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ABSTRACT
This paper presents a stochastic model-based approach to freeway travel-time prediction. The
approach uses the Link-Node Cell Transmission Model (LN-CTM) to model traffic and provides
a probability distribution for travel time. On-ramp and mainline flow profiles are collected from
loop detectors, along with their uncertainties. The probability distribution is generated using Monte5

Carlo simulation and the Online Expectation Maximization clustering algorithm. The simulation
is implemented with a reasonable stopping criterion in order to reduce sample size requirement.
Results show that the approach is able to generate an accurate multimodal distribution for travel-
time. Future improvements are also discussed.

Keywords: Travel-time Distribution, Model-based Prediction, Link-Node Cell Transmission Model,10

Monte Carlo, Online Expectation Maximization.



INTRODUCTION
Travel-time is among the most important traffic performance measures. Accurate travel-time infor-
mation enables drivers to understand the traffic conditions, and hence to choose routes or manage
their trip schedules to avoid congested road sections. Most of today’s state-of-the-art navigation
systems like Google Maps provide travel-time information. From the traffic control prospective,5

travel-time information also helps in monitoring and controlling traffic with traffic lights, ramp
metering, etc. (1)

Challenging however is accurate prediction of travel time for a given route as it is influenced
by many different traffic and road parameters: flow, density, speed, route length, geometry, to
name a few. These parameters are obtained through various sources, which carry different kinds10

of uncertainties, making the prediction more challenging. Most existing methods for computing
travel-times rely on data-mining from historical data. Those include methods based on linear
regression (2), time series (3), Kalman filter (4) and (5), and artificial neural networks (6). Such
data-based prediction methods require large amount of traffic data with gaps and inaccuracies
due to missing or bad sensors. Instead of large investments in fixing the sensor network, traffic15

flow models can be built as an alternative mean, to fill the data gap and for obtaining travel-
time forecasts through simulation. Model-based prediction does not depend as much on real time
measurements as data-based techniques; but models can be re-calibrated on the fly when new data
becomes available. To the authors’ best knowledge, most current model-based prediction methods
are based on microscopic simulation (7) and (8), which model the behavior of each individual20

vehicle. As compared with macroscopic models, microscopic models are computationally more
demanding and are often difficult to calibrate.

To overcome the above-mentioned challenges, in this paper we propose to estimate travel
times via a macroscopic model, which formulates the relationships among aggregate traffic quan-
tities. Because the parameter and inputs of the model are influenced by various sources of un-25

certainty, it makes more sense to estimate a probability distribution for travel-time rather than a
single deterministic value. A single travel-time sample along a route is usually not helpful, since
it does not provide a sense of the reliability of the information. Instead a travel-time probability
distribution has important uses in traveler information as well as in traffic control systems.

When estimating a probability distribution for travel-time, a challenge is the multidimen-30

sionality of the problem. Travel-time is affected by various factors, each of which may have a
different kind of distribution (Gaussian, uniform, etc.), and small changes of the parameters may
significantly alter the outcome. Because of the nonlinearity of the traffic model, real travel-time
distributions often present multiple modes, and may be sensitive to the inputs. Finally there is
the challenge of the finite availability of computation time and memory. In this paper we em-35

ploy Monte Carlo simulations for generating travel-time samples under demand uncertainties. A
probability distribution for travel-time is then adaptively generated, via the Online Expectation
Maximization clustering method, as new samples become available from Monte Carlo simula-
tions. A stopping criterion for sampling process is also introduced in order to reduce sample size
and computational requirement.40

The rest of the paper is organized as follows: The model of the macroscopic traffic simu-
lator is introduced first. Next we describe the computation of travel-time samples via Monte Carlo
simulations followed by estimation of a travel-time distribution via an Online Expectation Maxi-
mization algorithm. The effectiveness of the proposed approach is evaluated in simulations for a
real-world highway segment where demand data is available. We conclude with a discussion of45
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the results and remaining future work.

MODEL DESCRIPTION
This paper uses BeATS (Berkeley Advanced Transportation Simulator) as the traffic simulator.
BeATS is an implementation of the Link Node Cell Transmission Model (LN-CTM), described in
(9) and (10).5

The LN-CTM is a macroscopic model of traffic suitable both for freeways and arterials.
It is an extension of CTM which simulates traffic behavior specified by volume (flow), density,
and speed. In LN-CTM, the traffic network is modeled as a directed graph. Links represent road
segments and nodes are road junctions. Source links introduce traffic to the network and sink links
absorb traffic. The fundamental diagram, a diagram relating densities to flows, is used to specify10

the parameters of each link. A split-ratio matrix at each node defines how vehicles are directed
from input to output links. The required data can be obtained from the Performance Measurement
Systems (PeMS): an online repository, which provides a rich archive of sensor detector data for
freeways in California.

In general, the LN-CTM requires mainline and on-ramp demand profiles, calibrated fun-15

damental diagrams and split ratio matrices as inputs. The model can be calibrated to match actual
observation results(11).

METHODOLOGY
In this section, we first discuss how to calculate travel-time in simulation. Then we introduce the
Monte Carlo sampling method to obtain travel-time samples. Then we illustrate how the Online20

EM algorithm computes distribution parameters. Finally the methodology flow process is given.

Travel-time Calculation
In microscopic simulation, one can track individual vehicles to estimate travel-time. Macroscopic
models, because they compute only aggregate quantities, cannot provide direct estimates of travel-
time for individual travelers. They are better suited, however, for estimating the probabilistic25

characteristics of travel-time.
We next describe the technique for calculating travel-time for a driver starting a trip at time

tstart and traveling over a route R.
The route R is composed of a sequence of links {ri}, i = 1, 2, ...n. The driver starts at the

beginning of link r1 at time t = tstart. The objective is to find the time tend when the driver will30

exit link rn as a function of the history of macroscopic flows and densities along the route. Then a
sample of travel-time for route R at time tstart is:

TT (R, tstart) = tend − tstart (1)

The process can be repeated over an ensemble of simulations to obtain the distribution of
TT (R, tstart). The steps below are followed to obtain the distribution of travel-time:

1. Initialization: ρi(tstart), the initial state of each link i at time tstart, must be computed,35

using either a state estimator or by advancing the simulator from a previously known state. For the
purpose of this paper, the simulation was started with an empty initial condition at midnight and ad-
vanced deterministically to the starting time. Thus, the ensemble of runs was given a deterministic
initial condition at time t = tstart.
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FIGURE 1 Cumulative Counts for a Link

2. Take the ith link in the route and denote its incoming and outgoing flow with f iin(k) and
f iout(k) at time step k. Then the “cumulative counts” into the link N i

in(k) and those out of the link
N i
out(k) are:

N i
in(k) =

k∑
α=0

f iin(α) ·∆t+N i
in(0) (2)

N i
out(k) =

k∑
α=0

f iout(α) ·∆t+N i
out(0) (3)

where ∆t is the length of time step, N i
in(k) and N i

out(k) are in vehicle units.5

Since the flows are non-negative, the cumulative counts are non-decreasing functions of
time. They are shown in Figure 1 for a particular link. The travel-time in the link is the time it
takes for the output flow to accumulate the total number of vehicles present in the link when the
vehicle entered. Thus the travel-time τ is the solution to the following equation:

ρi(tin) · li = N i
out(tin + τ)−N i

out(tin) (4)

where tin is the time when the vehicle entered the link, ρi(tin) is the initial density at time tin,10

and li is the length of the link i. Equation 4 is solved numerically by searching the N i
out(k) vector

for the value ρi(tin) · li + N i
out(tin). The only subtlety that arises is that the initial time tin and/or

the final time tin + τ may not fall on the time grid. In this case we also count N i
in and use linear

interpolation to calculate accurate tin.
The computation of travel-time on a route is performed by computing travel times on each15

link of the route in sequence, and noting that the exit time for link i is the entering time for link
i+ 1.

Monte Carlo Sampling
As mentioned before, travel-time is affected by factors such as capacity and demand. Considering
that they are themselves non-Gaussian random quantities, and the system is inherently nonlinear,20

the travel-time estimation problem becomes analytically intractable. Therefore, in this paper, the
Monte Carlo method is chosen to obtain the travel-time results.
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(a) Mainline, Weekdays (b) Mainline, Weekends

FIGURE 2 Six Months of Mainline Flow Data, and Their Average

(a) On-ramp, Weekdays (b) On-ramp, Weekends

FIGURE 3 Six Months of On-ramp Flow Data, and Their Average

The Monte Carlo method samples randomly from a probability distribution. It approxi-
mates the distribution when it is infeasible to apply a deterministic method. The number of samples
needed in Monte Carlo does not depend on the dimension of the problem, making it suitable for
solving multidimensional problems. Another feature of Monte Carlo is that it is easy to estimate
the order of magnitude of statistical error(12).5

In this paper, the uncertainties are added to the mainline and on-ramp demand profiles. The
on-ramp uncertainty is assumed to be Gaussian, and the deviation is generally on the order of 5%
of the demand in the morning rush hour. Mainline demands are also considered as a Gaussian
distribution, and the reasonable deviation is around 2.5%. Figures 2 and 3 show six months of loop
detector readings gathered every five minutes from detectors on I-15 in California. These plots10

illustrate the typical variations in 5-minutes average flows.
With each simulation, the Monte Carlo method randomly samples from the demand dis-

tributions. Each simulation generates one sample travel-time. Because each simulation requires
considerable computation and execution time, it is important to estimate how many samples will be
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needed to produce statements about the travel-time distribution with a given level of confidence.
Also, it will be important to parameterize the distribution in a way that captures its important
features, while using a relatively small number of parameters.

Clustering via the EM Algorithm and Bayesian Inference Criterion
The shape of the travel-time probability distributions is not known a-priori. Based on current5

literature(13), the travel-time distribution can be represented as a Gaussian Mixture Model (GMM).
GMM represents the data as a sum of several Gaussian distributions. The probability density
distribution is then:

P (x|π, µ,Σ) =
∑K

i=1
πiN (x|µi,Σi) (5)

where P is the probability density function, N is the Gaussian distribution, K is the number of
the components or clusters, µi is the mean, Σi is the covariance matrix, and πi is the weight. The10

weights are such that, ∑K

i=1
πi = 1 (6)

We use a clustering technique to find out the values of the parameters from a group of
samples. The Expectation Maximization (EM) method was chosen here for clustering the data for
GMM(14). The EM method starts with a random guess of the unknown parameters, and iteratively
alternates between an expectation (E) step and a maximization (M) step. The E step produces the15

responsibilities {γi(x)}, i = 1, 2, .., K, where γi(x) represents the conditional probability that the
data x came from the ith cluster , given the current parameters {µi,Σi, πi}. That is,

γi(x) =
πiN (x|µi,Σi)∑K
i=1πiN (x|µi,Σi)

(7)

The M step updates the parameters {µi,Σi, πi} to maximize the expectation of the log-
likelihood. The parameters are updated with,

µi =

∑N
j=1γi(xj) · xj∑N
j=1γi(xj)

(8)

20

Σi =

∑N
j=1γi(xj) · (xj − µi)(xj − µi)T∑N

j=1γi(xj)
(9)

πi =
1

N

∑N

j=1
γi(xj) (10)

where N is the number of data points.
By iterating sufficiently between the E step and the M step, the parameters can converge.

However, EM is not guaranteed to converge to a global maximum of the log-likelihood function. In
this paper, we initiate several different random guesses to avoid getting stuck in local maxima(15).25
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Another important point is that the number of clusters in the distribution is unknown. This
paper uses a Bayesian Inference Criterion (BIC) to estimate the optimal number of clusters(16).
The BIC criterion can be represented as:

BIC = −lnP (D|µ,Σ) +
KQ+ 1

2
lnN (11)

where lnP (D|µ,Σ) is the log-likelihood function, D represents the samples, Q is the number
degrees of of freedom (here since the travel-time has one degree of freedom, Q = 1), K is the5

number of clusters, and N is the sample size. The optimal cluster number would generate the
maximum BIC value. With different initial conditions, BIC may converge to different optimal
numbers of clusters. In this paper, we choose the most frequent result as the optimal one.

Online EM Algorithm
Statistically, in Monte Carlo sampling, more samples provide more accurate results. However, the10

computation time of the simulation has a linear relation with the number of samples. The more it
samples, the longer time it requires. If the prediction time is too long, the traffic condition may
significantly change, and the “delayed” prediction is less reliable. Moreover, for the method to be
applicable to real-time systems, it must be capable of handling streaming data. That is, given a new
data packet (30 samples, for example), the clustering method should be able to use that to update15

a running estimate. It stops requesting new data only if the results meet a stopping criterion. The
advantage of this “data stream” structure is that it minimizes the number of simulations as well as
the amount of memory needed to store the samples. Both of these are essential requirements for
travel advisory as well as traffic management systems.

Since the target distribution is assumed to be GMM, the Online Expectation Maximization20

(Online EM) method(17) is suitable for clustering the data. In this paper, the Online EM method
applies EM only to newly arrived data rather than to the whole historical data. And the incremen-
tal GMM estimation algorithm merges Gaussian components that are statistically equivalent, and
maintains other components.

The W statistic test is used for equality of covariance. Let the newly coming samples xi25

with i = 1, 2, .., n have a covariance matrix Σx, and a given target covariance matrix Σ0. The null
hypothesis is Σx = Σ0. Define L0 as a lower triangular matrix by Cholesky decomposition of Σ0,
that is, Σ0 = L0L

T
0 . Let yi = L−1

0 xi, i = 1, 2, .., n, then the W statistic is represented as:

W =
1

d
tr[(Sy − I)2]− d

n
[
1

d
tr(Sy)]

2 +
d

n
(12)

Where Sy is covariance of yi, d is the dimension, n is the sample size, and tr(·) is the trace of the
matrix. From (18), nWd

2
has χ2 distribution, that is:30

nWd

2
∼ χ2

d(d+1)/2 (13)

Once we set a significance value for the χ2 distribution, we can decide whether the test has passed
or failed.

The Hotellings T 2 statistic is used for equality of mean. Let the newly coming samples
xi, i = 1, 2, .., n have a mean µx, and a given target mean µ0. The T 2 is defined as:

T 2 = n(µx − µ0)
TS−1(µx − µ0) (14)
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Where S is covariance of xi. From (19),
n− d
d(n− 1)

T 2 has F distribution, that is:

n− d
d(n− 1)

T 2 ∼ Fd,n−d (15)

Once we set a significance value for the F distribution, we can decide whether the test has passed
or failed.

Since it is essential to stop the Monte Carlo simulation properly to avoid too many samples,
several rules are added:5

1. When a cluster can be merged with more than one other clusters, the one with the highest weight
is chosen;
2. A cluster is eliminated whenever its weight falls below a threshold;
3. The clustering algorithm is stopped if a certain number of iterations pass without new clusters
being created.10

Simulation Flow Process
In summary, the process of generating a distribution of travel-time from stochastic simulation is as
follows:
1. The simulator advances to the given starting time.15

2. (Monte Carlo step) The simulator applies uncertainties to the model, and runs a certain number
of times to get travel-time samples. Each travel-time is calculated through the method mentioned
at the start of this section.
3. (Online EM step) The simulator clusters the incoming samples, and calculates the parameters
using the EM algorithm.20

4. (Merging or Maintaining step) The simulator merges qualified new clusters to the old ones, and
maintains the rest.
5. (Eliminating step) If the clusters have less weight than a threshold, the simulator merges them
into the nearest cluster.
6. If there is no more new cluster in several steps, the simulation is stopped and returns the param-25

eters, otherwise step 2-6 are repeated.

EXPERIMENTAL SETUP AND RESULTS
A section of I-15 southbound was used to test the algorithm. The stretch is located between Es-
condido and San Diego in California. Figure 4 shows the section in Google Maps. The section30

contains more than 120 nodes and 100 links. A route withs 9 consecutive links was created. The
total length of the route is 1.47 miles. It contains two on-ramps and no off-ramp. The demand
profiles and the split ratio data was obtained from PeMs for Monday, January 7, 2013.

Figure 5 shows the density contour plot of one simulation sample. The vertical axis is the
time, the horizontal axis is the spatial dimension, and the color represents the amount of density35

on each link. The stretch over which travel-time was computed is highlighted. The contour plot
shows that on the route the congestion begins around 7:15 AM and ends at about 9:45 AM, which
illustrates the Monday morning rush hour on I-15. With reasonable uncertainties, the boundary of
the congestion changes and the travel-time changes too.
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FIGURE 4 A Section of I-15 South

FIGURE 5 The Density Contour Plot

FIGURE 6 Deterministic Travel-time
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(a) The first case (starting time=8:00 AM) (b) The second case (starting time=7:20 AM)

FIGURE 7 Travel-time Distributions and Their Components

(a) The first case (starting time=8:00 AM) (b) The second case (starting time=7:20 AM)

FIGURE 8 Travel-time Distributions and the Sample Histogram

The travel-time curve resulting form a simulation with mean values of demands is shown
in Figure 6.

The significance level for the Online EM algorithm was set to 0.05. The threshold for
eliminating cluster was set to 0.05, and the number of steps for convergence to 3.

Two starting times were selected. The first one is 8:00 AM. At this time, the route is5

heavily congested. Figure 7(a) shows the results. Although the distribution seems to be a Gaussian
distribution, the Online EM clustering algorithm found two clusters. The GMM distribution result
is more accurate. In this heavily congested example, the travel-time distribution is unimodal.
The second starting time is 7:20 AM. At this time, the route is on the edge of congestion. With
variable uncertainties, in some cases it is congested while in others it is in freeflow. Since vehicles10

cannot travel faster than freeflow speed, the minimum travel-time is the freeflow speed travel-time,
which is 69 seconds. Figure 7(b) shows that there are two well separated modes in the distribution.
In the first mode, the travel-time stays around freeflow speed travel-time, which indicates that
there is no congestion or only a small number of links in the route are congested while others
are in freeflow. In the second mode, more links become congested. In that case the travel-time15

distribution represents multiple modes.
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By using the On-line EM algorithm, the clusters are eliminated, merged, or maintained
and after several steps, the clusters number and parameters become stable. In the first case, the
simulation stopped with 170 samples. In the second one, 290 samples were needed. Figure 8
compares the travel-time distribution prediction results with the histogram of 1000 travel-time
samples, which more precisely capture the shape of the distribution. The comparison shows good5

agreement, suggesting that the Online EM algorithm and the stopping criterion work well and
require fewer samples.

Travel-time distributions can be used by drivers and traffic managers to make more in-
formed decisions about expected traffic patterns. For example, from Figure 7, drivers could expect
with a high degree of certainty to take between 470 seconds and 490 seconds to travel the given10

route if they start at 8:00 AM. On the other hand, they will be aware that at 7:20 AM the situation
is less reliable and a wider range of outcomes are possible.

CONCLUSION
This paper introduced a model-based approach for predicting probability distribution of travel-
times for freeways. We used the BeATS simulator, an implementation of the Link-Node Cell15

Transmission Model, to model vehicular traffic flow and to estimate link travel times for a given set
of demand profiles. Uncertainty in demand was handled by Monte Carlo sampling and an Online
Expectation Maximization algorithm that estimated a Gaussian mixture probability distribution
for travel times. Simulations with data from a freeway in California showed that the method could
provide a robust estimate of travel time probability distribution with a relatively small number of20

simulations.
The proposed approach is not only suitable for freeways, but also applicable to arterial

roads. Travel time for arterial roads is expected to have a multi-modal distribution due to the
stop-and-go pattern induced by traffic signals at intersections. Therefore optimizing the sampling
process becomes more critical for arterial roads and is the subject of future work.25

Our model-based travel-time estimator runs open-loop and therefore is sensitive to accu-
racy of its parameters. Combining model predictions and sparse estimates of travel times from
probe vehicle data, in a closed-loop estimator, can generate more accurate estimates of travel-time
distribution, and will be investigated in our future work.
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