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Abstract
We consider the stochastic on-time arrival (SOTA)
problem of finding the optimal routing strategy for
reaching a given destination within a pre-specified time
budget and provide the first results on using prepro-
cessing techniques for speeding up the query time. We
start by identifying some properties of the SOTA prob-
lem that limit the types of preprocessing techniques that
can be used in this setting, and then define the stochas-
tic variants of two deterministic shortest path prepro-
cessing techniques that can be adapted to the SOTA
problem, namely reach and arc-flags. We present the
preprocessing and query algorithms for each technique,
and also present an extension to the standard reach
based preprocessing method that provides additional
pruning. Finally, we explain the limitations of this ap-
proach due to the inefficiency of the preprocessing phase
and present a fast heuristic preprocessing scheme. Nu-
merical results for San Francisco, Luxembourg and a
synthetic road network show up to an order of magni-
tude improvement in the query time for short queries,
with even larger gains expected for longer queries.

1 Introduction
Arriving on time is an important consideration in many
practical routing problems, which raises two questions:
"When should I leave?" and while en-route "which
routing strategy should I follow?" The answers to these
questions depend on the nature of the travel times
in the network. If the travel times are deterministic,
there is a vast literature on deterministic shortest path
(SP) algorithms that can be use to solve the problem.
However, in practice the link travel times are typically
random variables with some probability distribution.
Deterministic routing algorithms can still be used if
the goal is to minimize the expected travel time of the
route, due to linearity of expectation, but this does not
account for the variance in the travel times, which is
an important consideration in many settings.
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Stochastic routing. There are two different
approaches that have been developed to solve this
problem. The first approach is to find the optimal a
priori path that maximizes the probability of on-time
arrival and is known as the shortest path with on-
time arrival reliability (SPOTAR) problem. Nie and
Wu [12] proposed a general solution to the problem
based on first-order stochastic dominance of paths, but
the solution is exponential in the worst case runtime.
They also present a pseudo-polynomial algorithm that
gives an approximate solution to the problem and
performs well in practice. Nikolova et. al. [14] showed
how to solve the problem in nΘ(log n) time when the link
travel time distributions are Gaussian.

The second approach is to find a routing policy
that determines the optimal route by selecting the
best next direction at each junction, and is known
as stochastic on-time arrival (SOTA) problem. Such
a strategy can result in different paths based on the
realized travel times at intermediate road segments and
will provide a success probability that is greater than
or equal to that of the SPOTAR path. Fan et al. [4]
formulated the SOTA problem as a stochastic dynamic
programming problem and solved it using a standard
successive approximation (SA) algorithm. However, in
a network that contains cycles, as is the case with all
road networks, there is no finite bound on the maxi-
mum number of iterations required for the algorithm
to converge. This is due to the fact that the optimal
solution can contain loops, as illustrated in figure 1.
As an alternative, Nie et al. [11] proposed a discrete
approximation algorithm for the SOTA problem which
converges in a finite number of steps and runs in
pseudo-polynomial time. Samaranayake et al. [15, 16]
presented a number of optimization techniques to speed
up the computation including a label-setting algorithm
based on the existence of a uniform strictly positive
minimum link travel time, advanced convolution meth-
ods centered on the Fast Fourier Transform and the idea
of zero-delay convolution, and localization techniques
for determining an optimal order of policy computation.

Preprocessing. Unfortunately, the current state
of the art solutions are still too slow to be implemented
in commercial navigation systems. The goal of this
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Path Travel-time Probability
{(s, a), (a, d)} 4 0.9
{(s, d)} 1 0.1
{(s, a), (a, s), (s, d)} 4 0.01

Figure 1: A simple network with an optimal routing policy
that may contain a loop. Links (a, d) and (a, s) have deter-
ministic travel times of respectively 3 and 1 time units. Link
(s, a) has a travel time of 1 with probability 0.9 and a travel
time of 2 with probability 0.1. Link (s, d) has a travel time of 5
with probability 0.9 and a travel time of 1 with probability 0.1.
Assume that we wish to find the optimal path from node s to
node d with a total travel time budget of 4. The table presents
on-time arrival probabilities for all feasible paths. The optimal
solution clearly is to first take link (s, a). However, if the real-
ized travel time on link (s, a) is 2, the only feasible path is to
return back to node s and then proceed on link (s, d).

work is to further improve the computation time of
the SOTA problem by adapting preprocessing tech-
niques that have been used very successfully in the
deterministic SP setting. These techniques include
goal directed search methods such as A?, arc-flags [2,9]
and ALT [7], and algorithms that exploit the hierar-
chy of road networks such as reach [8], contraction
hierarchies [5], and transit-node routing [1]. These
algorithms can provide speedups of over three orders
of magnitude over Dijkstra’s algorithm, and solve
networks with 20 million nodes and 50 million edges
with sub-millisecond runtimes [1] by exploiting the
structure of road networks. Since this structure also
exists in the stochastic setting, we would like to try
and adapt these preprocessing techniques to the SOTA
problem.

Contributions. Our contributions are as follows.
This work is to the best of our knowledge the first
attempt to use graph preprocessing techniques to speed
up the computation of stochastic SP problems, and
in particular the SOTA problem. We analyze certain
limiting properties of the SOTA formulation that differ
from the deterministic SP problem and determine which
preprocessing techniques can be adapted to the SOTA
problem. We then provide stochastic definitions of
the reach and arc-flags methods (two techniques that
can be used in the SOTA setting) and describe the
algorithms for both preprocessing and query-processing.
Finally, we explain the computational inefficiency of

the preprocessing phase due to the constraints of the
SOTA formulation and introduce some ideas for fast
heuristic schemes. An experimental analysis is provided
for a synthetic network that represent a Manhattan grid,
and the San Francisco and Luxembourg road networks.
Numerical results show up to an order of magnitude
improvement in the query time for short queries1, with
the expectation of even larger gains for longer queries.

2 Preliminaries
We consider a directed graph G(V,E) that represents
the road network. The weight of each link (i, j) ∈ E
is a random variable with probability density function
pij(·) that represents the travel time on link (i, j).
The link travel time distributions are assumed to be
independent2. Given a time budget T , an optimal
routing policy is defined to be a policy that maximizes
the probability of arriving at a destination node d
within a total travel time of T . A routing policy is an
adaptive set of instructions that determines the optimal
path at each node (intersection in the road network)
based on the cumulative travel time that has already
been realized. This is in contrast to the SPOTAR
solution [12, 13] that determines a fixed path prior to
departure. Given a node i ∈ V and a time budget
t, let uid(t) denote the probability of reaching the
destination node d from a given node i in less than time
t when following the optimal policy, and let nid(t) be
the optimal next node to visit. At each node i, the
traveler should pick the link (i, j) that maximizes the
probability of arriving on time at the destination. If j
is the next node being visited after node i and ω is the
time spent on link (i, j), the traveler starting at node i
with a time budget t has a time budget of t−ω to travel
from j to the destination3.

The optimal routing policy for the SOTA problem
can be obtained by solving the following system of
equations.

uid(t) = max
j:(i,j)∈E

∫ t

0

pij(ω)ujd(t− ω) dω(2.1)

∀i ∈ V, i 6= d, 0 ≤ t ≤ T
udd(t) = 1 0 ≤ t ≤ T

1The maximum time budget of our queries is limited by the
memory limitations of the hardware and Java implementation

2See [16] for a formulation that considers local correlations.
3In this formulation of the problem, the traveler is not allowed

to wait at any of the intermediate nodes. See [16] for the
conditions under which travel time distributions from traffic
information systems satisfy the first-in-first-out (FIFO) condition,
which implies that the on-time arrival probability can not be
improved by waiting at a node.
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nid(t) = arg max
j:(i,j)∈E

∫ t

0

pij(ω)ujd(t− ω)dω(2.2)

∀i ∈ V, i 6= d, 0 ≤ t ≤ T

One approach to solving this problem would be to
use a successive approximations (SA) algorithm as in [4],
which solves the system of equations (2.1) repeatedly
until convergence and gives an optimal routing policy.
Samaranayake et al. [16] presented an algorithm for find-
ing the optimal solution in a single pass through the
time-space domain of the problem when the travel time
on each link is lower bounded by a strictly positive con-
stant and uniformly bounded on the network. They also
presented multiple optimization techniques to speed up
the computation [15, 16], but the performance of all of
these algorithms is limited by the large search space of
the problem. The objective of this work is to further
speed up the computation time by reducing the search
space of the problem, using stochastic adaptations of
the preprocessing techniques that have been extremely
effective in the deterministic SP problem for road net-
works.

2.1 Preprocessing constraints of the SOTA
problem. Ideally, we would be able to directly apply
the ideas from the deterministic SP problem to the
SOTA setting with minimal modifications. However,
there are some fundamental differences of the two prob-
lems that limit the types of preprocessing techniques
that can be used in the SOTA framework. The SOTA
solution does not satisfy two important properties that
are present in the deterministic SP problem; it cannot
be computed in the reverse direction and sub-policy
optimality does not hold.

Bidirectional search is not possible. Bidi-
rectional search is a common technique used both in
the preprocessing and query stages of fast determinis-
tic routing solutions. For example, Contraction Hierar-
chies [5] and variants of the arc-flags [9] and reach [6]
algorithms rely on the ability to perform bidirectional
search. However, speedup techniques that rely on bidi-
rectional search can not be applied to the SOTA prob-
lem. As can be seen in equation (2.1), the final and
intermediate solutions of the SOTA problem are a func-
tion of the remaining time budget, which implies that
finding the optimal routing strategy requires this knowl-
edge. When performing a bidirectional search, the re-
verse search will not have this information.

Lemma 2.1. (Solution on reverse graph) Let
s, d ∈ V and T be a time budget. The SOTA problem
of reaching d from s within T in G is not equivalent to

reaching s from d in the reverse graph with the same
time budget.

s da

P(2):0.5

P(5):0.5

P(1): .5

P(2): .5

P(4): 1

Figure 2: A network where the forward and
reverse problems are not equivalent

Proof by contradiction. Figure 2 depicts a network in
which we wish to find the SOTA solution for traveling
from the source s to the destination d within 5 time
units. The probability of reaching d from s within 5
units of time is 0.75 and the probability of reaching s
from d within the same time budget in the reverse graph
is 0.5. The reason for this difference is the following.
In the forward problem, the path decision from a to d
is made using the information about the travel time
from s to a and knowing the remaining time budget.
However, in the reverse problem, the decision on which
path to take from d to a must be made without any
information on the realized travel time between a and s.

Sub-policy optimality does not hold. Sub-path
optimality is another commonly utilized property when
solving SP problems. If a destination node d has two
incoming links a and c (as in figure 3), then the optimal
path from a source node s to d is either the optimal path
from s → a plus (a, d) or the optimal path from s → c
plus (c, d). However, this basic assumption does not
hold in the SOTA setting. To be precise, the optimal
SOTA policy from s to d can not be constructed using
the optimal policies from s to a and s to c. This prevents
us from being able to construct stochastic variants of
some the most effective preprocessing techniques such
as transit nodes [1] and SHARC [2].

Definition 2.1. (Optimal node set) Let Vsd(T ) be
the set of nodes that span all realizable optimal paths for
reaching a destination d from a source s within a time
budget T.

Lemma 2.2. (Sub-policy sub-optimality) Let
s, d ∈ V , T be a time budget and Φ be a vertex
separator of Vsd(T ). The optimal policy from s to d
for a time budget of T can not be constructed using
only the optimal policies from s to v and v to d for all
v ∈ Φ.
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s d

a

b

c

P(1):0.1

P(3):0.9

P(3):0.1
P(5):0.9

P(3):0.5
P(6):0.5

2
1

3
3

Figure 3: A network where the optimal
policy cannot be decomposed

Proof by contradiction. In figure 3, the best path for
going from s to a or s to c for any time budget is via
the direct edges (s, a) and (s, c). Also, it is clear that it
is necessary to travel through either a or c to reach d.
However, in this example, the optimal policy for going
from s to d with a time budget of 7 is to first go to b
and then chose the next edge between a and c based on
the remaining time budget.

3 Preprocessing techniques for SOTA
In this section we will focus on two preprocessing
techniques that can be adapted to work with the SOTA
problem, namely reach and arc-flags. We first define the
stochastic variants of these techniques and explain how
they can be used for fast query processing in the SOTA
problem.

3.1 Reach. The reach [8] of a node is a metric that
quantifies the radius of a node’s relevance. A node with
a small reach value will only belong to shortest paths
whose source or destination are close to the node, while
a node with a large reach may belong to shortest paths
involving sources and destinations that are far from it.
We adapt the notion of reach to the stochastic setting
of the SOTA problem and present a variant of the reach
definition that allows for better pruning.

Definition 3.1. (Stochastic reach) Let m be a
metric and m(i, j) the minimal distance between i and j
for this metric. For a node i and some time budget t, we
define Ψi(t) to be the set of source-destination pairs that
contain i in their optimal policy for some time budget
smaller than or equal to t.

Ψi(t) = {(s, d) ∈ V 2 : ∃t′ ≤ t, i ∈ Vsd(t′)}

We define the stochastic reach of a node i for a time
budget t as:

r(i, t) := max
(s,d)∈Ψi(t)

min(m(s, i),m(i, d))

The reach of a node can be used to speed up SOTA
queries by pruning the graph as described below prior
to processing a SOTA query.

Lemma 3.1. (Graph pruning with reach) Let
(s, d) be a source-destination pair and T be the
time budget for reaching the destination. Let i be a
node and t ≥ T a budget for which the reach r(i, t)
has been precomputed. Node i can be pruned from
the graph without changing the optimal solution if
r(i, t) < min(m(s, i),m(i, d)).

Proof. If node i belongs to the optimal node set for
source-destination pair (s, d) with a time budget T , i.e.
i ∈ Vsd(T), then (s, d) ∈ Ψi(t), t > T and r(i, t) ≥
min(m(s, i),m(i, d)) by definition 3.1. Therefore, if
r(i, t) < min(m(s, i),m(i, d)), node i is not on any
optimal path for the source-destination pair (s, d) with
a time budget T and can be pruned.

Partition-based reach. One drawback of reach
pruning is that the pruned graph could contain a large
number of false positives. This is to be expected
because the reach metric is computed over the set
of all source-destination (s, d) pairs in the network.
However, we can improve the precision of the reach
metric by computing multiple reach values for each
node that are conditioned on some information about
the (s, d) pair with respect to which the reach is being
computed. One such method is to divide the graph
into partitions and compute an individual reach value
for each partition. We partition all possible source-
destination (s, d) pairs into several clusters with respect
to the node for which we are computing the reach, and
compute the reach value corresponding to each of these
clusters. In the pruning phase, we first find the cluster
that the source-destination pair belongs to and look
up the corresponding reach value. This leads to more
precise reach values and improves the pruning ability
at the expense of an additional memory requirement.
There is a trade off between the precision of the reach
and the memory used; the two extrema been the regular
reach and computing the reach for every possible source-
destination pair. We first provide an abstract definition
of partition-based reach and then present a specific
partitioning scheme.

Definition 3.2. (Partition-based reach) Let i be
a node. Let S be an arbitrary function such that S(i)
is a partition4 of V 2. For notational simplicity let
Si = S(i). For (s, d) in V 2, let S(s,d)

i be the unique

4Defined as: ∀P ∈ Si, P 6= ∅; ∀Q 6= P ∈ Si, P ∩Q = ∅;⋃
P∈Si

P = V 2.
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set of the partition Si such that (s, d) ∈S(s,d)
i . Then

Ψi(t)∩S(s,d)
i is the set of source-destination pairs that

contain i in some optimal policy with a time budget
smaller than or equal to t, and which are in the same
cluster of Si as (s, d).

The partition-based reach rS(i, t) on S is defined as:

r
(s,d)
S (i, t) = max

(s′,d′)∈Ψi(t)∩S(s,d)
i

min(m(s′, i),m(i, d′))

It is easy to see that r(i, t) = max
(s,d)∈V 2

r
(s,d)
S (i, t)

Lemma 3.2. (Partition-based reach pruning)
Let (s, d) be a source-destination pair and T be the time
budget to reach the destination. Let i be a node and t ≥
T a budget for which the reach for the graph has been
precomputed. If r(s,d)

S (i, t) < min(m(s, i),m(i, d)), i can
be pruned from the graph without changing the optimal
solution.

Proof. If node i belongs to the optimal node set for
source-destination pair (s, d) for a time budget T , i.e.
i ∈ Vsd(T), then (s, d) ∈ Ψi(t), t ≥ T . As (s, d) ∈
S

(s,d)
i , r(s,d)

S (i, t) ≥ min(m(s, i),m(i, d)) by definition
3.2. Therefore, if r(s,d)

S (i, t) < min(m(s, i),m(i, d)),
node i is not on any optimal path for the source-
destination pair (s, d) with a time budget t and can be
pruned.

Example: Directed reach. The original reach
definition [8] does not take into account the position of
the source and the destination relative to the candidate
node to be pruned. If both source and destination
are in the same direction from a node i, it is unlikely
that this node i will be used in any optimal path as it
requires moving away from the destination. This is the
motivation for directed reach.

Definition 3.3. (Directed reach) Let n be an inte-
ger that specifies the number of node sets in the partition
and π denote the mathematical constant pi.

Ik :=

{
[k−1

n π, knπ[ if k ∈ [[1, n− 1]]

[n−1
n π, π] if k = n

We define Si as the function:

i→ {(s, d) : ŝid ∈ Ik}k∈[[1,n]]

where ŝid is the non-oriented angle between s, i and d.

In directed reach, the source-destination pairs that
are likely to contain i in their optimal node set (those
with ŝid close to π) are assigned to the same clusters.
The benefits of partition-based reach are validated
experimentally in the results section.

Metric. The metric m used when computing the
reach of a node does not impact the correctness of the
solution, but can influence the quality of the resulting
pruning. In our experiments, we compared the average
travel time and the minimal travel time metrics on
random queries. Experimentation showed that the
average travel time generally provides better results, but
there could be other metrics that we have not tested that
perform better.

3.2 Arc-flags. This method [9] is another well-
known query speedup technique used in the determinis-
tic SP problem. The idea is as follows: the graph G is
divided into a set of regions R which is a partition of the
nodes V . Each edge has an associated vector of booleans
(with one value for each region) where each boolean is
true if the edge is used by at least one SP ending in the
corresponding region. During the query phase, prior to
computing the shortest path, any edge that do not have
the boolean corresponding to the region that the desti-
nation belongs is pruned from the graph. Arc-flags also
has the nice property of being able to dynamically up-
date the precomputed data [3]. We adapt arc-flags to
the SOTA problem in the same way as we did for reach,
by replacing the notion of belongs to a shortest path by
might be used by an optimal policy.

Definition 3.4. (Optimal edge set) Let Esd(T ) be
the set of edges that span all realizable optimal paths for
reaching a destination d from a source s within a time
budget T.

Definition 3.5. (Stochastic arc-flags) For a
node d and some time t, we define Γd(t) to be the set of
edges that belong to some path of the optimal policy for
traveling from any source s to the destination d with a
time budget less than or equal to t.

Γd(t) = {e ∈ E : e ∈ Esd(t′), t′ ≤ t, s ∈ V }

We define the arc-flag of an edge e for a time budget t
and a region r ∈ R as:

AF (e, t, r) :=

{
TRUE if e ∈

⋃
d∈r Γd(t)

FALSE otherwise

Arc-flags can be used to speed up SOTA queries by
pruning the graph as described below prior to processing
a SOTA query.

Lemma 3.3. (Query with the arc-flags) Let
(s, d) be a source-destination pair, r the region d
belongs to and T the time budget for reaching d. Let e
be an edge and t ≥ T a budget for which the arc-flags
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has been precomputed. If AF (e, t, r) is false, e can be
pruned from the graph without changing the optimal
solution.

Proof. If e belongs to some path of the optimal policy
for the source-destination pair (s, d), i.e. e ∈ Esd(T),
then we have e ∈ Γd(t) by definition 3.5. Furthermore,
since r is the region that the destination d belongs to,
it also follows that AF (e, t, r) is true.

3.3 Computing the reach and arc-flags. One of
the major limitations of this approach is the large com-
putation time required to calculate the stochastic reach
and arc-flags of the network. In the deterministic SP
context, this limitation can be overcome by exploiting
the property of sub-path optimality to come up with
efficient algorithms for computing these metrics. For
instance in arc-flags, it is easy to see that one only has
to consider the boundary of a region as possible destina-
tions nodes, since the optimal path to any node within
the region from a node outside the region will include
some optimal path to the boundary of the region. How-
ever, as we have seen in section 2.1, this does not work
in the SOTA setting. Similarly, the reach metric can
also be computed efficiently using a hierarchical method
that takes advantage of sub-path optimality, as shown
in [8]. Unfortunately, to this point, we have not been
able to identify an efficient algorithm for computing the
stochastic reach and arc-flags. We are exploring the
possibility of upper bounds for the reach metric similar
to what is done in the original article by Gutman [8].

Our current approach is to compute the reach
and arc-flags in a brute force manner by running a
SOTA search for all possible destinations in the graph.
Table 4 in the results section shows that this approach
is still tractable for some urban scale networks. It
is important to note that the computation for each
destination is an independent problem and can be done
in parallel.

Computing reach. A high level overview of the
process is given in Algorithm 3.1. For each destination
d, we compute the optimal policy from all sources s
to d for the time budget T . The SOTA policy for all
sources can be computed simultaneously [16]. Then, for
all sources s, we determine the nodes i ∈

⋃
t≤T Vsd(t)

that belong to some optimal path from s to d and
update their reach. Determining the set

⋃
t≤T Vsd(t)

is not trivial since it requires considering all possible
realizations of the SOTA policy. We use a efficient
priority queue based search with no re-computation of
paths, but finding the set

⋃
t≤T Vsd(t) and updating the

reach from all the sources can take up to twenty times
longer than finding the optimal policy. Furthermore, the

value m(s, i) might need to be computed multiple times
when considering different destinations, but keeping
these values in memory for all (s, i) requires too large
of a memory footprint. Therefore, we recompute these
values for each destination as needed. Fortunately,
m(s, i) can be computed efficiently in the sub-graph
induced by the nodes v ∈

⋃
t≤T Vsd(t), which is much

smaller than G. This approximation will lead to an
upper bound for the reach, but this does not impact
the optimality of the solution since it is an upper bound.
This bound is usually quite tight since the shortest path
is usually close to some path in the SOTA policy.

Algorithm 3.1. (Reach computation)
input: a graph G and a time budget T
output: the reach r(·,T)
initialization: ∀i ∈ V, r(i,T) = 0
for d ∈ V do . can be computed in parallel

compute the optimal policy with budget T; ∀s 6= d ∈ V
for i ∈ V do

compute m(i, d)

for s ∈ V do . can be computed in parallel
compute

⋃
t≤T Vsd(t)

for i ∈
⋃

t≤T Vsd(t) do
compute m(s, i)
set r(i,T) = max(r(i,T), min(m(s, i),m(i, d)))

return r

Computing arc-flags. Computing the arc-flags
of the network is much a more straightforward process,
since the arc-flags do not depend on the source. A high
level overview of the process is given in Algorithm 3.2.
Once again first the optimal policy for each destination
is computed for the maximum time budget of interest.
Then for each destination the optimal edge set Esd(t)
is computed and all the edges in this set are marked
as true for the region that the destination belongs to.
To optimize the preprocessing, the arc-flags and reach
can be computed simultaneously, since they both use
the SOTA solution for each destination d and this
computation can be shared.

Algorithm 3.2. (Arc-flags computation)
input: a graph G, a partition of the edges R and a time
budget T
output: the arc-flags AF (·,T, ·)
initialization: AF (e,T, r) = FALSE , ∀(e, r) ∈ E ×R
for d ∈ V do . can be computed in parallel

compute the optimal policy with budget T; ∀s 6= d ∈ V
compute

⋃
t≤T,s∈V Esd(t)

for e ∈
⋃

t≤T,s∈V Esd(t) do
set AF (e,T, r(d)) = TRUE

return AF
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4 Experimental results
Test instances. We use three different networks

to test our algorithms: a San Francisco arterial
network5 (SF) with 2450 nodes and 6151 edges, a Lux-
embourg network with 30674 nodes and 72492 edges
and a synthetic network with 7921 nodes and 31328
edges. The synthetic network is a 89x89 Manhattan
grid with 4 levels of roads, where the speed limits are
40, 60, 80 and 120 kmph, and the size of the network is
40 × 40 km. The travel time distributions for the SF
network is derived from real world observations [10].
The travel time distributions for the Luxembourg
network are created artificially using the speed limits
as a baseline, as actual travel time information is
not available. The distributions for the synthetic
network are also generated using the same strategy. All
distributions are a mixture of Gaussians corresponding
to different traffic modes like slow or fast where all
the weight over the speed limit has been moved to the
minimal travel time.

Environment. The precomputation was done on
18 × 1.9GHz AMD Opteron(tm) 6168 processors with
30Gb of shared memory, and the queries where were
performed on an Intel Core i7 Q740 with 8 × 1.73GHz
cores and 4Gb of memory. All the code used for
the experiments was written in Java 1.6. For each
experiment, we randomly picked 200 source-destination
pairs with a positive probability of arriving of time. The
time discretization of the probability distributions for all
experiments is one second.

Technique Time budget (s)
300 500 800 1000

reach (RH) 1.2 1.5 1.4 1.3
directed-RH (DRH) 2.4 3.2 2.9 2.4
arc-flags (AF) 10x10 3.0 5.6 4.6 3.5
DRH & AF 10x10 4.8 8.8 7.2 5.4

baseline runtime (ms) 12 115 579 1554

Table 1: Relative speedups over no preprocessing
(San Francisco)

Speedup. Tables 1, 2 and 3 present the average
speedups achieved using the preprocessing methods
described above compared to computing the results
with no preprocessing. The number associated with
the arc-flags is the number of regions used. The
general speedups achieved are fairly consistent across all
the networks. As expected, the directed-reach (DRH)

5We artificially modify the original network by adding two fast
roads (highways) in the South/North and East/West directions,
since the original network does not contain highways and thus has
poor hierarchy.

Technique Time budget (s)
500 1000 1500 2000

reach (RH) 1.5 1.7 1.9 2.2
directed-RH (DRH) 2.0 2.2 2.4 2.8
arc-flags (AF) 20x20 1.5 2.3 3.3 4.8
DRH & AF 20x20 2.5 3.8 5.2 7.2

baseline runtime (ms) 12 283 883 1369

Table 2: Relative speedups over no preprocessing
(Luxembourg)

Technique Time budget (s)
500 1000 1500 2000

reach (RH) 1.2 1.3 1.4 1.4
directed-RH (DRH) 1.7 2.0 2.1 2.4
arc-flags (AF) 10x10 2.0 3.0 3.2 3.6
arc-flags (AF) 20x20 3.3 5.1 5.8 5.5
DRH & AF 10x10 2.7 4.6 4.9 5.4
DRH & AF 20x20 3.9 6.8 7.5 8.1

baseline runtime (ms) 23 315 1293 4843

Table 3: Relative speedups over no preprocessing
(synthetic network)

performs better than the regular reach (RH). Also, the
performance of the arc-flag (AF) algorithms improves
as we increase the number of regions used. Finally,
we see that combining reach and arc-flags provides the
best results. Figure 4 shows a visualization of how
the four different preprocessing algorithms reduce the
query-time search space of the problem. One important
observation is that the speedups achieved using the
preprocessing techniques increases with the time budget
of the query. The decrease in the San Francisco network
for large budgets is due to the boundary effects of the
smaller graph. This is important because the total
computation time increases with the budget and the
efficiency of the SOTA algorithm must scale well with
the time budget.

The stochastic reach and arc-flags algorithms are
generally less efficient than their deterministic counter-
parts in term of proportional speedup. The first ex-
planation we can give is that the set Vsd(T) contains
more nodes than a specific shortest path, 50% more on
average in our experiments. This means that the indi-
vidual reach values of nodes are likely to be higher in
the stochastic setting and that more edges are likely to
be labeled as true in stochastic arc-flags. The stochas-
tic reach and arc-flags are also functions of the time
budget being considered, which makes it hard to give
meaningful comparisons with the deterministic versions.
The second explanation is that we have not performed
queries for large time budgets due to computational re-
source limitations. We have limited the range of our pre-
processing to trips of 2000 seconds. The best speedups
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Figure 4: pruning of the San Francisco network for some source-destination pair. From left to right the pruning achieved
using reach, directed-reach, arc-flags and the combination of reach with arc-flags. The colored nodes are the nodes that
belong in the optimal policy and the color denotes the probability of the node being used, where blue indicates a high
probability and red indicates a low probability. The source is in the bottom of the graph.

Network

Speedup technique
reach arc-flags heuristic arc-flags

1000 1000 2000 10x10 20x20
1000 2000 1000 2000

SF 8 497 456 1 556 230 711 317 1 133
Synthetic 18 305 1 303 12 099 584 4 420 860 7 799

Luxembourg 45 643 7 907 75 898 316 5 325 579 8 317

Table 4: Precomputation time in seconds for reach, arc-flags and heuristic arc-flags. Results are presented for
maximum time budgets of 1000 and 2000 seconds.

achieved in deterministic road networks are obtained
for longer queries. For instance the deterministic reach
speedups reported in [8] show that the speedup increases
with the length of the path from 4.5 to 19.2 on average
for road lengths of 26 and 56 km. Similarly, the sig-
nificant speedups for the basic arc-flags algorithm were
obtained in the German countrywide network where the
average trip is much longer [9]. We expect the speedups
of the stochastic variants to also increase as we consider
longer queries. One of the immediate next steps is to re-
implement our algorithms in a programming language
with better memory management features and to gain
access to better hardware resources to run the experi-
ments on larger networks for larger time budgets.

4.1 Heuristic precomputation. As discussed in
section 3.3, preprocessing the graph using stochastic
reach and arc-flags is very inefficient due to the addi-
tional constraints of the SOTA problem. However, it
is possible to efficiently compute heuristics of the reach
and arc-flags that are close to optimal values in prac-
tice. One such approach is the compute the arc-flags by
only considering destinations that are on the boundary
of each region, as is done in the deterministic case. This
cuts the total number of nodes that need to be consid-
ered by a considerable factor (specially when the regions
are large and the number of nodes per region is large).

When computing the heuristic arc-flags for the
synthetic network we noticed a 0.4% reduction in the

total number of arc-flags, i.e. a 0.4% false negative
rate. When computing the SOTA solution for 1000
random queries we found 8 non-optimal solutions, and
the largest deviation in the probability of arriving on
time was 10−5. The results for the SF and Luxembourg
networks were similar. Such approaches are especially
promising for commercial applications where such minor
deviations from the optimal solution are negligible and
the measurement error in the probability distributions
dominates the error.

The heuristic arc-flags can also be used to compute
heuristic reach values as follows. First run Algorithm
3.1 and 3.2 using only destination nodes that are on the
boundary of the regions. Then run Algorithm 3.1 from
all the other destinations using the heuristic stochastic
arc-flags to speed up the optimal policy computation.

5 Conclusions and future work
We present what is to the best of our knowledge the
first results on preprocessing techniques for the stochas-
tic on-time arrival (SOTA) problem. We discuss the
difficulties in applying the commonly used preprocess-
ing techniques from deterministic shortest paths to the
stochastic setting, and identify two techniques (reach
and arc-flags) that can be adapted to the SOTA prob-
lem. We also present an extension of reach that enables
more aggressive pruning of the search space at the cost
of some additional memory. The main limitation of this
work is the inability to perform the preprocessing in a
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computationally efficient manner, making the technique
intractable for large networks with large time budgets.
However, we discuss the potential for faster precompu-
tation using efficient heuristic schemes, and are experi-
menting with a number of such techniques. Experimen-
tal results show that the preprocessing methods can pro-
vide up to a order of magnitude improvement in runtime
for the networks we have considered and time budgets
on the order of 2000 seconds. We are confident that
further refinements to the preprocessing schemes, such
as more effective reach partitioning schemes and bet-
ter strategies selecting regions for arc-flags, will provide
further gains. In addition, we plan on reimplementing
our algorithms to be more memory efficient and evalu-
ate them on more powerful hardware systems to under-
stand the behavior of the algorithms on larger networks
for larger time budgets.
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