t j,Yj), j =
1, · · · ,M = 527}. Note that due to the nature of the vehicle detection system, detection errors
cannot be avoided and may create multiple signatures of the same vehicle at one location or may
result on missing signatures due to undetected vehicles at the entrance and/or exit array as discussed
in Chapter 3.

To be able to determine the number of vehicles that are correctly matched by the algorithm and
the percentage of those vehicles that are mismatched, mappings of the form k→ i and k→ l→ j
were obtained. With these it is possible to determine if a signature pair (Xi,Yj) corresponds to the
same vehicle or to different vehicles.

Vehicle Subsets
During the video recording period, the traffic modes that arise inside the ramp are classified into
two: uncongested and congested. For this analysis, uncongested conditions correspond to the time
interval from 4:07 pm to 5:07 pm, when the on-ramp queue was below on-ramp capacity and
vehicles with index k for 1≤ k ≤ 399 went through the on-ramp. The uncongested vehicle subset
is constituted by these vehicles. The congested conditions time interval occurs from 5:07 pm to
5:35 pm, when the queue length was around or beyond on-ramp capacity, vehicles were stopping or
going slowly over the entrance array, and vehicles with entering vehicle index k for 400≤ k≤ 534
went through the ramp. The congested vehicle subset is composed of these vehicles. Based on the
vehicle detection system data, it is possible to achieve a maximum correct matching of 477 vehicles
assuming a perfect matching algorithm, where 362 vehicles correspond to the uncongested vehicle
subset and 115 to the congested one.

23 Chosen Vehicles
In order to be able to analyze the vehicle re-identification algorithm in detail, 23 vehicles were
chosen from the 543 that entered the ramp, as shown in Table 4.1. The selection criteria was
that their entrance and exiting signatures were available and unique and that they were traveling
through the middle of the lane when going over the arrays.
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4.3 Vehicle Re-Identification Method Revision

Signal Processing Step Revision
The plots on Figure 4.1 are gray scale coding of the distance matrix of the 23 chosen vehicles sig-
natures (left) and the distance matrix of the complete vehicle signatures data set (right) calculated
using the original signal processing algorithm. As explained in Section 2.3, each square in the
plots represents a distance between a Xi and Yj vehicle signature combination; a darker color indi-
cates shorter distance and a greater chance that Xi and Yj come from the same vehicle. The gray
scale used in Figure 4.1 and Figure 4.3 goes from min(D) to .75×median(D), where D represents
the distance matrix being plotted.

Figure 4.1 (left) shows multiple dark squares along the diagonal, where diagonal entries cor-
respond to distances between signatures of the same vehicle. The distance value of the diagonal
entries are listed in Table 4.1. Note that the diagonal entries corresponding to the congested vehicle
subset are not as dark (i.e., small) as the uncongested ones. It seems that phenomena occurring
specifically during congestion affect the f and g probability density functions (pdf). This is further
corroborated by the plot of the distance matrix for the complete data set, shown on Figure 4.1
(right). For the uncongested vehicle subset, a diagonal line is present and is consistently darker
and visually distinguishable from the off-diagonal D entries. However, dark diagonal entries van-
ish at the lower right portion of the plot, where the distances between vehicle signatures from the
congested vehicle subset are plotted.

The original signal processing algorithm produces different f and g pdfs for different on-ramp
modes. The f and g pdfs become similar during on-ramp congested conditions, which reduces the

Uncongested Conditions Congested Conditions
Index Vehicle Org. Mod. Index Vehicle Org. Mod.

k Type Dist. Dist. k Type Dist. Dist.
76 minivan .25 .23 449 car .50 .41

135 truck .28 .23 459 SUV .30 .35
140 truck .20 .18 471 pickup .42 .24
187 pickup .29 .24 472 car .28 .16
194 truck .71 .70 490 SUV .40 .38
222 car .15 .18 492 car .33 .29
236 minivan .24 .14 516 car .34 .35
259 SUV .30 .30 517 car .36 .25
282 pickup .45 .32 519 car .35 .18
305 car .46 .28 527 car .53 .15
380 car .29 .25
393 SUV .48 .48
419 van .38 .29

Table 4.1: 23 chosen vehicles
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Figure 4.1: Original distance matrix for the (left) 23 chosen vehicles (right) complete vehicle data
set

effectiveness of the matching algorithm. The signal processing method should be able to maintain
the f and g pdfs invariant to traffic conditions.

Vehicle Signatures Revision
Entrance and exit signatures of the 23 chosen vehicles were studied in order to explain the different
f and g pdfs observed for the uncongested and congested vehicle subsets.

Figure 4.2 (b) shows two slices of the entrance and exit signatures of vehicle k = 527. Note
that the upstream slices show more peaks than the downstream ones. Vehicle 527 went slowly
over the entrance array and at free flow speed over the exit array. The extra peak phenomenon was
observed in the signatures of vehicles going slowly or stopping over the entrance arrays. During
congestion, vehicle signatures tend to have more noisy peaks, most of which are small compared
to the dominant peaks of the signatures. A vehicle signature with noisy peaks leads to a larger
µ f and σ f , since the difference on the number of peaks is penalized in the distance calculation
independently of their magnitude.

Another finding was related to the importance of the x, y and z components of a vehicle sig-
nature slice when calculating distances. The original method assigned the same weight to the
distances obtained between the x, y, and z components. By changing these weights, it was ob-
served that it is possible to increase the dissimilarity between the f and g pdfs during congestion.

Sometimes signature slice components (x,y and z) of different vehicles look very similar after
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Figure 4.2: Vehicle k = 527 two signature slices at the entrance and exit arrays (a) raw peak values,
(b) processed for original distance calculation (c) processed for modified distance calculation

the peak sequences have been normalized by the maximum absolute value of their elements as a
preprocessing step before the distance calculation is performed. The distance between such slices
is small and may lead to significant errors in the matching step. It was observed that when the
raw amplitude of the peaks is considered in the distance calculation between such signatures, the
distance increases for signatures from different vehicles and remains unchanged for signatures
from the same vehicle.

Matching Step Revision
The matching algorithm was studied using the 23 chosen vehicles. It was concluded that the
matching rate and its accuracy are directly related to µ f , σ f , µg, σg and β . Furthermore, it was
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Default f and g 23 vehicles f and g Iterative f and g
Both Original Modified Original Modified

µ f .125 .36 .27 .30 .28
σ f .058 .12 .09 .09 .08
µg .67 .54 .60 .56 .62
σg .23 .11 .17 .13 .16

Table 4.2: Different f and g statistics for the original and modified signal processing methods

observed that one of the reasons that explain the low matching rate during the queue estimation
study presented in Chapter 3, even during uncongested on-ramp conditions, was related to the f
and g parameters used at the Hegenberger on-ramp. The f and g statistics used at the ramp where
assumed to be equal to the ones satisfactorily used at many arterial installation sites (see Table 7.2,
second column). This assumption was incorrect, since f and g statistics based on the 23 chosen
vehicles distance matrix (see Table 7.2), show that the default f and g statistics do not accurately
model signature distances at the on-ramp.

It is important to calculate f and g parameters for each test site, since they are site dependent
and influence the matching rate. These parameters can be obtained using an iterative method as the
one suggested in [28], which does not require ground truth data. Note that the iteratively obtained f
and g parameters extracted from the complete vehicle data set are very similar to the ones extracted
from the 23 chosen vehicles for both the original and the modified signal processing methods, and
very different from the default values, as seen in Table 7.2.

4.4 Vehicle Re-Identification Method Modifications

Signal Processing Algorithm Modification
The following modifications were implemented in the original signal processing algorithm:

i) There were adjustments in the way vectors of different sizes are compared using dynamic
time warping. This included modifying the way in which extra peaks are penalized when vectors
being compared are of different sizes. ii) A peak processing step was implemented before the
distance calculation in order to remove noisy peaks resulting from vehicles traveling slowly or
stopping on top of the arrays. This step uses the local time stamp component available for each
signature peak described in Section 2.3. See Figure 4.2 for a comparison between the preprocessed
signature slices and the processed signature slices using the original and the modified methods. iii)
Different weights were assigned to the x, y and z components of the distance between two vehicle
slices. The x component was assigned the larger weight and the y component the smaller one. iv)
The distance calculation is performed without normalizing the peak sequences. Once a distance is
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obtained between the components of two signature slices, a normalization step is performed.

Signal Processing Improvements
The plot on Figure 4.3 (left) is a gray scale coding of the distance matrix of the 23 chosen vehi-
cles signatures using the modified signal processing algorithm. Note that in contrast to Figure 4.1
(left), dark squares are present along the entire diagonal, thus suggesting that f and g statistics are
somehow invariant to on-ramp traffic conditions. In Figure 4.3 (right), where the distance matrix
of the complete data set calculated using the modified distance method is plotted, it is possible to
see a darker diagonal band at the bottom right corner of the plot. This diagonal band corresponds
to distances from signatures generated by the same vehicle in the congested vehicle subset. This
distinction between diagonal and off-diagonal entries was not present in the original distance ma-
trix shown in Figure 4.1 (right), which helps explain why the matching rate was specially low and
inaccurate during congestion.

From Table 4.1 it is possible to see that the modified distance among signatures from the same
vehicle are similar for the uncongested and congested vehicle subsets. Figure 4.4 shows for each
of the 23 chosen vehicles, k, Dk = {d(k, l) = δ (Xk,Yl) | 1≤ l ≤ 23}. For each Dk, the data points
given by δ (Xk,Yl) for l 6= k are plotted as black dots while δ (Xk,Yk) is plotted as a blue circle.
Figure 4.4 (top) contains the distances obtained using the original method. This plot shows that
for vehicles from the congested vehicle set, δ (Xk,Yk) is generally not the smallest entry of Dk,
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set
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which is undesired and degrades the performance of the matching algorithm. With the modified
signal processing method, as displayed in Figure 4.4 (bottom), δ (Xk,Yk) tend to be the lowest
element of Dk by a clear margin, for vehicles belonging to the uncongested and congested subsets.
This increases the matching rate and its accuracy.

Matching Algorithm Modification
The matching algorithm was not modified. However, it was observed that the f and g statistics
as well as β play an important role in the number of matched vehicles and the percentage of
mismatched vehicles produced by the algorithm. These findings were part of the motivation behind
the work presented in Chapter 7, where a tuning system was developed in order to facilitate setting
these parameters for any vehicle re-identification system installation.
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4.5 Vehicle Re-Identification Results

Default vs Iterative µ f , σ f , µg, σg Results
In this section, two different sets of µ f , σ f , µg, σg were used to study the effect of f and g pdfs
variations on the matching algorithm performance for the original and the modified methods. The
default and the iteratively obtained set of parameters, listed in Table 7.2, were used.

Table 4.3 shows the results obtained with the matching algorithm for the complete vehicle data
set, the uncongested vehicle subset and the congested vehicle subset. The modified method has
a higher number of re-identified vehicles in comparison to the original method for both sets of
parameters. The number of matches over the original method results increased by 56% for the
default f and g and by 13 % for the iterative ones. For the original method 23 % of vehicles
were incorrectly matched when using the default parameters and 16 % when using the iterative
parameters. For the modified method, for the default and iterative f and g, the overall percentage
of mismatched vehicles remained the same, 7% . The modified distance method seems to increase
the matching rate in comparison with the original distance method while keeping the percentage of
incorrect matches low and constant for significant µ f , σ f , µg, σg variations. Furthermore, the use
of f and g statistics that properly model the distance between signatures (e.g., iteratively obtained
parameters), makes a significant difference in the matching rate without degrading accuracy.

When the results of the matching algorithm are analyzed by vehicle subset, further differences
are observed. First, the percentage of mismatched vehicles is larger for the congested vehicle
subset in comparison to the uncongested one, for both methods. The percentage of incorrectly
matched vehicles changes from 16% for the uncongested subset to 62.5% for the congested one
when using the original method with default f and g parameters. The percentage of mismatched
vehicles changes from 12% to 31% when the iterative f and g parameters are used instead. The
modified distance method also shows differences in the accuracy obtained for the uncongested
and congested vehicle subset results. The percentage of incorrect matches changes from 6% to
11% when using default f and g parameters. This number changes from 5% for the uncongested

Default f and g Iterative f and g
Original Modified Original Modified

Matched (complete data set) 106 166 325 368
incorrectly matched 24 11 53 24
Matched (uncongested subset) 90 139 257 279
incorrectly matched 14 8 32 14
Matched (congested subset) 16 27 68 89
incorrectly matched 10 3 21 10

Table 4.3: Matching results using the default and iterative f and g from Table 7.2 for the original
and modified method
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Figure 4.5: (left) Matched vehicles as a function of β , (middle) % of uncongested mismatched
vehicles as a function of β and (right) % of congested mismatched vehicles as a function of β

subset to 11 % for the congested one when using the iterative f and g parameters. The decrease
in performance of the matching algorithm during congestion is observed for both the original and
the modified vehicle re-identification method. However, the original method accuracy is highly
dependent on the values of µ f , σ f , µg, σg while the accuracy of the modified method seems to
remain unchanged.

Iterative µ f , σ f , µg, σg with varying β Results
The matching algorithm results presented in this section were obtained using the iteratively ob-
tained µ f , σ f , µg, σg parameters and using both the original and the modified vehicle re-identification
method as β was varied.

From Figure 4.5 (left) it is observed that the modified method has higher matching rate for all
β values considered for this analysis for the complete vehicle data set, the uncongested vehicle
subset and the congested vehicle subset. Figure 4.5 (middle) shows the percentage of incorrectly
matched vehicles for the uncongested vehicle subset as function of β . Note that both methods have
a mismatch percentage that remains somehow constant as β is varied. However, an advantage of
the modified distance method is that the percentage of incorrect matches is around or below 8% , in
comparison to the 15% obtained with the original method. Figure 4.5 (right) shows the percentage
of incorrectly matched vehicles for the congested vehicle subset. The percentage of incorrect
matches are larger for all β for the original and modified method in comparison to the uncongested
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results. Observe that while the original method mismatch percentage increases from 20% at low
β values to 60% for large ones, the modified method percentage of incorrectly matched vehicles
remains around or below 14% for all β values.

The original algorithm matching rate and accuracy is affected by β variations. The modified
distance method matching rate is affected by changes in β , but the accuracy of the matches seems
to remain constant.

4.6 Application: Link Vehicle-Count based on Vehicle

Re-Identification
In this section, link vehicle-count estimation results for the Hegenberger on-ramp and a San Pablo
Avenue segment in Albany, CA, are presented.

For the Hegenberger on-ramp analysis, the main goal is to show that the modified method im-
proves link vehicle-count estimation performance, especially for saturated conditions. In the first
part of the Hegenberger analysis, the same data set presented in Chapter 3 is used to show improve-
ment on the queue estimate. In the second part, the analysis is based on queue estimation results
using the modified method on data from March 21 to March 27, 2011. With these data sets it is
possible to comment on the consistency and reliability of the estimated queue profiles by compar-
ing them with profiles that are expected under different circumstances (e.g., morning vs afternoon,
weekday vs weekend, ramp metering vs no ramp metering), as well as by comparing them with
queue estimates based on the speed and flow-measurements method discussed in Chapter 3.

In the second part of this section, a study of arterial link vehicle-count estimation using the
original and the modified method is presented. The analysis is done with vehicle detection data
from a San Pablo Avenue segment that has been used in previous studies, [28, 27], and for which
the original vehicle re-identification system showed a high matching rate and good accuracy, but
where stop-and-go traffic around the sensor arrays was uncommon.

Improved On-ramp Queue Estimation

Queue Estimation for May 11, 2011

With the modified vehicle re-identification algorithm and with f and g parameters that correspond
to the distance matrices calculated at the Hegenberger installation, the vehicle matching rate and
accuracy during saturated ramp conditions was improved, resulting in a more accurate and reliable
queue estimate.
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Figure 4.6 (top) shows the queue estimation results presented in Chapter 3 using the original
method with information about instances when vehicles were re-identified and additional informa-
tion showing which of those matches were incorrect (marked with red circles). For the time interval
corresponding to the plot, the matching rate, out of the maximum possible based on the recorded
signatures, was 22 %, i.e., 107 out of 477, and from these matched vehicles, 25 % were incorrectly
matched. There were 26 mismatched vehicles, 12 of which were mismatched during the congested
time interval, when only 135 out of the 534 vehicles that were studied during the complete analysis
went through the on-ramp. It is clear that one of the reasons that explains the poor performance of
the queue estimation method was a considerably large percentage of mismatched vehicles during
congestion.

Figure 4.6 (middle) shows the queue estimation results for the same data used in Chapter 3
using the original method and f and g parameters that correspond to the installation at the Hegen-
berger on-ramp. Again, the plot shows the ground truth and estimated queue lengths with informa-
tion about instances when vehicles were re-identified and additional information showing which
of those matches were incorrect (marked with red circles). With the new f and g parameters, the
matching rate increased to 58 %, i.e., 276 out of 477 vehicles, and from these matched vehicles, 15
% were incorrectly matched. There were 42 mismatched vehicles, 18 of which were mismatched
during the congested time interval. During uncongested conditions, the queue estimate improved,
especially during the time interval [16.3 h, 16.4 h], as a result of the higher matching rate and
smaller percentage of mismatched vehicles. During congestion, the queue estimate improved, but
it was still inaccurate and with significant errors that are unacceptable for accurate queue control
applications. This poor performance during congested conditions, as before, is closely related to
the large percentage of mismatched vehicles.

Figure 4.6 (bottom) shows the queue estimation results for the same data used in Chapter 3
using the modified method and f and g parameters that correspond to the installation at the Hegen-
berger on-ramp, and that were also used in Figure 4.6 (middle). Figure 4.6 (bottom) shows the
ground truth and estimated queue lengths with information about instances when vehicles were re-
identified and additional information showing which of those matches were incorrect (marked with
red circles). The matching rate, using the modified method and the adjusted parameters, increased
to 70 %, i.e., 332 out of 477 vehicles, and from these matched vehicles, 7 % were incorrectly
matched. There were 23 mismatched vehicles, 9 of which were mismatched during the congested
time interval. During uncongested conditions, the queue estimate improved over the two previ-
ous cases due to a higher matching rate and smaller percentage of mismatched vehicles. During
congestion, the queue estimation error is larger in comparison to the uncongested case, but with
the modified vehicle re-identification algorithm, the error remains bounded and the queue estimate
is able to track the ground truth queue length with sufficient accuracy for accurate queue control
applications. Mismatched vehicles cannot be completely avoided, but since now they represent
a small percentage of the matched vehicles, they do not introduce significant errors in the queue
estimate. However, there are time instances when there are no mismatched vehicles, e.g., [17.23
h, 17.35 h], and still, queue estimation errors are observed. These errors are due to an increase
in flow-measurement inaccuracies during on-ramp congested conditions. Nevertheless, a higher
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Figure 4.6: Hegenberger on-ramp queue length estimates using β = 0.5 with (top) the original
method and default f and g, (middle) original method and Hegenberger f and g and (bottom)
modified method and Hegenberger f and g.

matching rate allows for a better and rapid correction of these errors when they occur.

Queue Estimation from March 21 to March 27, 2011

For the following analysis, ground truth data from video are not available to study the perfor-
mance of the vehicle re-identification algorithm or the queue estimation results. However, there
are multiple sources of information that can be used to infer what would be reasonable results.
First, note that from the vehicle re-identification algorithm, it is possible to calculate the travel
time of vehicles going through the on-ramp, as explained in Section 2.4. With the travel time, it
is possible to check if there are any major problems with the vehicle re-identification algorithm
results. Travel times should not be smaller than zero, and, unless a major accident occurs on the
freeway and blocks the on-ramp, should not be larger than 8 minutes, calculated based on the
minimum allowed metering rate and the Hegenberger on-ramp capacity. If travel times happen
to be consistently outside this range, then that would indicate a very bad vehicle re-identification
performance. Second, queue estimates should not be less than zero or greater than 25 vehicles.
Furthermore, it is expected that during weekdays there should be an increase in the queue length
and/or travel time during the morning peak traffic time, i.e., 6 a.m. to 9 a.m., and the afternoon
traffic time, i.e., 3 p.m. to 7 p.m., because during those times ramp metering is active and demand
tends to be higher. On weekends, ramp metering is not active, and demand is usually low unless a
special event takes place, e.g., event at the Oracle Arena or Oakland Coliseum located next to the
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Hegenberger on-ramp. All these indirect sources of information about what can be expected at the
on-ramp in terms of travel time and queue lengths were used to comment on the reliability of the
vehicle re-identification and queue and travel time estimation results using the modified method
for one week. Additionally, in order to further study the performance of queue estimation based on
the modified method, the data for two time intervals during this week were used. For both times,
the queue estimation method based on speed and flow-measurements discussed in Chapter 3 was
used for comparison and validation purposes.

Figure 4.7: Hegenberger on-ramp (top) queue estimates and (bottom) travel time estimates from
Monday, March 21, to Sunday, March 27, 2011

Figure 4.7 shows the queue length and travel time estimates from 12 a.m. (0 h) Monday,
March 21, 2011, to 11:59 p.m. (23.9 h) Sunday, March 27, 2011. In the figure it is possible to
observe differences between the estimates generated during weekdays from those obtained based
on weekend data. For standard weekdays in the Hegenberger on-ramp, the queue length reaches
values of around 22 vehicles, and travel times of up to 300 seconds. During standard weekend
days, a different pattern is observed. Queue lengths tend to be smaller, reaching usually around 10
vehicles, and travel times generally do not exceed 100 seconds. For the week under study, March
21 to March 25 correspond to standard weekdays, March 27 corresponds to a standard weekend
day, and March 26 corresponds to a non-standard weekend day that resulted from a game at the
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Oakland Coliseum.
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Figure 4.8: Queue estimates at the Hegenberger on-ramp on Tuesday, March 22, 2011, from 15.25
h to 18.25 h

Figure 4.7 (top) shows the queue length estimates for the complete week under analysis. In
the queue estimates from March 21 to March 25 it is possible to observe a time interval for which
the queue lengths are higher than during the rest of the day. This time period corresponds to the
afternoon peak hour, when ramp metering is activated, demand is higher than during the rest of the
day, and vehicle queues that extend around or beyond the entrance of the on-ramp are frequently
formed. During weekdays, ramp metering is also active during the morning peak hour. However,
the queue estimate profiles for these days do not suggest that ramp metering is active and that
longer queues are forming during the morning. This is expected because at the Hegenberger on-
ramp, demand is not high during the morning peak hour in comparison to the afternoon rush
hour. Nevertheless, even when the vehicle queues do not reach values larger than 15 vehicles, it
is possible to observe that during a standard weekday morning with short queues, drivers going
through the on-ramp experience a larger delay as a result of active ramp metering, as observed in
Figure 4.7 (bottom) at the early hours of each weekday. The maximum travel time observed for the
different weekdays vary from day to day. This is the result of the traffic responsive ramp metering
controller used at the ramp, which tends to increase the waiting time of vehicles in the queue if
mainline traffic conditions in the vicinity of the on-ramp degrade. For this particular week, the
largest travel times are observed during March 23 and March 24, which according to PeMS data
[40], were the two weekdays with the worst mainline conditions around the Hegenberger on-ramp.

Figure 4.8 plots two vehicle queue profiles, one estimated with the method based on the modi-
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fied vehicle re-identification algorithm and the other with the method based on vehicle counts and
speed, for Tuesday, March 22, from 15.25 h to 18.25 h. This is a time interval during the afternoon
rush hour when the on-ramp was expected to have congested and uncongested periods as the re-
sult of ramp metering and oscillations in demand. It is important to emphasize that both estimates
could take negative values or be larger than on-ramp capacity. From the figure it is clear that both
queue estimates follow each other closely, but as in Chapter 3, the queue estimate using speed and
flow-measurements tends to slightly overestimate the queue. Both queue profiles are consistent for
the complete time interval and for the most part are within a reasonable range, i.e., [0,25], which
suggest that both estimates are likely to be close to the real queue length. Furthermore, the match-
ing rate over the time interval shown in the plot is 75 %, i.e. 882 out of 1172 vehicles that entered
the on-ramp were re-identified, which is better than the matching rate from the previous section,
and further increases the confidence on both estimates.
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Figure 4.9: Queue estimates at the Hegenberger on-ramp on Saturday, March 26, 2011, from 16.5
h to 17.83 h

Figure 4.7 shows queue length and travel time estimates for March 26 2011, a non-standard
weekend day. For this day it is possible to observe a time interval in the afternoon for which the
estimates are significantly larger. On March 26 there was a soccer game at the Oakland Coliseum
that ended at around 16 h, and that induced a large demand at the on-ramp because people exiting
the stadium were trying to get into the freeway. Since the demand was high and constant and ramp
metering was not activated, the queue length was not oscillating between uncongested and con-
gested modes, as it was the case for the afternoon on March 22. Even when the number of vehicles
at the on-ramp was around capacity from around 16.5 h to 17.8 h, as observed in Figure 4.9, the
travel time experienced by the drivers during this time was less than 100 seconds, significantly
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less than the travel time observed during an average weekday rush hour when vehicle queues had
similar lengths and ramp metering was active. This scenario clearly illustrates that knowing travel
time information besides queue length allows for a better understanding of driving conditions at
the on-ramp in comparison to just knowing queue lengths.

Figure 4.9 plots two vehicle queue profiles, one estimated with the method based on the modi-
fied vehicle re-identification algorithm and the other one with the method based on vehicle counts
and speed, for Saturday, March 26, from 16.5 h to 17.83 h. Both estimates are unconstrained
and can take any value on the interval [-Inf, Inf]. During this period, the on-ramp transitioned to
congested conditions at the beginning of the interval, stayed in a congested state for more than an
hour, and then it transitioned back to an uncongested state. The two estimates on the figure have
a similar shape, but the one using speed and flow-measurements significantly overestimate the
length of the queue. This degradation in performance may be due to driving behavior and queue
dynamics changes as the result of inactive ramp metering, which makes Eq. (3.1) less reliable.
The queue profile based on vehicle re-identification is reasonable and consistent with what it is
expected at the on-ramp right after an event at the coliseum, i.e., a saturated ramp for an extended
period right after the end of the event due to a high constant demand and a queue estimate within
[0,25]. Furthermore, these queue estimates are based on a 67 % matching rate, i.e. 881 out of
1320 vehicles that entered the on-ramp were re-identified, which is an acceptable matching rate for
accurate queue estimation, as discussed in Section 2.4.

In this section we presented the queue length and travel time estimates calculated using the
modified vehicle re-identification system for one week in March 2011. We showed how queue
lengths and travel times vary as a function of the day of the week (i.e. weekday vs. weekend), due
to events taking place around the Hegenberger on-ramp (e.g., games at the Oakland Coliseum) and
as a function of ramp metering. The results using the modified method were reasonable, consistent
with the analysis documented in Chapter 3, and showed that queue length information may not be
sufficient to evaluate traffic conditions and that by knowing travel time in addition to queue length,
it is possible to get a much better assessment of the driving conditions at the on-ramp.

Arterial Link Vehicle-Count Estimation: Original vs Modified Method

Arterial Test Site

The San Pablo Avenue arterial link used for this analysis is a 0.24 km (0.15 mile)-long segment
that intersects Washington Avenue and Solano Avenue in Albany, CA (see Figure 4.10). Even
though the San Pablo avenue is a two-way street, the data presented in this section correspond to
the fast lane of the southbound direction, where two five sensor arrays were installed as shown in
Figure 4.10. This test site has been used for analysis related to arterial travel time estimation based
on the original vehicle re-identification system [28, 27, 41].

This site is a suitable location to study the performance of an arterial link vehicle-count estima-
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Figure 4.10: 0.15-mile segment of San Pablo Avenue in Berkeley, CA: (a) aerial view with long
queues and (b) segment schematic

tor, since it has a configuration and driving dynamics that encompasses what can be encountered in
many arterial streets where traffic-responsive intersection control is desired: drivers can go into or
out of the link at any location along the segment, as the result of lane changing, and large number
of vehicles get in and out of the link not only at the start and end locations, but also at the intersec-
tions in between. Furthermore, queue formation is common in this link as the result of the traffic
light at intersection between San Pablo Avenue and Solano Avenue, as observed in Figure 4.10 (a).

The locations of the sensor arrays at this site follow the manufacturers guidelines, i.e., the
arrays were installed downstream of intersections to maximize the chances of vehicles going at
free flow speed as they travel over the sensor arrays.
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Ground Truth Data

For this analysis, it was possible to obtain ground truth data from a video recorded from 2:43 p.m.
(14.7 h) to 3:43 p.m. (15.7 h) on Thursday, October 30, 2008. A camera was placed at a height and
orientation that captured in a single shot, the complete link formed by the two arrays. This video
was previously used for an experimental analysis of the original vehicle re-identification algorithm
and travel time estimator in [27]. The ground truth data was useful in this section to compare vehi-
cle re-identification results between the original and the modified algorithms. However, in order to
analyze the performance of link vehicle-count estimation results, it was necessary to extract addi-
tional information from the video. Ground truth link vehicle-count data was recorded by stopping
the recording every 15 seconds, and counting the number of vehicles in the fast lane in between
the two sensor arrays. The link vehicle count ground truth data is plotted in Figure 4.11.

Results

This section is divided into two parts. In the first part, vehicle re-identification results based
on the original and the modified method are presented and compared among each other and to
ground truth data. In the second part of this section, link vehicle-count estimates based on both
re-identification methods are compared to ground truth data.

The following discussion is based on data from Table 4.4. For the time interval from 14.7 h to
15.7 h on October 30, 2008, 539 vehicles were observed to go over the start (upstream) array and
473 vehicles were observed to go over the end (downstream) array. The vehicle detection system
during the same time interval recorded 524 vehicles at the upstream location and 424 vehicles at
the downstream location. As in the Hegenberger on-ramp, there are flow-measurement errors, with
an overall 3% counting error at the upstream location and 10 % error at the downstream location.
349 vehicles, out of the 539 vehicles that went over the upstream array, exited the link going over
the downstream array. Out of the 349 vehicles, the original method re-identified 84 % , with 4 %
of them incorrectly matched. On the other hand, the modified method re-identified 83 % of the
vehicles, with a 6 % mismatch. Based on these results, it seems that the modified method does not
offer any improvement in performance when free flow traffic conditions are present in the vicinity
of the sensor arrays, as it was the case at this site. Furthermore, the original and the modified
methods seem to have comparable performance under such conditions.

The link vehicle-count estimates for this analysis were calculated every time a vehicle exiting
the arterial segment at the downstream location was re-identified. For this reason, Eq. (2.18) was
used instead of Eq. (2.19), used for queue estimation at the Hegenberger on-ramp. An important
difference between both analyses relies on the granularity of the ground truth data. For the Hegen-
berger analysis, ground truth data for link vehicle-count was updated every time a vehicle entered
or left the on-ramp. On the other hand, for this analysis, link vehicle-count ground truth data is not
as detailed and is only updated every 15-s. By reducing the frequency at which link vehicle-counts
are estimated by using Eq. (2.18) instead of Eq. (2.19), it is easier to compare the results.
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Ground Original Modified
Truth Method Method

Start Array End Array Start Array End Array Start Array End Array
Vehicle Count 539 473 524 424 524 424

Matches 349 293 289
Incorrect Matches - 11 17

Table 4.4: Ground truth and matching results using µ f = .18, σ f = .07, µg = .60, σg = .20 and
β = .50

At the San Pablo segment, it is not possible to measure nout , the number of vehicles that go
over the upstream array but exit the link before reaching the downstream array, or nin, the number
of vehicles that entered the link without going over the upstream array and exited it going over the
downstream array. To overcome this limitation, nnet = nout −nin is taken into account by using η ,
a correcting factor applied to the link vehicle-count estimated under the assumption that nnet = 0,
as explained in detail in Section 2.4. For this analysis, η =−0.15, which was chosen based on the
data from Table 4.4.

Figure 4.11 (top) shows the link vehicle-count ground truth data and the estimate based on
the original vehicle re-identification method from 14.7 h to 15.7 h on October 30, 2008. In the
plot, the estimate is updated only when a vehicle is re-identified, marked with a blue dot. A red
circle around a blue dot indicates that at that particular instance, the re-identification is incorrect.
From the plot, it is clear that the estimate follows the ground truth data closely. Note that even
when mismatched vehicles are observed, the estimation errors remain small. Figure 4.11 (bottom)
shows the same type of plot, but showing estimation results based on the modified method. Even
though the mismatched vehicles are different for both methods, the performance is similar, and the
estimate closely tracks the ground truth link vehicle-count. Figure 4.11 further corroborates that
both methods have comparable performance when stop-and-go traffic is not present in the vicinity
of the arrays. Additionally, it shows that accurate and reliable link vehicle-count can be achieved
on arterial links using the estimation method based on vehicle re-identification, and discussed in
Section 2.4.

4.7 Discussion
The vehicle re-identification method based on matching vehicle magnetic signatures obtained with
wireless magnetic sensors was studied in detail using data from the Hegenberger single lane on-
ramp. Based on this study, different modifications were implemented in the algorithm in order to
address limitations of the system when vehicles travel slowly or stop while going over the detectors.
The original and modified vehicle re-identification algorithm results were compared against ground
truth data obtained from video. Based on the ground truth data it was possible to determine the
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Figure 4.11: Link vehicle-count estimates using vehicle re-identification with (top) the original
method and (bottom) the modified method

percentage of vehicles that were re-identified and the number of vehicles that were misidentified as
a function of different algorithm parameters. The modified distance method resulted in an increase
in the number of re-identified vehicles over the original system while keeping an overall incorrectly
matched vehicle percentage below 10% when matching algorithm parameters like µ f , σ f , µg, σg,
and β were varied. The best performance was observed during uncongested on-ramp conditions,
with a percentage of mismatched vehicles around or below 8%, while during congested on-ramp
conditions this number increased to 14%.

In this Chapter, it was also possible to quantify how an improved vehicle re-identification al-
gorithm directly impacts link vehicle-count estimates. Using the original and the modified vehicle
re-identification systems, the queue length at the Hegenberger on-ramp for the same time inter-
val used for the analysis presented in Chapter 3 was re-evaluated. The queue estimation accuracy
improved significantly with the modified method, as the result of a higher matching rate and the
decrease in the percentage of mismatched vehicles, especially during congested conditions. Fur-
thermore, by using one week of data from March 21 to March 27, 2011, it was possible to show
that with the modified vehicle re-identification method, queue estimates are consistent with what is
expected in the field. Finally, the queue estimation based on the modified vehicle re-identification
method and the queue estimation based on speed and flow-measurements were compared for two
time intervals, one that corresponded to a common queue profile during peak traffic while the other
corresponded to a queue profile resulting from a special event. Based on these comparisons, the
modified vehicle re-identification method seemed to be better at estimating the queue, in particular,
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during the special event time period.

Finally, by using the vehicle re-identification method for arterial link vehicle-count estimation
on the San Pablo Avenue site, it was possible to show two things: i) the original and the modified
vehicle re-identification algorithms yield comparable results when stop-and-go traffic is not present
as vehicles go over the sensor arrays, and ii) the link vehicle-count presented in Section 2.4 is an
accurate and reliable estimator that can be used for real-time intersection traffic control applications
that require arterial link density.
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Chapter 5

Arterial Travel Time Estimation based on

Vehicle Re-Identification: Performance

Analysis

5.1 Introduction
The research presented in this chapter is a continuation of the work presented in Chapter 4, where
the vehicle re-identification algorithm used in the arterial travel time estimation system discussed
in Section 2.4 and considered for this analysis, was revised, improved and validated at a single lane
loop on-ramp and at a short arterial segment. The resulting modified method showed an improved
vehicle re-identification matching rate and accuracy at the on-ramp, where stop-and-go traffic in
the vicinity of the upstream sensor array was common.

The original vehicle re-identification method has been used and evaluated at multiple sites,
where the vehicle detection systems were usually installed following the manufacturer recommen-
dations to avoid stop-and-go traffic around the sensor arrays. A detailed study is presented in [43],
where travel time estimation based on the original vehicle re-identification system was evaluated
along the Pendleton Pike corridor in Indianapolis, IN, using six arterial segments, each approxi-
mately 1 mile long, for 3 hours during the afternoon peak traffic time. These segments had a 40/45
mph speed limits, and there were at least two signalized intersections in each of them. The reported
percentage of matched vehicles out of the entering lane volume for each of the segments was in the
range [38%, 48%]. This range may seem low, but note that the matching rates in this analysis were
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not calculated based on the number of vehicles that went through the links but on the volume at the
upstream locations, i.e., lane changing and inflow and outflow of vehicles at the intersections were
not taken into account. The analysis reports the accuracy of the matched vehicles using ground
truth data from video. Based on the camera system in place, it was possible to confirm that on av-
erage, at least 90% of the matched vehicles were correctly re-identified (sometimes confirmation
was not possible due to visual occlusions). This study concluded that the system performance was
accurate and reliable for the segments under consideration and that the matching rates were large
in comparison to other probe vehicle data collection methods.

Detailed studies of the original vehicle re-identification system at heavily congested arterial
streets are not available. Since performance analyses based on ground truth data are time con-
suming and expensive, it is usually assumed that the system performance at such locations should
be comparable to those reported in studies like [27, 43]. However, after observing how different
vehicle re-identification results can arise as the result of stop-and-go traffic in the vicinity of the
sensor arrays, as discussed in Chapter 4, it was necessary to validate the vehicle re-identification
system at an arterial site where congested traffic conditions were known to occur. In order to study
the performance of arterial travel time estimation based on the original and the modified method,
a field test was performed in a segment of West 34th Street in New York City (Figure 5.1). The
performance of the original system and the system with the modified vehicle re-identification algo-
rithm was studied using ground truth data obtained from video. Note that in heavily used arterial
streets, where stop-and-go traffic is similar to the one observed in on-ramps under congested con-
ditions, the modified vehicle re-identification algorithm developed in Chapter 4 has the potential to
improve travel time estimation performance.

This chapter is organized as follows: The test site and vehicle detection installation are de-
scribed in Section 5.2. The ground truth (GT) and the sensor array data are explained in Section
5.3. An analysis of the ground truth and the vehicle detection system data is presented in Sec-
tion 5.4. Section 5.5 contains the results of the arterial travel time estimation methods and the
performance analysis of both methods based on ground truth data. A discussion of the results is
presented in Section 5.6.

5.2 Test Site
The New York City arterial test site is a 0.51 km (0.32 mile)-long segment of West 34th Street
that intersects the 7th and 8th avenues (see Figure 5.1). The segment is formed by three lanes,
however, this analysis focuses on the travel time estimation of vehicles in the fast and slow lanes.
The third one, a bus only lane, was not transited during the analysis period because it was blocked
at different locations along the segment as shown in Figure 5.2 (b).

This test site is a suitable location to study the performance of arterial travel time estimation
systems, since it has a configuration and driving dynamics that encompasses what can be encoun-
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Figure 5.1: 0.32-mile segment of 34th Street in New York City

tered in arterial streets in many big cities: drivers are aggressive, lane changing is significant, taxis
and buses stop as they go across the segment, people double park, and there is vehicle queueing
at the detector locations. Furthermore, vehicles get in and out of the segment not only at the start
and end locations, but also at the intersections in between. If a travel time estimation system yields
accurate results under these traffic conditions, then it can be expected to have a comparable or
better performance in arterial streets where traffic conditions are more ordered and less congested.

The locations of the sensor arrays at this test site do not follow the manufacturers guidelines.
The sensors were installed at the locations where tag readers had been installed in order to be able
to make a comparative analysis between different arterial travel time estimation systems. This
resulted in vehicles going over the detector at fast and slow speeds, and even resting on top of them
while waiting for the vehicles on the queue to move. Normally sensor arrays are installed just after
intersections to maximize free flow traffic conditions in their vicinity.

There was a winter storm with heavy snowfall that ended one day before the analysis period.
This resulted in difficult driving conditions that are not typically encountered at many installation
sites. The snow on the street blocked part of the bus lane along the segment due to snow being
plowed to the side of the street, which resulted in vehicles (e.g., taxis) stopping or double parking in
the slow lane. This led to considerable lane changing from the slow to the fast lane and to vehicles
traveling off the center of the lane. The traffic conditions around the sensor arrays at this arterial
site are similar to the congested traffic conditions around the upstream array at the Hegenberger
on-ramp, described in Chapter 4, for which the modified method improved matching performance.
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Figure 5.2: Segment (a) start (upstream) location and (b) end (downstream) location

Vehicle Detection System
The vehicle detection system deployed at the New York test site and used for this study consists of
two access points and 20 wireless magnetic sensors installed in a five sensor array configuration
in the middle of the fast and slow lanes at the start and end locations, as shown in Figure 5.2 and
Figure 5.3 . See [19] for more details on this vehicle detection system.

5.3 Data

Ground Truth Data
Ground Truth (GT) data were obtained from videos recorded on January 28, 2011 from 10:54 am
to 11:41 am. A time stamp, transited lane, vehicle type, and the vehicle position with respect to
the middle of the lane were recorded for each vehicle entering or leaving the arterial segment at
the start and end locations.

Two independent cameras were used to obtain the ground truth data. From the first camera
(Figure 5.3 (a)) it was possible to obtain the time slane

GTk
when vehicle k entered the arterial segment

at the start location and went across the sensor array located on either the f ast or the slow lane,
where slane

GT1
≤ slane

GT2
≤ ·· ·slane

GTNGT
. From the second camera (Figure 5.3 (b)) it was possible to get

the time t lane
GTl

when vehicle l exited the arterial segment and went through the downstream array
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Figure 5.3: Camera recording vehicles at (a) the START location and at (b) the END location

located on either the f ast or the slow lane, where t lane
GT1
≤ t lane

GT2
≤ ·· · t lane

GTMGT
. The data set used

to obtain a GT travel time distribution consists of two vectors {slane
GTk

,k = 1, · · · ,NGT = 495} and
{t lane

GTl
, l = 1, · · · ,MGT = 434}.

The ground truth matching of upstream to downstream vehicles k→ l was done visually and
resulted in 318 matches. 177 entering vehicles k did not have a matching exiting vehicle l (e.g.,
vehicles turned or parked before reaching the end location) while 116 exiting vehicles l were not
matched to any entering vehicle k (e.g., vehicles got into the segment at an intersection or were
originally parked inside of it).

Vehicle Detection System Data
Consider a link formed by one of the start arrays, laneS, and one of the end arrays, laneE. Dur-
ing the video recording time interval, detection events indexed i = 1, · · · ,NlaneS were registered
by laneS at times slaneS

1 < slaneS
2 < · · ·slaneS

NlaneS . This array measured a signature X laneS
i each time

there was a vehicle detection event i together with the time slaneS
i . Detection events indexed

j = 1, · · · ,MlaneE were registered by laneE at times t laneE
1 < t laneE

2 < · · · t laneE
MlaneE . This array mea-

sured a signature Y laneE
j each time there was a detection event j together with the time t laneE

j . For

this study, the vehicle detection system data consists of four arrays: (sslow
i ,X slow

i ) , (s f ast
i ,X f ast

i ),
(tslow

j ,Y slow
j ) and (t f ast

j ,Y f ast
j ). Table 5.1 summarizes the vehicle detection system counts and com-

pares them against the ground truth. Note that detection errors cannot be avoided and may create
multiple signatures of the same vehicle at one location or may result on missing signatures due to
undetected vehicles, as discussed in Chapter 3 and Chapter 4.
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START location END location
GT Array GT Array

N f ast 205 214 M f ast 334 324
Nslow 290 292 Mslow 100 220

N 495 506 M 434 544

Table 5.1: Vehicle counts based on ground truth and sensor arrays data

k l Vehicle Type Lane: Start→ End Travel Time [sec]
11 τ Taxi, car – –
12 τ SUV – –
13 11 Taxi, car f ast→ f ast 49
14 12 SUV f ast→ slow 50
15 18 Car f ast→ f ast 107
16 τ Taxi, prius – –
17 τ Car – –
18 19 Bus slow→ f ast 116
19 τ Car – –
20 20 Taxi, car slow→ f ast 116
21 21 SUV f ast→ slow 116
22 22 Taxi, minivan f ast→ f ast 115
23 24 Bus slow→ f ast 121
24 26 Car slow→ f ast 120
25 τ Minivan – –

Table 5.2: Chosen vehicles

The vehicle re-identification algorithm summarized in Section 2.3 can be independently ap-
plied to the following combinations of data arrays: f ast → f ast, f ast → slow, slow→ f ast, and
slow→ slow, even though traditionally only the first and the fourth combinations are used, i.e.,
lane changing is assumed to be negligible.

Subset of Vehicles

In order to be able to analyze the system performance in detail, a platoon of 15 continuous vehicles
were chosen from the 495 vehicles that entered the arterial segment at the start location. These
vehicles are shown in Table 5.2. From this subset, a few vehicles were chosen to analyze their
vehicle signatures.
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5.4 Ground Truth and Vehicle Detection System Data Analysis

Lane Changing
Lane changing can have a significant degrading effect on the travel time estimation system per-
formance if it continuously occurs as vehicles are going over the sensor arrays. If vehicles are
traveling evenly in between lanes as they are going through the start or end location, the signature
is split between both arrays at that location, and the middle part of the signature, which is generally
the most useful, is not correctly measured by any of them. When this happens vehicles are very
likely to be unmatched by the algorithm, reducing the vehicle re-identification rate.

Lane changing was very common during the analysis period. The main reason people were
changing lanes at the arterial segment was to overtake vehicles obstructing the slow lane. A large
portion of the vehicles that changed lanes close to the end location triggered a detection event at
both the fast and slow sensor arrays. This is reflected in the data from Table 5.4, that shows that
122 vehicles that entered the segment through the slow lane, exited it through the fast lane, while
only 22 vehicles entered in the fast lane and exited in the slow one. Furthermore, Table 5.1 shows
an overall 25% vehicle counting error by the vehicle detection system at the end location, while
counting error in the start location was only 2% .

The large discrepancy in vehicle counting and the continuous lane changing were the result of
vehicles double parked in the slow lane just downstream of the end location for extended periods
of time. This forced vehicles on the slow lane to change to the fast lane as they were exiting the
segment. Many of these vehicles were almost completely changed to the fast lane as they were
going over the end location, but some of the sensors from the slow array were also triggered by
them. The exiting signatures of vehicles k = 15, 18 and 23 listed in Table 5.2 were some of the
signatures studied because these vehicles were detected by both arrays as they were exiting the
segment. Signatures from the slow lane array under this condition contained no useful data; most
of the vehicle signature information was captured in the signature data measured by the fast lane
array. After this analysis it was observed that when a vehicle triggers detection events at multiple
arrays at the same location while going mostly in one lane, significant vehicle counting errors in
one of the lanes may result. However, this would barely affect the travel time estimation results
because signatures coming from the unused lane array would yield large distances in the signal
processing step of the vehicle re-identification algorithm (see Section 2.3) which would make
them unmatched.

First In, First Out (FIFO) Condition
As it was mentioned in Section 2.3, the matching algorithm is constrained and does not allow
overtaking. In other words, when the matching step is performed, the sequence of matched vehicles
satisfies the FIFO condition. With the ground truth data collected from video it is possible to
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kslow → lfast Matching Matrix: Longest GT FIFO Match Sequence (95)
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Figure 5.4: Color map of the ground truth mapping k→ l for the slow→ f ast link: (left) complete
vehicle sequence (right) largest vehicle sequence satisfying FIFO

determine the effect of the FIFO constraint on the matching rate upper bound. Note that since the
vehicle re-identification algorithm is run independently for different array combinations, the FIFO
constraint is only imposed among vehicles going on the same link.

Figure 5.4 (left) is the gray scale coding of a matrix that relates the start vehicle k entering the
segment through the slow lane start array to the vehicle l exiting the segment through the fast lane
end array (i.e., link slow→ f ast) based on the ground truth mapping k→ l. If the kth vehicle (row)
and the lth vehicle (column) correspond to a visually re-identified vehicle, the (k, l) pixel in the
color map is shown as black, otherwise it is white. A perfect matching algorithm would re-identify
122 vehicles across the slow→ f ast link. However, if a FIFO constrained vehicle re-identification
algorithm is used instead, it would be possible to match at most 95 vehicles, which corresponds to
the number of elements in the largest vehicle sequence, out of the 122 vehicle sequence shown in
Figure 5.4 (left), that satisfy the FIFO constraint. Figure 5.4 (right) shows the gray scale coding of
the largest sequence of vehicles satisfying FIFO. For this particular link, 78 % is the upper bound
on the matching rate that could be expected from the re-identification algorithm summarized in
Section 2.3 assuming perfect performance (i.e., all the vehicles in the FIFO sequence are correctly
matched).

Table 5.4 lists, in the second and third columns, the number of vehicles that went across each
of the links in the arterial segment. In the fourth and fifth columns, this table lists the number
of vehicles in the largest vehicle sequence that satisfy the FIFO constraint for each of the links,
which correspond to the upper bound on the number of possible re-identified vehicles for a FIFO
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Vehicle Start End Re-Identified 25th Percentile Median 75th Percentile
Type Counts Counts Vehicles TT [sec] TT [sec] TT [sec]

bicycle 2 4 1 126 126 126
bus 30 22 17 60 106 142
car 111 101 75 51 100 116

minivan 23 20 14 52 87 115
pick up 13 7 6 64 87 107
SUV 93 86 60 50 80 109
taxi 160 123 97 50 94 115

truck 32 36 25 58 103 117
van 21 35 23 50 66 110

TOTAL 495 434 318 51 98 115

Table 5.3: Ground truth data by vehicle type

constrained matching algorithm. From this table it can be seen that out of the 318 vehicles that
crossed the segment, 270 could be matched by the vehicle re-identification algorithm from Section
2.3 if perfect performance is assumed, which accounts for 85 % of the vehicles that went though
the segment.

For this study, the FIFO constraint improves the accuracy of the vehicle re-identification sys-
tem, as mentioned in [28], without significantly reducing the maximum possible number of matches.

Travel Time by Vehicle Category
The travel time distribution estimates are affected by the FIFO constraint. If there is a particular
vehicle group with significant presence along the arterial segment under consideration, and a large
percentage of the vehicles in the group violates the FIFO condition as they go across, then discrep-
ancies between the ground truth and the estimated travel time distributions should be expected.

The algorithm would be able to accurately predict the travel time information of vehicles that
want to go across the segment without stopping, since it is assumed that these are the majority of
the vehicles and for the most part follow the FIFO condition. Taxis or buses are vehicle groups
that have a tendency to stop and end up violating the FIFO constraint. If the percentage of vehicles
in these groups is large with respect to the total number of vehicles going across the segment, and
if there are considerable bus routes with multiple stops and common locations for taxis to drop
off and pick up passengers, then the travel time distribution based on the ground truth data will be
significantly different from the estimated one. Nevertheless, as far as a traffic agency and drivers
that rely on travel time estimation are concerned, this should not represent a problem, since the
information that can be extracted from the estimated travel time distribution would be useful and
representative of the traffic conditions at the arterial segment under consideration.

Table 5.3 lists the different types of vehicles and the number of them that entered the segment
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Figure 5.5: Ground truth travel time frequency distribution by vehicle group: (top) taxis and buses
and (bottom) vehicles except taxis and buses

at the start location, exited through the end location and went across it. The Table also lists infor-
mation about the travel time distribution divided by vehicle type. For the most part, all the vehicles
have similar travel time characteristics. For the test site in New York City, taxi presence is signifi-
cant, accounting for 30.5 % of the vehicles that went across the segment. Note that their travel time
distribution’s 25th percentile, median and 75th percentile are very close to those of the total distri-
bution. The buses’ travel time distribution has the largest 75th percentile, which is expected, since
there are several bus stops along the segment. Since buses only represent 5.3 % of the total number
of vehicles that crossed the segment, their influence is not significant. Figure 5.5 (top) shows the
travel time distributions based on GT data for taxis and buses while Figure 5.5 (bottom) shows the
travel time distribution of all the vehicles except taxis and buses. Note that both distributions look
similar with almost the same median, but a larger difference at the 90th percentile, which is the
result of long travel times corresponding mainly to buses. The travel time distribution of taxis and
buses, across the test site and during the analysis period, seems to reflect street traffic conditions.

Based on the results from this section, an accurate travel time distribution based on the match-
ing algorithm described in Section 2.3 should be similar to the one obtained based on the ground
truth data. Slightly lower percentiles in comparison to the GT distribution are expected due to out-
liers and travel times from vehicles not satisfying the FIFO condition with travel times in between
the 50 and 100 seconds (e.g., taxis making short stops but not stopping at any red light).
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Ground GT Original Modified
Truth (FIFO) Method Method

Start\End Fast Slow Fast Slow Fast Slow Fast Slow
Fast 129 22 119 19 62 19 77 17
Slow 122 45 95 37 66 51 78 49
Total 318 270 198 221

Table 5.4: Matching results comparison

5.5 Travel Time Results
In this section the ground truth travel time distribution is compared to the travel time distributions
computed with the original method and the modified method.

Table 5.4 shows the results obtained from the vehicle re-identification algorithm for the original
method and the modified method. The total number of re-identified vehicles for each method is
listed as well as the number of re-identified vehicles per link (e.g., f ast → f ast, f ast → slow,
slow→ f ast and slow→ slow). Traditionally only f ast → f ast and slow→ slow links are used,
since it is assumed that most vehicles stay in the same lane as they go through an arterial street.
However, the ground truth data shows that 122 vehicles that entered the segment through the slow
lane exited it through the fast lane, which accounts for 38% of the vehicles that crossed the arterial
segment. For this reason it was decided to use the four links to estimate vehicle travel times. As
it can be seen from Table 5.4, for both methods, the number of matched vehicles obtained using
the slow→ f ast link accounts for a large percentage of the number of re-identified vehicles. The
f ast→ slow link is not as important, but it also increases the matching rate for both methods.

The total vehicle re-identification rate for the original method is 62%, while for the modified
method it is 69%. Table 5.4 (columns 4 and 5) shows the upper bound on the maximum number
of correct matches that the vehicle re-identification algorithm can generate for each of the links
due to the FIFO constraint. Note that a considerable percentage of the matched vehicles in the
slow→ slow link is expected to be inaccurate for both estimation methods, since the number
of matched vehicles for this link exceeds the upper bound based on the FIFO constraint. The
original method results exceed the maximum possible number of correct matches for this link by
14 vehicles, and as a result, the percentage of mismatched vehicles is expected to be at least 27%.
The modified method matches 12 vehicles more than the maximum possible correct number of
matches, which results in an expected percentage of mismatched vehicles of at least 24%. Based
on this type of analysis, it was possible to set a lower bound on the percentage of mismatched
vehicles for both of the methods. At least 7% of the total travel time estimates calculated with the
original method are inaccurate while at least 5% are inaccurate when the modified method is used.

Figure 5.6 compares the original method travel time distributions against the GT. The origi-
nal method estimated distribution seems to capture the GT distribution at short travel time values.
However, the number of estimated travel times above 150 seconds exceeds the ones observed in
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Figure 5.6: Travel time frequency distribution for (top) the ground truth, (b) the original method
and (c) the modified method

the GT data. This suggests that some of these long travel times were calculated from Xi,Yj vehi-
cle signature pairs that were incorrectly matched. Figure 5.7 shows that the GT and the original
method cumulative distribution functions (CDF) correlate well at short travel times, but start di-
verging right after the median, reaching an error of 17% at the 75th percentile and 52% at the 90th
percentile.

Figure 5.6 compares the modified method travel time distributions against the GT. The modified
method travel time distribution correlates well with the GT data. Figure 5.7 shows that the GT and
the modified method cumulative distribution functions (CDF) have a similar shape. The estimated
CDF is shifted to the left of the GT CDF, with a maximum error of 17% close to the median. The
error between both CDFs is very small right after the 65th percentile, with a 3.5% error at the
75th percentile and 2.3% error at the 90th percentile. The differences observed between the GT
and the estimated travel time distributions with the modified method correspond to the differences
expected in Section 5.4 for an accurate FIFO constrained matching algorithm at the test site.
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5.6 Discussion
The vehicle travel time estimation system presented in Chapter 2 was studied on an arterial segment
in New York City using ground truth data collected from video. The ground truth data was valuable
in understanding the traffic phenomena that occur at arterial streets like lane changing, vehicle over-
taking, vehicles traveling in between lanes, among others, which directly relate to the performance
of the travel time estimation system. It was possible to apply the vehicle re-identification algorithm
using sensor array data from different lanes, f ast→ slow and slow→ f ast, something that has not
been studied before with this system and that led to an increase on the vehicle re-identification
rate. Furthermore, it was shown that the FIFO assumption that constrains the matching algorithm
is adequate at congested arterial implementations. The matching rate for the original method was
62% while that of the modified method was 69%. Even though there is not a big difference in the
matching rate, it seems that the modified method is more accurate. Based on comparisons of travel
time distribution and empirical cumulative distribution functions, it was observed that the modified
method travel time distribution is closely related to the ground truth distribution, while the original
method significantly diverges from the ground truth at long travel times.
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Chapter 6

Wireless Magnetic Sensor Applications for

Freeways

6.1 Introduction
Wireless magnetic sensors are commonly used in freeways for occupancy, volume and speed esti-
mation. As a new promising technology for these type of traffic measurements, the performance of
the vehicle detection system described in Section 2.2 has been quantitatively assessed by a num-
ber of independent studies around the world [20, 32, 16], showing that this detection system is
as reliable as loop detectors for such measurements. However, there has not been any study or
validation of the use of this vehicle detection system for freeway travel time or link vehicle-count
estimation based on vehicle re-identification. Most implementations and detailed studies of this
estimators have been conducted only on arterial segments, where traffic dynamics are different
from freeways. Freeways tend to have larger free flow speeds, higher volumes and no traffic lights.
For this reason, in the first part of this chapter we study the performance of travel time and link
vehicle-count estimators based on vehicle re-identification, described in Chapter 2, on freeways
under free flow and congested conditions.

Accurate information about heavy truck traffic is critical in almost all aspects of transportation
planning and engineering. Common uses of truck volume information include: pavement design
and management, scheduling of resurfacing, planning of freight movement, development of weight
enforcement strategies, environmental impact analysis, and analysis of alternative highway regula-
tory and investment policies [1]. For this reason, estimates such as the truck annual average daily
traffic (AADT) at many different sections of a freeway are collected by transportation agencies.



84

For example, the Annual Average Daily Truck Traffic on the California State Highway System Re-
port [52] is updated every year. Although there are automatic vehicle classifiers (AVC) that could
be used for continuous truck counting, due to the cost associated with installation and maintenance
of such systems, only very few AADT estimates included in the report are based on continuous
and automatically collected data (e.g., weigh-in-motion stations). Many AADT estimates in the
report are based on data collected by manual counting done for a partial day or a 24-hour period on
high volume urban highways and for a 7-day count period on low volume rural highways. Since
truck counting is done on a very limited time period, the resulting counts need adjustment so that
factors like seasonal influence and weekly and time of day variations can be compensated for. Fur-
thermore, only about 17% of the locations considered in the report are counted annually, and as
a result, not all the AADT estimates are up to date. All these limitations in the way truck traffic
data is collected and updated in the state of California result in truck AADT estimates that can
have large margins of error [26]. If a reliable classification algorithm could be developed using the
vehicle magnetic signature discussed in Section 2.3 from a single sensor, then a new cost-effective
alternative to estimate truck traffic volume in real-time would be available. Furthermore, single
wireless magnetic sensors already deployed on the highway system for volume and occupancy
measurements could be easily upgraded to report vehicle type as well. This motivated the work
presented in the second part of this chapter, where a classification algorithm using data from a
single wireless magnetic sensor installed in the middle of a freeway lane is presented and validated
with ground truth data.

The highways in the United States have permanent volume counting sites, classification sites,
and weigh-in-motion (WIM) sites, which provide 24-hour detailed traffic information at key loca-
tions. In California, a state with one of the largest network of highways in the U.S., there are only
106 data WIM collection sites in operation [35]. Ideally, traffic agencies would like to have more
of these systems deployed, especially because of the valuable data they are able to measure, e.g.,
axle spacing, axle weights, vehicle gross weight, vehicle length and speed. However, installation
and maintenance of these systems is expensive and involved, and monitoring and tuning them for
accurate weight measurements is particularly challenging. Since increasing the number of WIM
stations is not always possible due to limited resources, traffic agencies are interested in maximiz-
ing and extending the usage of data from existing sites to other volume counting or classification
sites. If it was possible to re-identify vehicles going between two WIM stations or a WIM station
and another vehicle detection system site, then it would be possible to estimate heavy load dis-
tribution across the highway system. Additionally, by having the ability to track heavy vehicles
between WIM stations it would be possible to automatically monitor, calibrate and detect faulty
sites based on comparison of measured data from the same vehicle at different locations. The U.S.
Department of Transportation is sponsoring the advancement of heavy vehicle re-identification be-
tween WIM sites [4]. In particular, they are interested in the development of re-identification of
heavy vehicles between WIM sites using vehicle signature sensors such as inductive loops, mag-
netic sensors, and Bluetooth signature equipment, which do not raise privacy concerns associated
with vehicle tracking. The initial goal of the U.S. Department of Transportation is to be able to re-
identify heavy vehicles at two existing WIM stations at least 30 miles apart using vehicle signature
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sensors. Some work has been conducted in relation to vehicle classification along long freeway
segments [6, 2, 25], but this is still an active research topic. As part of the effort to advance truck
re-identification between two WIM stations, in the third part of this chapter we extend the vehicle
re-identification algorithm presented in Section 2.3 to take vehicle dynamics into consideration
as vehicles travel along long freeway segments, i.e., significant vehicle overtaking. Furthermore,
we study the feasibility of the extended vehicle re-identification system using vehicle signatures
obtained from sensor arrays installed on a freeway.

The chapter is organized as follows: the two test sites used for the analyses in this chapter are
described in Section 6.2. Travel time and link vehicle-count estimation results on two freeway
segments are presented in Section 6.3. In Section 6.4, results on vehicle classification using a
single wireless magnetic sensor located in the middle of a freeway lane are shown. Section 6.5
contains a feasibility analysis on vehicle re-identification along long freeway segments using an
extension of the vehicle re-identification algorithm presented in Chapter 2, and focusing on truck
data. A discussion of the results is presented in Section 6.6.

6.2 Test Sites

Pinole Test Site
The Pinole test site is located on the I-80 Westbound freeway in Pinole, CA. It has multiple mag-
netic sensors installed on the second slowest lane of the freeway, as shown in Figure 6.1. Sensors
s1, s8, s9 and s10 are used to collect raw magnetic signals as vehicles go over the detectors. These
data are used for the vehicle classification analysis in Section 6.4. There are also two five sen-
sor arrays, separated by 64 ft, that capture vehicle signatures used for the vehicle re-identification
analysis presented in Section 6.3 and Section 6.5.

This test site is located less than 0.1 miles upstream of the # 58 Caltrans WIM station, as shown
in Figure 6.1. Sensors s2 to s7 are used for accurate speed and length estimation, which allows
matching of vehicle detection events from the wireless magnetic sensors to detection events from
the WIM station. This configuration enables automatic extraction of vehicle type ground truth data
through the WIM station. These ground truth data can be further checked using a camera installed
at a nearby post.

Caldecott Tunnel Test Site
The Caldecott Tunnel, shown in Figure 6.2, is a three-bore tunnel that connects Oakland, CA and
Contra Costa County, CA, and is part of the State Route 24. Wireless magnetic sensors were
installed on the center bore. The center bore is generally scheduled to carry westbound traffic
during morning hours and eastbound traffic during evening hours. A five sensor array and a speed
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Figure 6.1: (a) Pinole test site and #58 Caltrans WIM station (b) configuration of wireless magnetic
sensors at the Pinole test site

trap were installed on the west side of the tunnel, as shown in Figure 6.2 (b), and another five
sensor array was installed on the east side of the tunnel, as shown in Figure 6.2 (c). Both arrays
form a 0.68-mile long link on the southmost lane of the center bore. This lane is usually the second
fastest lane of the freeway when traffic is moving east and is commonly the fastest lane of the
freeway when traffic is moving west. The speed trap is used to monitor speed in the vicinity of the
west array, which tends to be the location that experiences the most congestion due to the afternoon
rush hour. The speed trap helps correlate the speed at the west array with vehicle re-identification
performance.

6.3 Vehicle Re-Identification
There has been extensive work on vehicle re-identification across freeway segments using in-road
detectors [14, 11, 13, 48, 34] and where vehicle re-identification based on signature sensors has
been considered. One of the earliest works on this type of systems is presented in [48], where ve-
hicles were re-identified based on waveforms from inductive loop for travel time and link vehicle-
count estimation. The system developed was validated on a 1.2-mile long freeway segment, with-
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Figure 6.2: (a) 0.68-mile Caldecott Tunnel segment in California State Route 24, (b) west vehicle
detection system installation and (c) east vehicle detection system installation

out on-ramps or off-ramps, under free flow (i.e, 72 mph mean speed) and congested (i.e., 28 mph
mean speed) conditions. The estimation results were compared with ground truth data obtained
from video, and they were accurate for both time intervals for which the system was evaluated.
However, the proposed method relies on training, parameter calibration and historical data that
makes deployment of the system challenging. Furthermore, it requires an independent measure-
ment of speed for waveform normalization and detailed vehicle waveforms, which cannot be mea-
sured with loop detector systems commonly deployed in the field. More recent work on this type
of systems is presented in [34], where a vehicle re-identification system based on signature match-
ing is developed for travel time estimation. This method was designed to be easily deployable due
to its simplicity and lack of complicated training and calibration steps. The algorithm presented
was validated using data from microloops, but the system was designed to be applicable to data
captured from other electromagnetic vehicle sensors. Results from this vehicle re-identification
system were promising, but limited to an implementation on a 0.7 mile long highway segment at
free flow conditions (i.e., around 55 mph mean speed). The accuracy and reliability of this method
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Data Set Time Interval Upstream Flow Downstream Flow # of Matches Matching Rate
P1 7:58 a.m. to 8:32 a.m. 768 768 637 0.83
P2 9:44 a.m. to 10:16 a.m. 672 672 561 0.83
P3 11:28 a.m. to 12:02 a.m. 605 606 500 0.83

Table 6.1: Vehicle re-identification results for the Pinole test site on April 12, 2012

was not studied under congested conditions, when these type of systems are supposed to be better
for travel time estimation in comparison to point detectors, but when stop-and-go traffic has the
potential to significantly degrade the system performance.

In this section we study the performance of the travel time and link vehicle-count estima-
tors, based on the vehicle re-identification algorithm and the vehicle detection system presented in
Chapter 2, under free flow and congested conditions using data from the Pinole test site and the
Caldecott Tunnel site presented in Section 6.2. In addition, we want to show that this system can
be used for traffic state measurement at freeway links with recurrent congestion or with recurrent
bottlenecks, where traffic state estimation based on point detector measurements are unreliable as
a result of sensor location within the link, e.g., before vs after the bottleneck. It is also impor-
tant to study the effect of higher free flow speeds on the vehicle re-identification system, since
the wireless magnetic sensor sampling rate, i.e., 128 Hz, is the same as the one used for arterial
implementations, but now free flow speeds are higher and may lead to significant degradation on
the magnetic signature resolution that ultimately may impact the matching rate and the percentage
of mismatched vehicles.

Pinole Test Site Analysis
The vehicle re-identification analysis in this section is based on data from April 12, 2012, when
the Pinole site was under free flow conditions. The vehicle re-identification algorithm parameters
used in this section are given by µ f = .16, σ f = .08, µg = .61, σg = .14 and β = .40. Furthermore,
link vehicle-count calculations are based on Eq. (2.18) with η = 0.

Table 6.1 shows the vehicle re-identification results for the three time intervals considered
for this analysis. These time intervals are from early in the day, since during the morning hours
this freeway segment usually experiences larger flows. The earliest time interval has the larger
volume, and the latest one the smallest one. Note that the flow measurements at the upstream
and downstream array for the three time intervals are practically the same, and most importantly,
observe that the matching rate is almost the same for the three time intervals.

From Table 6.1 it is possible to conclude that under free flow conditions, the vehicle re-
identification system at the Pinole site yields consistent results for different time periods, with
higher matching rates than the ones observed at arterial installations like the San Pablo segment or
at the Hegenberger on-ramp. However, from the table it is not possible to conclude anything about



89

Downstream Vehicle Index (j)

U
ps

tr
ea

m
 V

eh
ic

le
 In

de
x 

(i)

Distance Matrix

 

 

100 200 300 400 500 600

100

200

300

400

500

600

0.1

0.2

0.3

0.4

Matched Vehicles Matrix

Downstream Vehicle Index (j)
U

ps
tr

ea
m

 V
eh

ic
le

 In
de

x 
(i)

100 200 300 400 500 600

100

200

300

400

500

600

Figure 6.3: (left) Distance matrix for the P2 data set and (right) matched vehicles matrix for the P2
data set

the accuracy of the results. In order to study the performance of the vehicle re-identification system
as well as the travel time and link vehicle-count estimators on freeways, the results obtained with
the P2 data set, which correspond to the time interval from 9:44 a.m. (9.73 h) to 10:16 a.m. (10.26
h), are analyzed based on information derived from test site geometry and traffic conditions.

Due to the small length of the link formed by the two arrays at the Pinole test site, the plot of the
distance matrix calculated with the P2 data set should have a very distinctive line along its diagonal,
especially due to the high matching rates observed from Table 6.1. This diagonal is formed with
distances from signatures generated from the same vehicle, and as a result, are expected to be
small. Furthermore, the sequence of matched vehicles, represented as a color map of the matched
vehicles matrix explained in Section 2.3, should closely resemble the diagonal line observed from
the distance matrix plot. Figure 6.3 (left) shows the distance matrix color plot for the P2 data set,
containing a dark line along the plot diagonal, and this diagonal is also observed on the plot of the
matched vehicles matrix shown in Figure 6.3 (right). This visual similarity between the distance
matrix and the matched vehicles matrix increases the confidence on the matching results.

Vehicle speeds at the Pinole site were within the range [55 mph, 75 mph]. At these speeds,
the travel times of vehicles going through the 64 ft link is expected to be on the range [0.6-s ,
0.8-s]. However, since the time stamp assigned to every vehicle signature in this analysis has a
one second resolution, the travel time estimates are expected to be either 0-s or 1-s. Travel times
other than these two values, in particular negative travel times, would indicate that the estimates
were calculated using data from incorrectly re-identified vehicles. Figure 6.4 (top) shows the travel
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Figure 6.4: Results at the Pinole test site for the P2 data set

time calculated for every re-identified vehicle. All the travel time estimates are within the expected
values , except for the 2 seconds travel time estimate at about 9.78 h, which is likely to correspond
to a slower vehicle or was calculated with mismatched vehicle data. From the travel time estimation
results, it seems that the percentage of mismatched vehicles is very low.

Based on the expected vehicle density of a freeway lane under free flow conditions, the 64-ft
long segment is anticipated to have a link vehicle-count estimate in the range [0, 1] every time
a vehicle is re-identified, with most of the estimates expected to be zero. Link vehicle-count
estimates outside this range are likely to be based on mismatched vehicles. Figure 6.4 (middle)
shows the link vehicle-count calculated every time instance when a vehicle was re-identified. As
expected, all estimates are within the [0, 1] range, which further corroborates that the vehicle
re-identification results are reasonably accurate.

The matching rate is expected to be consistent throughout the P2 data set time interval. Figure
6.4 (bottom) helps analyze the matching rate as a function of time and as a function of volume.
The black line corresponds to the matching rate calculated by dividing the number of matches
over the volume measured at the downstream array every 60-s. The blue and the green lines are
the upstream and downstream array 60-s volumes, respectively, normalized by the maximum 60-s
volume observed over the complete P2 time interval. For the P2 data set, this volume is observed at
about 9.91 h. Figure 6.4 (bottom) shows that the matching rate is high throughout the time interval
considered for analysis and that it is not very sensitive to variations in the flow.
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Data Date Time Traffic Upstream Downstream # of Matching
Set (2012) Interval Direction Flow Flow Matches Rate
C1 2/13 1:00 p.m. to 2:00 p.m. EB 1025 955 674 0.71
C2 2/16 8:30 a.m. to 9:30 a.m. WB 1938 1898 1297 0.68
C3 2/16 6:00 p.m. to 8:00 p.m. EB 2674 2798 2046 0.77
C4 4/11 6:00 p.m. to 7:30 p.m. EB 2092 2083 1544 0.74
C5 6/22 9:00 p.m. to 10:30 p.m. EB then WB 689 607 406 0.67

Table 6.2: Vehicle re-identification results for the Caldecott Tunnel test site

Caldecott Tunnel Analysis
The analysis in this section is based on data gathered in 2012, when vehicle signatures were con-
tinuously collected from the sensor arrays installed at the Caldecott Tunnel site. During this time
interval, incidents in the vicinity of the test site induced or added to the existing congestion, and
they were of particular importance for this analysis, since it allowed the study of the performance
of the vehicle re-identification system on freeway links under free flow as well as under heavily
congested traffic conditions. The availability of an automatic archival system with large amounts
of data enabled the study of five subsets of upstream and downstream vehicle signature sequences,
respectively, corresponding to time intervals with uncommon traffic conditions.

The vehicle re-identification algorithm parameters used in this section are given by µ f = .24,
σ f = .08, µg = .60, σg = .15 and β = .40 . Furthermore, link vehicle-count calculations are based
on Eq. (2.18) with η = 0.

Ground truth data are not available for this study, but it is possible to comment on the accuracy
of the results and determine if they are reasonable and consistent by using information about the
physical layout of the site, expected free flow speeds, as well as traffic information from the PeMS
[40] vehicle detection stations located on the west side and the east side of the Caldecott Tunnel,
as shown in Figure 6.2.

Table 6.2 lists the five signature data sets used for this analysis, and for each data set, specifies
the time period when data collection took place, traffic direction, total volume measured at the
upstream and downstream arrays, overall number of re-identified vehicles and the matching rate,
calculated as the number of matches over the minimum of the upstream and downstream volumes.
Note that the matching rates are not as high as the ones observed at the Pinole site, but this was
expected due to the larger separation between the sensor arrays at the Caldecott Tunnel, which
increases the chances of vehicles changing lanes as well as the chances of vehicles leaving and
entering the link in between arrays. However, the matching rates are very similar for the five data
sets and are comparable to the matching rates observed for the San Pablo arterial segment and at
the Hegenberger on-ramp, presented in Chapter 4, even when at this site vehicles are traveling at
higher speeds and flows are significantly larger.

The results of each of the data sets are analyzed in the following sections.
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Figure 6.5: C1 data set results

C1 data set

The California Highway Patrol (CHP) reported an incident on February 13, 2012, at 1:17 p.m.
on the middle bore of the Caldecott Tunnel. The incident was described as a traffic hazard close
to the east side of the tunnel, and its impact on traffic can be observed from the drop in flow
and speed measurements at the PeMS [40] vehicle detection stations located before and after the
Caldecott Tunnel and with the measurements from the speed trap next to the west sensor array,
where speeds were at their lowest at 13.7 h, reaching values as low as 2 mph. This incident was
interesting to analyze because it occurred at a time of the day when the freeway was under free
flow conditions and demand was low. Before and after the incident, vehicles were going through
the link at free flow speed, but between 13.50h and 13.76h, the adverse effect of the incident can
be easily observed from the increase on the travel time and link vehicle-count estimates shown in
Figure 6.5. A bottleneck was created inside the tunnel due to the traffic hazard, and an increase in
vehicle density upstream of the incident was triggered, increase that is captured in the link vehicle-
count plot in Figure 6.5 (middle). Once the traffic hazard was removed, the congestion in the tunnel
dissipated rapidly due to the low demand experienced by the freeway at the time, a phenomenon
that is also observed from the same figure.

Figure 6.5 (bottom) shows the 60-s matching rate calculated as the number of re-identified ve-
hicles divided by the downstream volume and the 60-seconds upstream and downstream volume
measured by the sensor arrays normalized by the maximum 60-s volume observed during the com-
plete C1 time period. This plot shows that the matching rate before and after the congestion created
by the incident tends to be around 70%. However, at about 13.64, the flow at the downstream ar-
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Figure 6.6: C2 data set results

ray is zero, and this results in a zero matching rate for that interval. Furthermore, the number of
matches during the interval 13.58h to 13.66 is very small. The low matching rate and small number
of re-identified vehicles are not due to a bad performance of the vehicle re-identification algorithm
due to congestion, but because the number of vehicles going through the freeway link between the
sensor arrays was very low. Nevertheless, the few matches observed during the same time interval
yield travel time and link vehicle-count estimates that are consistent with what is expected when a
bottleneck is formed in between the arrays, which suggests that the matching rate during that time
interval was low but the matches were accurate.

C2 data set

The C2 data set is useful to illustrate that the vehicle re-identification system can work well on a
reversible lane. If the direction of traffic changes, then the array configuration needs to be changed
as well, i.e, the upstream array should be set as the downstream array and the downstream array
should be set as the upstream array. The array configuration was updated before estimates based
on the C2 data set were calculated. The C5 data set illustrates the situation of what happens when
the direction of flow changes and the array configuration remains unchanged.

During the C2 time interval, the CHP reported a minor traffic collision on the west side of
the Caldecott Tunnel. The effect of the incident can be observed at the PeMS vehicle detection
stations located on the east and west sides of the tunnel, which report a drop in flow and speed.
Furthermore, the speed trap at the west array also registered a drop on the speed measurement.
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Traffic conditions were not severely affected by the incident, but they triggered a fast subtle change
in travel time and link vehicle-count that was captured in the estimates. Figure 6.6 (top) shows the
increase in travel time as a result of the incident. The increase in travel time is accompanied by
an increase in the density of the link formed by the arrays, as shown in Figure 6.6 (middle), which
has a sharp increase at about 8.93 h. The CHP reported that the incident lasted seven minutes,
and as a result, once the road was clear, traffic returned to free flow conditions in a short period of
time. From Figure 6.6 (bottom) it is observed that the matching rate before and after the incident
is within expected values, but during the incident period, at about 9 h, the significant drop on the
number of vehicles going through the link reduces the number of re-identified vehicles. As noted
before, this is not a deficiency of the system, but the result of the traffic conditions, and even though
the matching rate is low, the estimates are consistent with the CHP incident report, the speed trap,
and PeMS data.

C3 data set

The C3 data set corresponds to a time interval when two incidents occurred near the Caldecott
Tunnel. The CHP reported that a traffic collision incident occurred .7 miles east of the tunnel at
about 18.4 h, with a duration of 63 minutes. The west PeMS vehicle detection station reports a
sharp drop in speed at 18.44 h, going from 60 mph to 5 mph. The same phenomenon is observed
at the east PeMS vehicle detection station at 18.6 h, with a sharp speed drop going from 30 mph
to 5 mph. The speed trap at the west location of the tunnel, close to the west array, registered a
sharp drop in speed from 30 mph to 3 mph at 18.57 h. The collision created severe congestion
that propagated upstream of the incident location and significantly degraded traffic conditions at
the Caldecott Tunnel from 18.5 h to 19 h, when vehicle density came close to jam density. The
second incident occurred at about 19.5 h, and it was reported as a minor incident, 1 minute in
duration, associated with an occupied disabled vehicle on the west side of the tunnel. During that
time, for a few minutes around 19.5 h, the speed trap at the west array location did not report speed
measurements, which suggests an extremely low vehicle volume at the west array. This incident
triggered a sharp decrease in vehicles going through the array link for a short period of time and
this led to a significant degradation in vehicle re-identification performance from about 19.45 h to
19.58 h.

Figure 6.7 (top) shows large travel time estimates for the C3 data set. Travel times start to
increase at about 18.54 h, which is about the same time when the congestion wave hits the speed
trap data and the PeMS vehicle detection data on the west side of the tunnel. The large travel times
are somehow consistent with the low speed measured by the PeMS detectors and the speed trap.
Furthermore, note that about 19.5 h, after the heavy congestion due to the first incident dissipated,
6 travel time estimates are negative. This indicates that at least 6 vehicles from the C3 data set were
incorrectly re-identified. However, this short degradation in the matching algorithm performance
was triggered by the lack of vehicles going through the link, as illustrated in Figure 6.7 (bottom),
and once the effect of the second incident fades, the matching rate increases to normal values and
the travel time and link-vehicle count estimates go from infeasible values, i.e., negative values, to
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Figure 6.7: C3 data set results

reasonable ones.

Figure 6.7 (middle) shows the link vehicle-count plot as a function of time, showing a signif-
icant increase in vehicle density in the tunnel as the result of the first incident, with link vehicle-
count estimates as large as 104 vehicles. The fact that the maximum link-vehicle count estimate
for C3 is larger than the one for C1, i.e., 96 vehicles, is consistent with what is expected from
the different traffic conditions experienced in the tunnel for the different time intervals. During
the C3 time interval, congestion was present on the complete link, since the congestion started
upstream of the tunnel and propagated through it. During the C1 time interval, congestion started
within the tunnel, and because of this, the part of the link upstream of the incident location was
heavily congested, while the one downstream of the traffic hazard was probably closer to free flow
conditions. For this reason, the link vehicle-count for C1 is expected to be smaller than the es-
timate for C3. The fact that the estimates are consistent with this observation indicate that the
vehicle re-identification and link vehicle-count results are reasonable and consistent. Furthermore,
the maximum link vehicle count is also consistent with what a freeway link would experience at
or around jam density conditions. To illustrate this, lets take information from the Hegenberger
on-ramp. Figure 3.1 shows an image of the Hegenberger on-ramp at capacity, with 17 vehicles in
between the entrance and exit arrays (separated by 616 ft). Based on the figure, the density at the
on-ramp is 146 vehicles per mile. Assuming that similar vehicle headway occurs at the Caldecott
Tunnel at very slow speeds, then the density would also be 146 vehicles per mile, which results in
a link vehicle-count in between the west and east arrays of 100 vehicles. This means that the link
vehicle-count estimates for C1 and C3 are in agreement to what is observed at other locations with
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Figure 6.8: C4 data set results

similar heavily congested traffic conditions.

Finally, Figure 6.7 (bottom) shows that even under heavily congested conditions between 18.5
h to 19 h and a drop in the number of vehicles going through the west and east arrays, there is
only a slight decrease in the matching rate. The plot indicates that heavy freeway congestion, i.e.,
vehicles traveling at very slow speeds as they go through the arrays, does not seem to appreciably
degrade the vehicle re-identification performance in comparison to stop-and-go traffic present on
metered freeway on-ramps or heavily congested arterial streets.

C4 data set

During the C4 data set time interval, the CHP reported that a multiple vehicle collision occurred at
18.48 h upstream of the west array. This incident restricted the flow of vehicles into the Caldecott
Tunnel. According to the CHP, at 18.78 h, the flow to the tunnel was blocked momentarily to finish
clearing the freeway. After this point, the freeway resumed normal operation. Finally, according
to the PeMS vehicle detection stations before and after the tunnel, the freeway went into free flow
after 19 h, when demand dropped.

Figure 6.8 (top) shows the travel time estimates before, during, and after the incident. Before
the incident, traffic conditions in the middle bore were not heavily congested, but vehicles were
going slower than free flow speed. When the collision occurred and the flow of vehicles into the
tunnel became restricted, vehicles that made it through the bottleneck sped up and went through
the tunnel array link at free flow speeds, as shown in the figure from 18.5 h to about 18.8 h. The
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Figure 6.9: C5 data set results

freeway went back to semi-congested conditions until the demand due to the afternoon eastbound
commute dropped at around 19.05 h. At around 18.8 h, there is a discontinuity in the travel time
estimates, which results from the short restriction of vehicle flow into the tunnel.

Figure 6.8 (middle) shows the link vehicle-count estimates for the C4 time interval. Note
that after the accident, the link vehicle-count estimates drop due to the bottleneck created by the
collision. Around 18.8 h, as expected by the total blockage of vehicles going into the center bore,
the link vehicle-count estimate drops to zero and the link remains empty for a short time. Once
vehicles start flowing again into the tunnel, link vehicle-count estimates go back to values similar
to those observed before the collision until 19.05 h, when the freeway goes back into free flow.

Finally, Figure 6.8 (bottom) shows how even when the flow into the tunnel varied during the
C4 time interval, the matching rate remained fairly consistent.

C5 data set

The C5 data set was selected for this analysis because the CHP reported a 17 minute incident in
the tunnel as a result of a traffic collision at about 21.2 h. When travel time and vehicle count
estimates with this data set were calculated, the results were very inconsistent and inaccurate,
especially after 21.35 h, i.e., zero flows, zero matching rate, negative travel times and zero link
vehicle-count, as shown in Figure 6.9. It turned out that after the collision, the center bore of the
tunnel was completely evacuated and the direction of traffic was reversed. As a result, the first part
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Figure 6.10: C5 data set (left) distance matrix and (right) matched vehicles matrix

of the signature sequences from the C5 data set corresponded to vehicles going eastbound while
the second part of the sequences corresponded to vehicles going westbound. A change in traffic
flow direction without the corresponding change in array configuration results in the negative of
the correct travel time estimate and a zero link vehicle-count estimate.

Figure 6.10 (a) shows the distance matrix for the C5 data set. Note that distances of pair of
signatures generated by vehicles going in different directions, whiter rectangles on the top right
corner and lower left corner of the distance matrix plot, seem to be larger than usual. However, this
is not expected to impact the vehicle re-identification performance, since there is a very distinctive
dark line along the diagonal of the distance matrix. The matched vehicles matrix, shown in Figure
6.10 (b), contains the diagonal observed in the distance matrix plot, which suggests that although
travel time and link vehicle count estimates after the incident are erroneous due to the incorrect
configuration of the arrays, the vehicle re-identification results are expected to be accurate. This is
further confirmed by the fact that the travel time estimates shown in Figure 6.9 after 21.75 h are
around -50-s , which is the negative of what would be a reasonable travel time for the length of the
link and the time, i.e., late Friday night.

The C5 data set results are important to illustrate that the vehicle re-identification algorithm
is not sensitive to unexpected changes in travel time, e.g., fast increases in travel time or nega-
tive travel times. The vehicle re-identification algorithm relies only on the distance matrix and on
the order of the signatures. Signature time information is only used after the matching is com-
pleted for travel time estimation and link-vehicle count estimation purposes. Not using time in the
matching algorithm is advantageous because the result is not influenced by potentially erroneous
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assumptions about what an acceptable travel time would be. If travel time was used as a criterion
to further discriminate signature pairs, then travel time estimation results could be erroneously
steered towards preconceived values and this may limit the ability of the estimator to calculate
travel time and link vehicle-count under uncommon circumstances (e.g., accident, lane blockage,
direction change). Travel time could be used to assess the feasibility of the matching results and to
discard matched vehicle information that yield unfeasible travel times.

6.4 Vehicle Classification
Vehicle classification using single sensors have been extensively studied in the past, even though
there are other detection technologies that can classify vehicles into very specific categories. Clas-
sification algorithms using single detector technologies are attractive because many of the vehicle
detection stations installed for traffic monitoring on freeways are based on single loops or single
magnetic sensors. In [26], it was possible to estimate truck traffic volume from occupancy and
flow-measurement detectors using lane-to-lane speed correlation. Although this estimator is lim-
ited to freeway locations that have a truck-free lane and exhibit high lane-to-lane speed correlation,
PeMS [40] uses an extension of the algorithm to report truck traffic volume at vehicle detection
stations that do not directly report trucks. This method classifies vehicles in two groups: passen-
ger cars and long trucks. In [12], a classification scheme based on vehicle length calculated from
freeway single-loop detectors is presented. This method uses individual vehicle actuation and ex-
plicitly classifies each vehicle. However, its classification performance is not very accurate and
degrades under congestion. Other approaches extract vehicle features from the signals measured
by inductive loop detectors and use them in the vehicle classification algorithm [51, 18]. The prob-
lem with this type of approach, is that current infrastructure on freeways is not ready to capture
detailed waveforms from loop detectors, and retrofitting these stations for this type of classification
methods is usually not feasible. Classification algorithms using single magnetic sensors have been
considered in [9, 7, 23, 22, 29] with promising results. However, these methodologies were studied
with signatures from vehicles traveling at slow speed in controlled environments.

The classification algorithm that is presented in this section uses the vehicle detection system
described in Section 2.2, and commonly used in freeways for occupancy and flow-measurements.
The algorithm was developed based on data that could be obtained from a single wireless magnetic
sensor already deployed in the field, i.e., the signature data (sequence of peaks from raw magnetic
signature signals) discussed in Section 2.3. The classification of each detected vehicle could be
done in real time at the node (by increasing sensor computation while keeping data transmission
low) or at the access point (computation inside the node is unchanged but data transmission slightly
increases). In any event, this classification technique only requires minor software changes to the
vehicle detection system. This classification method builds on the work presented in [9, 7], but
focuses on classification based on very limited features of the raw magnetic signals, which are
efficiently extracted at the sensor. Furthermore, the evaluation of the results is done with data



100

Figure 6.11: FHWA 13-category scheme for vehicle classification (image from [42])

coming from a freeway installation under free flow conditions.

Vehicle Classes
In this analysis, four vehicle classes are considered. The first vehicle class is defined as passenger
vehicles, and is equivalent to the FHWA class 2 and class 3, shown in Figure 6.11. The second
class is defined as small trucks, and corresponds to the FHWA class 4, class 5 and class 6 also
shown in Figure 6.11. The third vehicle class is defined as large trucks, and corresponds to the
FHWA class 7 trough 12, shown in the same figure. Finally, the fourth vehicle class is defined as
trucks, and it includes the small and large vehicle classes.

Vehicle Data Sets
For the analysis presented in this section, three vehicle data sets are used: R1, R2 and R3. For each
vehicle included in the analysis, a single raw magnetic signal coming from a wireless magnetic
sensor located in the middle of the lane was used. From the raw magnetic signal, the vehicle
signature (sequence of peak values) from a single sensor was extracted, as described in Section
2.3.
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Passenger Vehicles Small Trucks Large Trucks Vehicles
FHWA Class 2 & 3 4 5 6 7 8 9 10 11 12 All

# 200 3 16 4 0 2 44 1 0 0 270

Table 6.3: Distribution of vehicle classes in data set R1

Small Trucks Large Trucks Trucks
FHWA Class 4 5 6 7 8 9 10 11 12 All

# 5 95 25 1 13 368 5 8 1 521

Table 6.4: Distribution of vehicle classes in data set R2

R1 Data Set

The R1 data set was collected on January 9, 2012, from 2:15 p.m. to 3 p.m. at the Pinole test site
(see Section 6.2). The trucks in the R1 data set are a subset of the total number of trucks that went
through the Pinole sensor installation during the 45 minute data collection time, and correspond to
those for which it was possible to get a corresponding detection event from the downstream WIM
station. By having a wireless magnetic sensor data to WIM data mapping, it was possible to know
the class of each of the trucks included in the R1 data set. The passenger car vehicles included
in the R1 data set were obtained using vehicle classification based on length. The R1 data set is
composed of 270 vehicles, 200 of them are passenger vehicles, 23 are small trucks and 47 are large
trucks, distributed as shown in Table 6.3.

R2 Data Set

The R2 data set was collected on April 12, 2012, from 8 a.m. to 12 p.m. at the Pinole test site
(see Section 6.2). As before, these are a subset of trucks, for which it was possible to obtain
corresponding WIM data. By having a wireless magnetic sensor data to WIM data matching, it
was possible to know the class of each of the vehicles included in the R2 data set. The R2 data set
is composed of 521 vehicles, 125 of them are small trucks and 396 are large trucks, distributed as
shown in Table 6.4. Class 5 and Class 9 are the most common truck types in R2.

R3 Data Set

The R3 data set was originally used for some of the classification analysis presented in [7]. Unlike
R1 and R2, this data set was not collected at a freeway, but at the I-880 Nimitz California commer-
cial vehicle enforcement facility (weigh station), where trucks are separated from the rest of the
vehicles. When raw magnetic signal data was collected for this data set, trucks were going over
the detector at very low speeds. The R3 data set is composed of 272 vehicles, 151 are small trucks
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Small Trucks Large Trucks Trucks
FHWA Class 4 5 6 7 8 9 10 11 12 All

# 0 136 15 0 30 68 0 22 1 272

Table 6.5: Distribution of vehicle classes in data set R3

and 121 are large trucks as shown in Table 6.5. As in the previous data sets, the FHWA class 5 and
class 9 are the most common types of trucks.

Support Vector Machine
The idea behind Support Vector Machine (SVM) for binary classification was initially presented in
[5]. In this paper, a training algorithm that maximizes the margin between the training patterns and
the decision boundary was presented for the restricted case where the training data can be separated
without errors. In [15], the support-vector networks, another name for SVMs, was introduced as
a new learning machine for two-group classification problems. The classifier gets input vectors
that can be used as they are or can be non-linearly mapped to a very high dimension feature space
to perform the classification. Either on the original space or the feature space, a linear decision
surface is constructed based on a training vector data set containing vectors from both groups.
Unlike the classifier presented in [5], the support-vector network can construct a decision surface
even when non-separable training data are used.

The objective of this study, is to investigate how reliable and accurate it would be to classify
vehicles into three groups using input vectors based on a single wireless magnetic sensor vehicle
signature and SVMs. In order to classify vehicles into three groups, i.e., passenger vehicles, small
trucks, large trucks, a two stage SVM classification algorithm is needed. The first step of the
classification algorithm would classify a vehicle as either passenger vehicle or truck. If the vehicle
is classified as a passenger vehicle, then the classification algorithm would stop. However, if the
vehicle is classified as a truck, then an additional SVM classifier is used to determine if the vehicle
is either a small truck or a large truck.

The results presented for this analysis were obtained using the Matlab functions svmtrain
and svmclassify. The svmtrain Matlab function was used to train different SVM classifiers
using a training data set taken from the two vehicle groups considered for classification, and where
a linear kernel function was used. The output of svmtrain contains the information about the
trained classifier and is used as one of the inputs to the svmclassify Matlab function. The
other input of svmclassify is a matrix, where each row corresponds to a vehicle input vector
that will be used for the classification, and the output is a vector that indicates the group to which
each row of the input matrix is assigned.
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Number Category Description
1 n amplitude Number of Peaks
2 n amplitude Max absolute value
3 n amplitude mean(Top 2 absolute values)
4 n amplitude mean(Top 3 absolute values)
5 n amplitude mean(Top 4 absolute values)
6 n amplitude Min absolute value
7 n amplitude mean(Smaller 2 absolute values)
8 n amplitude mean(Smaller 3 absolute values)
9 n amplitude mean(Smaller 4 absolute values)

10 n amplitude mean(absolute values)
11 n amplitude mean(values)
12 n amplitude Max value Difference Between Continuous Peaks
13 n amplitude Min value Difference Between Continuous Peaks
14 n amplitude Max mean(value Difference Between 3 Continuous Peaks)
15 n amplitude Min mean(value Difference Between 3 Continuous Peaks)
16 n amplitude Max mean(value Difference Between 4 Continuous Peaks)
17 n amplitude Min mean(value Difference Between 4 Continuous Peaks)
18 n time Max Separation Between 2 Consecutive Peaks
19 n time Min Separation Between 2 Consecutive Peaks
20 n time Max Separation Between 3 Consecutive Peaks
21 n time Min Separation Between 3 Consecutive Peaks
22 n time Max Separation Between 4 Consecutive Peaks
23 n time Min Separation Between 4 Consecutive Peaks
24 n time Separation Between hill/valley with Max Amplitude Difference
25 n time Separation Between hill/valley with Min Amplitude Difference
26 n amplitude sum(Amplitude Differences Between Consecutive Peaks)

Table 6.6: Single sensor magnetic signature features per component (x: n=1, y: n=2 and z: n=3)

Input Vector

The input vector used in the SVM classifiers presented in this study is composed of 78 magnetic
signature features. The first 26 features are extracted from the x component of the middle sensor
vehicle magnetic signature. The following 26 features are extracted from the y component of the
same vehicle magnetic signature. Finally, the last 26 features are extracted from the z component
of the same magnetic signature. The features are listed in Table 6.6, and are divided into two
categories: features based on raw peak amplitudes, and features based on time separation between
peaks.
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Class Class Correct Classification
1 2 Rate (CCR)

Vehicle Data # Vehicle Data # average std median min max
Class Set Veh Class Set Veh (CCR) (CCR) (CCR) (CCR) (CCR)

passenger vehicles R1 70 trucks R1 70 .94 .02 .94 .89 1

passenger vehicles R1 47 large trucks R1 47 .97 .02 .98 .93 1

passenger vehicles R1 23 small trucks R1 23 .88 .06 .91 .60 1

small trucks R1 23 large trucks R1 23 .85 .08 .86 .60 1

Table 6.7: Classification results: R1 data set

Results

Classification Experiment

In order to produce the results for the analysis of binary SVM classifiers based on the vehicle
magnetic signature features listed in Table 6.6 for a given pair of vehicle groups, the following
experiment is performed:

Classes Definition - Two vehicle groups are selected out of passenger vehicle, small truck, large
truck, or truck, where truck is a random mixture between small and large trucks.

Vehicle Data - Two sets of vehicles with their input vectors and classes are obtained from the R1,
R2 or R3 data sets. The number of vehicles for each of the classes is chosen to be the same
to avoid any bias.

Train-Test Runs - The vehicle data is randomly divided into two groups, the train and the test
data subsets. The train subset is used to get the trained SVM classifier, and the test subset is
used to determine its correct classification rate (CCR). A CCR is calculated as the number
of correctly classified vehicles over the total number of vehicles in the test subset. This
procedure is repeated a hundred times, resulting in a hundred CCR values.

Performance Statistics - The mean, standard deviation, median, minimum element and maxi-
mum element of the train-test runs CCR values are calculated.

R1 Data Set

The vehicle data used for the experiments in this section come from the R1 data set. The number
of passenger vehicles in this data set is large in comparison to the number of trucks, which account
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for only 70 out of the 270 vehicles. Due to the low number of small trucks, the passenger vehicle
vs small trucks and the small trucks vs large trucks classification experiments are based on a very
limited data set and are inconclusive. However, all the classification experiment results for the
R1 data set are reported in this section because they showed promising trends and motivated the
collection of the R2 data set, which is significantly larger and contains more small trucks.

Table 6.7 shows the results for four different binary SVM classification experiments based on
the following pair of vehicle groups: passenger vehicle vs truck, passenger vehicle vs large truck,
passenger vehicle vs small truck and small truck vs large truck. As mentioned in the previous
section, for each of the classification experiments, the number of vehicles in each group is the
same and defined by the group with the smallest number of vehicles. When only a subset of a
group is needed, the subset is chosen randomly out of the complete group data set. For example,
for the passenger vehicle vs truck experiment described in Table 6.7, the truck group has the fewer
elements, with only 70 vehicles, and for this reason only 70 passenger vehicles, out of the 200
available in the R1 data set, were chosen randomly for the experiment. This procedure is followed
for all the experiments reported in this study.

The results for the first experiment showed that the passenger vehicle and the truck groups
can, for the most part, be correctly classified. Note that the results are very consistent throughout
the 100 train-test runs, since the correct classification rate (CCR) stays within the range [.89,1]
and it has a small standard deviation. The passenger vehicle vs large trucks experiment yields a
better performance, which is not surprising due to the easily perceptible difference observed in the
vehicle magnetic signature characteristics between these groups. For this experiment, the CCR
stays within a smaller range, [.93, 1], but the CCR standard deviation is equal to the previous
experiment. In comparison, the results for the last two experiments listed in Table 6.7 are very
inaccurate and unreliable, i.e., CCR mean is low, the CCR standard deviation is three to four times
larger than in the previous experiments and the CCR range is very wide [.60, 1].

From the four R1 experiments it can be argued that classification based on magnetic signatures
can be done with consistency and we can expect fairly accurate results between the passenger
vehicle and the truck groups and between the passenger vehicle and large truck groups. Finally,
it was determined that a larger data set was needed to better assess the performance of the SVM
classifiers for the experiments that involved the small truck vehicle group.

R1 & R2 Data Sets

The experiments included in this section use the passenger vehicle data from the R1 data set and
the small and large truck data from the R2 data set.

Table 6.8 shows that for the passenger vehicles vs trucks experiment, the results are slightly
better than the results observed in the previous section. The CCR mean is the same, but CCR
standard deviation is smaller, the median is larger, and most importantly, the CCR range for the
100 train-test runs is smaller [.91, .97]. The smaller standard deviation and range indicate that
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Class Class Correct Classification
1 2 Rate (CCR)

Vehicle Data # Vehicle Data # average std median min max
Class Set Veh Class Set Veh (CCR) (CCR) (CCR) (CCR) (CCR)

passenger vehicles R1 200 trucks R2 200 .94 .01 .95 .91 .97

passenger vehicles R1 200 large trucks R2 200 .98 .01 .98 .95 1

passenger vehicles R1 125 small trucks R2 125 .91 .02 .91 .85 .98

small trucks R2 125 large trucks R2 125 .90 .03 .90 .84 .98

Table 6.8: Classification results: R1 and R2 data sets

the classification consistency is better for this experiment. The passenger vehicle vs large truck
experiment has the best performance and also experiences a slight improvement over the R1 results,
since the CCR mean is slightly larger, the standard deviation is smaller, and the CCR range, given
by [.95, 1], is smaller. For the two experiments listed in Table 6.8 that involve small trucks, the
correct classification rates are significantly better than those observed for the R1 experiments. The
accuracy and the consistency for these experiments are higher as observed by the increase in the
CCR mean, and a significant reduction on the standard deviation and the CCR range. However,
these results are not as good as the classification performance of the first two experiments.

Based on the results listed in Table 6.8, it seems that vehicle classification between passenger
vehicles and trucks would be very reliable and accurate, with an approximate 94% correct classifi-
cation rate and with very consistent performance. The second stage of the classification algorithm,
which would involve the separation between small and large trucks, will not be as reliable or con-
sistent, but it would be able to give a rough estimate about the distribution of truck groups going
over the wireless magnetic sensor.

R1 & R3 Data Sets

The experiments included in this section use the passenger vehicle data from the R1 data set and
the small and large truck data from the R3 data set. There is a considerable difference in the speed
of the vehicles from the two sets. While passenger vehicles were traveling at freeway free flow
speeds, trucks were moving slowly as they were going through the weigh station and over the
wireless magnetic sensor. However, the magnetic signatures should not be very different due to
the differences in speed. The reason to use the R3 data set for this study was to investigate the
accuracy and consistency of the results as a function of location and speed variations.

The results listed in Table 6.9 are consistent with the results from the R1 & R2 data sets exper-
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Class Class Correct Classification
1 2 Rate (CCR)

Vehicle Data # Vehicle Data # average std median min max
Class Set Veh Class Set Veh (CCR) (CCR) (CCR) (CCR) (CCR)

passenger vehicles R1 200 trucks R3 200 .97 .01 .98 .94 1

passenger vehicles R1 121 large trucks R3 121 .97 .02 .97 .92 1

passenger vehicles R1 151 small trucks R3 151 .95 .02 .95 .91 .98

small trucks R3 121 large trucks R3 121 .87 .03 .87 .80 .94

Table 6.9: Classification results: R1 and R3 data sets

iments. The performance of the classification algorithm in the first three experiments in the table
are slightly better, while the last experiment, which is very important for the last part of the two
stage SVM classification algorithm, is slightly worse than the results in the previous section. The
results from Table 6.9 would lead to the same conclusion reached in the R1 & R2 data sets sec-
tion based on results from Table 6.8: vehicle classification between passenger vehicles and trucks
would be accurate and reliable, but the classification between small and large trucks would have
lowest accuracy and consistency.

6.5 Truck Re-Identification Along Long Freeway Segments
Truck re-identification along long freeway segments can be accomplished by using tracking tech-
nologies relying on automatic vehicle identification tags or license plate recognition. However,
these systems are expensive to install and maintain, may not be adequate for certain applications
due to their low penetration, and usually raise privacy concerns. Truck re-identification algorithms
based on in-pavement sensors have also been studied in recent years. In [6], vehicle attribute
data that can be obtained from WIM or automatic vehicle classification data collection stations
was used for anonymously re-identifying commercial vehicles. The analysis used data from two
WIM sites separated by .8 miles, and the results from the matching algorithms were validated with
ground truth data obtained from video. This work showed that it is possible to re-identify vehi-
cles using real-world vehicle weight and classification data collected by WIM sensors. In [2], a
bayesian model for re-identification of trucks over long distances on the basis of axle measurement
data is presented. In this study, the analysis of the re-identification algorithm focuses on the data
coming from two WIM sites in Oregon that are separated by 145 miles. This work contributes to
the re-identification literature by showing that it is possible to match commercial vehicles cross-
ing two data collection sites that are separated by long distances. In [25], a method for truck
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re-identification using weigh-in-motion data for travel time estimation and sensor calibration is
presented. This work illustrates the positive impact that truck re-identification technologies can
have on networks of WIM stations. These cost-effective technologies could be used to continu-
ously monitor WIM sites for proper performance, and when needed, to calibrate sensor bias for
axle weights and spacing, by comparing measurements from matched vehicles.

Studies involving truck re-identification using vehicle signature sensors along long freeway
segments is limited and is an active area of research. In Section 6.3 it was shown that the vehi-
cle re-identification system described in Chapter 2 worked well on freeways under free flow and
congested conditions. However, the study was done on short segments without appreciable ve-
hicle overtaking. As a result, the algorithm assumption that vehicle overtaking is negligible was
appropriate and the first in, first out (FIFO) constraint imposed on sequences of matched vehicles
did not degrade the matching rate. The re-identification process becomes more challenging when
re-identification is conducted along long freeway segments because of significant vehicles entering
and leaving the segment and overtaking. For this reason, in this section, we present the vehicle re-
identification algorithm extension that accounts for vehicle overtaking and study the feasibility of
using such a system for truck re-identification along long freeway links. Since installation of sen-
sor arrays at the endpoints of a long freeway link is not available, truck signatures from such a test
site could not be used for this analysis. However, to study the feasibility of using the extended re-
identification method, a set of upstream and downstream truck signatures obtained from the Pinole
test site were used for the analysis. In the first analysis presented in this section, vehicle dynamics
observed along long freeway segments are modeled by modifying the truck signature sequences,
e.g., removing signatures, adding signatures, or shuffling signatures. In the second analysis, data
from re-identified trucks going through two detection stations separated by 145 miles, and used for
the analysis in [2], are used, e.g., the truck signature sequences from the Pinole site are rearranged
to match the orders of the sequence of trucks going through the actual freeway link.

Truck Data Sets

T1 Data Set

The T1 data set contains the signatures of 73 trucks, with FHWA class distribution as shown in
Table 6.10, collected with the upstream and downstream arrays at the Pinole site (see Section 6.2)
from 9:44 a.m. to 10:16 a.m. on April 12, 2012. These 73 trucks are a subset of the trucks that
went through the arrays during the same time interval. The distance matrix for the T1 data set is
shown in Figure 6.12 (a), and from the dark line along the diagonal, it is evident that the upstream
and downstream signature sequences have a one to one correspondence. The distance between
the truck 18 signatures is large, and results in a discontinuity in the diagonal. Note that when the
matching algorithm uses this distance matrix, 72 out of the 73 trucks are correctly re-identified,
while X18→ τ , as seen in the matched vehicles matrix in Figure 6.12 (a).
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FHWA Class 4 5 6 7 8 9 10 11 12 Total
# 0 13 4 0 1 52 1 2 0 73

Table 6.10: Distribution of vehicle classes in data set T1

T1 & P2 Data Set

The T1 signature data set is a subset of the vehicle signatures in the P2 signature data set, described
in Section 6.3. In order to study the effect of highly skewed distance matrices on the vehicle re-
identification algorithm performance, the T1 & P2 signature data set is included in this analysis.
The T1 & P2 data set uses upstream signatures from T1 and downstream array signatures from
P2. A signature set like this one is representative of a link where at the upstream array only truck
signatures are collected, e.g., the I-880 Nimitz California commercial vehicle enforcement facility,
while at the downstream array freeway location signatures from passenger vehicles and trucks
are collected. This signature set could also be obtained from an array configuration where it is
possible to pair upstream array signatures to WIM or AVC (automatic vehicle classifiers) system
data, while the downstream data consist of all vehicle signatures. Using vehicle type information at
the upstream array, it could be possible to eliminate upstream vehicles for which re-identification is
not desired, e.g., FHWA class 1 to class 3 vehicles. This would result in a small subset of upstream
signatures at the upstream location while the downstream location would remain unchanged. In a
way, this is the procedure done on the P2 data set, which resulted in the T1 & P2 data set. The T1
& P2 distance matrix is shown in Figure 6.12 (b), where it is possible to observe some distinctive
sequence of dark points within a band along the diagonal. The matching results for this data set are
equivalent to those obtained with the TI data set, all the upstream trucks signatures were correctly
matched to their downstream counterpart, with the exception of truck 18, for which X18 → τ .
Figure 6.12 (b) shows the sequence of matched vehicles for this data set, and from the figure, it is
easy to see that the distance matrix dark sequence of points along the diagonal band is identical to
the sequence of matched vehicles.

T2 Data Set

The T2 data set contains the signatures of 409 trucks, with FHWA class distribution as shown in
Table 6.11, collected with the upstream and downstream arrays at the Pinole site (see Section 6.2)
from 8 a.m. to 12 p.m. April 12, 2012. These 409 trucks are a subset of the total number of trucks
that went through the Pinole sensor arrays during the same time interval. The distance matrix
for the T2 data set is shown in Figure 6.12 (c), and from the dark line along the diagonal, it is
evident that the upstream and downstream signature sequences have a one-to-one correspondence.
When the matching algorithm is run using this distance matrix, 409 out of the 409 upstream truck
signatures are correctly matched to their downstream counterpart, as seen in the matched vehicles
matrix in Figure 6.12 (c).

The matching results on the three data sets described in this section have a very high matching
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Figure 6.12: Distance and matched vehicles matrices for (a) T1 data set, (b) upstream T1 data set
vs downstream P2 data set and (c) T2 data set

FHWA Class 4 5 6 7 8 9 10 11 12 Total
# 3 65 21 1 8 299 5 6 1 409

Table 6.11: Distribution of vehicle classes in data set T2

rate, i.e., .99, .99 and 1.00, and perfect accuracy. These exceptional matching results are related
to the low distances observed between signatures generated by the same truck, because upstream
vehicles do not leave the link in between the arrays and because the non existence or negligible
vehicle overtaking assumption from the constrained matching function is satisfied for the three
signature sets. None of the signature sequences in T1, T1 & P2, and T2 violate the first in, first out
(FIFO) condition. In the analysis that follows, the cases when vehicle overtaking is significant and
cannot be ignored, are considered.

Vehicle Re-Identification Algorithm Extension: Iterative Method

Iterative Vehicle Re-Identification Method

The iterative vehicle re-identification method is an extension of the matching algorithms presented
in Section 2.3. Until now, in all the implementations where the system has been installed and stud-
ied, the assumption that vehicle overtaking was not significant was very reasonable. As discussed



111

in Chapter 5, the first in, first out (FIFO) constraint when vehicle overtaking is present reduces
the maximum number of vehicles that the optimal constrained matching µcMAP can correctly re-
identify. When there is significant vehicle overtaking as vehicles go through the array link, the
FIFO constraint can have a significant impact on the matching rate, to a point where the number of
estimates based on matched vehicle data can drop and become useless, e.g., to calculate travel time
distributions. The iterative method was specifically conceived for links that are known to have con-
siderable vehicle overtaking, such as freeway links along very long freeway segments, when it is
assumed that even after the matching step is performed, many (Xi,Yj) signature pairs generated by
the same vehicle and yielding small signature distances are discarded due to the FIFO constraint.

The iterative method starts in the same ways as the original method. A distance matrix D is
calculated based on the upstream and downstream signature sequences X and Y . In the iterative
method, the distance matrix D is labeled as Dn=1, where n = 1 indicates that the distance matrix
will be used as input to the first run of the optimal constrained matching µcMAP. The results of the
matching function are stored, and used to obtain the distance matrix that will be used for the second
run of the matching function, i.e., Dn=2. The rows of Dn=1 corresponding to the upstream matched
signatures, and its columns corresponding to the downstream matched signatures are eliminated.
The result of the procedure is a reduced distance matrix Dn=2, which corresponds to the distance
matrix of upstream and downstream signatures that were not matched by the algorithm after the
first run. The reduced matrix Dn=2 is the distance matrix used by the optimal constrained matching
µcMAP for the second iteration of the algorithm. This procedure is repeated until µcMAP does not
re-identify any vehicle or until size(Dn)= 0×0. In either case, the number of iterations required to
complete the matching is considered as the largest value of n for which Dn is not empty and leads
to at least one re-identified vehicle when used as input to the optimal constrained matching µcMAP.

Under ideal conditions, i.e., f and g pdfs with µg− µ f ≫ σg and µg− µ f ≫ σ f , the itera-
tive vehicle re-identification method would be able to achieve a perfect matching, even if vehicle
overtaking is extreme. However, under more realistic circumstances, this method has the potential
to increase the overall matching rate, but at the cost of a large increase in the the percentage of
mismatched vehicles, which is unacceptable. It is necessary to have a criteria to determine until
which iteration, n, the results of the matching algorithm can be trusted. In the following section,
a stopping criteria that determines the value of the iteration n for which matching results are rep-
resentative of vehicles going through the array link, and not related to noise associated with the
nature of the optimal constrained matching algorithm and the randomness of the distance matrix,
is presented.

Stopping Criteria

This section presents the stopping criteria for the iterative vehicle re-identification method. For the
analysis and results presented in the rest of this chapter, unless otherwise specified, the parameters
used for the optimal constrained matching µcMAP are µ f = .16, σ f = .08, µg = .61, σg = .14 and
β = .40. Also, the time stamp associated with the signatures is not used, only the signature indexes
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Figure 6.13: Matched vehicles distribution (m=10000) for different random matrix Drandg sizes:
(left) 73x73 (middle) 73x672 (right) 409x409

73 vs 73 73 vs 672 409 vs 409
vehicles vehicles vehicles

m µ σ µ σ µ σ

10 15.60 1.17 43.79 2.57 95.50 5.95
100 16.17 2.00 44.43 2.53 95.59 4.62

1000 16.06 2.10 44.46 2.87 96.31 4.66
10000 16.05 2.08 44.47 2.86 96.29 4.67

Table 6.12: Mean µ and standard deviation σ of the distribution of matched vehicles produced
from m randomly generated distance matrices Drandg

are relevant.

For this discussion, Drandg is defined as a distance matrix obtained with an upstream signature
sequence X and a downstream signature sequence Y where non of the signature pairs (Xi,Yj) were
generated by the same vehicle. Drandg can be also considered as a distance matrix populated with
the g pdf. For the study presented in this section, the matching algorithm is used on m randomly
generated distance matrices Drandg populated with the g pdf to produce distributions on the number
of matched vehicles, as the ones shown in Figure 6.13.

When a random distance matrix Drandg , of size N ×M, is used as the input of the optimal
constrained matching µcMAP, the number of matched vehicles is usually a non-zero number within
a very consistent range. Furthermore, it was observed that this range is influenced by the g pdf, N,
M, µ f , σ f , µg, σg and β . Figure 6.13 shows the distribution of the number of matched vehicles
calculated for m=10000 Drandg matrices populated with the g pdf given by µg = .61 and σg = .14
for three set of N×M values corresponding to the sizes of the distance matrices for the T1, T1 &
P2, and T2 data sets, i.e., 73× 73, 73× 672, and 409× 409, respectively. The three distributions
have different means, and different standard deviations, but their shape is similar and resembles
a Gaussian distribution with trimmed tails. Furthermore, the mean and the standard deviation of
the distributions converges for small values of m, as observed in Table 6.12, which is desirable
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Figure 6.14: Normalized matching rate distributions (m=1000) for different β values and for dif-
ferent random matrix Drandg sizes: (top) 73x73 (middle) 73x672 (bottom) 409x409

because the range of the number of matched vehicles for a given Drandg can be computed fast and
efficiently.

To further study the distribution of the number of matched vehicles for randomly generated
matrices Drandg , two sensitivity analysis were conducted. The first one is based on determining
the effect of variations on the β parameter on the shape, mean, standard deviation and range of
the distribution. For this, 11 values of β were chosen and distributions for each of the values
were calculated based on m=1000 Drandg for the three sizes studied before, i.e., 73×73, 73×672,
and 409× 409. For ease of comparison, the amplitude of all the distributions were normalized
so that their maximum value was always 1. In order to be able to compare trends among the
different matrix sizes, instead of plotting distributions of number of matched vehicles, the number
of matched vehicles are divided over the min(N, M). This two normalization steps allow us to
observe matching rate distributions as a function of β for different distance matrix sizes, as shown
in Figure 6.14. It is observed that β influences the distributions, specially for values closer to
zero or one. However, changes on β values on the range [.3, .7] have subtle changes on the
distributions, which is a nice property to have, since this parameter is usually set within this range.
From this analysis, it is also evident that highly asymmetric Drandg are more likely to produce a
larger number of matched vehicles, as observed from the differences between Figure 6.14 (top) and
(middle), where even though the maximum number of matches for both cases is 73, the asymmetric
matrix produces matching rate distributions with significant higher mean and standard deviation.
By comparing Figure 6.14 (top) and (bottom) it seems that while β have very similar effect on the
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Figure 6.15: Normalized matching rate distributions (m=1000) for different σg and for different
random matrix Drandg sizes: (top) 73x73 (middle) 73x672 (bottom) 409x409

distributions based on square distance matrices, it seems that the matching rate range shrinks as
the matrix size increases.

For the second sensitivity analysis, µ f = .16, σ f = .08, µg = .61 and β = .40, while σg is
varied over the range [.02, .24] in .02 steps. This experiment is helpful to study the effect of f and
g pdf similarity or dissimilarity on the matching rate obtained with randomly generated distance
matrices Drandg . For each σg, three normalized matching rate distributions are calculated from
m=1000 Drandg for three different sizes, i.e., 73× 73, 73× 672, and 409× 409, where the same
value of σg is used to populate Drandg and as the parameter for the matching function. Figure 6.15
shows the results of the analysis, where the variations in σg seem to linearly affect the mean of
the matching rate distributions for the square matrices. While the mean is directly influenced by
changes in σg, the standard deviation of the distributions does not change much as a result of σg
variation. Note also that for the larger values of σg, the non square matrix reaches matching rates
as high as 1, while both square matrices reach maximum matching rate around .50. It seems that
similarities or considerable overlapping of the f and g pdf have a greater impact on rectangular
matrices than on square matrices.

Based on the matching rate behavior when randomly generated matrices Drandg are used with
the optimal constrained matching µcMAP, a stopping criteria was developed. For each iteration
of the matching algorithm, starting with the first one, i.e., n=1, the matching rate based on Dn ,
defined as the number of matches over min(size(Dn)), is compared with the acceptable matching
rate lower bound. The acceptable matching rate lower bound is defined as the maximum matching
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Figure 6.16: Color map of the (left) maximum number of matched vehicles and (right) acceptable
matching rate lower bound, from matching results distributions based on m=100 N×M random
distance matrices Drandg , for N = 1 · · ·100 and M = 1 · · ·100

rate observed in a matching rate distribution calculated from m=100 Drandg , with size(Drandg)=
size(Dn), and where the matching algorithm used for each Drandg uses the parameters used for Dn
and where Drandg are populated with the g pdf parameters used also in the matching algorithm. If
the matching rate for Dn is lower than the acceptable matching rate lower bound, then the matched
vehicle data for iterations larger or equal to n are discarded. Note that the acceptable matching rate
lower bounds, for a given set of parameters µ f , σ f , µg, σg and β , can be pre-computed for a large
range of Drandg sizes, stored, and used in the iterative vehicle re-identification method as a look
up table based on size(Dn). Figure 6.16 (left) show the color map of the maximum value of the
distribution of matched vehicles based on m=100 N×M Drandg for N = 1 · · ·100 and M = 1 · · ·100
using the parameters listed before. Figure 6.16 (right) shows the acceptable matching rate lower
bound based on the numbers from Figure 6.16 (left). Note that for very tall or fat matrices, the
acceptable matching rate lower bound is considerably higher. Also note that as the size of square
matrices increase, the acceptable matching rate lower bound decreases.

In the following analyses, two sets of results are presented. The first one corresponds to the
total number of matched vehicles of the iterative algorithm calculated as the accumulation of the
results over the complete set of iterations. The second one correspond to the iterative results using
the stopping criteria and calculated as the accumulation of matching results for the first iterations
that satisfy the acceptable matching rate lower bound, discarding the results after and including
the iteration n for which for the first time the matching rate is below the acceptable matching rate
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lower bound.

Analysis on Overtaking: Artificial Shuffling
For this analysis, for a given set of upstream and downstream signatures, the ordering of the se-
quence of signatures recorded at the upstream array is not modified, while the downstream signa-
ture sequence is rearranged to simulate vehicle overtaking. The rearrangement is tracked so that
matching rate results as well as % of mismatched vehicles can be determined. This information
enables the study of the iterative vehicle re-identification method matching performance.
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Figure 6.19: (a) Scenario 1, (b) Scenario 2 and (c) Scenario 3

To simulate overtaking, it is assumed that vehicles that entered the link, either at the upstream
array or at any location in between arrays, at some point through their trajectory in the link, could
have overtaken other vehicles. The number of places that a given vehicle going through the array
overtakes, i.e., o, is given by the discrete probability density functions shown in Figure 6.17, where
p o is defined as the probability that a vehicle will initiate an overtaking movement and c is a
parameter to increase or decrease the range of o. To increase the degree of vehicle shuffling due
to overtaking, when the i vehicle moves within the vehicle sequence by o 6= 0 places, it swaps
position with vehicle i+ o. This procedure is illustrated with a simple five vehicle example in
Figure 6.18. For this study, values of c=5 and c=10 are used, as well as value of p o from 0 to 1 in
.25 increments.

The following sections study the effect of different degrees of simulated vehicle overtaking for
three scenarios, i.e., three sets of upstream and downstream signatures, illustrated in Figure 6.19

Scenario 1

Scenario 1, shown in Figure 6.19 (a), uses the T2 signature data set. This scenario, i.e., a square
distance matrix and ordered pairs of matching signatures at the upstream and downstream location,
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Iterative Results Iterative Results
(for all n) (with stopping criteria)

Probability # of % of Mismatched # of # of % of Mismatched # of
of Overtaking Matches Vehicles Iterations Matches Vehicles Iterations

0 409 0 1 409 0 1
0.25 405 .02 6 401 .02 5
0.50 403 .07 10 395 .06 6
0.75 404 .11 11 364 .10 5

1 400 .10 11 388 .09 7

Table 6.13: Total iterative results vs iterative results with automatic stopping criteria (c=5, size(D)
= 409x409)

(Xi → Yi), is representative of an installation where most vehicles entering the array link at the
upstream location are expected to go through the downstream array, and the number of vehicles
entering the link in between is minimal. For an implementation of the truck re-identification system
in between WIM stations, a comparable signature data set would be obtained if most trucks were
expected to go through both WIM stations and if it was possible to discard passenger vehicles
signatures at both locations using WIM vehicle type data. This type of distance matrix would also
be expected if the upstream and downstream arrays were at locations where access is restricted to
trucks, e.g., commercial vehicle enforcement facilities.

Table 6.13 shows the results for the iterative vehicle re-identification method for different de-
grees of simulated overtaking based on five different values of the probability of overtake, p o, and
the coefficient for the discrete probability distribution shown in Figure 6.17 set to c=5. The results
on the left correspond to the total number of matched vehicles, while the ones on the right are the
subset of results based on the stopping criteria. Regardless of the value of p o, the overall matching
rate is very similar for the five cases. However, the percentage of mismatched vehicles increases as
signature shuffling increases, going from 0% when no shuffling is introduced, and reaching values
of up to 11%. For this particular scenario, even the worst results, corresponding to p o=.75, cannot
be significantly improved by removing matched vehicles using the stopping criteria. The accuracy
of the iterative method was improved for the three largest values of p o, but the improvements,
reflected as a reduction of the % of mismatched vehicles, were only of about 1 %.

Table 6.14 shows the iterative vehicle re-identification results for the case when p o=1, i.e., all
the vehicles are shuffled with c=5. This table shows that for the Dn=1 matrix shown in Figure 6.20,
it took eleven runs, n=11, to compute the total iterative matching results. From the Dn=1 distance
matrix plot, it is possible to see that there was a considerable amount of signature shuffling at
the downstream signature sequence in comparison to the T2 distance matrix shown in Figure 6.12
(c). It is important to point out that 72.5 % of the re-identified vehicles were matched during the
first three iterations of the algorithm, and even for this small values of n, the % of mismatched
vehicles was as high as 11%. For this reason, even when using the stopping criteria and removing
iteration results for n > 7, the % of mismatched vehicles was not significantly improved. Figure
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Iteration # Upstream # Downstream Matched Mismatched Matching % of Mismatched
(n) Vehicles Vehicles Vehicles Vehicles Rate Vehicles
1 409 409 154 13 0.38 0.08
2 255 255 79 6 0.31 0.08
3 176 176 57 6 0.32 0.11
4 119 119 38 2 0.32 0.05
5 81 81 28 0 0.35 0
6 53 53 19 2 0.36 0.11
7 34 34 13 4 0.38 0.31
8 21 21 6 2 0.28 0.33
9 15 15 3 1 0.20 0.33

10 12 12 2 1 0.17 0.50
11 10 10 1 1 0.10 1

TOTAL 409 409 400 38 .98 .10

Table 6.14: Iterative vehicle re-identification results for scenario 1 for p o=1 and c=5

Figure 6.20: Evolution of vehicle re-identification results for scenario 1 for p o=1 and c=5 (results
listed in Table 6.14)

6.20 illustrates the evolution of Dn, as well as the evolution of the matching results, as a function
of the iteration n.
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Iterative Results Iterative Results
(for all n) (with stopping criteria)

Probability # of % of Mismatched # of # of % of Mismatched # of
of Overtaking Matches Vehicles Iterations Matches Vehicles Iterations

0 73 .01 2 72 0 1
0.25 73 .03 4 59 .02 1
0.50 73 .08 5 - - -
0.75 73 .12 4 - - -

1 73 .14 5 - - -

Table 6.15: Total iterative results vs iterative results with automatic stopping criteria (c=10, size(D)
= 73x672)

Scenario 2

Scenario 2, shown in Figure 6.19 (b), uses the T1 & P2 signature data set. This scenario, i.e.,
non square distance matrix and upstream signatures having a matching downstream signature,
is representative of an installation where most vehicles entering the array link at the upstream
location go through the downstream array and the number of vehicles entering the link in between
is significant. For an implementation of truck re-identification in between a WIM station and a
sensor array at a downstream location, a comparable signature data set would be obtained if most
trucks going through the upstream location were expected to go through the downstream array and
if it was possible to discard passenger vehicles signatures from the upstream sequence using WIM
data, e.g., using vehicle weight, axle count or length, but it was not possible to do the same at the
downstream location. A similar vehicle signature set would also result from an implementation
where the upstream array is installed at a location where only trucks are allowed, i.e., commercial
vehicle enforcement facilities, and the downstream array is at a freeway location with mixed traffic
flow.

Table 6.15 shows the complete results from the iterative method and the subset of the re-
sults using the stopping criteria. For this set of upstream and downstream signatures, shuffling
of the downstream signatures have a more significant degradation on the results, with the worst
performance for p o=1. Although the matching rate was 1 for all the five experiments, the % of
mismatched vehicles went from 1% for p o=0 to 14% when p o=1. When the stopping criteria
was used on the results, as shown on the right columns of the table, the accuracy of the results
improved for the first two experiments, while the results for the remaining ones were completely
discarded because of the resulting matching rates were smaller than the acceptable matching rate
lower bound even for n = 1. This scenario shows that even for fat distance matrices, if vehicle
overtaking is not significant, the iterative matching algorithm results would be accurate.

Vehicle overtaking for highly non square distance matrices introduces more uncertainty in the
matching results for both the original and the iterative method, as indicated by the fact that the
stopping criteria discarded the matching results for the first run of the iterative algorithm, which
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Iterative Results Iterative Results
(for all n) (with stopping criteria)

Probability # of % of Mismatched # of # of % of Mismatched # of
of Overtaking Matches Vehicles Iterations Matches Vehicles Iterations

0 73 .01 2 72 0 1
0.25 73 .03 4 59 .02 1
0.50 73 .08 5 41 .07 1
0.75 73 .12 4 42 .12 1

1 73 .14 5 44 .10 1

Table 6.16: Total iterative results vs iterative results with automatic stopping criteria (c=10, size(D)
= 73x300)

is equivalent to the original matching method. If the number of downstream signatures could be
reduced, while keeping all or most of the signatures generated by the trucks that went through the
link, then the confidence on results would increase, and the algorithm stopping criteria would be
less likely to discard all of the iterations for the larger probabilities of overtaking. One method
to accomplish this would be to identify and eliminate signatures that are very likely to be from
passenger vehicles. This could be accomplished using a simple classification algorithm like the one
presented in Section 6.4 or a classification based on speed or length estimation at the downstream
location (e.g., eliminate fast vehicles or shortest vehicles going through the downstream array).
By randomly reducing the downstream signature set from 672 vehicles to 300 vehicles, without
discarding any of the 73 T1 downstream signatures, the results shown in Table 6.15 change to
those shown in Table 6.16. In this case, the original method and the iterative method with stopping
criteria would yield the same matching results. Note that for four out of the five experiments for
this scenario, the accuracy of the matching results had a slight increase when the largest iteration
results were removed, at a considerable drop in the matching rate.

Scenario 3

Scenario 3, shown in Figure 6.19 (c), uses a subset of the T2 signature data set. This scenario is
the most realistic one out of the three considered in this analysis. It models the implementation
of a truck re-identification system in between two WIM stations where the flow at the upstream
location is considerably different than the flow at the downstream location, i.e., 25% lower, due
to a large net flow of vehicles entering the link in between arrays and where a significant portion
of vehicles going through the upstream array leave the link before reaching the downstream array,
i.e., 25% of the vehicles. The signature data set for scenario 3 was obtained by choosing the first
320 signatures from the upstream and the downstream signature sequences in T2. Afterwards, 80
signatures from the upstream sequence were removed at random, resulting in 240 upstream and
320 downstream signatures. Finally, 60 of the upstream signatures were randomly selected and
replaced with the T2 upstream signatures X321 to X380. Unlike for scenario 1 and scenario 2, where
it was possible to obtain a maximum correct matching rate as high as 1, for this scenario, as the
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Iterative Results Iterative Results
(for all n) (with stopping criteria)

Probability # of % of Mismatched # of # of % of Mismatched # of
of Overtaking Matches Vehicles Iterations Matches Vehicles Iterations

0 222 .19 10 183 .02 1
0.25 219 .23 9 130 .06 1
0.50 219 .28 12 96 .14 1
0.75 220 .29 12 92 .18 2

1 222 .28 11 129 .14 2

Table 6.17: Total iterative results vs iterative results with automatic stopping criteria (c=5, size(D)
= 240x320)

result of vehicles leaving the link, the maximum correct matching rate that could be achieved is
.75.

Table 6.17 show the results for the iterative vehicle re-identification method for different de-
grees of simulated overtaking based on five different values of the probability of overtake, p o,
and the coefficient for the discrete probability distribution shown in Figure 6.17 set to c=5. The
results on the left correspond to the total number of matched vehicles, while the ones on the right
are the subset of results based on the stopping criteria. As for the previous scenarios, regardless of
the value of p o, the overall matching rate is almost the same for the five experiments. However,
the percentage of mismatched vehicles increases as signature shuffling increases, going from 19%
when no shuffling is introduced, and reaching values of up to 29%. For this particular scenario, the
results without using the stopping criteria are very inaccurate, even for the case that had no shuf-
fling. This phenomena, which was not observed in scenario 1 and scenario 2, are related to the fact
that the upstream and downstream signatures have different number of signatures, and because 60
of the 240 upstream signatures do not have a matching downstream signature. Figure 6.18 shows
the results for the experiment without any signature shuffling. All of the upstream signatures with
a corresponding signatures at the downstream location were correctly matched during the first it-
eration. This means that the remaining nine iterations produce matches that increase the matching
rate at the expense of a significant degradation in the performance. When the stopping criteria is
used to discard results from iterations that are unreliable the accuracy of the results is improved for
all cases, as shown in Table 6.17. The reduction on the percentage of mismatched vehicles was of
at least 11%, with the best improvements observed for the first two experiments.

Analysis on Overtaking: Shuffling Based on Real Data
The analysis presented in the previous section was useful to study the influence of overtaking on the
matching algorithm performance for different sizes and types of distance matrices. In this section,
iterative vehicle re-identification results for truck overtaking based on field data are presented.
Instead of simulating vehicle overtaking by shuffling the downstream sequence of signatures based
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Iteration # Upstream # Downstream Matched Mismatched Matching % of Mismatched
(n) Vehicles Vehicles Vehicles Vehicles Rate Vehicles
1 240 320 183 3 0.76 0.02
2 57 137 15 15 0.26 1
3 42 122 7 7 0.16 1
4 35 115 5 5 0.14 1
5 30 110 4 4 0.13 1
6 26 106 2 2 0.07 1
7 24 104 3 3 0.12 1
8 21 101 1 1 0.04 1
9 20 100 1 1 0.05 1

10 19 99 1 1 0.05 1
TOTAL 240 320 222 42 .93 .19

Table 6.18: Iterative vehicle re-identification results for scenario 3 for p o=0
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Figure 6.21: (top) Travel time and (bottom) time-space diagram for 409 successive departing trucks
at the upstream WIM station (from [2] truck data set)

on the distribution from Figure 6.17, in this section the signatures are re-arranged based on ground
truth re-identified vehicle data collected from commercial vehicles that cross 2 weigh-in-motion
sites in Oregon that are separated by 145 miles. The data set used for this analysis was initially
presented in [2].

For this analysis, the signatures from the T2 data set are used for a configuration like the one
shown in Figure 6.19 (a). The ordering of the upstream signatures is not modified, while the
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Iteration # Matched Mismatched Matching % of Mismatches
(n) Vehicles Vehicles Vehicles Rate Vehicles
1 409 233 2 .57 .01
2 176 86 1 .49 .01
3 90 44 1 .49 .02
4 46 24 1 .52 .04
5 22 13 0 .59 0
6 9 5 0 .56 0
7 4 2 0 .50 0
8 2 1 1 .50 1

TOTAL 409 408 6 .99 .01

Table 6.19: Iterative vehicle re-identification results for truck shuffling based on data from [2]

ordering of the downstream signature sequence is modified to match the reordering that occurred
to a sequence of 409 consecutive trucks as the trucks went through the 145 mile long segment.
Figure 6.21 (top) shows the travel time of the 409 trucks used in this section as a function of the
time when they departed the upstream WIM station. Figure 6.21 (bottom) shows the time-space
diagram for the same set of trucks, showing that there was considerable vehicle overtaking as the
vehicles travel in between WIM stations. The vehicle overtaking can be further observed from the
distance matrix Dn=1 shown in Figure 6.22.

Table 6.19 show the results of the iterative vehicle re-identification algorithm for each iteration
n, as well as the overall matching results. It can be seen that vehicle overtaking was considerable for
the trucks going through the long segment, since it took eight iterations to complete the matching.
Note that even for this high number of iterations, the accuracy of the results is very high, and at the
end, only 6 vehicles out the 408 re-identified by the iterative algorithm were incorrectly matched,
resulting in a matching rate of .99 with a percentage of mismatched vehicles of 1%. The results in
the table are illustrated in Figure 6.22, which shows the evolution of the distance matrices and the
sequence of matched vehicles as a function of n.

The results based on the iterative vehicle re-identification system with the stopping criteria are
slightly different. Matched vehicles for n > 6 with this criteria are discarded, which results in a
slightly lower matching rate, with 405 matched vehicles instead of 408, and with 5 misidentified
vehicles instead of 6. Note that with either method, the matching results are almost as good as the
ones obtained with the 409 upstream and downstream signatures without any shuffling, i.e., 409
correct matches.

The results in this section show that the iterative vehicle re-identification method with stopping
criteria should be able to perform well on implementations where vehicle overtaking is common.



125

Figure 6.22: Evolution of the vehicle re-identification results for truck shuffling based on real data

6.6 Discussion
The vehicle re-identification system summarized in Chapter 2 can be used on freeways for accurate
travel time estimation and link vehicle-count estimation. The results presented in this chapter
showed that the system is able to perform well under freeway free flow conditions, as well as under
congested conditions. The system proved consistent and reliable at estimating travel time and link
vehicle-count during congested conditions resulting from high freeway demand, e.g., during rush
hour, as well as during rapidly appearing congestion due to incidents in the vicinity of the freeway
segment under consideration.

The results in the second section of the chapter showed that it is possible to perform vehicle
classification using vehicle magnetic signature data, i.e., peak amplitude and inter peak separation
extracted from the raw magnetic signal, from a single wireless magnetic sensor placed in the middle
of a freeway lane. From a mixed stream of vehicles, it was possible to accurately separate passenger
vehicles from trucks. Classification of trucks into subclasses, e.g., small trucks vs large trucks, was
not as accurate as the separation between passenger vehicles and trucks.

An iterative vehicle re-identification algorithm, an extension of the method summarized in
Section 2.3, was validated using three different sets of vehicle signatures collected from freeways,
and re-ordered to be able to analyze the effect of vehicle overtaking. It was shown that this method
is a good matching algorithm for implementation along long freeway segments where vehicle
overtaking is significant and cannot be neglected.
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Chapter 7

Vehicle Re-Identification Systems Tuning

Tool

7.1 Introduction
Traffic monitoring technologies need methods and procedures to inspect and assess sensor health
and qualify the feasibility, consistency and accuracy of traffic state estimates effectively. This is
a key component for maintaining Intelligent Transportation System operating efficiently, but it is
traditionally overlooked. Transportation agencies recognize that assessing the quality of data is a
critical component of traffic monitoring systems [3]. For arterial traffic signals management and
operations, the National Traffic Operation Coalition reports in the 2012 National Traffic Signal
Report Card that half of the agencies studied, out of 241 agencies across the United States and
Canada, do not assess the quality of data collected, and emphasizes this as unfortunate, because
they may be using faulty data to analyze and time their traffic signals [3]. Furthermore, the organi-
zation reports that there are few, if any, quality checks for traffic monitoring and collection systems,
which leads to inaccurate signal operations and the potential for malfunctioning field equipment.
The end result is that traffic signals many times are not operated based on traffic conditions, result-
ing in delays. Finally, the report emphasizes the importance to establish programs for monitoring
the quality of data gathered by roadway detectors to make sure they are operating correctly.

The wireless magnetic sensors presented in Chapter 2 have built-in failure detection features.
Networks of these sensors are continuously monitored and faulty sensors are easily identified.
However, sometimes even when there is no sensor failure, the estimates based on the sensor data
may be noisy, inconsistent, or inaccurate. This is particularly dangerous for sensor implemen-
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tations where estimates seem to be reasonable, and faulty data are not easy to identify. In this
chapter, a tool to tune vehicle re-identification system parameters and assess the quality of the col-
lected data, i.e., vehicle magnetic signatures, as well as the quality of the estimates derived from
the data, is presented. This tool includes algorithmic techniques that help determine a good set of
parameters to be used for a given system implementation. It generates a set of plots and metrics
and uses algorithms that are useful at evaluating vehicle re-identification results as well as the fea-
sibility, consistency and accuracy of vehicle travel time and link vehicle-count estimates, which
are directly related to the quality of the matched vehicle data.

This chapter is organized as follows: An overview of the vehicle re-identification system tool
is presented in Section 7.2. The test site and vehicle detection installations used to explain how
the tool performs for different type of segments are described in Section 7.3. An explanation of
each of the components of the tool is presented in Section 7.4, together with examples using field
data from two arterial segments. A discussion of the tuning tool results for the studied segments is
presented in Section 7.5.

7.2 Tool Overview
The vehicle re-identification system tuning tool is a MATLAB based automated script that offers
a standard and simple procedure for tuning parameters and evaluate data quality and system per-
formance. It takes vehicle signature data as input and generates a set of plots and metrics and uses
algorithms that are useful to evaluate the accuracy of the vehicle re-identification results as well
as the feasibility and accuracy of vehicle travel time and link vehicle-count estimates. The output
is a set of figures, i.e., plots, tables, and metrics, that are automatically plotted and displayed in
MATLAB or are exported to Power Point files for ease of visualization and archival. Figure 7.1
illustrates the flow of data in this tool.

The vehicle re-identification tuning tool takes a set of upstream and downstream vehicle signa-
tures as input. Each vehicle signature consists of text files with vehicle signature slice component
data. The number of files per signatures is equal to the number of sensors in the arrays times three.
Each file name indicates the type of component, i.e., x, y or z, the array and sensor that generated
the data in the file, as well as a time stamp, with a one second resolution, indicating the time when
the vehicle signature was generated. All the files are put into a folder, and the folder name is an
input to the tool.

The set of signatures should be chosen considering traffic conditions, the time of the day,
the geometry of the link, as well as free flow and common congestion travel times. The time
window considered for analysis should be large enough to guarantee that enough vehicles going
over the upstream array would have time to reach the downstream array. Furthermore, by having
information about free flow speed, speed limit, geometry and link traffic characteristics, e.g., all
vehicles going through the link (on-ramp link) vs a large percentage of vehicles exiting the link
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Figure 7.1: Vehicle re-identification tool data flow

in between arrays (arterial segment with multiple intersections in between arrays), it is possible to
comment if the results are feasible, reasonable and/or accurate.

The tuning tool has eight components, explained in this section, and illustrated in detail in
Section 7.4.

Peak Analysis Component - plots upstream and downstream sensor array information as a func-
tion of sensor and as a function of vehicle signature. This component is useful to determine
if the sensor array data is healthy and consistent during the time interval chosen for analysis.
Furthermore, it helps identify if there are sensors producing uncommon signature slices, e.g.,
too many or few number of peaks per signature slice component, or not generating data at
all.

Distance Matrix Component - calculates and plots the vehicle signature distance matrix that will
be used in other tool components. Furthermore, the plot is useful to visually confirm if there
is an obvious set of low distances somewhere along a diagonal band of the distance matrix
color plot. The presence of such a pattern generally indicates that there are vehicles going
through the link and generating signatures at both sensor arrays that produce low distances.

f and g Component - outputs two sets of f and g parameters calculated based on: i) the distance
matrix f and g method described in Section 2.3 and ii) a linear assignment matching function
µLA, that will be described in Section 7.4. Additionally, this component generates plots of
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the empirical distance distributions used to calculate the two sets of f and g parameters,
with the corresponding plots of f and g gaussian approximations. These plots are useful to
determine if assuming gaussian f and g pdfs for the distance matrix is adequate.

Matching Algorithm Component - given a distance matrix and a value of β , it generates matched
vehicle results using four sets of f and g parameters: i) the default set ii) the distance matrix
set, iii) the linear assignment set, and iv) the Hegenberger set. These sets of parameters cover
different combinations of f and g pdfs, going from dissimilar ones, i.e., default set of param-
eters, to values representing more overlapping f and g, i.e., the parameter set based on the
Hegenberger on-ramp installation. The sensitivity of the vehicle re-identification results for
changes in the parameter can be studied using the data generated with this tool component.

Matching Algorithm Plots Component - generates plots and metrics that enable easy evalua-
tion and comparison of the matching algorithm results generated with the different f and g
parameter sets. These plots allow to determine if the results of the matching algorithm are
reasonable and consistent with what is expected at the segment under consideration. Further-
more, the plots and metrics from this section are helpful to make an informed decision about
what are acceptable f and g parameters to use permanently at the sensor array installation
under study.

Sensor Pair Minimum Distance Frequency - given the matching results for a given set of f and
g parameters, it generates a plot showing the number of times each combination of upstream
and downstream signature slices,(Xq

i ,Y
r
j ), for the set of matched signatures, Xi → Yj, pro-

duced the distance δ (Xi,Yj), as defined in Section 2.3. This plot is useful to determine which
combination of upstream and downstream sensors are the most used to generate the distance
between matched signatures, which are generally observed to be among the middle sensors
of the array. This plot also helps to comment on the variability in the position of vehicles
with respect to the center of the lane as they go through the arrays. Ideally, vehicles should
be going through the center of the lane when traveling through both arrays, this increases
the chances of having similar signatures that result in low distances, which increases the
matching rate and accuracy of the results.

k-Shortest Paths Component - for a given distance matrix D, a set of f and g parameters and a
value of β , it calculates the k-shortest paths from node (0,0) to node (N,M) in the edit graph
G (N,M), as explained in Section 2.3. The k-shortest paths information is used to evaluate
matching strength of each match, and allows to discard matched vehicle information that is
likely to be incorrect. The robustness evaluation is based on determining how many times
Xi → Yj was selected as a match in the k-shortest paths. Matches that are common to the
k-shortest paths are considered more likely to be correct. Furthermore, plots derived from
k-shortest paths data help to assess the health of an installation. When installations are
working properly, the k-shortest paths are very similar to each other. On the other hand,
faulty installations tend to have k-shortest paths that have notorious differences.
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Array A B C D E F G H I J K L M
No. Vehicles 636 723 497 423 729 947 407 769 788 542 432 303 210

Table 7.1: Sensor arrays vehicle count on August 3, 2011 from 5 p.m. to 6 p.m. (afternoon peak
traffic)

Matched Signatures Subset Analysis Component - given the matching results for a given set
of f and g parameters, it plots a sample of upstream and downstream matched signatures,
Xi→ Yj, with information about the distance between them. The chosen subset of signature
pairs are representative of the range of distances observed for the matched vehicles, i.e.,
signature pairs that yielded small, intermediate, and large distances. These plots allow to
visually investigate if the signatures look alike and are a reasonable match, or if there are
uncommon factors generating either very small distances or very large distances, both of
which may be affecting the matching rate and/or matching accuracy.

7.3 Test Site
The tool presented in this chapter was motivated by the increasing complexity of installations
associated with the vehicle re-identification system described in Chapter 2. One example of such
an installation is shown in Figure 7.2. This is a 13 sensor array installation in St. Louis County,
Missouri, forming 12 continuous arterial segments along 12 miles of the Lindbergh Boulevard,
U.S. Route 67. The most upstream sensor array, array A, is located just upstream of the Interstate
70 overpass, and the most downstream array, array M, is located right before the intersection of the
Lindbergh Boulevard and Lewis and Clark Boulevard (Route 367). Each sensor array, consisting
of five sensors, were installed on the fast lanes of the arterial segments, usually right after an
intersection. The segment geometry and vehicular flow counts at the upstream and downstream
arrays change from link to link, as shown in Table 7.1. Although the arrays are relatively close to
each other, traffic can vary significantly even within adjacent arrays.

The tool presented in this chapter was used to study all the segments in Figure 7.2. However,
only segment 179, delimited by upstream array A and downstream array B, and segment 126,
defined by upstream array C and downstream array D, are presented in this chapter. Segment
179 is a 2.14-mile, two lane, arterial segment spanning one vehicular tunnel and one signalized
intersection, with a speed limit of 40 mph. Segment 126 is a .65-mile arterial segment with two
signalized intersections and a speed limit of 40 mph. Segment 126 starts at a location where the
Lindbergh Boulevard has four lanes, and ends at a location where there are only three lanes.
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SegmentSegment  

    

UpstreamUpstream  

  ArrayArray  

DownstreamDownstream  

  ArrayArray  

LengthLength  

[mi][mi]  

179179  A B 2.14 

125125  B C 0.69 

126126  C D 0.65 

127127  D E 0.69 

128128  E F 0.85 

129129  F G 0.96 

130130  G H 1.01 

131131  H I 0.74 

132132  I J 0.39 

133133  J K 1.09 

134134  K L 1.80 

135135  L M 0.96 

Figure 7.2: 12-mile Missouri arterial segment with 13 sensor arrays forming 12 array links

7.4 Tool Components
In this section, each tool component is explained in more detail and their usefulness is illustrated
with two sets of signatures corresponding to segment 179 and segment 126, described in Section
7.3. The set of upstream and downstream signatures for each of the segments corresponds to the
first 200 upstream and 200 downstream signatures registered by the sensor arrays on August 3,
2012, starting at 5 p.m.. The signature set for segment 179 spans a 15 minute time interval, while
the signatures for segment 126 span a 22 minute time interval.

Peak Analysis Component
The peak analysis component allows a quick inspection of the quality and consistency of the ve-
hicle signature data from the usptream and the downstream arrays. The plots are set up to display
data generated by arrays with up to seven sensors. When the number of sensors in the arrays is less
than seven, sensor related plots use zero as the default value for the missing sensors. In this sec-
tion, 5 sensor array data are studied, which means that the sensors farther from the middle sensor,
labeled as sensor four, are set to zero, i.e., sensor one and sensor seven, as shown Figure 7.3 or 7.4.
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Figure 7.3: Average number of peaks as a function of sensor for (left) segment 179 and (right)
segment 126

As discussed in Chapter 2, the vehicle signatures are a collection of extracted sequence of peak
values from raw magnetic signals, and as a result, the number of peaks of the vehicle signature
is a great indicator of the quality of signatures. By analyzing peak information as a function of
sensor and as a function of signature, it is possible to determine if a particular sensor or array is not
working properly, if signatures generated by one of the arrays are consistently noisier, or if there
is a problem with the communication between the wireless magnetic sensors and access point.

Figure 7.3 shows plots of the average number of peaks in a vehicle signature slice as a function
of sensor component, x, y and z, and as a function of sensor, for upstream and downstream arrays,
for segments 179 and 126, respectively. Note that a single sensor in an array generates a signature
slice, which is composed of an x, y and z component. These plots are useful to determine if there
are sensors for which signature data is not available, if there is consistency in the data between up-
stream and downstream sensors and if one of the arrays is consistently measuring noisy signatures,
i.e., maybe due to stop-and-go traffic. A healthy installation generally produces similar upstream
and downstream plots. From the figure it is possible to see that for segment 179, the upstream
sensors, on average, produce slightly fewer number of peaks than the downstream sensors, while
for segment 126, the number of peaks generated by sensors at both arrays is very consistent, with
the exception of the fifth upstream sensor, which is faulty and produces empty vehicle signature
slices. Note that a faulty detector may influence the matching rate and even matching accuracy, but
as explained in Section 2.3, the vehicle re-identification signal processing step is robust to missing
vehicle signatures slices.
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Figure 7.4: Number of peaks distribution (x+y+z) for each of the sensors in (left) segment 179 and
(right) segment 126

Figure 7.4 shows distributions of number of peaks per vehicle signature slice, i.e., as a function
of sensor, for segment 179 and segment 126, respectively. This is another set of plots that is useful
to compare upstream and downstream array data. It complements the previous figure by showing
if a lower or higher number of peaks per signature slice for a complete sequence of signatures is
present throughout the data set, or only on a subset of the signatures. For example, this figure would
be helpful to determine if a low average number of peaks per signature slice is the result of a large
percentage of signature slices being missing or the result of slices having consistently less number
of peaks. For segment 179, this figure shows that the downstream array sensors are generating a
slightly larger number of peaks per signature slice than the upstream ones. For segment 126, this
figure confirms that there were no signature slices reported by the fifth sensor of the upstream array
and that the signature slice data generated by both arrays have similar peak content.

Figure 7.5 shows the number of peaks as a function of signature index for segment 179 and
segment 126, respectively. These plots display information by signature component, x, y and z, as
well as for the complete signature. This type of plots is particularly useful to determine if there is
a signature subset, usually a set of continuous signatures, for which signature data is missing. This
is known to occur, for example, as the result of brief communication problems between sensors
and the access point. For segment 179 and segment 126, most of the signatures have a reasonable
number of peaks.

Figure 7.6 shows distributions of number of peaks for each of the vehicle signature components,
x, y and z, as well as for the complete vehicle signature. These plots help to easily identify if
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Figure 7.5: Number of peaks as a function of signature for (left) segment 179 and (right) segment
126
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there are a significant number of empty vehicle signatures, or if there is a particular component
of the signature that has less peaks than usual. In a common installation, the y-component of the
vehicle signatures tends to have the fewer number of peaks, as it can be seen in the figure for both
segments. These plots show that the vehicle signatures for the upstream and downstream arrays
in both segments are reasonable and should not have a negative impact in the matching rate or the
accuracy of the results.

Distance Matrix Component
Once it has been determined that the data generated by the sensors is adequate and that vehicle
signatures seem reasonable, the next step is to calculate the distance matrix for the set of signatures
under study. The objective is to look for visual evidence that would indicate that vehicles are going
through both arrays, and that the matching algorithm should be able to re-identify them. Assuming
that the set of signatures chosen for analysis spans a time window that would allow enough vehicles
to go through the link, a sequence of low distances along a diagonal band of the distance matrix
would suggest the presence of vehicles going through both arrays and generating upstream and
downstream signatures that produce low distances. The inability to find such diagonal sequence
does not mean that the sensor arrays are defective or that there are no vehicles going through the
link. In such cases, trusting the results of such an installation usually requires additional validation
steps.

Figure 7.7 (left) shows the distance matrix for segment 179. There is an obvious sequence of
low distances along a diagonal band on the upper part of the plot. The presence of this pattern
indicates that those distances are very likely to be from vehicles going through the link. Further-
more, if the results for the matching algorithm, displayed in a matched vehicles matrix plot, show
a sequence of matches along the same band, the confidence on the quality of data generated by
the sensor arrays and the matching result would increase. For this particular distance matrix, the
sequence of low distances is shifted toward the right as a result of the same time window used to
select the set of 200 upstream and 200 downstream signatures for analysis. The shift is associated
with the time it takes vehicles to go through the link, a shift that is particulary notorious for seg-
ment 179 as a result of its long length. Figure 7.7 (right) shows the distance matrix for segment
126. This distance matrix does not contain any obvious pattern that would suggest the presence
of vehicles going through both arrays. The lack of an obvious sequence of low distances along a
diagonal band in the distance matrix may be due to a small number of vehicles going through the
link, severe stop-and-go traffic, problems with the vehicle detection system, or the result of vehicle
dynamics in the vicinity of the installation that affect the quality of the vehicle signatures.

f and g Component
This component generates two sets of f and g parameters. It does not require any assumption
about the installation, and for healthy systems, the results are usually very useful to determine a
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Figure 7.7: Distance matrix for (left) segment 179 and (right) segment 126

reasonable set of permanent f and g parameters for a given vehicle detection system installation.
The two different methods used in this tool component to generate the sets of f and g parameters
are described in the following sections.

Distance Matrix f and g

This method was explained in Section 2.3, and is based only on the entries of the distance matrix
D. It tends to produce conservative estimates for µ f and σ f and very accurate estimates for µg and
σg. The first step is to remove zero and infinity entries from the distance matrix D and sort the
remaining entries in ascending order producing the vector dreduced . Since the maximum number of
matches of the form µ(i) = j in µ̄ is upper bounded by min(N,M), the statistics for f are approx-
imated by the mean and the standard deviation of dreduced f = {dreduced(k) | 1 ≤ k ≤ min(N,M)}
while those for g are approximated by the mean and standard deviation of dreducedg = {dreduced(k) |
min(N,M)+ 1 ≤ k ≤ end}. For segment 179 and segment 126, this procedure is illustrated with
Figure 7.8 (left) and (right), respectively, which shows the empirical distributions as well as the
Gaussian approximations for the f and g pdfs.

Linear Assignment f and g

This procedure is based on a linear assignment matching function µLA that uses the algorithm in
[21] to match upstream signatures to downstream signatures based on the distance matrix D. The
advantage of this matching function over the matchings µuMAP or µminD, described in Section2.3,
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Figure 7.8: Distance matrix f and g distributions for (left) segment 179 and (right) segment 126

is that the vehicle matches are jointly determined, and duplicates are not permitted. Furthermore,
this matching function only requires the distance matrix as input, without the need to specify or
calibrate any parameter. The f and g parameters are calculated from the results of the matching
function µLA. µ f and σ f are calculated by taking the mean and the standard deviation of the set
of distances corresponding to the matched signatures, while µg and σg are computed by taking the
mean and the standard deviation of the elements of the distance matrix that do not correspond to a
match. This method generally produces very reasonable values for the f parameters, especially if
the distance matrix contains a sequence of low distances along a diagonal band, and very accurate
values for the g parameters.

Figure 7.9 (left) shows the distance matrix and the linear assignment matching function µLA
matched vehicles matrix for segment 179. From this plot it is clear that some of the matches are
incorrect, but it is evident that many of the matched vehicles correspond to the diagonal sequence
of low distances observed on the distance matrix. In Figure 7.9 (right), which corresponds to
segment 126, it is not possible to observe such a pattern. For segment 179 and segment 126, the
results from this procedure are illustrated with Figure 7.8 (left) and (right), respectively, which
shows the empirical distributions as well as the Gaussian approximations for the f and g pdfs.

Matching Algorithm Component
Given a distance matrix and a value for β , this component generates matched vehicle results using
four sets of f and g parameters: i) the default set ii) the distance matrix set, iii) the linear assignment
set, and iv) the Hegenberger set. Table 7.2 shows the set of parameters that were used to generate
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Figure 7.9: Linear assignment matched vehicles matrix for (left) segment 179 and (right) segment
126
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Figure 7.10: Linear assignment f and g distributions for (left) segment 179 and (right) segment
126
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Default f and g Distance Matrix f and g Linear Assignment f and g Hegenberger f and g
Both Seg. 179 Seg. 126 Seg. 179 Seg. 126 Both

µ f .13 .17 .23 .25 .30 .27
σ f .06 .04 .04 .09 .08 .09
µg .67 .56 .60 .56 .60 .60
σg .23 .15 .16 .15 .16 .17

Table 7.2: Sets of f and g parameters for segment 179 and segment 126

matching results for segments 179 and segment 126.

Matching Algorithm Plots Component
This tool component generates plots and metrics that enable easy evaluation and comparison of
the matching algorithm results generated with the different f and g parameter sets. These plots
can help to determine if the results of the matching algorithm are reasonable and consistent with
what is expected at the segment under consideration. Furthermore, the plots and metrics from this
section are helpful to make an informed decision about what are acceptable f and g parameters to
use permanently at the sensor array installation under study.

Figure 7.11 shows a comparison of the matching results, i.e., number of matched vehicles, for
segment 179 and segment 126, respectively, as a function of the four sets of f and g parameters.
Furthermore, these plots also show the number of matches that yield travel times within a rea-
sonable travel time interval, specified by the user, as well as the number of matches that result in
negative travel time estimates. Faulty vehicle re-identification systems generally produce a large
number of unreasonable travel times, as well as negative travel times. This plot is particularly
useful to observe the sensitivity of the matching rate as a a function of f and g parameters, and
sometimes, it is also useful to see the sensitivity of the matching rate accuracy as a function of
parameters. Figure 7.11 shows that the matching rate for both segments is affected by changes in
f and g, but the accuracy of the results for the different set of parameters seems to be consistent,
i.e., number of reasonable and negative travel times is consistent. However, an obvious difference
between the results for the two segments is the matching rate, which is higher for segment 179 for
any of the four sets of parameters.

Figure 7.12 shows the travel time empirical cumulative distribution function (CDF) calculated
with the matching results using the four set of parameters, for segment 179 and segment 126,
respectively. For healthy installations, the CDF are usually very consistent even for large changes
of f and g parameters, as it is observed in Figure 7.12 (left), for segment 179. Note that the CDFs
are different at low travel times, which is expected for this particular installation as a result of some
negative travel times observed for the linear assignment and the Hegenberger f and g parameters in
Figure 7.11 (left). However, the fact that the CDFs are very similar for larger travel times suggest
that this installation is accurately re-identifying a large percentage of vehicles going through the
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Figure 7.11: Matching results for the four different sets of f and g parameters for (left) segment
179 and (right) segment 126

arrays. On the other hand, Figure 7.12 (right) shows large variations on the travel time CDFs for
segment 126 as a function of f and g parameters. This plot does not increase the confidence on the
results in segment 126, and it shows that for this particular installation, setting up a reliable set of
f and g parameters is going to be particularly difficult due to the high sensitivity of the results to
changes in their values.

Figure 7.13 shows the shortest paths in the constrained matching µcMAP edith graph, G (200,200),
for segment 179 and 126, respectively, for different sets of parameters. The shortest paths that
results for different sets of reasonable f and g parameters on a healthy vehicle re-identification
system are very similar, as observed in Figure 7.13 (left) for segment 179. Furthermore, this plot
shows that the four shortest paths are consistent with the sequence of small distances along the
diagonal band of the distance matrix for segment 179, and that the shortest paths for the different
sets of parameters have a large number of common matches. This plot increases the confidence
on the vehicle detection system installation for segment 179. On the other hand, Figure 7.13 (left)
shows the shortest paths that resulted for segment 126, which are different. This plot further sug-
gest that the results from the vehicle re-identification system in segment 126 are not consistent or
very reliable.

Figure 7.14 shows matched vehicles travel time and distance distributions for the linear as-
signment f and g parameters, for segment 179 and segment 126, respectively. These plots are
generated for the four sets of parameters, and are useful to analyze the distributions of travel time
and distance that result from the matching algorithm. Figure 7.14 (left) shows that for the most
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Figure 7.12: Travel time empirical cumulative distribution function (CDF) for the four different
sets of f and g parameters for (left) segment 179 and (right) segment 126
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Figure 7.13: Edit graph, G (200,200), shortest path for the four different sets of f and g parameters
for (left) segment 179 and (right) segment 126
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Figure 7.14: Matched vehicles travel time and signature distance distributions using the linear
assignment f and g parameters for (left) segment 179 and (right) segment 126

part, the travel time estimates for segment 179 are reasonable and consistent, with only a small per-
centage of negative and small unreasonable travel times. Furthermore, it shows that the distances
of the matched vehicles are consistent with the f and g parameters used as input. Figure 7.14
(right) shows the same results for segment 126, and suggests reasonable results, since there were
no negative, or unreasonable high or low travel time estimates. Furthermore, the fact that segment
126 has two intersections in between the arrays is consistent with the travel time distribution ob-
served in the figure, which could be explained as the result of some vehicles going through the link
without stopping, while others stop at one of the two intersections. On the other hand, the matched
vehicle distance distribution has a large µ f , which reduces the confidence on the matching results.

Figure 7.15 shows travel time and link vehicle count estimates as well as the 60-s matching rate
as a function of time, for the linear assignment f and g parameters, for segment 179 and segment
126, respectively. These plots are generated for the four sets of parameters, and are useful to
analyze the consistency and accuracy of the results for the time interval spanned by the sequence
of upstream and downstream signatures. Figure 7.15 (left) is particularly useful to see that the
vehicle re-identification results for segment 179 are very consistent for most of the time interval,
with most of the unreasonable estimates observed at the beginning and at the end of the interval,
which are expected as a result of the time window chosen for this analysis. The link vehicle-count
plot shows consistent results for most of the matches, excluding the ones at the beginning and at
the end of the interval. The bottom plot shows the matching rate and vehicle flow at the upstream
and downstream array as a function of time. This plot is useful to understand if low matching



143

17 17.05 17.1 17.15 17.2 17.25

0

100

200

Travel Time vs Downstream Time (segment 179)

S
ec

on
ds

17 17.05 17.1 17.15 17.2 17.25
0

20

40

60

V
eh

ic
le

s

Link Vehicle−Count vs Downstream Time (segment 179)

17 17.05 17.1 17.15 17.2 17.25
0

0.5

1

60−s Matching Rate (black), 60−s Normalized Upstream (blue)
 and  Downstream (green) Volume vs Time (segment 179)

Time of Day [hour]

%

 

 

17 17.05 17.1 17.15 17.2 17.25 17.3 17.35 17.4

0

100

200

Travel Time vs Downstream Time (segment 126)

S
ec

on
ds

17 17.05 17.1 17.15 17.2 17.25 17.3 17.35 17.4
0

20

40

60

V
eh

ic
le

s

Link Vehicle−Count vs Downstream Time (segment 126)

17 17.05 17.1 17.15 17.2 17.25 17.3 17.35 17.4
0

0.5

1

60−s Matching Rate (black), 60−s Normalized Upstream (blue)
 and  Downstream (green) Volume vs Time (segment 126)

Time of Day [hour]

%
 

 

Figure 7.15: Travel time, link vehicle-count and matching rate based on matching results using
linear assignment f and g parameters for (left) segment 179 and (right) segment 126

rates are the result of bad vehicle signatures, vehicles not going through the link, or vehicles not
going through a particular sensor array. Figure 7.15 (right) show the same information for segment
126. Although most of the travel time and the link vehicle-count estimate values are reasonable,
the oscillation in the estimates without matched vehicles consistently appearing as platoons, as it
would be expected due to the influence of the intersections in the segment, reduces the confidence
in the results. For segment 126, it is not possible to determine with certainty if the vehicle re-
identification system is outputting estimates based on actual vehicles going through the link, or
based on mismatched vehicles that happen to yield reasonable estimates.

From the analysis presented in this section, an appropriate set of f and g parameters for segment
179 would be the ones calculated using the linear assignment method. If it is desired to be a
slightly more conservative with the matching algorithm results, i.e., less number of matches but
higher confidence on the results, the value of σ f could be changed from .09 to .07. On the other
hand, determining a reliable set of parameters for segment 126 is not possible, since the results,
even though they are reasonable, are inconsistent among the different sets of f and g parameters.
Further study of this segment is needed before it can be concluded that the system is working
properly.
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Figure 7.16: Sensor pair minimum distance frequency plot based on linear assignment f and g
matching results for (left) segment 179 and (right) segment 126

Sensor Pair Minimum Distance Frequency
Given the matching results for a set of f and g parameters, this tool component generates a color
plot showing the number of times each combination of upstream and downstream signature slices,
(Xq

i ,Y
r
j ), for the set of matched signatures, Xi → Yj, produced the distance δ (Xi,Yj), as defined

in Section 2.3. This plot is useful to determine which combination of upstream and downstream
sensors are the most used to generate the distance between matched signatures, which in healthy
installations are generally observed to be the middle sensors of the arrays. This plot also helps to
comment on the variability in the position of vehicles with respect to the center of the lane as they
go through the arrays. Ideally, vehicles should go through the center of the lane when traveling
through both arrays. This increases the chances of having similar signatures that result in low
distances, which increases the matching rate and accuracy of the results.

Figure 7.16 shows the color plots for segment 179 and segment 126 for the matching results
generated using the linear assignment f and g parameters. Figure 7.16 (left) shows the results
for segment 179, and based on this plot it seems that matched vehicles are consistently traveling
through the middle or sligtly towards the right of the lane as they go over the upstream array,
and with a slight tendency to go towards the left of the lane when they go over the downstream
array. The results for segment 126 are presented in Figure 7.16 (right), which shows that many
combination of sensors tend to produce distances that lead to matches. This is generally observed
in installations where vehicle location with respect to the center of the lane varies a lot, e.g.,
Hegenberger on-ramp entrance array, as well as in faulty installations that produce significant
numbers of mismatched vehicles.



145

k-Shortest Paths Component
In this tool component, the k-shortest paths between node (0,0) and (N,M) of the edit graph
G (N,M), constructed following the procedure explained in Section 2.3 and using the distance
matrix D, a set of f and g parameters and a value of β , are calculated. The k-shortest paths
information is used to evaluate matching strength of each re-identified vehicle and generate plots
that help in the assessment of vehicle re-identification systems. Furthermore, the k-shortest paths
information also allows to discard matched vehicle information that is likely to be incorrect. The
robustness evaluation is based on determining how many times Xi→Yj was selected as a match in
the k-shortest paths. Matches that are common to the k-shortest paths are considered more likely
to be correct.

There are three plots derived from the k-shortest paths data that help to assess the health of an
installation. The first plot corresponds to the matched vehicles matrix, defined in Section 2.3, and
based on the shortest path matching results. The second plot, called the k-shortest paths incidence
matrix, is the color map of an N×M matrix with (i, j) elements set to one if at least in one of
the k-shortest paths the upstream signature Xi was matched to the downstream signature Yj, i.e.,
Xi→ Yj, and set to zero otherwise. Finally, the third plot, called the k-common matched vehicles
matrix, is the color map of an N×M matrix with (i, j) elements set to one if for all k-shortest paths
the signature pair Xi and Y j resulted in a match, i.e., Xi→Yj, and set to zero otherwise. These three
plots are very useful at visualizing the results from the k-shortest paths and identifying installations
producing inconsistent and inaccurate results. For healthy vehicle detection system, the k-shortest
paths are very similar to each other. On the other hand, faulty installations tend to have k-shortest
paths that have notorious diverging paths.

Figure 7.17 shows the shortest path matched vehicles matrix generated using the linear assign-
ment f and g parameters for segment 179 and segment 126. This plot is particularly useful for
comparison of the matching results with the distance matrix. A strong similarity between the se-
quence of matched vehicles in this plot and the sequence of low distances along a diagonal band in
the distance matrix, is usually an indicator that the vehicle re-identification results are reasonable
and accurate. The sequence of re-identified vehicles in the matched vehicles matrix for Segment
179 resembles the sequence of low distances along a diagonal band of its distance matrix. On the
other hand, the sequence of matched vehicles in the matched vehicle matrix for segment 126 is not
observed on its distance matrix. By comparing the matched vehicles matrices from Figure 7.17 to
the distance matrices shown in Figure 7.7, the confidence on the matching results for segment 179
increases, while the confidence on the vehicle re-identification results for segment 126 remains
low.

Figure 7.18 (left) and (right) shows the 500-shortest paths incidence matrix plots for segment
179 and segment 126 respectively, generated using the the linear assignment f and g parameters.
There are minor differences between the incidence matrix for segment 179 in Figure 7.18 (left)
and its matched vehicles matrix shown in Figure 7.17 (left). This suggests that the k-shortest
paths, for k=500, for this segment are very similar to each other and consistent with the shortest
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Figure 7.17: Shortest path matched vehicles matrix based on linear assignment f and g parameters
for (left) segment 179 and (right) segment 126
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Figure 7.18: 500-shortest paths incidence matrix based on linear assignment f and g parameters
for (left) segment 179 and (right) segment 126
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k−Common Matched Vehicles Matrix
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Figure 7.19: k=500 common matched vehicles matrix based on linear assignment f and g param-
eters for (left) segment 179 and (right) segment 126

path results, which shows a high level of robustness on the matches generated for segment 179. On
the other hand, Figure 7.18 (right) show that the k-shortest paths, for k=500, for segment 126 are
different and clearly diverge from each other. These notorious differences among the k-shortest
paths suggest that segment 126 results are less robust and likely to have a significant number of
mismatched vehicles that need to be discarded.

Figure 7.19 (left) and (right) shows the k=500 common matched vehicles matrix plots for
segment 179 and segment 126, respectively, generated using the the linear assignment f and g
parameters. The left plot shows the common matches for segment 179, and suggests that the end
points of the sequence of re-identified vehicles in Figure 7.17 (left) are the least likely to be correct,
which in this case it is known to be true, and is the result of the signature selection process. The
right plot of Figure 7.19 shows that along the sequence of re-identified vehicles for segment 126,
shown in Figure 7.17 (right), there are sections of the sequence that are very likely to be the result
of mismatched vehicles, which correspond to sections of the k-shortest paths were path differences
where obvious.

Matched Signatures Subset Analysis Component
Given the matching results for a set of f and g parameters, this tool component plots a sample
of upstream and downstream matched signatures, Xi → Yj, with information about the distance
between them. The chosen subset of signature pairs are representative of the range of distances
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Figure 7.20: Matched signature pair producing a relatively small distance for (left) segment 179
and (right) segment 126

observed for the matched vehicles, i.e., signature pairs that yielded low, intermediate, and large
distances. These plots allow to visually investigate if the signatures look alike and are a reason-
able match, or if there are uncommon factors generating either very low distances or very large
distances, both of which may be affecting the matching rate and/or matching accuracy.

The left plots of Figure 7.20, Figure 7.21 and Figure 7.22 show pairs of matched signatures
for segment 179 that yield small, intermediate and large distances, respectively, based on matching
results obtained with the linear assignment f and g parameters. These plots are automatically
extracted from the set of matched signatures by picking signature pairs with distances closest to a
set of predetermined percentiles of the matched signatures distance distribution. The plots shown
for segment 179 correspond to the pair of matched vehicle signatures with distances closest to
the 5th percentile, 50th percentile and 95th percentile, respectively. The three pairs of matched
signatures plotted for segment 179 are visually similar. This increases the confidence in the results
for this segment.

The right plots of Figure 7.20, Figure 7.21 and Figure 7.22 show pairs of matched signatures
for segment 126 that yield small, intermediate and large distances, respectively, based on matching
results obtained with the linear assignment f and g parameters. These signatures were chosen
following the same procedure used to obtain the signatures for segment 179. The three pairs of
matched signatures plotted for segment 126 are not visually very similar, and the distances, even
for the pair corresponding to a small signature, are relatively large. For this segment, this tool
component doesn’t increase the confidence on the results, as it was the case for segment 179.
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Figure 7.21: Matched signature pair producing a relatively intermediate distance for (left) segment
179 and (right) segment 126
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Figure 7.22: Matched signature pair producing a relatively large distance for (left) segment 179
and (right) segment 126
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7.5 Discussion
This chapter presented the vehicle re-identification system tuning tool and described its different
components. Furthermore, data from two segments out of a multiple segment arterial installation
in St. Louis County, Missouri, were used to explain and illustrate the role of each tool component.
The two segments chosen for the analysis were particularly useful to illustrate the advantages
of having this tool to study vehicle re-identification systems and determine if the results can be
trusted, or if further analysis is required. After using the tool to assess the results for segment
179 and segment 126, it is possible to conclude that while segment 179 matching results were
consistent with those of a healthy reliable installation and can be trusted, the results for segment
126 showed less consistency and further analysis or modifications to the system are needed before
they can be trusted. For segment 126, the fact that the fifth sensor in the upstream array was
producing empty signature slices, or the fact that this segment starts as a four lane segment and
ends as a three lanes segment may be among the reasons behind the inconsistency of the vehicle
detection system results.
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Chapter 8

Conclusions

In this dissertation, we have investigated specific aspects of implementation and application of
wireless magnetic sensors for traffic state estimation and control, as well as road network monitor-
ing. We developed new algorithms and extensively studied their application in arterial segments,
freeway on-ramps and freeway mainline segments.

Summary of Contributions

As part of the efforts to improve vehicle detection system technologies so that better manage-
ment strategies can be implemented in the field, we advanced the application of wireless magnetic
sensors for different Intelligent Transportation Systems. The work presented in this dissertation
directly benefits traffic control strategies that require accurate link vehicle-count such as ramp me-
tering or arterial traffic control, along with traveler information systems and freeway and arterial
monitoring systems that rely on accurate travel time estimates. In particular, we investigated the
application of wireless magnetic sensors for on-ramp queue estimation, arterial and freeway link
vehicle-count, travel time estimation on heavily congested arterial streets and freeway segments,
truck re-identification in between weigh-in-motion (WIM) stations, as well as cost-effective ve-
hicle classification for freeway mainlines. Furthermore, a vehicle re-identification system tuning
tool was developed and presented, which illustrates the importance of having systematic and easy
to use methods to help traffic engineers tune and assess vehicle detection systems in the field, so
that vehicle detection system performance can be easily monitored and the quality of the data can
be maintained.

In Chapter 2, we reviewed concepts and previous research closely related to the development
of this dissertation. First, we surveyed vehicle detection technologies and common traffic measure-
ments available for traffic monitoring and control. We also described the vehicle detection system
based on wireless magnetic sensors used for the studies presented in this dissertation and reviewed
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in detail a vehicle re-identification algorithm based on this system. The vehicle re-identification
algorithm, in its original form or in one of its variations, i.e., the modified or iterative versions,
had a major role in most of the work presented here. Finally, we explained the vehicle travel time
and link vehicle-count estimators based on the vehicle re-identification system that were used for
different analysis and studies presented in this dissertation.

In Chapter 3, five queue estimation methodologies were described and studied using the orig-
inal vehicle detection system presented in Chapter 2 and installed on a single-lane loop freeway
on-ramp. Queue length estimation based on (i) occupancy measurements at the ramp entrance, (ii)
vehicle counts at the on-ramp entrance and exit, (iii) speed measurements at the ramp entrance, (iv)
vehicle counts and speed measurements at the on-ramp entrance as well as vehicle counts at its exit
and (iv) vehicle re-identification were considered. The accuracy and reliability of the queue estima-
tion methods and their feasibility for applications that involved ramp metering with accurate queue
control were studied with ground truth data obtained from videos. Two of the methods stand out
as potential accurate vehicle queue estimators for ramp metering with queue control applications,
i.e., the queue length estimators based on speed and flow-measurements and the estimator based
on flow-measurements and re-identified vehicle data. However, the latter one showed very defi-
cient results under on-ramp congested conditions due to the presence of stop-and-go traffic in the
vicinity of the sensors, which motivated the development of the modified vehicle re-identification
algorithm, presented in Chapter 4.

In Chapter 4, the original vehicle re-identification method was studied using the sensor data
from the Hegenberger on-ramp used for the queue estimation study presented in Chapter 3. In this
chapter we presented a detailed description of the different areas of the algorithm that were revised
and taken into consideration for performance improvement. Then we listed the different modifica-
tions that were done to the original algorithm which results in the modified version. The modified
algorithm addresses limitations of the system when vehicles stop/move slowly over the detec-
tors. The original and modified vehicle re-identification algorithm results were compared against
detailed ground truth data obtained from the same videos used in Chapter 3, to study their perfor-
mance for variations in algorithm parameters. Finally, both vehicle re-identification methods, i.e.,
original and modified, were used for link vehicle-count estimation at two different locations, the
Hegenberger freeway on-ramp and the San Pablo arterial segment. We showed that the modified
version of the vehicle re-identification algorithm improves link vehicle-count estimation perfor-
mance in comparison to the original method when stop-and-go traffic is present, as it is the case
for the on-ramp site, while the performance of both methods is comparable when vehicles go over
the detectors without stopping, as it occurs in the arterial segment. This analysis also allowed us to
confirm that the queue estimation based on flow-measurements and re-identified vehicle data can
be used for accurate queue estimation and regulation for ramp metering applications. Moreover,
the analysis also showed that link-vehicle count estimates are accurate and can be used for arterial
intersection controllers that require a measurement or reliable estimate of vehicle density.

In Chapter 5, arterial travel time estimation results based on two versions of the vehicle re-
identification algorithm, i.e., the original and the modified methods, were studied across an arterial
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segment with multiple intersections. Both methods were tested on a 0.51 km (0.32 mile)-long
segment of West 34th Street in New York, NY, under harsh driving conditions. The original and
modified system results were compared against ground truth data obtained from video. Using
the ground truth data it was possible to determine the travel time distribution and the percentage
of vehicles that each of the different methods was able to re-identify. Based on comparisons
of travel time distribution and empirical cumulative distribution functions, it was observed that
the modified method travel time distribution was closely related to the ground truth distribution,
while the original method travel time distribution significantly diverges from the ground truth
at large travel times. The results from this chapter further confirmed that the original vehicle re-
identification system at locations with stop-and-go traffic is not accurate, while the negative impact
of this type of traffic is not significant to the modified method, which was able to yield accurate
travel time estimation results.

In Chapter 6, we presented three applications of the vehicle detection system reviewed in Chap-
ter 2 for freeways. First, we showed that it is possible to calculate vehicle travel time and link
vehicle-count estimates in freeway segments under free flow and congested conditions using the
system and algorithms summarized in Chapter 2. To illustrate this, we used two test sites, one
located on the I-80 freeway in Pinole, CA, with sensor arrays separated by 64 ft and another one
spanning the Caldecott Tunnel, a 0.68-mile long tunnel located in the San Francisco Bay Area. For
the Pinole test site, vehicle re-identification and travel time and link-vehicle estimates were studied
for three sets of data collected during free flow conditions. For the Caldecott Tunnel site, the study
was conducted over different days and under different traffic conditions. The results showed that
the vehicle re-identification system is reliable and accurate and can be used for vehicle travel time
and link vehicle-count estimation on freeway segments, even if severe congestion occurs. For the
second application, we show that it is possible to use a single wireless magnetic sensor located
in the middle of a freeway lane for vehicle classification. The vehicle classification analysis was
conducted using data coming from sensors at the Pinole test site. A two stage SVM classifier
was developed, which uses as input vectors 78 features extracted from vehicle magnetic signatures
generated by the wireless magnetic sensor. The results showed that it is possible to accurately
classify vehicles into passenger vehicles and trucks and subsequently classify trucks, with a lower
accuracy, as either small trucks or large trucks. Finally, we showed that it is feasible to re-identify
trucks between WIM stations separated by long distances, e.g., 145 miles, using the iterative ve-
hicle re-identification system, an extensions of the original vehicle re-identification algorithm that
takes into account significant vehicle overtaking.

In Chapter 7, we presented a vehicle re-identification system tuning tool. This tool includes
algorithmic techniques that help determine a good set of parameters to be used for a given system
implementation. Furthermore, it offers a standard and simple procedure for tuning parameters
and evaluating performance. This tool generates a set of plots and metrics and uses algorithms
that are useful at evaluating the accuracy of the vehicle re-identification results as well as the
feasibility, consistency and accuracy of vehicle travel time and link vehicle-count estimates, which
is directly related to the quality of the matched vehicle data. In this chapter we showed the different
components of the tuning tool and explained their role in helping calibrate, study and validate an
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installation. In addition, we illustrated the usefulness of the tuning tool by using it for an arterial
installation in Missouri, containing 12 consecutive segments and spanning 12 miles of arterial
streets. The tuning tool proved to be able to identify if the data coming from the sensors was
reasonable, it helped set up algorithm parameters and was useful to determine if vehicle matching
results were acceptable or if the results were unfeasible, too uncertain or unreliable, and if further
investigation was required.
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