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Abstract 1 
 2 

Estimation of intersection origin-destination (OD) matrices is a frequently-encountered problem in 3 
transportation management operations. In particular, advanced traffic responsive arterial signalization 4 
management schemes rely on the accurate real-time estimation of vehicle queue lengths and turning ratios. 5 
This paper proposes a new method for estimating OD matrices of a signalized intersection in real time. 6 
The proposed method only requires detectors at exit legs, saving half detectors from a complete 7 
configuration assumed by previous research. Signal phase timing information is used to determine the 8 
portion of the volume measurement that corresponds to a specific phase. The estimation of turning 9 
proportions is formulated as a constrained least squares problem and solved using recursive algorithm 10 
with forgetting factor and covariance resetting. Simulation shows that the proposed method can obtain 11 
accurate results and response to parameter changes fast, while requiring significant less computational 12 
effort than a comparable solution using a constrained optimization method.  13 
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I - INTRODUCTION 1 
 2 

In advanced intersection signal operations, one frequent requirement is the real-time knowledge of turning 3 
volumes, or turning proportions (1). This information is usually described by the so-call origin-destination 4 
(OD) matrices. In the past decades, great attention has been received in estimating OD matrices from 5 
traffic counts collected by sensors, and a lot of methods have been proposed (2).  6 

In most of the previous research, a complete configuration of detectors was assumed to be 7 
available. A complete configuration means detectors are installed at all entrance legs and exit legs for 8 
measuring traffic volumes. In such a configuration, the problem of estimating turning proportions could 9 
be formulated as a linear system with linear equality and inequality constraints. This system is 10 
underdetermined, and least squares method could be used to solve it. To solve a constrained least squares 11 
problem, people can use a variety of constrained quadratic optimization algorithms, or routine in (3). 12 
However, a direct solution of constrained least squares problems through optimization could be 13 
computationally expensive, thus inappropriate for real-time practice. With this concern, different 14 
recursive approaches have been proposed. Early Examples can be found in (4, 5). Those recursive 15 
methods usually included two major steps. In the first step, unconstrained least squares estimator is used. 16 
In the second step, parameter estimates are constrained using some correction methods, such as 17 
normalization and truncation. Because of the operation of normalization or truncation, there is no 18 
guarantee that the resulting estimates are optimal. Motivated by this concern, (6) developed a simple 19 
algorithm for the least squares problem with inequality boundary constraints. Unlike the previous 20 
methods, constraints were enforced by an iteration process in this algorithm. The convergence of this 21 
algorithm was proven, and it was stated that the imposition of the inequality constraints in the update 22 
iteration could improve the accuracy. Based on this algorithm, (7) proposed a recursive method which 23 
further incorporated both equality and boundary inequality constraints in the least squares update. This 24 
method could achieve good estimation in much smaller computational effort, compared to an optimization 25 
approach. 26 

Even though recursive approaches have been shown to be computationally efficient and well-27 
performed, there are still two concerns about these methods. The first concern is that a complete 28 
configuration of detectors may not be available. In a complete configuration, a typical four-way 29 
intersection requires at least eight detectors, whose price might be expensive. In order to get an economic 30 
configuration, a “Cordon” configuration, which groups several intersections and deletes one or more 31 
intermediate detectors, can be used. (8) firstly introduced a condition to examine the feasibility of 32 
estimating from an incomplete set of traffic counts. As long as this condition is met, it is able to obtain 33 
estimates from the incomplete information. But it was also mentioned in (8) that an increase in variability 34 
could happened since less traffic counts were accessible. Subsequently, (9) suggested that the condition 35 
number of the Jacobian matrix, which is derived from predicted output counts with respect to the 36 
parameters, could be used to evaluate whether the incomplete information was sufficient to provide “good” 37 
estimates. In its numerical test, it was shown that the condition number enlarged dramatically as detector 38 
saving grew, which might lead to larger potential of poor estimation. Some real-time estimation strategies 39 
addressing incomplete detector configuration can be found in (10, 11, 12).   40 

The second concern of some previously proposed methods is that they might fail to detect 41 
changes in parameters. Most of the recursive methods were designed to estimate dynamic turning 42 
proportions in real time. To achieve this, time-series of data were used. However, most of those methods, 43 
including some mentioned above, were only evaluated with static turning proportions in the paper they 44 
presented. Performance of these methods was not shown for the case that turning proportions changed 45 
during simulation. Some research has shown that the recursive least squares estimator parameter 46 
adaptation gain decreases as time progresses. Thus, an ordinary least squares estimator may fail to follow 47 
parameter changes in a dynamic scenario. The technique of forgetting factor or covariance resetting has 48 
been suggested by researchers for tracking time-varying parameters. Description of these techniques can 49 
be found in (13, 14). 50 
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Notice that no assumption is made regarding the lane configuration of intersections, or the type of 1 
signal control. Having a designated lane for a particular movement or not, or being a pre-time control or 2 
actuated control, will not change equation (1) - (4). However, it is necessary for north-south-bound and 3 
east-west-bound traffic not to receive green at the same time, which is frequently the case with most 4 
signalized intersections. 5 

Using (1) and (3) to substitute f1 and f2 in (2) and (4), one obtains 6 
 7 

31
3 1 2

2 4 4

1
1

bb
D D D

b b b

 
    

 
 (5)

31
3 1 4

2 2 4

1
( 1)

bb
D D D

b b b
     (6)

 8 
Because all the bi’s must fall in the interval of [0, 1], one have the constraints 9 
 10 

2 4

1 1
, 1

b b
  (7)

1

2 2

1
0

b

b b
   (8)

3

4 4

1
 0
b

b b
   (9)

 11 
Also, because 1 2 1b b   and 3 4 1b b  , there are another two constraints 12 
 13 

1

2 2

1
1

b

b b
    (10)

3

4 4

1
1

b

b b
    (11)

 14 
Constraints (7) - (11) can be rewritten as 15 
 16 

2 4

1 1
, 1

b b
  (12)

31

2 4

, 0
bb

b b
  (13)

1

2 2

1
1

b

b b
   (14)

3

4 4

1
1

b

b b
   (15)

 17 
Equation (5), (6) and constraints (12) - (15) define a problem for b1 to b4. There are four unknowns, two 18 
equations, and six inequalities.  This is an underdetermined problem. It can be solved in the least squares 19 
sense. 20 

Since (5), (6), (12) - (15) are not in a good form to apply least squares estimator, they are 21 
reorganized into a matrix form (16) and (17). 22 
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2

1
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b
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D D D D

b
b
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 (16)

2

1

2

4

3

4

1
1

01
1

b
b

b

b
b

b

  
 
 
   

 
 
 
  

 (17)

 1 

Let 31

2 2 4 4

1 1
1, , 1,

T
bb

b b b b


 
   
 

, 3 1 1

3 3 1

0
0

D D DX D D D
      

 and 2

4

DY D
    

, the problem (16) and 2 

(17) can be represented by 3 
 4 
Y X   (18)
 5 
Subject to 6 
 7 

0   (19)
 8 

In practice, time-series of data are used, and detector measurements might not be accurate due to 9 
noise or vehicle traverse delay. A more exact expression of equation (18) should be 10 

 11 
( ) ( ) ( )Y k X k v k    (20)

 12 
Here k represents time index and v represents measurement error. To solve for   in the least squares 13 
sense, one minimizes the object function (21). 14 
 15 

   ˆ 1
ˆ ˆmin  ( ) ( ) ( ) ( )

TN

k
Y k X k Y k X k


 


   (21)

 16 
The hat on the variable denotes that it is an estimated value. (19) - (21) define a least squares problem 17 
with inequality boundary constraints. It can be solved by an algorithm proposed by Bell (6) and Li (7). 18 
Notice that constraints (10) and (11) are excluded in (17), because it will bring in linear constraints other 19 
than boundary constraints, and consequently makes computation difficult. The problem will be solved in 20 
the following procedure. In the first step, an ordinary least squares estimator is used to solve (20). In the 21 

second step, Bell’s correction will be applied if constraint (19) is not met. In the third step, îb ’s are solved 22 

from ̂ . Within this step, normalization and truncation will be conducted if constraints (10) and (11) are 23 
not satisfied. Details of the solving procedure can be found in next section. 24 
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 1 
III - STEPS TO SOLVE THE LEAST SQUARES PROBLEM 2 
 3 

Step 0: Initialize 0̂  and P0. 0̂ is a 4×1 nonnegative vector. It can be initialized by prior knowledge, or 4 
random values. P0 is a 4×4 positive matrix. 5 
Step 1: Update by an ordinary least squares estimator. After collecting new traffic counts, construct Xk 6 

and Yk, and obtain the estimates ˆ
k  by 7 

 8 

1 1
ˆ ˆ ( )ˆ k k k k k kK Y X       (22)

 9 
Where 10 
 11 

1
1

T
k k k kK P X S

  (23)

1
T

k k k kS X P X I   (24)

1( )k k k kP I K X P    (25)
 12 
Here I is the identity matrix. 13 

Step 2: If there is any negative value in ˆ
k , apply Bell’s correction to guarantee the nonnegative 14 

constraint is met. Otherwise, skip this step. 15 

2.1 Let ˆ
k k   and 0  . 16 

2.2 Compute {1/ }iiD diag p , where 4 4[ ]k ijP p  . 17 

2.3 Compute ( )kTF D     . Here ( )TF   is a truncation function which drives all negative 18 
values to zeros. 19 

2.4 ˆ
k k kP    . 20 

Repeat 2.3 and 2.4 until k  converges. If step 2 is executed, ˆ
k  will be replaced by k . 21 

Step 3: Solve for ˆ
ib ’s  from ˆ

k . If there is any ˆ
ib   being negative or greater than one, truncate it to zero 22 

or one. If 1 2
ˆ ˆ 1b b  , normalize 1b̂  and 2b̂  so that 1 2

ˆ ˆ 1b b  . Apply normalization if 3 4
ˆ ˆ 1b b  . Compute 23 

the turning proportions for right-turns 9b̂  and 10b̂  by 1 2
ˆ ˆ1 b b   and 3 4

ˆ ˆ1 b b  , respectively. 24 
 25 

The above steps, Step 0 to Step 3, are the solving procedure in RCLS. Step 1 to step 3 are 26 
repeated if new measurements are available. 27 
 28 
VI - INCORPORATE FORGETTING FACTOR AND COVARIANCE RESETTING 29 

 30 
Research has shown that the gain ( kK  in equation (22)) in an ordinary least squares estimator would 31 
become smaller and smaller as the number of steps grows. So an ordinary least squares estimator might 32 
fail to trace time-varying variables. If the turning proportions change during a studied period, the 33 
extended version of RCLS, RCLSFR, should be used. In RCLSFR, forgetting factor and covariance 34 
resetting are applied in the covariance update. In this case, equation (26) is used instead of (25) in Step 1. 35 

 36 

  2
1 1

1
k k k k kP I K X P I P 

       (26)

 37 
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In (26), λ is the forgetting factor, and it usually falls in [0.9, 1]. ε and δ are small values to adjust 1 
covariance resetting. They are in [0, 0.1] in usual practice. 2 

Notice that, in the case that equation (26) is used in Step 1, the matrix kP  in Step 2 should still be 3 

updated through equation (23) - (25). As a result, two different sets of matrices kK , kS , and kP  have to 4 
be maintained during the solving procedure. 5 
 6 
V - SIMULATION AND RESULTS 7 

 8 
In this section, the accuracy and computational effort of the proposed method will be evaluated by 9 
simulation. The estimated turning proportions from the proposed approach, RCLS or RCLSFR, and those 10 
from an optimization approach will be compared. The optimization approach chosen is the Constrained 11 
Least Squares by Active-Set algorithm (CLSAS) in Matlab 2013a. Two scenarios, one with static turning 12 
proportions and the other with time-varying proportions, will be simulated. 13 
 14 
Scenario I 15 
 16 
In this scenario, static turning proportions will be used to compare RCLS and CLSAS. Consider a four-17 
way intersection with turning proportions shown in Table 1 (source from (11)). Arrival volumes are 18 
random variables generated from Poisson distribution with mean 100. Turning volumes are multinomial 19 
random numbers generated from arrival volumes and turning proportions define in Table 1. Exit volume 20 
at each exit leg would be the sum of all turning volumes entering that leg, denoted as qi. The measurement 21 
error is modeled as Gaussian distribution with standard deviation equal to 10% of the exit volume. Hence, 22 
the traffic count obtained at a detector Di is computed as 23 

 24 

    ( ) i i iD k q k v k   (27)

 25 

Where   (0,0.1 )i iv k N q . Di will be rounded if it is not a nonnegative integer. 26 

 27 
TABLE 1  Turning Proportions 28 

 29 
 Left Straight Right 

Northbound 0.23 0.414 0.356 
Southbound 0.29 0.352 0.29 
Eastbound 0.149 0.8 0.051 
Westbound 0.083 0.843 0.074 

 30 
Traffic counts for 10 intervals are generated in simulation. A constrained least squares problem 31 

defined by equations (5), (6) and constraints (12) - (15) is solved in every interval by optimization 32 
approach CLSAS. It takes as input all the traffic counts generated from beginning to current interval. The 33 
proposed method RCLS is also executed every interval. Its inputs are the latest traffic counts and the 34 

estimated variables from previous interval. The initial estimate 0̂  in RCLS is obtained by random 35 
positive values. 36 

To evaluate the accuracy, the error between estimated turning proportions and the real ones is 37 
computed at the end of each simulation run. RMSD (root-mean-square deviation) is chosen as the 38 
indicator of error. The definition of RMSD is shown in equation (28). The time for executing an 39 
algorithm on 10 intervals of data is collected in order to compare the computational effort. Furthermore, 40 
the frequencies of applying corrections (step 2 and step 3) are used to indicate the effort RCLS pays to 41 
satisfy the constraints, after its update from least squares estimator. Variables of step requiring iteration, 42 
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number of iterations, and step requiring truncation are computed in simulation. Step requiring iteration is 1 
the times when step 2 is applied in a simulation run. Number of iterations is the total count of iteration 2 
executed in a run, that is, how many times step 2.3 is needed to get rid of the nonnegative values. Step 3 
requiring truncation computes the times when any truncation or normalization is applied in step 3. 4 

 5 
2

, ,1
( )

N

i estimated i reali
b b

RMSD
N




 
 (28)

 6 
Table 2 shows the performance comparison between CLSAS and RCLS, and Figure 2 plots the 7 

RMSD curves in experiment no. 1 to no. 4. It could be seen from Table 2 that the values of RMSD in 8 
CLSAS and in RCLS are very close. Six out of ten experiments have RMSD in RCLS same as in CLSAS, 9 
and the remaining have the RMDS difference only at the last digit. It is obvious from Figure 2 that, after 10 
the first few steps, the RMSD curve of RCLS almost overlaps with that of CLSAS in each experiment. 11 
The execution time of RCLS is only about 3% of that of CLSAS. This means that RCLS can get as good 12 
estimation as CLSAS in a much smaller computational effort. It can also be found that, on average, the 13 
iteration in step 2 is only executed 0.9 times out of 20 steps (two directions, and 10 intervals of data for 14 
each direction). And only 3.3 iterations are applied in one experiment. Truncation or normalization is 15 
conducted 2.4 times out of 20 steps. All these values indicate that the ordinary least squares estimator in 16 
RCLS gets an estimate meeting the constraints most of time, and the iteration procedure in its algorithm 17 
will not cost great computational effort, and therefore not influence real-time efficiency. 18 

 19 
TABLE 2  Performance Comparison of CLSAS and RCLS 20 

 21 
 CLSAS RCLS 

Experiment 
NO. 

RMSD 
Execution 

time 
RMSD 

Execution 
time 

Step 
requiring 
iteration 

Number 
of 

iteration 

Step 
requiring 
truncation 

1 0.0083 0.0919 0.0083 0.0032 1 2 3 
2 0.0359 0.0938 0.0358 0.0032 1 2 1 
3 0.0247 0.1438 0.0247 0.0022 0 0 3 
4 0.0340 0.0989 0.0338 0.0027 2 4 3 
5 0.0090 0.0962 0.0091 0.0031 2 19 5 
6 0.0142 0.0982 0.0142 0.0025 1 2 1 
7 0.0235 0.0893 0.0235 0.0027 0 0 1 
8 0.0132 0.0967 0.0134 0.0022 1 2 2 
9 0.0155 0.0904 0.0154 0.0022 1 2 2 

10 0.0254 0.0963 0.0254 0.0031 0 0 3 
Mean 0.0203 0.0996 0.0203 0.0027 0.9 3.3 2.4 

 22 
  23 
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 1 
FIGURE 2  Example result of experiment #1 to #4. 2 

 3 
Scenario II 4 
 5 
In this scenario, RCLS, CRLSFR, and CLSAS will be compared in estimating time-varying turning 6 
proportions. The following simulation is conducted for the comparison. Consider the same intersection 7 
used above. The initial turning proportions are defined in Table 1 and kept for 20 intervals. These 8 
proportions are followed by the turning proportions defined in Table 3, which are kept for another 20 9 
intervals. The process mentioned above is used to generate arrival volumes, exit volumes, and detector 10 
counts. RCLS and CLSAS are tested in the same way as above. However, adjustment has to be made to 11 
test CLSAS in this scenario. This is because, if all the traffic counts generated from beginning to current 12 
interval are input to CLSAS optimization, as what we do in the previous scenario, CLSAS will compute 13 
the aggregated turning proportions in the second period, rather than the new ratios. Only using the latest 14 
traffic counts is neither a good idea, because the estimates will be significantly affected by the 15 
randomness or noise. With such concerns, it has to be decided how many pieces of data should be fed into 16 
the optimization. From some empirical observations, it is found that using eight intervals of data gives 17 
best estimate in this test. As a result, CLSAS takes the latest 8 pieces of data in the experiments of this 18 
part. The parameters λ, ε and δ in RCLSFR also need to be determined. λ=0.995, ε=0.0005 and δ=0.0005 19 
are chosen because they give best estimate in tuning test. 20 

 21 
TABLE 3  Turning Proportions in Second Period 22 

 23 
 Left Straight Right 

Northbound 0.32 0.544 0.136 
Southbound 0.16 0.471 0.369 
Eastbound 0.33 0.54 0.13 
Westbound 0.2 0.5 0.3 
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TABLE 4  Performance Comparison of CLSAS, RCLS and RCLSFR 1 
 2 

 CLSAS RCLS RCLSFR 

E
xperim

ent N
o. 

R
M

S
D

 

E
xecution tim

e 

R
M

S
D

 

E
xecution tim

e 

S
tep requiring 

iteration 

N
um

ber of 
iteration 

S
tep requiring 
truncation 

R
M

S
D

 

E
xecution tim

e 

S
tep requiring 

iteration 

N
um

ber of 
iteration 

S
tep requiring 
truncation 

1 0.0326 0.2991 0.1323 0.0054 0 0 0 0.0299 0.0092 0 0 3 

2 0.0271 0.3793 0.1332 0.0087 2 13 3 0.0559 0.0142 5 17 6 

3 0.0483 0.3051 0.1238 0.0056 2 4 2 0.0580 0.0110 1 2 3 

4 0.0247 0.2895 0.1120 0.0073 1 2 2 0.0337 0.0111 2 4 6 

5 0.0629 0.2984 0.1387 0.0078 0 0 2 0.0310 0.0097 2 4 4 

6 0.0211 0.2918 0.1159 0.0105 0 0 1 0.0360 0.0088 0 0 1 

7 0.0265 0.2903 0.1202 0.0053 0 0 1 0.0250 0.0143 0 0 3 

8 0.0510 0.3025 0.1074 0.0068 1 7 1 0.0237 0.0109 1 7 2 

9 0.0126 0.3018 0.0909 0.0072 1 2 1 0.0192 0.0109 0 0 2 

10 0.0121 0.3247 0.0915 0.0060 0 0 1 0.0327 0.0122 0 0 2 

Mean 0.0319 0.3083 0.1166 0.0071 0.7 2.8 1.4 0.0345 0.0112 1.1 3.4 3.2 

 3 
Table 4 shows the performance of CLSAS, RCLS and RCLSFR run in this scenario, and Figure 3 4 

plots the RMSD curves in experiment no. 1 to no. 4 in this scenario. It can be noticed that the RMSD in 5 
RCLS is about three times larger than that in CLSAS. From Figure 3, it is also observed that, even though 6 
RCLS gives a good estimation in the first period, its RMSD jumps to a very high value and drops very 7 
slowly after the turning proportions change. These values and the pattern of RMSD curve indicate that, 8 
RCLS can hardly detect the change in parameters. On the other hand, RCLSFR has a much smaller 9 
RMSD than RCLS in the second period, yet still larger than that in RCLS. It is shown by Figure 3 that, 10 
the curve of RCLSFR drops faster than that of CLSAS after change happened, but it fluctuates later and 11 
ends up in a larger error than CLSAS. The pattern of RMSD curves demonstrates that RCLSFR is able to 12 
detect parameter change fast, while having some fluctuation in the stationary period. The computational 13 
time of RCLSFR is about 3% of CLSAS, slightly larger than RCLS. Values for step requiring iteration, 14 
number of iteration and step requiring truncation are 1.1, 3.4, and 3.2 respectively. As indicated by these 15 
values, RCLSFR does not pay much effort to satisfy the constraints after its update from least squares 16 
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estimator. Given its fast response to change and small computational effort, RCLSFR is still a competitive 1 
algorithm compare to CLSAS, even for its fluctuations in the stationary period. 2 

 3 

 4 
FIGURE 3  Example result of experiment #1 to #4. 5 

 6 
VI - CONCLUSION 7 
 8 
A recursive method RCLS is proposed in this paper for estimating turning proportions of signalized 9 
intersections in real time. This method needs exit counts only, and it saves half detectors from a complete 10 
detector configuration. The estimation problem is in the form of constrained least squares, and a recursive 11 
algorithm is presented to solve it. Simulation shows that the proposed method can obtain as accurate 12 
estimation as the optimization approach CLSAS, while its computation is only 3% of CLSAS. The 13 
extended method RCLSFR, which incorporates forgetting factor and covariance resetting, is suggested for 14 
estimating time-varying turning proportions. It is able to response to change in parameters very quickly. 15 
Even though it has a bit larger error than CLSAS in the stationary period, it takes significantly less 16 
computational effort. 17 
 18 
 19 

ACKNOWLEDGEMENTS 20 
 21 
This work is partially supported by the California Department of Transportation (Caltrans) through the 22 
Connected Corridors California PATH Program and by the National Science Foundation (NSF) through 23 
grant CDI-0941326. 24 
 25 
 26 
REFERENCE 27 

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

intervals

R
M

S
D

RMSD of RCL, CLAS and RCLFR, experiment #1

 

 

RCL

CLAS
RCLFR

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

intervals

R
M

S
D

RMSD of RCL, CLAS and RCLFR, experiment #2

 

 

RCL

CLAS
RCLFR

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

intervals

R
M

S
D

RMSD of RCL, CLAS and RCLFR, experiment #3

 

 

RCL

CLAS
RCLFR

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

intervals

R
M

S
D

RMSD of RCL, CLAS and RCLFR, experiment #4

 

 

RCL

CLAS
RCLFR



12 
Su, Horowitz, Lu 

 1 
(1) Varaiya, Pravin. The Max-Pressure Controller for Arbitrary Networks of Signalized 2 

Intersections. Advances in Dynamic Network Modeling in Complex Transportation Systems. Springer 3 
New York, 2013, pp: 27-66. 4 

(2) Willumsen, L. G. Estimation Of An OD Matrix From Traffic Counts–A Review. Institute for 5 
Transport Studies Working Paper 99, Leeds University (1978). 6 

(3) Lawson, C. L., and R. J. Hanson. Solving Least Squares Problems. Vol. 161. Englewood Cliffs, NJ: 7 
Prentice-hall, 1974. 8 

(4) Cremer, M., and H. Keller. A New Class of Dynamic Methods for the Identification of Origin-9 
Destination Flows. Transportation Research Part B: Methodological 21.2 (1987), pp. 117-132. 10 

(5) Nihan, N. L., and G. A. Davis. Recursive Estimation of Origin-Destination Matrices from 11 
Input/Output Counts. Transportation Research Part B: Methodological 21.2 (1987), pp. 149-163. 12 

(6) Bell, M. GH. The Estimation of Origin-Destination Matrices by Constrained Generalised Least 13 
Squares. Transportation Research Part B: Methodological25.1 (1991), pp. 13-22. 14 

(7) Li, B., and B. De Moor. Recursive Estimation Based on the Equality-Constrained Optimization for 15 
Intersection Origin–Destination Matrices.Transportation Research Part B: Methodological 33.3 16 
(1999), pp. 203-214.  17 

(8) Lan, C, and G. A. Davis. Real-Time Estimation of Turning Movement Proportions from Partial 18 
Counts on Urban Networks. Transportation Research Part C: Emerging Technologies 7.5 (1999), pp: 19 
305-327. 20 

(9) Lan, C. Sufficiency of Detector Information under Incomplete Configuration for Intersection OD 21 
Estimation. Proceedings of Intelligent Transportation Systems, 2001, pp: 398-403. 22 

(10) Lan, C., and G. A. Davis. Real-Time Estimation of Turning Movement Proportions from Partial 23 
Counts on Urban Networks. Transportation Research Part C: Emerging Technologies 7.5 (1999), pp: 24 
305-327. 25 

(11) Li, B., and B. De Moor. Dynamic Identification of Origin–Destination Matrices in the Presence of 26 
Incomplete Observations. Transportation Research Part B: Methodological 36.1, 2002, pp: 37-57. 27 

(12) Chang, G., and X. Tao. Estimation of Time-Dependent Turning Fractions at Signalized Intersections. 28 
In Transportation Research Record: Journal of the Transportation Research Board No. 1644, 29 
Transportation Research Board of the National Academies, Washington, D.C., 1998, pp:142-149. 30 

(13) Gunnarsson, S.. Combining Tracking and Regularization in Recursive Least Squares Identification. 31 
Decision and Control, 1996., Proceedings of the 35th IEEE, vol. 3, pp. 2551-2552.  32 

(14) Salgado, M. E., G. C. Goodwin, and R. H. Middleton. Modified Least Squares Algorithm 33 
Incorporating Exponential Resetting and Forgetting. International Journal of Control 47.2 (1988), pp: 34 
477-491. 35 


	trb cover page
	trb v4

