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Abstract— Sparse location measurements of probe ve-
hicles are a promising data source for arterial traffic
monitoring. One common challenge in processing this
source of data is that vehicles are sampled infrequently
(on the order of once per minute), which means that many
vehicles will travel several links of the network between
consecutive measurements. In this article, we propose
an optimal decomposition of path travel times of probe
vehicles to link travel times for each link traversed. From
a model of arterial traffic dynamics, we derive probability
distributions of travel times. We prove that these distribu-
tions are mixtures of log-concave distributions and derive
convex formulations of the travel time allocation problem.
We validate our approach using detailed video camera data
from the Next Generation Simulation project (NGSIM).

I. INTRODUCTION

Traffic congestion is an important negative externality
for modern society [21]. An essential step towards active
congestion control is the development of ubiquitous
traffic monitoring and operations systems. Historically,
these systems have been mostly limited to highways
and have relied on data feeds from dedicated sensing
infrastructure (loop detectors, radars, video cameras,
etc.). For arterials, probe vehicle data, such as fleet
data, participatory sensing data or RFID tag data, is the
only significant data source with the prospect of global
coverage in the future. Common sampling strategies
provide sparse information on the location of a vehicle
on its trajectory, e.g. location reported periodically in
time (or in space) on the average of once per minute
(once every few hundred meters). Probe vehicle data
comes with unprecedented challenges to infer traffic
conditions. Map matching [22] and path reconstruc-
tion [14], [4] algorithms map the noisy measurements
to the road network and infer the trajectory between
successive location measurements. Filtering algorithms
leverage information on the dynamics of traffic [6] to
detect outliers and remove specific behaviors of the
probe vehicles sending their location. For example, one
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can remove trajectories representing a taxi making a U-
turn to pick-up a passenger or a taxi loading or unloading
passengers (using a flag signaling if the taxi is hired [1]).
Finally, specific algorithms must be developed to use this
novel data for traffic estimation and prediction.

Numerous algorithms rely on high frequency probe
data [22], fixed sampling locations [11], link travel time
measurements [10], [17], [3] or link congestion levels [8]
to infer (and predict) the traffic conditions on the road
network. These algorithms require that travel times of
individual links be computed from the path travel times
of the probe vehicles. This computation is called travel
time allocation or travel time decomposition [9] and is
the main focus of this article. This problem has been
receiving increasing attention as researchers and pub-
lic entities realize the importance of sparsely sampled
probe vehicles for the development of ubiquitous traffic
monitoring and operations systems. The formalization of
the intuitive idea that vehicles are more likely to experi-
ence delays close to intersections [9] shows significant
improvements compared to an allocation proportional
to the free flow travel time. The modeling of vehicle
dynamics on an arterial network is promising to accu-
rately solve the travel time allocation problem and is
recommended by traffic data collection guidelines [26].
Virtual floating car data and simulation [24] are another
method, provided that loop detector measurements and
precise signal timing information are available, which
limits the applicability on large arterial networks. Algo-
rithms specific to highway traffic also address travel time
decomposition problems [18] but their generalization to
arterial traffic is challenging.

In this article, we assume minimal a priori infor-
mation, mainly the geographical road network and the
locations of signals. In particular, we do not assume the
availability of signal timing, free flow speed or flows.
Local authorities and traffic management centers keep a
(mostly paper based) nomenclature of signal timings and
obtaining detailed information on signal timings on large
networks is a long and difficult process. In Section II, we
use well-established traffic flow modeling approaches re-
lying on hydrodynamic theory [15], [20], [7] for periodic
flows. We develop a statistical model of arterial traffic
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dynamics and derive probability distribution functions
(pdf) of travel times between arbitrary locations [12],
which we prove to be finite mixtures of log-concave dis-
tributions. We formulate the optimal travel time alloca-
tion problem as a log-likelihood maximization problem
in Section III. Because the distributions are mixtures
of log-concave distributions, the travel time allocation
problem is not convex and we use the structure of the
finite mixture model to formulate the optimal travel
time allocation as the solution of a convex optimization
problem. The number of stops on a path is not limited a
priori (which is one of the limitations of the formulation
of the problem solved in [9]). We assess the accuracy of
the travel time allocation algorithm in Section IV using
the Next Generation Simulation (NGSIM) arterial traffic
data [2] to simulate probe vehicles sending their location
with varying frequencies and compare our travel time
allocation to the actual travel times of the vehicles on
each link.

Note that the travel time allocation problem is of-
ten ill-posed. To illustrate this fact, consider a vehicle
traversing two successive links and sending its location
at the beginning of the first link and the end of the
second link. Assume that both links have similar traffic
conditions and that the vehicle stops once at a signal.
Without additional information, we cannot confidently
determine which link the vehicle stopped on and thus
solve the travel time allocation problem. This issue arises
in all travel time allocation algorithms considering this
specific problem and we do not claim to solve it in this
article. Our approach chooses the most likely travel time
allocation and in particular the most likely delays (both
in terms of location and duration) experienced by each
probe vehicle.

II. TRAVEL TIME DISTRIBUTIONS DERIVED FROM A
HYDRODYNAMIC THEORY FOR PERIODIC FLOWS

In this section, we present specific assumptions com-
mon in the traffic engineering community to model
arterial traffic dynamics. We analyze the probability of
delay of the vehicles traveling on the network and derive
the pdf of travel times between arbitrary locations on
each link of the network (See [12] for the details of the
derivations).

A. Assumptions

Arterial traffic is modeled as a dynamic stochastic
process, parameterized by the characteristics of the road
network, the signal timing and the driving behavior of
the vehicles. We do not assume prior information on
the parameters of the model, which can be learned
empirically using historical data.

1. Hydrodynamic fluid assumption: we model vehic-
ular flow as a continuum and represent it with macro-
scopic variables of flow q(x, t) (veh/s), density ρ(x, t)
(veh/m) and velocity v(x, t) (m/s). The definition of
flow gives the following relation between these three
variables [15], [20]: q(x, t) = ρ(x, t) v(x, t). We make
the assumption of a triangular fundamental diagram
parameterized by vf , the free flow speed (m/s), ρmax,
the jam (or maximum) density (veh/m) and qmax, the
capacity (veh/m). For a given road segment of interest,
the vehicles arrive into the link with a spatial spacing
called arrival density ρa. We do not take into account
lane changes, passing or merging in this model. For
an arterial link with several lanes, we assume that
there is one queue per lane, with its own dynamics.
The parameters of the road network and the level of
congestion may be different on each lane (e.g. to model
turning movements) or equal (to limit the number of
parameters of the model). In this article, we consider that
all lanes have the same queue length and do not model
the different phases of traffic signals due to dedicated
turns.

2. Stationarity of traffic: there exist time intervals (on
the order of five to fifteen minutes) during which the
parameters of the light cycles (red time R and cycle
time C) and the arrival density ρa are constant. In fact,
for numerous signals, the cycle parameters are constant
throughout the day or for long time intervals (e.g. night,
morning rush hour, day, evening rush hour). We assume
that there is no consistent increase or decrease in the
length of the queue, nor instability over time. With
these assumptions, the traffic dynamics are periodic
with period C. Note that the assumption of constant ρa
amounts to neglecting the effects of light synchroniza-
tion on the arrival rate. This strong assumption enables
to keep the derivations of the model analytical and
we will discuss how it can be relaxed in Remark 1.
The assumption of stationarity is justified if we are
interested in studying trends in traffic conditions, rather
than fluctuations. The duration of time intervals during
which traffic is assumed stationary may depend on the
time of the day as conditions may change more rapidly
at the beginning and at the end of rush hour periods. We
define two discrete traffic regimes: undersaturated and
congested, depending on the presence or the absence of
a remaining queue when the light switches from green to
red. In the undersaturated regime, the queue is called the
triangular queue and has length lmax. In the congested
regime, there is a remaining queue, with length lr. The
congested regime is a short time approximation of a
saturation level equal to one (as many vehicles enter
and exit during a cycle) with a pre-existing queue lr.
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Fig. 1. Space-time diagram of trajectories representing the as-
sumptions of arterial traffic dynamics. (Top) Undersaturated regime.
(Bottom) Congested regime.

Over time, the length of the queue is piecewise constant
with possible discontinuities in between time intervals.
We illustrate these dynamics in Figure 1.

3. Model for differences in driving behavior: the free
flow pace pf (inverse of the free flow speed) is not the
same for all vehicles: it is modeled as a random variable
(r.v.) with vector of parameter θp. In the following, we
assume that the pdf of free flow pace is log-concave (the
log of the pdf is concave), which is the case of most
common distributions—e.g. the free flow pace has a
Gaussian or a Gamma distribution with parameter vector
θp = (p̄f , σp)

T where p̄f and σp are respectively the
mean and the standard deviation of the pace.

B. Probability of delay

Under these simplifying assumptions, we propose an
analytical characterization of delay distributions which
follows hydrodynamic theory. Previous research on
the characterization of delay distribution uses vertical
queueing theory to study the probability distribution
of delays and queue lengths under stationary assump-
tions [23], [16]. Vertical queuing theory does not model
how vehicles physically queue over the length of the
roadway and considers that they stack up upon one
another at the stop line of a traffic signal, incurring no
delay traveling to the point of congestion, which does
not follow the hydrodynamic theory.

We denote by δx1,x2
the r.v. representing the delay,

due to the presence of traffic signals and the formation

of queues, between locations x1 and x2 on an arterial
link. The locations xi also represent the distance to the
downstream intersection. The details of the derivation
of the pdf of δx1,x2

are fully documented and represent
a significant amount of technical work available for
the reader’s convenience in [12]. We summarize the
derivations in the case of an undersaturated link and the
main results for congested links.

Delays on an undersaturated link: We call ηux1,x2
, the

fraction of the vehicles entering the link during
a cycle that experiences a delay between x1 and
x2. The proportion ηux1,x2

is computed as the ratio
of vehicles joining the queue between x1 and x2,(
min(lmax, x1)−min(lmax, x2)

)
ρmax, over the total

number of vehicles entering the link in one cycle,
vfCρa. The proportion of vehicles delayed between x1
and x2 is thus:
ηux1,x2

= (min(x1, lmax)−min(x2, lmax))
ρmax

vfCρa
.

The delay experienced when stopping at x is denoted by
δu(x) for the undersaturated regime. Because the arrival
of vehicles is homogenous, the delay δu(x) increases
linearly with x. At the intersection (x = 0), the delay
is maximal and equals the duration of the red light R.
At the end of the queue (x = lmax) and upstream of
the queue (x ≥ lmax), the delay is null and we have
δu(x) = R

(
1− min(x,lmax)

lmax

)
. Given that the arrival

of vehicles is uniform in time, the distribution of the
location where the vehicles reach the queue between
x1 and x2 is uniform in space and the probability
to experience a delay between locations x1 and x2 is
uniform, with support [δu(x1), δu(x2)].

Proposition 1 (pdf of delays): The delay experienced
on an undersaturated link between locations x1 and
x2 is a r.v. with finite mixture distribution: a mass
probability at 0, with weight 1 − ηux1,x2

and a uniform
distribution with support [δu(x1), δu(x2)] and weight
ηux1,x2

. In both the undersaturated and the congested
regime, the analytical expression of the pdf of delays
depends on the locations x1 and x2 and can be expressed
as a finite mixture distribution with at most three com-
ponents. Each component is either a mass or a uniform
distribution and corresponds to a different delay pattern
experienced by the vehicles.

Proof: See [12] for details. The different delay
patterns depend on the entrance time of the vehicle
with respect to the beginning of a cycle. The delay
experienced when stopping at x is piecewise affine in
x. Given that the arrivals are uniform in time, the
distribution of the location where the vehicles first reach
the queue is uniform in space and the probability to
experience a delay between two locations is uniform
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between a minimum and a maximum delay. The mass
distribution is a special case in which the minimum
and the maximum delay are equal, corresponding to
domains for which the delay experienced when stopping
at location x is constant (e.g. non stopping vehicles in
the undersaturated regime for which both the minimum
and maximum delays are null).

Remark 1 (Pdf of delays under platoon arrivals): If
the arrival density is piecewise constant with period C
(platoons) and its average value is less than or equal
to (1 − R/C)ρc (saturation less than one), the pdf of
delays is a mixture of mass and uniform distributions.
The number of components in the mixture depends on
the number of platoons and their start and end time
with respect to the beginning of the cycle. The proof is
a generalization of Proposition 1 and uses the fact that
arrivals are uniform within a platoon and that the delay
at location x is piecewise affine in x.
C. Finite mixture of log-concave distributions

The travel time yx1,x2
between x1 and x2 is the sum

of two independent r.v.: the delay δx1,x2 and the free
flow travel time yf ;x1,x2 = pf (x1 − x2).

Proposition 2: The pdf of travel times between arbi-
trary locations on an arterial link is a finite mixture of
log-concave distributions with at most three components.
Each component corresponds to a different delay pattern
experienced by the vehicles.

Proof: Since yx1,x2
= δx1,x2

+ yf ;x1,x2
and δx1,x2

and yf ;x1,x2
are independent r.v., the pdf of travel times

is given by the convolution of the pdf of delays and the
pdf of free flow travel times. From the linearity of the
convolution and Proposition 1, we know that the travel
times have a finite mixture distribution. Each component
is the convolution of the pdf of free flow travel times
with either a mass or a uniform distribution. Using the
fact that log-concavity is closed under multiplication
(concavity is closed under addition), and results in the
integration of log-concave functions [19], we know that
the convolution of two log-concave functions is log-
concave [5].

We illustrate the probability distribution of travel
times on an undersaturated link in Figure 2. It is a
mixture of two log-concave distributions representing
the delay patterns “stopping” and “not stopping” on the
link. In general, the pdf of travel times gix1,x2

on link i
between locations x1 and x2 is the sum of Ki ≤ 3 log-
concave components. The kth component, representing
the kth delay pattern, has pdf gi,kx1,x2

and weight υk ∈
[0, 1] such that:

gix1,x2
=

Ki∑
k=0

υkg
i,k
x1,x2

and
Ki∑
k=0

υk = 1, υk ≥ 0.

Fig. 2. On an undersaturated link, the probability distribution of travel
times (solid line) is a mixture distribution with two components: the
vehicles that do not stop on the link and have zero delay (dashed line)
and the vehicles that experience delay on the link (dotted line). The
illustration is computed for η = 0.7, R = 40s. The free flow pace is
a Gamma r.v. with mean 1/8 s/m and standard deviation 1/30 s/m.

The pdf of travel times between arbitrary locations is
parameterized by the cycle time C, the red time R,
the queue length (lmax in the undersaturated regime and
lsmax + lr in the congested regime), the saturation queue
length lsmax (length of the triangular queue when the
number vehicles that enter and leave the link in a cycle
are equal) and the parameters of the free flow pace θp.

III. DECOMPOSITION OF THE TRAVEL TIMES TO THE
LINKS OF A PATH

A travel time observation from a probe vehicle con-
sists of a travel time over a path defined by multiple
(potentially partial) links. We formulate the optimal
travel time allocation as the solution of a maximum
(log)likelihood problem where the decision variables
represent the travel times allocated to each of the
(partial) links of the path. We can view the maximum
likelihood problem as the estimation of the most likely
entrance times (modulo the cycle times) of the vehicle
on the links of the path. The objective function is the
joint probability of the travel times allocated to each
link of the path. However, the analytical derivation
of this function from traffic flow theory remains an
unresolved problem and we assume that link travel times
are independent, which corresponds to discarding the
information on the entrance time in a link depending on
the entrance time at the previous link.

A. Travel time decomposition

For a vehicle traveling from an origin xo to a desti-
nation xd through M intersections, we decompose the
travel time yxo,xd

as the sum of travel times on each of
the links (Figure 3):

yxo,xd
=

M∑
m=0

yxm,xm+1
. (1)

For m ∈ {1 . . .M}, the point xm represents the most
upstream location on the mth link on the path, x0 = xo
and xM+1 = xd. For m ∈ {0 . . .M}, we note im the
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Fig. 3. Travel time allocation: decomposition of the path travel time
into (partial) link travel times. Along its trajectory, the vehicle sends
location measurements successively at xo and xd for a travel time
yxo,xd . This path extends over five links (numbered i1 to i5). The
path only spans a fraction of the first and last links (partial links). We
decompose the total travel time yxo,xd into five (partial) link travel
time (yxm,xm+1 )m=0...4 which sum to the total travel time yxo,xd .

mth link of the path between xm and xm+1 and we
denote by gim the pdf of travel times on (partial) link
im, between xm and xm+1 (Note that we dropped the
index xm, xm+1 for notational simplicity).

The optimal decomposition of a travel time yxo,xd
is

the minimizer of the following optimization problem:

minimize
(yxm,xm+1

)Mm=0

M∑
m=0

− ln(gim(yxm,xm+1
)), s.t. (1). (2)

As formulated above, optimization problem (2) is not
convex and we use Proposition 2 to formulate the travel
time allocation as a convex optimization program. We
propose different algorithms and analyze their perfor-
mance and accuracy in Section IV.

B. Optimization algorithms

In general, problem (2) is not convex thus first and
second order optimization algorithms are only guaran-
teed to find local optima. Global optimization algo-
rithms [13], [25] can solve the problem of local optima
but are out of the scope of this article. We consider a
gradient descent algorithm with random starts denoted
Gradient algorithm and investigate how to exploit the
structure of the optimization problem given by Proposi-
tion 2 to find convex formulations of (2):

1. Expectation-Maximization (EM) algorithm: After
an initial allocation (y0xm,xm+1

) of the travel times to
the links of the path (e.g. random allocation, allocation
proportional to the mean or the free flow travel times),
the algorithm iterates between an analytical computation
(E step) and a small scale optimization problem (M
step). It is only guaranteed to converge to local optima
but exploits the structure of the optimization problem:

E step: at iteration n, the travel time allocated to link
im is ynxm,xm+1

. Compute the probability β̃nim,k that the
vehicle experienced delay pattern k on link im:

β̃nim,k =
υkgim,k

(
ynxm,xm+1

)
∑Kim

k′=0 υk′gim,k′
(
ynxm,xm+1

) . (3)

M step: solve the convex optimization program (4)
and go to E Step until convergence.

minimize
(y

n+1
xm,xm+1

)Mm=0

M∑
m=0

Kim∑
k=0

−β̃im,k ln(g
im,k

(y
n+1
xm,xm+1

)), s.t. (1).

(4)

2. Convex Program or Mixed Integer Convex Pro-
gram: Given the model of Section II, a vehicle has one
delay pattern on each link of its path. Let βim,k ∈ {0, 1}
be equal to 1 if the vehicle has delay pattern k on link
im and to 0 otherwise. If the sampling strategy detects
the location of stops, the variables βim,k are known and
the travel time allocation amounts to solving the convex
optimization problem (4) with β̃im,k = βim,k (Given
stop algorithm). Sampling strategies rarely provide the
value of the binary variables βim,k which become deci-
sion variables in (4), with the constraints

∀m
Kim∑
k=1

βim,k = 1, ∀ (m, k)βim,k ∈ {0, 1}, (5)

illustrating that a vehicle has exactly one delay pattern
on each link. This problem can be solved by enu-
merating the

∏M
m=0Kim convex optimization programs

corresponding to the different sets of (βim,k)im,k (Enu-
meration algorithm). The complexity is exponential
in the number of links traversed by the vehicle but
remains tractable (bounds on the number of links and
the number of components, Kim ≤ 3). We can also
solve this problem using a hard EM algorithm (Hard
EM algorithm), which forces the vehicle to have exactly
one delay pattern on each link of the path, instead of
using the probability of each delay pattern (3). Given
a travel time allocation at iteration n, the hard E step
computes βnim,k such that it is equal to 1 if delay pattern
k is the most likely on link im and to 0 otherwise:

βnim,k =

 1 if k = arg max
k′∈Kim

β̃nim,k′ ,

0 otherwise
(6)

We recall that β̃nim,k′ is computed according to (3).
The M step solves (4) with β̃im,k = βnim,k. Similar
to the EM algorithm, the hard EM algorithm exploits
the underlying structure of the optimization problem but
only guarantees convergence to local optima and we use
random starts to increase the chances of convergence to
the global optimum.

IV. RESULTS

We assess the performance of the model and the algo-
rithms using Next Generation Simulation (NGSIM [2])
traffic data on the Peachtree Street network (Atlanta,
Georgia). The network consists in twelve 3 lane-links
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with five intersections. Automatic processing of video
camera data provides detailed trajectories (location every
0.1 seconds) of all the vehicles traveling on the net-
work between 4:00 and 4:15pm on November 8, 2006
(more than 700 trajectories). The traffic conditions are
undersaturated, close to saturation. We simulate probe
vehicles reporting their location with different sampling
frequencies and compute the time spent on each link and
the locations of stops between successive measurements
to serve as ground truth for the travel time allocation.
For each probe measurement, we allocate its travel
time according to the optimization algorithms described
in Section III and compare the performances to an
algorithm which allocates the travel times proportionally
to the free flow travel time on each link (Benchmark
algorithm). Denoting by vfm the free flow speed on link
m and by |xm+1−xm| the distance traveled on link m,
the travel time allocated to each link m of the path by
the benchmark algorithm is given by

yxm,xm+1
=

1

Z

|xm+1 − xm|
vfm

, (7)

where the proportionality constant Z is chosen such
that the allocated travel times sum up to the path travel
time as stated in (1). We recall the different algorithm
presented in this article:
• The Gradient algorithm finds local optima of (2)

using a gradient descent algorithm
• The EM algorithm is an iterative algorithm. At

iteration n, it computes (β̃nim,k) for each pair of link
m and delay pattern k according to (3) and solves the
convex optimization problem (4).
• The Given stop algorithm solves the convex opti-

mization problem (4) where the values of β̃im,k are
equal to βim,k ∈ {0, 1} and are given by the sampling
scheme which detects the location of stops.
• The Enumeration algorithm solves a serie of convex

optimization problems (4) for each set of (βim,k)Mm=0

satisfying (5).
• The Hard EM algorithm is an iterative algorithm.

At iteration n, it computes βnim,k ∈ {0, 1} according
to (6) and solves the convex optimization problem (4),
with β̃im,k = βnim,k.
• The Benchmark algorithm allocates travel times

proportionally to the free flow speed on each link
(Equation (7)).

A. Convergence and performance analysis

When vehicles remain on the same link between
two successive location measurements, the travel time
allocation is trivial and is not taken into account in
these results. For each probe measurement, we compute

the log-likelihood (objective function of (2)) of the
allocations performed by the different algorithms and
also report the average computation time (Figure 4, left
and center). The algorithms Given stops, Enumeration
and Hard EM assume that each vehicle has a specific
delay pattern on each link whereas EM allows for a
mixture of delay patterns and gradient does not make
any assumption. All the algorithms provide an allocation
that is more likely than the benchmark and the structure
provides better convergence properties (gradient has the
lowest likelihood of all optimizations). The algorithms
enumeration and hard EM provide similar convergence
results but the computation time is much better for hard
EM. In particular, when the sampling time increases, we
see the effect of the exponential computation time on the
enumeration algorithm. The algorithm given stop pro-
vides allocations with an average log-likelihood slightly
inferior to the enumeration and hard EM algorithms. In-
deed, vehicles may not always experience the most likely
delay patterns. However, the small difference in log-
likelihoods (in comparison to the benchmark algorithm
for example) let us infer that in general, the vehicles
experience the most likely delay patterns.

B. Validation of the algorithms

We denote by ŷlq the qth travel time allocated on
link l and by ylq the actual travel time of the probe
vehicle (computed from the detailed trajectories). We
denote Ql the number of travel times allocated on link
l. We compute the average percentage error on link l as
the root mean square error of the allocation and divide
by the average travel time TTl to obtain an average
percentage error:

el =
1

TTl

√∑Ql

q=1(ŷlq − ylq)2

Ql
.

To have a more compact validation metric, we average
the percentage error of the different links (Figure 4,
right).

Confirming the assumptions of the model, given stop
provides the best results. The information on stops is
rarely available in current sampling strategies and the al-
gorithms enumeration and hard EM provide the highest
accuracy, with slightly better results but higher compu-
tation cost for enumeration. The gradient algorithm has
the least accuracy of the optimization algorithms which
underlines the importance of the structure imposed by
the other algorithms. As a tradeoff between accuracy
and computation time, the hard EM algorithm seems
the best suited to solve the optimization problem. It
provides an improvement of 35% to 50% compared to
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Fig. 4. Performance analysis of the different algorithms as a function of the sampling frequency. (Left) Average log-likelihood of the travel
time allocations. (Center) Average computation time. (Right) Average percentage error

the benchmark method for common sampling rates (30
seconds or more between measurements).

V. CONCLUSION

We propose a travel time allocation algorithm based
on a comprehensive model of arterial traffic flows that
identifies the delay patterns of the vehicles. The travel
times are allocated according to the most likely pattern,
with an algorithm that exploits the underlying structure
of the log-likelihood function. This method provides
a significant improvement (up to 50%) compared to a
benchmark deterministic method.
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