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ABSTRACT 

The U.C. Berkeley, California PATH-Renault collaboration, detailed in this report, built upon 
the Mobile Millennium and Networked Traveler projects that were conducted from 2007 to 2011 
as part of the US DOT’s SafeTrip-21 Initiative.  The Mobile Millennium project provided a 
platform for aggregating traffic information across various sources, including infrastructure 
sensors, commercial data feeds, probe vehicles, and probe cell phones.  The Networked Traveler 
project provided the California PATH instrumented research vehicle platform used to both 
deliver vehicle probe data back to the infrastructure and to generate Advanced Driver Assistance 
Systems (ADAS) alerts to the drivers of those vehicles.  The main theme of this collaboration 
project was to demonstrate the potential to create Enhanced Probe Vehicles (EPVs) by merging 
vehicle CAN-bus data with the typical GPS data that is provided by normal probe vehicles.  
EPVs could then provide more accurate speed information to the traffic servers along with 
additional information that only the vehicle knows, such as current gear, hazard light warning 
activation, or even airbag deployment events. 

During SafeTrip-21, the two California PATH research platforms were built independently, so 
the first goal of this project was integrate the two systems, allowing the instrumented research 
vehicles to communicate with the Mobile Millennium traffic aggregation servers.  The second 
goal was to enhance the data gathered and stored by the Mobile Millennium traffic aggregation 
server to include the enhanced information provided by the EPVs, specifically, to include hazard 
warning light activation events.  The third and final goal of this project was to integrate the 
information provided by the EPVs to the traffic server into soft-safety alerts that could be 
provided to the drivers of the EPVs and demonstrate the prototype system.  This report 
documents the systems that were built for the demonstration, and provides a short analysis of the 
system performance from data gathered through both a simulation and an on-the-road vehicle 
test. 

 

Key Words: ITS, Intelligent Transportation Systems, ATIS, Advanced Traveler 
Information Systems, Traffic Information, Human Factors, Driving 
Behavior, Situational Awareness, Soft Safety Alerts, End-of-Queue Warnings 
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1 INTRODUCTION 

1.1 Background 

The U.C. Berkeley, California PATH-Renault collaboration, detailed in this report, builds upon 
two projects that were conducted as part of the US DOT’s SafeTrip-21 initiative.  The 
SafeTrip-21 initiative started in 2007 and concluded in 2011.  It was launched by the US DOT’s 
Research and Innovative Technology Administration (RITA), in partnership with the California 
Department of Transportation (Caltrans) and other state DOTs, to demonstrate how current ITS 
(Intelligent Transportation Systems) solutions could improve transportation safety and reduce 
congestion.  Although there were a number of different and diverse projects conducted under the 
SafeTrip-21 initiative, the two projects relevant to the current collaboration included the Mobile 
Millennium Project and the Networked Traveler Foresighted Driving Field Experiment, both 
conducted at California PATH. 

In the Mobile Millennium Project (Bayen, et al., 2010, 2011), California PATH demonstrated the 
potential of GPS in cell phones to alter the way traffic data is collected.  The existing cell phone 
infrastructure was leveraged to collect vehicle speed and travel time data and merge it with data 
gathered from the infrastructure through the California Performance Measurement System 
(PeMS) and through traffic speed and travel time estimates provide by private companies such as 
Navteq (http://www.navteq.com) and SpeedInfo (http://www.speedinfo.com). 

In the Networked Traveler Foresighted Driving Field Experiment (Nowakowski, et al., 2011, 
2012), California PATH demonstrated how Advanced Driver Assistance Systems (ADAS) could 
provide real-time soft-safety alerts to drivers, and this project demonstrated how these alerts 
could benefit drivers approaching end-of-queue traffic scenarios.  In this project, commercial 
data sources such as Navteq and SpeedInfo were leveraged, along with the existing cell phone 
infrastructure, to provide the drivers with a “Slow Traffic Ahead” alert about 60 seconds before 
reaching traffic that had significantly slowed. 

It was hoped that the soft-safety alerts might reduce end-of-queue, rear-end crashes through one 
of several means.  By increasing the driver’s expectation of an impending speed change with an 
alert, we might decrease the probability of an inopportune driver distraction, influence smoother 
speed changes, and minimize the speed differentials among the vehicles in the traffic flow.  Each 
of these reactions should help to reduce the probability of an end-of-queue crash.   

To test this hypothesis, four California PATH research vehicles were instrumented to collect 
driving behavior data and provide soft-safety alerts to the drivers when travelling around the San 
Francisco Bay Area.  A total of 24 drivers participated in the experiment for two weeks over the 
course of 5 months.  During the first week, the system simply collected data, but during the 
second week, the system provided drivers with an audible “Slow Traffic Ahead” alert, also 
specifying the detected speed of the traffic ahead.  Among the test results, there were clear 
reductions in peak deceleration rates when the soft-safety alerts were provided, suggesting that 
these types of alerts might provide some safety benefits.   

However, the raw traffic data provided by the commercial vendors was not without issue, and 
over 40 percent of the alerts received during the field experiment ended up being false alarms 
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related to incomplete or inaccurate data.  Since the Mobile Millennium project provided a robust 
data aggregation and traffic speed prediction platform, it was a natural extension of the two 
projects to attempt to merge the functionality provided by each of the two systems. 

1.2 Project Overview 

1.2.1 Project Goals 

The ultimate goal of the PATH-Renault collaboration is to build and demonstrate a collaborative 
system utilizing V2I communication combining the enhanced information that can be generated 
from probe vehicles, with estimates of traffic density and the road network conditions, to provide 
contextual safety-related information to drivers.  To this end, the Mobile Millennium project 
provides a platform for aggregating traffic information across various sources, including 
infrastructure sensors, commercial data feeds, probe vehicles, and probe cell phones.  The 
California PATH instrumented research vehicles, built for the Networked Traveler Foresighted 
Driving Experiment, provide a platform to both deliver enhanced vehicle probe data back to the 
infrastructure and to generate ADAS alerts to the drivers of those vehicles.   

The first goal of the project was to integrate the Networked Traveler Foresighted Driving 
Experiment vehicle platform with the data that could be provided by the highway traffic models 
built during the Mobile Millennium project.  While this integration was relatively 
straightforward, there were a number of implementation challenges to be discussed later.  Once 
this goal was completed, the two California PATH research vehicles would be able to receive 
traffic speed data that had been gathered and processed through the Mobile Millennium 
architecture, allowing the vehicle to provide the drivers with soft-safety alerts regarding “Slow 
Traffic Ahead.” 

The second goal of this project was to introduce the concept of an enhanced probe vehicle. 
Currently, probe vehicles or probe cell phones provide basic GPS information (latitude, 
longitude, and a GPS speed estimate) to the data aggregation servers which feed into the 
highway traffic models that were built during the Mobile Millennium project.  In contrast, an 
enhanced probe vehicle would gather and transmit data both from the GPS and from the 
vehicle’s own CAN bus.  Using the additional information gathered from the vehicle’s CAN bus, 
the probe data can be enhanced, first, to provide a more accurate vehicle speed and, second, to 
include data known only to the vehicle, such as current gear, hazard light status, or even an 
airbag deployment. 

Furthermore, adverse events involving the enhanced probe vehicle could be defined, recorded, 
and transmitted to the traffic data aggregation servers, and then this information could be fed 
back to other approaching vehicles in the form of additional soft-safety alerts.  As an example, if 
an enhanced probe vehicle was involved in a collision, it might be able to transmit this event to 
the traffic aggregation servers, and once this propagated through the system, approaching 
vehicles would not only be warned about slow traffic ahead, but they might also be warned about 
an accident or disabled vehicle ahead.  For the purposes of this collaborative demonstration, the 
initiation of the hazard warning lights would serve as a surrogate for the types of events that 
could be generated by an enhanced probe vehicle.  The California PATH research vehicle 
platform was already set up to read and send CAN bus information, but there was a fair amount 
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of work to be done on the Mobile Millennium side to aggregate, store, process, and serve up the 
enhanced probe data to approaching vehicles. 

The third and final goal of the project was to integrate the information provided about traffic 
events from the enhanced probe vehicles into the soft-safety alerts provided to the drivers.  
During the Networked Traveler project, the only alerts provided to the drivers were based on 
traffic speeds, warning the drivers about slow traffic ahead.  With the introduction of enhanced 
probe vehicles, additional soft-safety alerts could be provided to the drivers, and alterations to 
the alert system in the California PATH research vehicle that was left over from the Networked 
Traveler project would be required. 

1.2.2 Demonstration Use-Case Scenarios 

Three use-case scenarios were proposed for demonstration in this project.  The first use-case 
scenario involved a major freeway traffic slowdown.  The demonstration scenario would use one 
of the instrumented Nissan Altimas acting as enhanced probe vehicles (EPV) and receiving 
traffic information from the infrastructure.  As the vehicle approaches a real traffic jam, it 
receives the speeds of the traffic ahead from the Mobile Millennium server, and determines when 
to give the driver an alert regarding slowed traffic ahead.  Basically, if the vehicle is travelling 
more than 15 mph above the mean speed of traffic that is about a mile ahead, then an alert would 
be given.  As an example, the EPV is travelling at 65 mph and the traffic ahead is 35 mph, then 
the EPV would issue an auditory alert saying, “Slow Traffic Ahead, 35 Miles Per Hour,” when 
the EPV was about 60 seconds from the end of the slowed traffic queue. 

In the second use-case scenario, a disabled EPV would be simulated using one of the two Nissan 
Altimas, and as the second vehicle approached, it would get a warning about the presence of the 
disabled vehicle.  In this scenario, both Nissan Altimas would be acting as EPVs.  The first 
vehicle enters the highway, travels for a few miles, and then pulls off to the side of the road 
while engaging its hazard warning lights.  The second Nissan Altima would follow the same 
route, getting information about both traffic speeds and EPV events from the Mobile Millennium 
server.  As the second vehicle approaches the simulated disabled vehicle, an auditory alert would 
be given to the driver, such as, “Caution, Disabled Vehicle Ahead.” 

The third use-case scenario is simply a combination of the first two scenarios, and it 
demonstrates the possibility of providing context aware soft-safety alerts.  In this scenario, both 
Nissan Altimas will be acting as EPVs.  The first vehicle enters the highway, travels for a few 
miles, locates an area with a queue of slowed or stopped traffic, and then pulls off to the side of 
the road while engaging its hazard warning lights.  The second Nissan Altima would follow the 
same route, getting information about both traffic speeds and EPV events from the Mobile 
Millennium server.  As the second vehicle approaches both the slowed traffic and the simulated 
disabled vehicle, an auditory alert would be given to the driver, such as, “Caution, Disabled 
Vehicle Ahead, 35 Miles Per Hour.” 
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1.3 System Overview 

1.3.1 Architecture Overview 

The proposed system overview architecture is shown in Figure 1.1, consisting of two major 
components.  The first major component is the traffic data server, which was built upon the 
Mobile Millennium architecture.  The second major component is the enhanced probe vehicles, 
which were built upon the existing architecture provided by the two California PATH research 
vehicles that were developed during the Networked Traveler project. 

 
Figure 1.1: System Overview. 

The Mobile Millennium server receives data from multiple sources including PeMS (the Caltrans 
system of freeway loop detectors), Navteq (commercial traffic data), and from various probe 
vehicles, including the two Enhanced Probe Vehicles (EPVs) developed for this project.  When 
an EPV is detected, the Mobile Millennium server will match the vehicle location to a highway 
segment and keep a record of the events triggered by that vehicle, such as the triggering of the 
vehicle’s hazard warning lights.  The server then returns relevant traffic and event information to 
each EPV with which it is communicating. 

The EPVs for this project included the two California PATH Nissan Altima research vehicles. 
Vehicle position information is read from the aftermarket GPS receiver, and a connection with 
the vehicle CAN-bus enables the system to observe the status of the vehicle, including speed and 
the activation of the hazard warning lights.  Communication to the Mobile Millennium server is 
achieved through a 3G cell modem data connection.  Each vehicle continually updates its 
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position, speed, and status, and in return, receives relevant traffic and event information.  
Onboard the vehicle, the soft-safety alert module processes the vehicle’s current status, the 
traffic information, and the event information, and then it decides whether or not to issue an alert 
to the driver through the Human-Machine Interface (HMI).  Both audible alerts and a 
visualization of the system status were to be provided to the driver and passengers. 

1.3.2 Alert Algorithm Overview 

The concept for the soft-safety alert algorithm is fairly straightforward and described in Figure 
1.2.  The EPV is travelling along the freeway communicating with the Mobile Millennium traffic 
server.  When a traffic slowdown or disabled vehicle is encountered ahead, the alert algorithm 
calculates the Estimated Time of Arrival (ETA) to the slowed traffic or disabled vehicle.  When 
the vehicle’s current speed exceeds the speed of the traffic ahead by more than a preset speed 
(such as 15 mph) and the ETA to the slowed traffic is less than a preset value (such as 60 
seconds), then an audible alert is issued to the driver. 

 
Figure 1.2: Soft-Safety Alert Algorithm Concept. 

Three possible audible alerts could be given to the driver.  First, if the driver is encountering 
slowed traffic, an alert would be provided saying, “Slow Traffic Ahead, 35 Miles Per Hour,” 
where 35 mph would indicate the average speed of the traffic ahead.  Second, if the driver 
encounters a disabled vehicle ahead (without a corresponding traffic slowdown), then an alert 
would be provided saying, “Caution, Disabled Vehicle Ahead.”  Finally, if the driver encounters 
both slowed traffic and a disabled vehicle ahead, then the alert would say, “Caution, Disabled 
Vehicle Ahead, 35 Miles Per Hour,” where again, 35 mph would indicate the average speed of 
the traffic ahead. 
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2 PATH RESEARCH VEHICLE ARCHITECTURE 

2.1 Vehicle Architecture Overview 

The California PATH instrumented vehicle Data Acquisition System (DAS) used in the two 
Nissan Altima EPVs (Enhanced Probe Vehicles) was built using almost entirely Commercial 
Off-The-Shelf (COTS) components.  The system contained two computers which were based on 
the Mini ITX platform.  The first computer was used to gather and record vehicle CAN and 
external sensor data, communicate with the Mobile Millennium traffic data server, and to process 
and generate relevant soft-safety alerts for the driver.  The second computer was dedicated to 
video data acquisition.  Both of the computers were located in the trunk of the vehicle. 

As shown in Figure 2.1, the DAS computer gathered data from both the vehicle manufacturer’s 
CAN and from several other sensors that were added to the vehicles.  The CAN data was 
gathered through a CAN to USB converter.  Additional sensors and displays included the 
following: 

• A forward looking Eaton-Vorad EVT-300 Radar 
• A 3-axis, MEMSense, Combination Accelerometer and Gyroscope 
• A Garmin GPS18x, 5 Hz, D-GPS 
• A LandCell-882 3G Wireless Router 
• A 7” LCD Display and a PC Speaker for the Driver Vehicle Interface (DVI) 

 
Figure 2.1: Vehicle Architecture Overview. 

Other incidental equipment required by the system included a standard Ethernet switch and a 
USB Digital Input/Output (DIO) device that was used to mute the vehicle’s audio system 
whenever audible alerts were being issued.  The audible alerts were issued through a standard PC 
speaker mounted on the dashboard.  A more detailed system diagram is shown in Figure 2.2. 
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Figure 2.2: California PATH Instrumented Vehicle Systems Diagram. 

The VAS (Video Acquisition System) computer could record up to 4 channels of video, each at 
320x240 pixels at up to 30 frames per second.  Three cameras were placed to capture the forward 
and rear driving scenes and the driver’s face.  Since the alert that was being tested was only 
given using audio and audio was not recorded during the experiment, the fourth video channel 
was a system status visualization display that was generated by the data acquisition computer.  
Figure 2.3 depicts an output image as recorded by the video acquisition computer.  As shown in 
this image, a “Slow Traffic Ahead” alert was currently being given to the driver to warn the 
driver that the traffic speed ahead was expected to be 55 mph. 
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Figure 2.3:  Video Acquisition System Output Image. 

2.2 Vehicle Software Architecture 

The vehicle DAS and VAS software was written in C and C++ and compiled for the Linux 
operating system.  All of the software was custom written by California PATH, but many parts 
of the software were based on open source drivers and libraries.  Due to the availability of 
various required hardware drivers, the data acquisition computer ran a version of Slackware 
Linux and the video acquisition computer ran a version of Debian Linux.  The software 
architecture consists of a set of processes running on the each of the data acquisition computers, 
communicating through the Publish/Subscribe database.  (See Figure 2.4.)   

 
Figure 2.4: California PATH Publish/Subscribe Software Architecture. 
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The California PATH data hub lies at the center of the software architecture.  The data hub is 
simply a memory space for storing data that can be shared among different processes.  At the 
lowest level of the software architecture, device drivers and data hub client processes were 
written for each sensor or device to read the data from that device and place it into the data hub.   

At the data processing level, various processes were written to use the data that was gathered 
through the sensors.  For example, a communications process would read the necessary data 
from the data hub and send vehicle position and speed to the Mobile Millennium server over the 
3G data modem using the Linux system “curl” command.  The response from the server was 
written to a file.  At the same data processing level, an alert process would read and parse the 
traffic information received from the Mobile Millennium server, read the data gathered by the 
sensors from the data hub, determine whether or not an alert condition existed, issue an auditory 
alert if necessary, and write the alert information back to the data hub. 

At the UI level, a display process would then read the sensor and alert data from the data hub and 
use it to draw the system status visualization screen.  Finally, at the data recording level, a data 
recording process would write selected data from the data hub to files stored on the DAS 
computer.  These files could then be downloaded from the vehicle and analyzed later in Matlab. 

2.3 Alert Algorithm 

The actual vehicle-server communication message formats are discussed, but essentially, the 
Mobile Millennium server provided the vehicle with two lists of data at each update interval (a 
configurable parameter): (1) a list of freeway speed locations and (2) a list of EPV event 
locations.  These speed and event locations could each potentially be a trigger point for the alert 
algorithm.  Each trigger contained the following data elements: 

Speed Trigger Data Elements 
• GPS Latitude 
• GPS Longitude 
• Heading (compass) 
• Current Speed (mph) 
• Historical Speed (mph) 
• Road Segment Name (character string) 

Event Trigger Data Elements 
• GPS Latitude 
• GPS Longitude 
• Heading (compass) 
• Event Code (integer) 
• Event Age (s) 
• Road Segment Name (character string) 

 
During each processing update cycle (a configurable parameter), the alert algorithm used the 
speed and event trigger data to calculate the distance, estimated time of arrival (ETA), and 
relative bearing to the trigger point based on the vehicle’s current GPS location and speed.  
Relative bearing was used to discard trigger points that the vehicle already passed.  The alert 
algorithm then simply cycled through the speed and event trigger point lists to determine if any 
alerts were triggered. 

A “Slow Traffic Ahead” alert was triggered if the following four conditions were satisfied: 

1. ETA < ETAmax 
2. Current Speed – Trigger Speed > Speed Difference Thresholdmax  
3. Trigger Speed < Alert Speedmax 
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4. Elapsed Time Since Last Alert > Audible Alert Refractory Period 

A “Caution, Disabled Vehicle Ahead” alert was triggered if the following two conditions were 
satisfied: 

1. ETA < ETAmax 
2. Elapsed Time Since Last Alert > Audible Alert Refractory Period 

The lists of speed and event triggers were processed separately; however, when an alert was 
encountered using one list, the other list was reprocessed using a relaxed setting for the 
maximum ETA.  Thus, if slow traffic was reported 60 seconds ahead, triggering an alert, the 
event list was reprocessed looking for disabled vehicles up to 120 seconds ahead.  If an alert was 
triggered on both lists, then a combined alert message was provided to the driver. 

Most of the alert parameters discussed above were configurable and were stored in a 
configuration file read at the start of the application.  The parameters and their purposed and 
used values are listed below in Table 2.1, and a few comments on these values follow.  The 
update interval set for this project was set to 10 seconds, but this was primarily based on the fact 
that the matching of the vehicle location to a freeway segment was being performed by the server 
and a minimum of three vehicle locations were required to match the vehicle to a roadway 
segment.  Alternative architectures, such as providing the server with a GPS history of the 
vehicle, rather than a single point, could easily allow the update interval to be raised to 60 
seconds.  Typically, the Mobile Millennium server tried to provide the vehicle with about 5 
minutes of data during each update. 

Table 2.1: Configurable Parameters Related to the Alert Algorithm. 

Parameter Recommended Settings Demo Settings 
Update Interval (seconds) 60 s 10 s 
Processing Update Rate (milliseconds) Depends on GPS Update Rate 200 (ms) 
Event Age (seconds) Depends on Event Type 180 s 
Relative Bearing to Trigger/Event Roadway Geometry Dependent ± 90 Degrees 
Max ETA to Slowed Traffic or Event 60 s 30 s 
Maximum Alert Speed 50 mph 60 mph 
Max Speed Difference Threshold 15 mph 5 mph 
Audible Alert Refractory Period 120 – 180 s 45 s 
 
The alert algorithm processing rate was set based on the update rate of the vehicle’s GPS 
(200 ms) since the algorithm can only recalculate the distances and ETAs to each of the trigger 
points when there is new GPS information available.  The 60 second recommendation for the 
maximum ETA at which to alert the driver was based on the results of the Networked Traveler 
project (Nowakowski, et al., 2011, 2012).  In that study, alerts given 90+ seconds from the traffic 
slowdown were often rated as early, while alerts coming less than 60 seconds from the traffic 
slowdown were often rated as late.  Similarly, the recommended settings for the maximum alert 
speed, maximum speed difference threshold, and audible alert refractory period came from the 
Networked Traveler project results. 
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2.4 System Status Visualization 

Two screen captures of the system status screen are shown in Figure 2.5 and Figure 2.6.  During 
the demonstration the system status screen was shown on a 7” LCD display mounted in the 
vehicle for the driver and passengers to observe.  The information on the screen was dynamically 
updated by the DAS computer, and the purpose of the screen was to help visualize the system 
status and the flow of information from the Mobile Millennium server to the vehicle. 

 
Figure 2.5: DVI Pre-Alert System Status Visualization Screen. 

 
Figure 2.6: DVI Post-Alert System Status Visualization Screen. 
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The first screen capture shows the system in a pre-alert state.  In this figure, the vehicle is 
travelling at 65 mph, and since the start of the trip, 47 communication attempts have been made 
with the Mobile Millennium server.  Currently, 45 active speed triggers had been received, and 
the closest speed trigger was 0.6 miles away with an ETA of 36 seconds.  Additionally, one 
event trigger had been received, and it was 0.8 miles away with an ETA of 45 seconds.  The 
second screen capture shows the system in the same state after an alert had been triggered.  The 
triggering of the alert adds a few more data elements to the screen such as the alert type, the 
recommended speed, and an indication that an audible alert is currently playing.  Based on this 
screen, an auditory alert saying, “Caution, Disabled Vehicle Ahead, 55 Miles Per Hour,” would 
currently be playing for the driver.  Again, the visual screen was designed with the purpose of 
providing a visualization of the demonstration, and not as a prototype of an interface that would 
be provided by a vehicle manufacturer to a typical driver. 
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3 MOBILE MILLENNIUM TRAFFIC DATA ARCHITECTURE 

3.1 Server Architecture 

The Mobile Millennium server architecture, as depicted in Figure 3.1, can be broken into two 
main processes: (1) the updating of the current traffic data through the Mobile Millennium 
Highway Model, and (2) the processing of the Enhanced Probe Vehicle (EPV) information 
requests and events.  Highway speed estimation operates on a perpetual basis through the Mobile 
Millennium Highway Model, beginning with data from the Caltrans PeMS (Performance 
Measurement System) inductive loop sensors near the road surface.  These sensors provide flow 
and occupancy data, which then get filtered and processed to estimate current highway speeds.  
Other data sources, such as probe vehicles and commercial traffic data (from Navteq) can then be 
fused with the PeMS data to provide refined freeway speed estimates in the highway model. 

The processing of the EPV information requests can be broken into three parts: vehicle path 
inference, vehicle event register, and return message composition.  When an EPV message is 
received by the server, it is first parsed for vehicle location and speed.  The GPS location 
provided by the vehicle, along with several past locations provided by the same vehicle, is 
processed using a path inference algorithm to basically match the current vehicle location to a 
specific roadway segment in the Mobile Millennium Highway Model.  In parallel, the EPV 
message is also processed by the event register, which is responsible for storing, cancelling, and 
decaying EPV events.  Finally, the message composer process composes the return message to 
the EPV, which includes both speeds and events along the vehicle’s predicted path.  

 
Figure 3.1: Server Architecture. 
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3.2 Vehicle-Server Message Exchange 

The web-based communication between the EPVs and the server utilized the cURL command.  
Basically, the EPV posted a web request with its current data, and the server responded with a 
formatted text response.  For expediency in prototyping at this stage in the development process, 
all communications were simply plain text encoded with individual parameters being comma 
delimited.  The format of the vehicle information request message to the server is detailed in 
Table 3.1, and the format for the server response message is detailed in Table 3.2. 

Table 3.1: Vehicle Message to Server. 

Parameter Description 
Current Time Unix time in seconds since epoch (January 1, 1970) 
Vehicle ID Character string 
Latitude GPS position latitude 
Longitude GPS position longitude 
Heading GPS compass heading (0 – 360 degrees) 
HDOP GPS measure of accuracy 
Vehicle Speed Obtained from CAN-bus (m/s) 
Vehicle Gear Obtained from CAN-bus and converted to an integer from 0 – 4 

0 Unknown | 1 Park | 2 Reverse | 3 Neutral | 4 Drive 
Vehicle Event Code Events obtained from CAN-bus 

0 No Event | 10 Hazard Warning Lights Active 
 

Table 3.2: Server Response Message to Vehicle. 

Parameter Description 
Current Time Unix time in seconds since epoch (January 1, 1970) 
Number of Speed Triggers Integer 
 Latitude GPS latitude 
 Longitude GPS longitude 
 Heading Freeway direction compass heading (0 – 360 degrees) 
 Current Speed Current freeway speed for this location 
 Historical Speed Historical freeway speed for this location/time (from Navteq) 
 Freeway Segment Name Character String 
Number of Event Triggers Integer 
 Latitude GPS latitude 
 Longitude GPS longitude 
 Event Code Integer (10 for Hazard Warning Lights Active) 
 Event Age Seconds 
 Heading Last known vehicle heading (0 – 360 degrees) 
 Freeway Segment Name Character String 
 
The server response messages were variable in length, dependent upon the number of speed and 
event triggers returned to the vehicle.  Typically, the server tried to predict the vehicle path out 
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for at least 5 minutes of travel, and this resulted in anywhere from 50 to 100 speed trigger points 
being transmitted during each message.  If the vehicle’s current location could not be matched to 
a highway model freeway segment, then zero speed triggers were returned.   

3.3 Mobile Millennium Highway Model Graph 

The Mobile Millennium Highway Model Graph is essentially a simplified version of the 
highway maps provided by Navteq.  As shown in Figure 3.2, the Navteq maps include links and 
nodes for on-ramps, off-ramps, and frontage roads that are all considered as part of the freeway 
system.  Additionally, the intersection of multiple links can result in the generation of many 
additional short links to handle the various travel path connection options.  The Mobile 
Millennium Highway Model Graph simplifies the list of links and nodes to include only the 
freeway segments, and the intersection of multiple links becomes a single node.  However, 
longer Navteq links may be subdivided in the Mobile Millennium Model Graph so that freeway 
speeds can be interpolated between known points using the cell transmission model. 

 
 
 
 

 
Navteq Map 

 
Mobile Millennium Highway Model 

Figure 3.2: Comparison of Navteq and Mobile Millennium Maps. 

Due to computer processing power constraints and the prototype nature of this project, the actual 
server used in the demonstration contained only a subset of the freeways in the San Francisco 
Bay Area near and around the Richmond Field Station in Richmond, CA.  As shown in Figure 
3.3, the coverage area included I-580 and I-80, which were the primary roads used in the 
demonstration. 
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Figure 3.3: Mobile Millennium Highway Model Used During the Demonstration. 

3.4 Vehicle Path Inference and Future Path Prediction 

After receiving a location update from an EPV, the server used a path inference filter (PIF) 
algorithm to match the probe vehicle to a specific link of the Mobile Millennium Highway 
Model Graph.  The PIF was not simply a direct map matching algorithm because of the 
inaccuracies in the GPS location provided by the probe vehicle.  The raw GPS coordinates tend 
to not clearly follow a highway or arterial road, rather the GPS coordinates “bounce” from side 
to side and forward or backward.  This is especially problematic for an arterial or city map due to 
the frequent intersections and traffic signals; however, even on a highway, the GPS coordinates 
can frequently provide only a probable location, especially when frontage roads and overpasses 
are considered. 

To counter the issues with simply map matching a single GPS location, the PIF kept track of 
three previous GPS coordinates for each vehicle, along with a record containing the last known 
Navteq map link that was matched to the vehicle.  The accuracy of the PIF increases both with 
the number of points per unit time (frequency) and with the number of points available to look 
back to; however, there was also a trade-off between accuracy and processing speed.  Thus, for 
this demonstration, the probe vehicle needed to provide at least three updates to the server before 
a match could be made.  Furthermore, when a location match is made, the PIF also returns a 
probability of accuracy.  If the probability was less than 65 percent, then the match was 
discarded and no freeway speeds were returned to the EPV. 

Once the probe vehicle was matched to a link on the Mobile Millennium Highway Model Graph, 
the vehicle’s possible future path was calculated by “walking” the model graph links in the 
forward direction to return a set of all model graph link IDs within a five-minute driving time.  
Once the list of model graph link IDs was gathered, a SQL query was performed to get the 
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associated highway model current and historical speeds for each link.  The message composer 
process then formatted the list of links and speeds to return to the EPV. 

3.5 Enhanced Probe Vehicle Event Register 

Along with GPS location and speed, EPVs also provided an event code, either a 0 for no event, 
or a 10 for the activation of the hazard warning lights.  The event register was used to both store 
and decay events supplied by the EPVs.  The event register was basically a database of vehicle 
IDs, locations, and events.  The time was tracked for each event in the register and events could 
be cancelled in one of two ways.  First, the EPV could provide a subsequent update that cancels 
the event.  Second, each event was given a finite decay time, for example, 3 minutes for hazard 
light activation.   

If a vehicle was sitting on the side of the road with its hazard lights on, it would broadcast this 
event state on each update to the server.  Each new update from a vehicle was checked by the 
event register.  If the vehicle cancelled the event, then the event status was removed from active 
in the event register.  If an event was verified as continuing, then the event was reaffirmed as 
active and the decay time was reset to the default for that event type.  If a vehicle stopped 
broadcasting while an event was still active, the server would keep the event active until the 
decay time for that event was exceeded, after which the event would be labelled as inactive. 

The event register used the PostgresQL database with post-GIS extensions.  On each EPV 
update, the message composer process executed a SQL (structured query language) command to 
return all events within five minutes driving distance as the crow flies and not older than 3 
minutes.  The message composer also filtered based on the vehicle ID to make sure that it only 
returned events from other cars.  This query could easily be filtered in the future to return only 
events within a forward “cone” of travel by discarding events for which the disabled vehicle’s 
Navteq link ID does not match any of the speed trigger link IDs that are being returned to the 
EPV. 
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4 SIMULATION RESULTS 

4.1 Simulation Overview 

As part of the development and testing process, a simulation tool was written using the Matlab 
programming and analysis language and environment.  Primary purpose of the simulation was 
twofold: (1) to playback prerecorded vehicle data, thus, simulating a vehicle moving along the 
freeway network, and (2) to simulate disabled vehicles on the freeway for the two PATH 
research vehicles acting as EPVs to encounter.  One of the advantages of the simulation tool was 
that the vehicle-server communication was handled in exactly the same way as it was done on 
the vehicle, so the simulation tool was invaluable in debugging the vehicle-server 
communications protocols.  Furthermore, the simulation tool was able to record and save the 
entire output of the communications received from the server, which then provided for a more 
detailed analysis of the system performance than what was available from the data set that was 
saved on the vehicle. 

The simulation tool loaded pre-recorded vehicle data from any of the California PATH research 
vehicles, and played back the vehicle route (GPS location and vehicle speed) in real time, 
substituting the current clock time for the time at which the data was actually recorded.  The 
simulated vehicle trip that was analyzed was recorded on July 15, 2010, at about 11:00 PM, by 
one of the California PATH Nissan Altima research vehicles.  The route taken by the vehicle is 
shown in Figure 4.1, and this particular route was often used in simulation because the research 
vehicle both started and ended the trip at the Richmond Field Station, allowing the simulated trip 
to be looped without an apparent jump in the vehicle position. 
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Figure 4.1: Simulated Trip Vehicle Route. 

4.2 Simulation Results 

4.2.1 Entering A Freeway – Initial Server Data Update 

The actual simulation discussed in this section was run at approximately 4:00 PM on a 
Wednesday to provide some evening traffic along the test route using the pre-recorded trip data 
previously discussed.  The vehicle-server communication rate was set to update every 15 
seconds, and over the 17-minute route, there were 70 vehicle-server communication transactions.  
Figure 4.2 provides an overview of the data provided to the vehicle during the first update from 
the server.  Shown on the left side of Figure 4.2 are the vehicle positions during the first six 
communication attempts, plotted in red bubbles where the number in the bubble depicts the 
communication attempt.  The green bubbles with a square depict freeway speed points, and the 
yellow bubbles with diamonds depict simulated disabled vehicle locations.  The numbers next to 
the bubbles indicate either the vehicle speed (red) or the freeway traffic speed (green) in miles 
per hour (MPH). 



 20 

 
Initial Vehicle Positions (Red) 

 
Freeway Speed Data Returned by the Server (Green) 

Figure 4.2: Geographic Plot of First Set of Data Received by the Simulated Vehicle. 

On the first update to the server, the simulated vehicle had exited the Richmond Field Station 
and was on Bayview Avenue about to get onto the freeway entrance ramp headed east on I-580 
towards Berkeley.  With the vehicle updating its position every 15 seconds, it took 5 additional 
updates, during which time the vehicle traveled 1.3 miles or about 1 minute and 15 seconds, for 
the Mobile Millennium server path inference algorithm to correctly place the vehicle on I-580 
and provide the vehicle with data on the freeway speeds ahead.  By this time the vehicle had 
reached Central Avenue, the next exit on the freeway.  Similar data delays were seen whenever 
the vehicle entered the freeway. 

Another issue seen with the initial placing of the vehicle onto the highway was that the path 
inference algorithm would sometimes place the vehicle on the correct highway, but facing the 
wrong direction, i.e., all of the freeway speed locations sent to the vehicle were for the opposite 
direction traffic.  However, when this occurred, it was usually corrected within the next update or 
two at the most. 

4.2.2 Loss of Vehicle Match to a Highway Link 

Looking at the right side of Figure 4.2, once the server provided the vehicle with data, it 
provided data along I-580 east and I-80 west (which are in fact the same direction, southbound) 
for about 5 miles, all the way down to Emeryville.  Where the freeway branched off, points were 
provided along all the branches.  This strategy appeared to work well.  Also noted in Figure 4.2, 
the spacing between highway speed points was on the order of about 200 m or 650 feet.  A full 5 
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minutes of driving time at roughly 60-65 mph resulted in 40 to 50 speed data points being 
transmitted to the vehicle on each update.  As the vehicle approached a freeway junction, the 
number of data points that needed to be transmitted to the vehicle increased since data for each 
branch was required.  During the simulation, the maximum number of data points received in 
any single update was 125. 

 
Figure 4.3: Location Where Simulated Vehicle Position Was Lost By Path Inference Algorithm. 

Examining the output of the simulation data also revealed a number of locations where the path 
inference algorithm temporarily lost the position of the vehicle on the Mobile Millennium Model 
Graph.  In Figure 4.3, the vehicle location on the model graph was lost during updates 18 and 19, 
and then regained on update 20.  At this location, it is possible that the GPS might have placed 
the vehicle on the frontage road next to the freeway, and the path inference algorithm assumed 
that the vehicle had exited the freeway at University Avenue and got onto the frontage road.  
During the simulated trip, the vehicle location was lost three times while it was validly travelling 
on a highway.  Each loss only lasted for one or two server updates (30 to 45 seconds). 

Whenever the path inference algorithm failed to place the vehicle on a link in the Mobile 
Millennium Highway Model Graph, the server returned no freeway speed information (zero 
speed trigger points).  To account for this behavior, the system in the vehicle had to maintain a 
copy of the last set of speed trigger points.  This allowed the vehicle to keep processing 
previously received speed trigger data until the path inference algorithm on the server re-
established the vehicle’s position on the highway and provided it with new highway speed 
information. 
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4.2.3 Soft-Safety Alert Algorithm Testing 

The purpose of the simulation was to test the communication protocols, to test data manipulation 
algorithms before putting them on the vehicle, and to characterize the behavior of the freeway 
speed updates.  In the vehicle, the alert algorithm ran continually each time the GPS updated the 
vehicle position, even between communication updates from the server.  However, in the 
simulation, the only data that was recorded occurred at the moment of the communication update 
from the server.  Additionally, the simulated vehicle speeds and travel times were unrelated to 
the current traffic conditions on the freeway at the time of the simulation.  Still, based on the 
simulation data, there would have been several “Slow Traffic Ahead” alerts issued by the 
vehicle, and one such scenario is shown in Figure 4.4. 

 
Figure 4.4: Alert Condition Encountered in Simulation. 

In Figure 4.4, the vehicle position during the 21st communications update (shown in red) from 
the Mobile Millennium server provided a speed trigger (shown in green) with an ETA of 45.5 
seconds from the current vehicle position.  At the time in the simulation, the vehicle was 
travelling at 60 mph, while the speed at the trigger point near Powell Street in Emeryville, CA, 
was only 27 mph.  Given the alert algorithm settings that were used in the Networked Traveler 
project (i.e., ETA less than 60 seconds and speed difference greater than 15 miles per hour), a 
“Slow Traffic Ahead, 30 Miles Per Hour” auditory alert would have been triggered. 
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5 DEMONSTRATION RESULTS 

5.1 On-The-Road Test Overview 

An on-the-road test of the system was conducted with the two California PATH research 
vehicles at approximately 2:45 PM on a Friday to provide some traffic along the test route.  The 
Silver Nissan Altima drove from the RFS towards Albany and eventually pulled over to engage 
its hazard lights along I-80 W.  The Gray Nissan Altima followed the same route about 1-2 
minutes later.  After passing the Silver Nissan Altima, both vehicles exited the freeway at 
University.  The gray vehicle waited several minutes for the silver vehicle to turn around, and 
enter I-580 W headed back towards the RFS.  The silver vehicle again pulled to the side of the 
road just past the RFS on the I-580 W and put on its hazard lights.  The gray vehicle followed a 
few minutes later. 

Figure 5.1 provides an overview of the test route, the locations where the first vehicle turned on 
its hazard lights to mimic a disabled vehicle (shown in yellow), and the locations where alerts 
were given to the second vehicle (shown in red).  In addition to the two “Caution, Disabled 
Vehicle Ahead” alerts, the following vehicle also received two “Slow Traffic Ahead” alerts. 

 
Figure 5.1: On-The-Road Test Route and Alert Locations. 
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For both vehicles, the vehicle-server communication was set to update every 10 seconds, and 
over the 30-minute test route, there were approximately 190 vehicle-server communication 
transactions.  The mean time between server updates was 10.5 (SD 2.9) seconds, and the 
maximum time between successful server updates was 23.4 seconds.  During the on-the-road 
test, the “Slow Traffic Ahead” alerts in the gray following vehicle were configured to be 
triggered with a speed differential greater than 5 mph, a maximum alert speed of up to 70 mph, 
and at an ETA to the location of the slowed traffic below 30 seconds.  The gray following 
vehicle received an average of 25 (SD 19.2) speed triggers on each update from the server, with 
a maximum number of triggers received at 69.  Since the silver car was the only disabled vehicle 
in the system, the gray following vehicle only ever received one disabled vehicle trigger. 

5.2 Disabled Vehicle Ahead Alerts 

During the on-the-road test, the silver vehicle turned on its hazard warning lights twice, 
simulating a disabled vehicle.  There were two metrics of interest that could be gathered from 
this test.  The first metric of interest was how long it took for the event to propagate through the 
system and reach the following vehicle.  The propagation of an event through the system should 
be primarily related to the communication update rate, although there could also be additional 
system delays.  Based on the 10-second communication update rate set on the vehicles for this 
test, it would be expected to take at least 10 to 20 seconds (or two asynchronous update cycles) 
for the silver vehicle to turn on its hazard warning lights and for the following gray vehicle to 
receive that information from the server in the form of an event trigger.  Based on the data 
collected as shown in Table 5.1, it took between 20 and 40 seconds (two to three update cycles) 
for the hazard warning light activation to propagate through the system and be received by the 
following vehicle.   

Table 5.1: Hazard Light Event Propagation Through the System. 

Hazard Light 
Activation Event 

Transmitted  
to Server 

Received by  
Following Vehicle 

Following Veh. 
Distance 

Following Veh. 
ETA 

1 9 (s) 31 (s) 0.3 mi 34.1 s 
2 3 (s) 25 (s) 0.8 mi 47.0 s 

 
The second metric of interest centered around the alert activation, and how closely the alerts 
activated to the parameter settings used for the test.  For the “Caution, Disabled Vehicle Ahead” 
alert, the key parameter to trigger an alert was simply that the ETA be less than 30 seconds.  The 
accuracy of the alert triggering would be expected to depend on the vehicle’s GPS update rate 
(set to 200 ms during this test) and overall accuracy.  As shown in Figure 5.2, the audible alert 
was triggered almost exactly when the calculated ETA to the disabled vehicle reached 30 
seconds.  In the first alert case, the following vehicle was travelling between 18 and 25 mph in 
stop-and-go traffic, and in the second case, the following vehicle was travelling at a fairly 
constant 62 mph (SD 2.1 mph). 
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Figure 5.2: Disabled Vehicle Alert Activations as a Function of ETA. 

5.3 Slow Traffic Ahead Alerts 

During the on-the-road test, the gray following vehicle also received two “Slow Traffic Ahead” 
alerts, both unrelated to the disabled vehicle.  At the first “Slow Traffic Ahead” alert, the gray 
vehicle was travelling at 59.8 mph when it received a set of speed triggers from the server.  One 
of the speed triggers was 0.4 miles away (ETA 23.2 s) with a freeway speed of 53 mph.  As 
shown in Figure 5.3, as soon as the speed trigger was received and processed by the alert 
algorithm, an audible alert was issued to the driver suggesting a speed of 55 mph.  Although the 
alert algorithm functioned as designed, this case illustrates the problems that can occur when it 
takes too long for the vehicle to be matched to a freeway segment.  The vehicle had been 
travelling on the freeway for almost 65 seconds (6 communications update cycles) before the 
path inference algorithm correctly placed the vehicle on the freeway and provided speed data.  
Thus, by the time that the speed data was provided to the vehicle, the ETA to the slowed traffic 
was below the 30-second ETA alert threshold. 
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Figure 5.3: First "Slow Traffic Ahead" Alert as a Function of ETA. 

At the second “Slow Traffic Ahead” alert, the gray vehicle was travelling at 67.8 mph and had 
been receiving about 55 speed triggers from the server on each update prior to the alert.  As 
shown in Figure 5.4, the alert algorithm was processing the speed difference and ETA to each 
trigger until the vehicle passed the trigger, and the current freeway speed at each trigger was 
being reported around 63 mph.  In the 10 seconds prior to the alert, the vehicle speed increased 
from 64 to almost 68 mph, and when the 5 mph speed difference threshold was exceeded, an 
alert was correctly triggered with an ETA of 16.7 seconds.  This case illustrates how an alert 
could be triggered later than the desired ETA (30 seconds) when the vehicle is in the process of 
accelerating. 

 
Figure 5.4: Second "Slow Traffic Ahead Alert as a Function of ETA. 
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6 SUMMARY AND CONCLUSIONS 

6.1.1 Project Summary 

The U.C. Berkeley, California PATH-Renault collaboration, detailed in this report, built upon 
the Mobile Millennium and Networked Traveler projects that were conducted from 2007 to 2011 
as part of the US DOT’s SafeTrip-21 Initiative.  The Mobile Millennium project provided a 
platform for aggregating traffic information across various sources, including infrastructure 
sensors, commercial data feeds, probe vehicles, and probe cell phones.  The Networked Traveler 
project provided the California PATH instrumented research vehicle platform to both deliver 
vehicle probe data back to the infrastructure and to generate ADAS alerts to the drivers of those 
vehicles. 

The main theme of this collaboration project was to demonstrate the potential to create Enhanced 
Probe Vehicles (EPVs) by merging vehicle CAN-bus data with the typical GPS data that is 
provided by normal probe vehicles.  EPVs could then provide more accurate speed information 
to the traffic servers along with additional information that only the vehicle knows, such as 
current gear, hazard light warning activation, or even airbag deployment events.  During 
SafeTrip-21, the two California PATH research platforms were built independently, so the first 
goal of this project was integrate the two systems, allowing the instrumented research vehicles to 
communicate with the Mobile Millennium traffic aggregation servers.  The second goal was to 
enhance the data gathered and stored by the Mobile Millennium traffic aggregation server to 
include the enhanced information provided by the EPVs, specifically, to include hazard warning 
light activation events.  The third and final goal of this project was to integrate the information 
provided by the EPVs to the traffic server into soft-safety alerts that could be provided to the 
drivers of the EPVs and demonstrate the prototype system. 

Overall, the construction of the system prototype and subsequent demonstration was a success.  
The two California PATH Nissan Altima research vehicles provided the Mobile Millennium 
server with EPV data including GPS, speed, gear, and hazard warning light activation events.  
On each communications update to the Mobile Millennium server, a path inference algorithm 
placed the vehicle on a link of its highway model, freeway traffic speeds were provided to the 
vehicle every 200 m up to a driving distance of about 5 minutes, and hazard warning light events 
were recorded, processed, and communicated back to the EPVs.  The EPVs then used the 
freeway speed and event data to provide the drivers with soft-safety alerts such as “Slow Traffic 
Ahead” or “Caution, Disabled Vehicle Ahead.” 

6.1.2 System Architecture Conclusions 

Based on the analysis of the data saved by both simulated and actual vehicles driving a route 
from the Richmond Field Station down to Powell Street in Emeryville, CA, there were several 
issues noted with the implementation of the system, and there was room for future improvement.  
The largest issues with the prototype system was related to the implementation of the path 
inference or matching algorithms.  First, it often took too long for a vehicle to be placed on a 
freeway and to get freeway speed information flowing to the vehicle.  Even with a 10-second 
update rate, it often took 60 to 90 seconds before the vehicle was correctly placed on a freeway 
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segment.  Second, there were frequent drop-outs when the vehicle was incorrectly shown to have 
exited the freeway. 

While there are a number of ways to solve this issue, each comes with a series of trade-offs.  In 
the implementation of this prototype, the knowledge of the Mobile Millennium Highway Model 
Graph was only contained on the server, and this dictated that the map matching of the current 
vehicle location to a link on the model graph be performed on the server.  Currently, the path 
inference algorithm uses 3 points to compute a fix on the vehicle.  More points could be used, 
but this strategy would require more computational time and power on the server as well as 
compounding the initial freeway entrance problem by requiring longer waiting times (more 
update cycles) for the first fix of the vehicle onto the highway.  Some of this delay might be 
mitigated by changing the communication message architecture to include the vehicle 
transmitting a path history over some time frame on each update, rather than simply transmitting 
the current location at the time of the update.  Transmitting a path history would increase the size 
of each update message, but it could reduce some of the burden currently on the server requiring 
it keep track of each vehicle’s location history. 

A second approach to solving this problem might come from a larger change in the system 
architecture.  If the knowledge of the highway model graph was shared between the server and 
the vehicle, then map matching could take place on the vehicle.  Since the vehicle already has 
higher fidelity GPS and IMU data, the vehicle already has its path history, and path inference 
would not be necessary.  However, the tradeoff with this approach is that the model graph must 
be communicated and kept up to date between the server and the vehicle, but this strategy alone 
would not necessarily solve the problem.  In essence, the vehicle doesn’t need to just track where 
it has been and where it currently is; it needs to predict when it is getting onto a freeway so that 
freeway speed data can be downloaded before the vehicle is actually traveling on the freeway.  
There could be an end-of-queue disturbance near the end of the entrance ramp or before the next 
exit, so waiting for a minute or two to place the vehicle on the freeway and get the correct data 
from the server is likely to be unacceptable for this type of system.  Strategies need to be 
explored on how to best provide the vehicle with relevant freeway information before it gets onto 
the freeway. 

6.1.3 “Slow Traffic Ahead” Alert Conclusions 

This collaboration effort was the second iteration on providing drivers with a soft-safety “Slow 
traffic Ahead” alert.  The initial implementation used in the Networked Traveler project utilized 
fixed alert trigger points about 1 mile upstream from known traffic speed locations, and the 
spacing of these trigger points varied from maybe ¼ of a mile to several miles depending on the 
density of the traffic sensors, which led to many missed and false alerts.  The current project 
utilized the traffic flow models built in the Mobile Millennium project to interpolate between 
known speed locations, providing estimates of traffic speeds every 200 m (650 ft).  Rather than 
having fixed alert trigger points, the vehicles utilized the freeway speed estimates directly, and 
this strategy worked well. 

However, the tradeoff with providing such closely spaced speed estimates was in the amount of 
data that needed to be transmitted to the vehicle on each update.  Each update contained 50 to 
100 speed points, and most of the points were redundant, containing similar speeds.  One 
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strategy to reduce the amount of data being transmitted between the server and the vehicle would 
be to filter out the redundant speed points, creating a speed topology map.  Rather than having a 
fixed distance between speed estimates, the speed estimates could be placed far apart when the 
freeway speed is relatively stable, but closer together when the freeway speed is rapidly 
changing. 

One final topic for further research relates to the algorithm used to trigger a “Slow Traffic 
Ahead” alert.  In the Networked Traveler project, prior research discussed in the literature review 
suggested that drivers should be alerted to speed differentials greater than 15 mph, but other 
algorithms or conditions could be placed on the alert.  For example, historical speeds could be 
used to raise or lower the speed differential threshold, and the alert algorithm could do a better 
job of looking at the speeds ahead on the freeway to determine the recommended speed for the 
driver. 

6.1.4 “Disabled Vehicle Ahead” Alert Conclusions 

This collaboration effort was the first attempt that the researchers in this project know of to 
create EPVs and provide drivers with soft-safety alerts regarding disabled vehicles.  The 
prototype system worked as expected.  With an EPV update interval of 10 seconds, there was 
minimal delay, between 25 and 31 seconds, in transmitting and receiving the locations of 
disabled vehicles on the freeway network.  Currently, in the prototype system, EPV updates to 
the server occurred at fixed intervals, and if an event occurred, such as the activation of the 
hazard warning lights, this event was not transmitted until the next scheduled update request.  
During the demonstration, the update rate was set to 10 seconds, so the longest that it took for an 
event to reach the sever was 9 seconds, but if the update interval were raised to one or more 
minutes, much longer delays would be expected.  Part of the solution would be for certain 
vehicle events to trigger an immediate update from the EPV to the server, but that only reduces 
the delay on the transmitting of the event from the EPV to the server.  The delay would also then 
be dependent on the update rate of the vehicles receiving the alert information.  Reducing the 
event propagation delay below the vehicle update rate would then require the communication 
system to utilize an information push architecture, rather than the current pull architecture. 

Perhaps the largest topic that requires future research centers around what kind of soft-safety 
alert to provide to drivers and when to provide them.  Once the traffic server knows that there is 
a disabled vehicle of some sort, the question still remains about what to do with that information.  
During the demonstration, drivers were warned about all disabled vehicles, whether they were 
related to a traffic backup or not.  Whether or not this is the best policy is still unknown.  As an 
example, the policy in many Traffic Management Centers (TMCs) is to confirm the event with 
further evidence before giving drivers an alert (either on the website or through a variable 
message sign).  Thus, if someone calls in a disabled vehicle, operators in the TMC might be 
required to visually verify the vehicle using cameras or some other means before they take 
action, and this may or may not be the best policy for in-vehicle alerts. 

Currently, there have been very few functional implementations of soft-safety driving alert 
systems, and the Networked Traveler project, along with this current collaboration between 
California PATH and Renault are among those few.  Based on this limited research, this topic 
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stills shows much promise, but the question still remains as to what kinds of soft-safety alerts 
driver will accept, desire, and be willing to purchase. 
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