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Abstract

This work is focused on the application of high order traffic flow theory to the problem

of traffic incident detection, and for modeling multiclass traffic flow composed of different

vehicle types.

For incident detection applications, a class of generic second order traffic flow models

(GOSM) is applied to detect traffic incidents in real time by posing the problem as a

hybrid state estimation problem. To incorporate the incident dynamics in the model, a

regime variable is introduced to describe where and how many lanes are blocked during an

incident, resulting in a multiple model framework. This work develops a multiple model

extension to the GOSM on a road network. Then, a discrete version of the GOSM known

as the second order cell transmission model (2CTM) is presented under the framework

of the cell transmission model. Next, this multiple model predictor is integrated with a

particle filter to obtain an estimate of the traffic state and the incident location if it exists.

The proposed algorithm is tested on a road segment in numerical simulation using the

CORSIM traffic microsimulation software as the true state.

In the second application, a new family of high order traffic flow models is considered

as an extension to the scalar Lighthill Whitham Richards (LWR) model. Under this

framework, a heterogeneous traffic model with two vehicle classes is developed to capture

an important phenomenon in highly heterogeneous traffic flows called creeping. Creeping

occurs when small vehicles such as motorcycles continue to advance in congestion even

though larger vehicles have completely stopped, for example via lane sharing. The new

model is a phase transition model which applies a system of conservation laws in the non-

creeping phase, and a scalar model in the creeping phase. The solution to the Riemann

problem is obtained by investigating the elementary waves, in particular for the cases

when one vehicle class is absent, as well as in the presence of a phase transition. Based

on the proposed Riemann solver, the solution to the Cauchy problem is constructed using

wavefront tracking. Numerical tests are carried out using a Godunov scheme to illustrate

the creeping phenomenon.
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1 Introduction

This work is focused on solving the following two research problems. The first objective is to

develop a multiple model traffic state estimation framework based on a family of second order

traffic flow models and apply it to detect traffic incidents in real time. The second objective

is to design a new model for multiclass traffic flow that can capture several key features of

the flow when vehicles are heterogeneous in size.

1.1 Real Time Incident Detection

The objective of traffic estimation is to monitor the traffic state. The traffic state (e.g., traf-

fic density along the roadway) can be estimated with traffic models and nonlinear filtering

techniques, where traffic models are used to predict the traffic state given the initial and

boundary conditions, and the nonlinear filters are used to improve the predictions by incor-

porating information from real–time sensor measurements. Traffic estimation techniques have

advanced rapidly in recent years because of developments in nonlinear filtering techniques,

advances in sensing technologies such as GPS data from cellphones, and the availability of

cheap computing and communication resources.

Most existing traffic estimation algorithms assume time–invariant parameters in the traffic

model and do not account for changes in the dynamics on the highway caused by traffic

incidents. While a calibrated traffic estimation model can perform well under normal traffic

operating conditions, it will provide poor traffic state estimates when a traffic incident occurs,

because the deterministic traffic model does not contain any dynamics to describe the traffic

flow evolution under incidents. By incorporating incident dynamics into the traffic model, it

is possible to jointly estimate the traffic state and detect incidents.

The work is motivated by the fact that jointly estimating incidents and the traffic state

can improve both incident detection capabilities and the traffic state estimates. Clearly,

knowledge of an incident can improve post–incident traffic state estimates. On the other hand,

knowledge of the traffic state can be used to improve detection of incidents, by observing when
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the predicted traffic state differs significantly from the observed measurements. To address

the problem of jointly estimating incidents and the traffic state, this work poses the problem

as a hybrid system state estimation problem. It then proposes a nonlinear particle filtering

technique to solve the estimation problem, using a second order traffic flow model in the filter.

Finally, the performance of the filter is evaluated in numerical experiments using CORSIM.

1.2 Heterogeneous Multiclass Traffic Modeling

Modern traffic control and traffic estimation techniques increasing rely on sound traffic flow

models, which are capable of capturing realistic details of traffic dynamics. Recently, traffic

models that distinguish different vehicle classes have received considerable attention, and

several of these models are appropriate to capture richer dynamics in multiclass traffic flow,

such as overtaking between vehicle classes. When the traffic flow is composed of vehicles

which are highly heterogeneous in size (cars, buses, motorcycles, etc.), the phenomenon called

creeping is observable, which describes a scenario when small vehicles continue to advance in

congestion even though larger vehicles have completely stopped. This phenomenon occurs in

city traffic flow and highway traffic flow in congestion. For instance, small vehicles such as

motorcycles can move to the front of the queue as they are approaching to a red traffic light

via lane sharing.

In this study, we develop a heterogeneous multiclass traffic model under a framework of

high order traffic flow models that has several important features: (i) it allows creeping,

which permits small vehicles to move, even when large vehicles have completely stopped; (ii)

it is anistropic, where information cannot travel faster than the fastest vehicle class; (iii) it

is consistent with the LWR model when only one vehicle class is present; (iv) it is well-posed

away from the vacuum, i.e., the point where both vehicle classes disappear.

Well-posedness is an important property that has not been established for many heteroge-

neous models. The models that assign a unique maximum traffic velocity to each vehicle class

[3, 52] have non-vacuum umbilic points where strict hyperbolicity is lost [3, 55]. Hence, they
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do not fit the standard conservation laws theory (e.g., [8, 31, 32]), which leads to a challenge

in proving the well-posedness of the system. This work presents a different way to distinguish

velocity functions that enables creeping and moves the umbilic point to the vacuum. This

simplifies the mathematical analysis considerably, and allows for a well-posed system away

from the vacuum.

1.3 Contributions and Outline

The main contributions of this work are as follows. This work solves the joint traffic state

estimation and incident detection problem by applying a second order traffic flow model

within a particle filtering framework. Specifically, the second order traffic flow model is

implemented with a multiple model particle filter algorithm to solve the joint traffic state

estimation and incident detection problem by using incident data simulated by a microscopic

traffic simulation software CORSIM.

The main contributions of the multiclass traffic modeling work involves three aspects: (i)

it is first shown that a family of second order models (GOSM) is equivalent to a two class

homogeneous multiclass model, which completes the mathematical analysis associated with

these models, and justifies that the GOSM is not suitable to model creeping; (ii) a new

two class heterogeneous model that allows creeping is introduced; and (iii) a comprehensive

investigation of the properties of the new model is provided.

The remainder of this report is organized as follows. In Section 2.1, a class of second

order models called generic second order model (GOSM) is introduced, and a second order

generalization of the cell transmission model is proposed based on a discretized version of the

GOSM, called the 2CTM. The 2CTM is presented by analyzing the sending and receiving of

traffic flow, which acts as a model predictor in the forward estimation problem. A multiple

model framework based on the 2CTM is proposed by introducing a regime variable to indicate

the number of the open lanes on the freeway in Section 2.2. Section 2.3 is devoted to introduce

the technique to solve the network problem when the GOSM is applied. In this process, a
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single road junction problem is studied in detail for three common types of road junctions

(bottlenecks, merges, and diverges), and a model predictor on a road network under the

multiple model framework is presented. Next, a hybrid state estimation problem is introduced

by applying a particle filter to the model in Section 2.4. The simulation results based on the

software CORSIM are presented and a discussion of the results is provided in Section 2.5.

In Section 3.1, a connection between the GOSM and the homogeneous two class models

is introduced. Based on properties of homogeneous multiclass models, the GOSM is not

appropriate to model creeping. A new heterogeneous model for two vehicle classes is proposed

and its properties are outlined in Section 3.2. The mathematical analysis of the model is

presented in Section 3.3, which includes verifying the model is strictly hyperbolic away from

the vacuum, investigating the elementary waves and using them to construct a Riemann

solver, and providing a sketch of the proof of the well-posedness of the model. Section 3.4 is

devoted to validate the features of the proposed model by performing numerical simulations

and comparing to the n–populations model [3].

2 Joint Traffic State Estimation and Incident Detection

In this work, the joint traffic state estimation and incident detection problem is posed as a

hybrid state estimation problem using the following evaluation–observation system:

uk+1 = F
(
uk, µk+1

)
+ ηk,

zk+1 = hk+1
(
uk+1, µk+1

)
+ νk+1,

(1)

where uk =

 ρk

yk = ρkwk

 is the traffic state at time t = k∆t, where ∆t is the discrete

timestep. Here, ρk and wk represent the traffic density and the property of vehicles, respec-

tively. Moreover, yk = ρkwk defines the total property. In an incident detection problem, a

discrete regime variable µ that identifies the location, severity, and duration of an incident

is introduced. Here, µ depends on both time and space, i.e., µ(x, t). In the discrete domain,
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µk represents the number of lanes that are open during (k∆t, (k+ 1)∆t]. Moreover, ηk is the

prediction error, and νk+1 represents the measurement error.

Given the evolution observation system (1), the traffic estimation and incident detection

problem can be posed as the problem of estimating the traffic state uk and the model µk

given measurements {z1, · · · , zk}. This problem is hard to solve for the following reasons.

First, the traffic model is nonlinear and switches between models due to the incident variable

µ. Second, traffic measurements are usually not available for the entire space domain. For

instance, when a traffic incident occurs between two sensors, the algorithm is not able to

detect the incident in real time since the incident information takes time to propagate to a

sensor where it can be detected. When the incident information propagates to a sensor, it is

also hard for the estimation algorithm to correctly track the traffic state, because it is not

always possible to uniquely determine if and where the incident occured.

In the next section, we first describe the traffic model used for traffic prediction. In

particular, the method to develop a model predictor F(·) for a family of second order models

on road network is introduced.

2.1 Second Order Traffic Model

2.1.1 Generic Framework of Second Order Models

A family of macroscopic models that fit into the framework of the GSOM [34] are considered:

ρt + (ρv)x = 0,

wt + vwx = 0,

with v = V (ρ, w) ,

(2)

where ρ(x, t) and v(x, t) represent the traffic density and traffic velocity, respectively. Both

variables depend on both space x and time t. The first equation of (2) describes the conserva-

tion of vehicles. The second equation of (2) indicates that w is advected with vehicles at the
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speed of traffic flow v, and thus w represents a property of vehicles. Moreover, the velocity

function V (ρ, w) is strictly decreasing in the density, i.e., ∂V
∂ρ < 0. The quantity w is used

to relate driver properties to the flow–density curves. Thus, the GSOM possesses a family of

flow–density curves parametrized by w, i.e., Q(ρ, w) = ρV (ρ, w) (see Figure 1).

For convenience, the conservation form of (2) is considered:

ρt + (ρv)x = 0,

yt + (yv)x = 0,

with y = ρw, v = V (ρ, y/ρ) ,

(3)

where the conserved quantity y is a momentum [2, 12], which is originally motivated from

gas dynamics, but lacks physical interpretation. Since w is advected with vehicle flows, ρ is

conserved and so is y = ρw.

Note that it is important to give y a clear physical meaning to properly design a discrete

cell transmission model [14] (CTM) equivalent for (3). A suitable definition for y = ρw is

to recognize that it is a total property, where the property w may have various meanings,

such as “aggressivity” [17], “desired spacing” [56], or “perturbations” [6]. Thus, the second

conservation equation of (3) expresses the conservation of the total property. For example,

imaging the property w as the average number of passengers carried by each vehicle, it is

clear that the total passengers is conserved on a road segment.

Another example for the definition of the property quantity is to define w as the fraction

of one vehicle class. As shown later, by defining w as the fraction of cars for a multiclass flow

that is composed of cars (j = 1) and trucks (j = 2), i.e., w = ρ1/ρ, where ρ = (ρ1 + ρ2) is the

total traffic density, the GOSM is equivalent to a two class multiclass traffic flow model.

2.1.2 Classification of the GOSM

The macroscopic traffic models that fit into the GSOM framework (2) is classified based on

the assumptions on the property quantity w. When all drivers have the same property, the
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Figure 1: (a) flow–density curves of the GARZ model [17]. (b) flow–density curves of a phase
transition model. (c) illustrates the idea of collapsed model [18].

GSOM collapses to the Lighthill–Whitham–Richards model (LWR) [38, 46]:

ρt + (ρV (ρ))x = 0, (4)

where the velocity depends only on the density. The unique flow–density relationship Q(ρ) =

ρV (ρ) defines a fundamental diagram (FD). Hence, the LWR model is a simplified form of

the GSOM by assigning a uniform property w(x, t) = w̄ [19], i.e., V (ρ) = V (ρ, w̄). The LWR

model can be discretized resulting in the cell transmission model [14], which is consistent with

the well known Godunov scheme [22], as shown by Lebacque [33].

The model proposed by Aw and Rascle [2] and Zhang [53] (ARZ) and the generalized Aw–

Rascle–Zhang model (GARZ) [17] allow drivers to possess different properties. For instance,

in [53], the velocity function is defined as:

V (ρ, w) = Veq(ρ) + (w − Veq(0)) , (5)

where Veq(ρ) represents the equilibrium velocity function. The associated flow–density func-

tion Qeq(ρ) = ρVeq(ρ) is an equilibrium fundamental diagram. From (5), a family of velocity

curves is generated by shifting the equilibrium velocity curve vertically with V (0, w) = w.
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One sees that ∂V
∂w = 1 > 0, which means that the traffic velocity always depends on w for

ρ ∈ [0, ρmax], where ρmax is the maximum traffic density. Similarly, one also has ∂V
∂w > 0 for

ρ ∈ [0, ρmax] in the GARZ model. As a result, the flow–density curves of the ARZ and GARZ

models are distinct even in freeflow (away from the vacuum, i.e., ρ = 0), (see Figure 1(a)).

Thus, these models are not appropriate to capture distinct behaviors in the freeflow and

congested regimes based on empirical observation by Kerner [28, 29], who observed that the

experimental flow data is positively proportional to the density data in freeflow, while the

flow–density data exhibits large spread in congestion.

For the collapsed generalized ARZ model (CGARZ) [18], it is assumed that the difference

in property does not affect the traffic velocity in freeflow. This means that vehicles always

possess different properties, but the traffic velocity is not affected by w in freeflow, i.e.,

∂V
∂w = 0. The CGARZ model is a special form of the GARZ model that collapses the flow–

density curves into a single curve in the freeflow region (see Figure 1(c)). As a result, all the

analytical results of the ARZ and the GARZ models [2, 17, 34] transfer over to the CGARZ

model. Furthermore, the CGARZ model successfully captures distinct behaviors of traffic

flow in the freeflow and congested regions.

Based on the assumption on w, one sees an important distinction between phase transition

models [5, 6, 12, 13] and the GOSM. In phase transition models, an LWR model is applied in

the freeflow phase Ωf, and a second order model is employed in the congested phase Ωc (see

Figure 1(b)). Hence, phase transition models assume a uniform property w in Ωf, but allow

for different properties in Ωc. These models admit phase transitions in traffic flow, which

agrees with Kerner’s empirical observation [28, 29]. However, by fixing w in freeflow, a phase

transition model uses the philosophy that vehicles lose their properties in Ωf. In contrast, the

GOSM assumes that drivers always preserve their properties, independent of the congestion

level.

One sees that the CGARZ model [18] combines the good features of both phase transition

models [5, 6, 12, 13] and the GARZ model [17], while it also avoids the complicated analytical

work in a phase transition model. It is also appropriate to model distinct behaviors in freeflow
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Figure 2: The cell transmission model.

and congested phases based on Kerner’s theory [28, 29]. For the simulations performed in

this study, the CGARZ model is applied. Next, a discrete formulation of the GOSM (3) is

developed under the CTM framework.

2.2 Multiple Model Second Order Cell Transmission Model

The multiple model framework is based on the fact that traffic model changes in the presence

of an incident. In this section, a second order cell transmission model (2CTM) without an

incident is presented first. Then, a multiple model framework based on the 2CTM is developed

by involving the regime variable µ, which denotes the number of lanes that is open.

Mostly due to the complexity of the mathematical analysis, and the difficulty to obtain

physical interpretations in the construction of solutions for the GOSM (3) (e.g., the existence

of an intermediate state in the Riemann solver [2, 12]), it is desirable to reformulate the

GOSM (3) in a more intuitive way such as the CTM. In [35], a Riemann solver to the GOSM

is constructed by examining the sending and receiving functions for traffic, which is consistent

with the original solver that is based on analyzing elementary waves (see e.g., [2, 53]). This

equivalence makes it possible to construct the 2CTM by analyzing the potential to send

vehicles from the upstream cell and receive vehicles from the downstream cell.
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2.2.1 Cell Transmission Model

First, the features of the CTM are summarized. Recall that the CTM [14] is based on the

integral form of the LWR model (4):

d

dt

∫ b

a
ρ(x, t)dx = q(a, t)− q(b, t),

where q(a, t) and q(b, t) represent the incoming and outgoing fluxes at the boundaries of a

cell, and the integral on the left is the number of vehicles on the road segment x ∈ [a, b].

The CTM discretizes space into cells with size ∆x, and studies each cell by examining its

inflow and outflow over the time interval ∆t. We consider three adjacent cells (j−1, j, j+ 1)

with initial densities ρkj−1, ρkj , and ρkj+1 at the time t = k∆t, and study the evolution of traffic

density in the jth cell (see Figure 2). The key features of the CTM are listed as follows.

1. The evolution equation is given by the Godunov method [22]:

ρk+1
j = ρkj +

∆t

∆x

(
F kj−1/2 − F

k
j+1/2

)
, (6)

where F kj−1/2 and F kj+1/2 are the inflow and outflow of the jth cell.

2. F kj−1/2 and F kj+1/2 are determined by the minimum of the vehicles available to be sent

from the upstream, and the availability of the downstream cell to receive vehicles:

F kj−1/2 = min
{
S
(
ρkj−1

)
, R
(
ρkj

)}
, F kj+1/2 = min

{
S
(
ρkj

)
, R
(
ρkj+1

)}
,

where S(·) and R(·) are the sending and receiving functions.

3. The sending and receiving functions are defined based on Q(ρ):

S(ρ) =

 Q(ρ), if ρ ≤ ρc,

Qmax, if ρ > ρc,
R(ρ) =

 Qmax, if ρ ≤ ρc,

Q(ρ), if ρ > ρc,
(7)
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Figure 3: Second order cell transmission model.

where ρc denotes the critical density where the maximum traffic flow Qmax is obtained.

2.2.2 Second Order Cell Transmission Model

The 2CTM is designed based on a Godunov discretization of the GOSM (3). For a system

of conservation laws (3), the initial traffic states in three adjacent cells (j − 1, j, j + 1) are

vectors ukj−1 =
(
ρkj−1, ρ

k
j−1w

k
j−1

)
, ukj =

(
ρkj , ρ

k
jw

k
j

)
, and ukj+1 =

(
ρkj+1, ρ

k
j+1w

k
j+1

)
at the time

t = k∆t (see Figure 3). By applying the Godunov scheme [22, 36] to (3), the 2CTM has the

following form:

ρk+1
j = ρkj +

∆t

∆x

(
F ρj−1/2 − F

ρ
j+1/2

)
,

yk+1
j = ykj +

∆t

∆x

(
F yj−1/2 − F

y
j+1/2

)
,

(8)

which provides evolution equations for both conserved quantities, the traffic density ρ and

total property y = ρw. Here, F ρ and F y are the flows of ρ and y, respectively.

To determine F ρ and F y, it is important to note that these two kinds of flow are related.

Since the property w is always advected with vehicle flow F ρ, the flow of total property F y

is computed by multiplying the average property w of the upstream vehicles (with respect to

the cell boundary) to the flow of vehicles:

F yj−1/2 = wkj−1F
ρ
j−1/2, F yj+1/2 = wkjF

ρ
j+1/2,

where wkj−1 and wkj are the properties of vehicles at the cells j − 1 and j, and F ρj−1/2 and

F ρj+1/2 are the associated traffic fluxes across the cell boundaries. Thus, the update equations
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Figure 4: (a) is the sending function and (b) is the receiving function of the 2CTM based on the
CGARZ model [18], illustrated for the case where wL > wR.

(8) simplify to

ρk+1
j = ρkj +

∆t

∆x

(
F ρj−1/2 − F

ρ
j+1/2

)
,

yk+1
j = ykj +

∆t

∆x

(
wkj−1F

ρ
j−1/2 − w

k
jF

ρ
j+1/2

)
.

(9)

Next, the vehicle flow through a cell boundary is the minimum of the sending and receiving

functions, as in the CTM. To complete the scheme (9), it is sufficient to define the sending

and receiving functions for ρ, as in the CTM.

Remark 1. By assuming that all vehicles have the same property as the LWR model, i.e.,

w = w̄, the update equation for y is identical to that for ρ, since it becomes

w̄ρk+1
j = w̄ρkj +

∆t

∆x

(
w̄F ρj−1/2 − w̄F

ρ
j+1/2

)
,

where w̄ can be canceled out. Thus, the 2CTM is consistent with the classical CTM (6) when

the property quantity is fixed.
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2.2.3 Sending and Receiving Functions of 2CTM

Let uL = (ρL, ρLwL) and uR = (ρR, ρRwR) be the traffic states of the upstream and down-

stream cells, the sending and receiving functions for the GSOM are proposed in [35] (see

Figure 4):

S (ρL, wL) =

 ρLvL, if ρL ≤ ρc(wL),

QwL
max, if ρL > ρc(wL),

R (ρM, wL) =

 QwL
max, if ρM ≤ ρc(wL),

ρMvM, if ρM > ρc(wL),

(10)

where vL = V (ρL, wL) is the traffic velocity of the upstream vehicles, and QwL
max is the maxi-

mum traffic flow based on Q(ρ, wL), and ρc(wL) represents the corresponding critical density.

Here, the receiving function depends on an intermediate traffic state uM = (ρM, ρMwM) [2, 31],

which can be calculated as:


wM = wL,

vM ≤ vR, s.t. minρ {vR − vM(ρ)} , vM(ρ) = V (ρ, wM)

ρM, s.t. vM = V (ρM, wM),

(11)

where vR = V (ρR, wR) is the traffic velocity of the downstream vehicles. Alternatively, the

middle state ρM can be computed as:

ρM = argminρ {V (ρR, wR)− V (ρ, wL)} .

Note that in the case that upstream vehicles cannot match the downstream speed, i.e.,

the maximum possible velocity of upstream velocity is less than vR, maxρ{V (ρ, wL)} =

V (0, wL) < vR, we let vM = V (0, wL). Otherwise, we always have vM = vR (see Figure 5).
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Thus, the solver (11) is rewritten as:



wM = wL,

vM = V (0, wL), if V (0, wL) < vR,

vM = vR, otherwise,

ρM, s.t. vM = V (ρM, wM).

(12)

The intuition behind this solver for the intermediate state is explained in more detail in the

next section.

From (10) and (12), the inflow of the jth cell is computed as:

F ρj−1/2 = min
{
S
(
ρkj−1, w

k
j−1

)
, R
(
ρkj−1/2, w

k
j−1

)}
, (13)

where ρkj−1/2 represents the intermediate density calculated from (12) given initial states ukj−1

and ukj . The outflow of the jth cell can be defined in the same way. The 2CTM is summarized

in Algorithm 1.

By comparing with the sending and receiving functions of the CTM (7), one notes that (i)

the sending function (10) depends only on the upstream traffic state uL, which is consistent

with the CTM; (ii) the receiving function depends on the intermediate density ρM (which

itself depends on the downstream speed vR and upstream property wL), and the upstream

property wL. It remains to provide a justification of the existence of the intermediate state

and an explanation of the dependence on the upstream property. These points are explored

in the next section.

2.2.4 Intermediate Traffic State

The existence of an intermediate state uM in the GSOM (3) can be understood as a conse-

quence of the interactions of vehicles with different properties w. Here, two adjacent cells (an

upstream cell and a downstream cell) with initial states uL and uR are studied. The traffic

flow through the cell interface is determined by the following rules:
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Algorithm 1 Second Order Cell Transmission Model

Current Time Step (t = k∆t): initial traffic states in cells j − 1, j, and j + 1: ukj−1 =(
ρkj−1, ρ

k
j−1w

k
j−1

)
, ukj =

(
ρkj , ρ

k
jw

k
j

)
, and ukj+1 =

(
ρkj+1, ρ

k
j+1w

k
j+1

)
.

Intermediate State: Calculate the intermediate densities ρkj−1/2 (between ukj−1 and ukj )

and ρkj+1/2 (between ukj and ukj+1) from (12):

ρkj−1/2 = argminρ

{
V
(
ρkj , w

k
j

)
− V

(
ρ, wkj−1

)}
,

ρkj+1/2 = argminρ

{
V
(
ρkj+1, w

k
j+1

)
− V

(
ρ, wkj

)}
.

Inflow and Outflow: the inflow and outflow of the jth cell are computed using (10) and
(13):

F ρj−1/2 = min
{
S
(
ρkj−1, w

k
j−1

)
, R
(
ρkj−1/2, w

k
j−1

)}
,

F ρj+1/2 = min
{
S
(
ρkj , w

k
j

)
, R
(
ρkj+1/2, w

k
j

)}
.

Next Time Step (t = (k + 1)∆t): the traffic density and the total property y = ρw are
updated to the next time step:

ρk+1
j = ρkj +

∆t

∆x

(
F ρj−1/2 − F

ρ
j+1/2

)
, yk+1

j = ykj +
∆t

∆x

(
wkj−1F

ρ
j−1/2 − w

k
jF

ρ
j+1/2

)
.

Finally, the property is obtained as wk+1
j = yk+1

j /ρk+1
j .

1. Downstream vehicles move out of way, which creates spaces for the upstream vehicles.

Vehicles never move backwards.

2. Upstream vehicles maintain their property when moving from one cell to another. As

a result, wM = wL.

3. Vehicles from the upstream cell drive as fast as possible, but not faster than the down-

stream vehicles. This means that vM = vR whenever possible. Otherwise, vM is chosen

such that the gap between the velocities is minimized, i.e., minρ {vR − vM(ρ)}, where

vM(ρ) = V (ρ, wM). Note vR depends on the downstream density and downstream prop-

erty, i.e., vR = V (ρR, wR).

4. Vehicles that flow through the cell interface with the property wL adjust their spacing

(density) to arrive the velocity vM determined from rule (3), which creates an interme-
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Figure 5: (a): upstream vehicles have the potential to match the downstream velocity, i.e., vR ≤
V (0, wL) or vR ≤ Q′(0, wL), in which case vM = vR and (b): the maximum possible velocity of
upstream vehicles is lower than the downstream velocity, i.e., vR > V (0, wL) or vR > Q′(0, wL). In
this case, let vM = V (0, wL) in order to minimize the gap to the downstream velocity.

diate density ρM, s.t., vM = V (ρM, wL).

These principles can be translated into the solver introduced in (11) and (12). One sees that

the solver for the intermediate state in the 2CTM is consistent with that of the Riemann

solver of the GOSM.

From the intuition to construct an intermediate traffic state, it is clear that the receiving

potential of the downstream cell is determined by both the space that the downstream ve-

hicles have created and the property of the upstream drivers. Considering an example that

the upstream drivers are quite passive, and in contrast, the downstream cell is filled with

aggressive drivers, then the receiving of vehicles depends not only on the amount of the space

that the downstream vehicles can generate (determined by uR), but also on the willingness

of the vehicles from the upstream cell to fill the free space (determined by wL). Therefore,

it is not surprising that the receiving function (10) is also a function of the property of the

upstream vehicles, which is different from the classical CTM.

22



2.2.5 A Multiple Model Framework for 2CTM

Next, a multiple model framework is proposed for the 2CTM by introducing the regime

variable µ to describe the number of open lanes. Thus, the flow through a cell interface is a

function of the regime variables of both the upstream and downstream cells. Following the

same updating equations as the 2CTM (9), the inflow and outflow are defined as:

F ρj−1/2 = min
{
S
(
ρkj−1, w

k
j−1, µ

k+1
j−1

)
, R

(
ρkj−1/2, w

k
j−1, µ

k+1
j

)}
,

F ρj+1/2 = min
{
S
(
ρkj , w

k
j , µ

k+1
j

)
, R

(
ρkj+1/2, w

k
j , µ

k+1
j+1

)}
,

where µk+1
j−1 and µk+1

j are the regime variables of the cells j − 1 and j at time t = (k + 1)∆t,

and the sending and receiving functions (10) are modified to include the regime variable. Here

ρkj−1/2 and ρkj+1/2 are the intermediate states (see Section 2.2.4). Generally, for two adjacent

cells with traffic states uL and uR, the sending and receiving functions are:

S (ρL, wL, µL) =

 ρLvL, if ρL ≤ µLρc(wL),

QwL
max(µL), if ρL > µLρc(wL),

R(ρM, wL, µR) =

 QwL
max(µR), if ρM ≤ µRρc(wL),

ρM(µR)vM(µR), if ρM > µRρc(wL),

(14)

where vL = V (ρL, wL, µL) is the upstream traffic velocity, ρM(·) and vM(·) are the density

and velocity of the intermediate state, and QwL
max(µL) and QwL

max(µR) are the maximum fluxes

corresponding to the following flux function:

Q(ρ, w, µ) = ρV (ρ, w, µ) .

For example, one can define a velocity function as:

v = V (ρ, w, µ) =

 vmax

(
1− ρ

µρ̃max

)
, if ρ ≤ µρc(w),

Qw
max

µ(ρc(w)−ρmax(w))
ρ−µρmax(w)

ρ , if ρ > µρc(w),
(15)
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where ρmax(w) = ρmax1ρmax2

wρmax1+(1−w)ρmax2
and ρc(w) = ρc1ρc2

wρc1+(1−w)ρc2
. Here, the model parameters

ρmax1, ρmax2, ρc1 and ρc2 are the upper and lower bounds of the jam density ρmax and the

critical density ρc, respectively, and ρ̃max defines the curvature of the FD in the freeflow

regime. All these parameters are defined with respect to a single lane, i.e., µ = 1, and

Qwmax = µρc(w)vmax

(
1− ρc(w)

ρ̃max

)
.

Moreover, µLρc(wL) and µRρc(wL) are the corresponding critical densities such that these

maximum fluxes are obtained. Note that ρc(wL) is the critical density with respect to the

flux function of a single lane, i.e., µ = 1. The maximum flows are calculated as:

QwL
max(µL) = µLρc(wL)V (µLρc, wL, µL) , QwL

max (µR) = µRρc(wL)V (µRρc, wL, µR) .

Next, the intermediate traffic density and velocity ρM and vM are computed via a modified

version of (12): 

wM = wL,

vM = V (0, wL, µR), if V (0, wL, µR) < vR,

vM = vR, otherwise,

ρM, s.t. vM = V (ρM, wM, µR),

(16)

where vR = V (ρR, wR, µR) is the velocity of the downstream vehicles.

Remark 2. In the definition of sending and receiving functions (14), the property is always

chosen as the upstream property wL. The sending function chooses the upstream regime

variable µL, and the receiving function selects the downstream regime variable µR.

2.3 A Multiple Model 2CTM on Road Network

In Section 2.2, a multiple model framework for the 2CTM based on the GOSM is presented

for a single road segment. It is desirable to generalize the model predictor to a road network

since all traffic problems are solved with respect a network that is composed of links and

junctions. In this case, a generalized Riemann problem is defined at each road junction. The

methodology to construct a unique admissible solution to the junction Riemann problem by
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applying the GOSM or 2CTM is introduced next.

The key to compute the network solution requires defining a solution to a generalized

Riemann problem at a junction located at x0. Let the spatial domain of each incoming link i

be given as xi ∈
(
−∞, x−0,i

)
and each outgoing link as xi ∈

(
x+

0,i,+∞
)

. Here, the point x−0,i

is the point on incoming link i which is immediately to the left of the junction at x0,i, and

x+
0,i is the point on outgoing link i immediately to the right of the junction. The junction

Riemann problem is given as:

 ρi

ρiwi


t

+

 ρivi

ρiwivi


x

= 0, ui(x, 0) =

 u−i if x < x−0,i,

u+
i if x > x+

0,i,
(17)

where ρi, wi and vi denote the density, property and velocity of vehicles on the ith link,

respectively, and ui(x, t) = (ρi(x, t), µi(x, t), ρi(x, t)wi(x, t)) is the traffic state, which is a

function of both position x and time t. Note that the regime variables µi are involved.

Moreover, u−i = (ρ−i , µ
−
i , ρ

−
i w
−
i ) and u+

i = (ρ+
i , µ

+
i , ρ

+
i w

+
i ) represent the constant initial data

of the Riemann problem, and µ−i and µ+
i are the regime variables on an incoming link and

an outgoing link.

The Rankine–Hugoniot conditions [24] are satisfied for piecewise constant solutions:

∑
i∈δ−

(ρivi)
(
x−0,i, t

)
=
∑
i∈δ+

(ρivi)
(
x+

0,i, t
)
,

∑
i∈δ−

(ρiviwi)
(
x−0,i, t

)
=
∑
i∈δ+

(ρiviwi)
(
x+

0,i, t
)
,

(18)

where δ− and δ+ are the sets of incoming links and outgoing links, respectively. These two

equations correspond to the conservation of mass ρ and conservation of the total property

y = ρw, respectively.

As pointed out in [20], condition (18) only is not sufficient to obtain a unique solution

for the Riemann problem of a junction when applying a second order traffic model. Hence,

additional conditions are necessary, such as: (i) a distribution parameter is specified that
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determines the priority rules of vehicles at a road junction, i.e.,

0 ≤ ai,j ≤ 1,
∑
j∈δ+

ai,j = 1, ∀i ∈ δ−, (19)

where ai,j is the percentage of vehicles from the ith incoming link that goes to the jth outgoing

link; (ii) the total flux is maximized; (iii) the travel time is minimized. There are several other

restrictions that are motivated by mathematical convenience in order to generate a unique

solution at a junction. In this study, the distribution rule and traffic flow maximization rules

are used.

In the framework of the GOSM, the quantity w represents a property of vehicles, and thus

an admissible solution to a junction problem should guarantee that the upstream vehicles

(vehicles from incoming links) preserve their property passing through a junction [24]. For

example, drivers keep their property when driving from link i to link j. Recall the Remark 1

that the GOSM collapses to the LWR model by assuming a constant property. Similarly, it is

shown later that forcing vehicles to retain their property when traveling through the junction

is essential when solving a junction problem using the GOSM. When this is true, the junction

problems are structurally similar to junction problems for the first order LWR model [10, 11]

(excluding the merge problem).

Next, three types of junctions that are most common on a road network are studied:

bottlenecks (e.g., lane drop), diverges (e.g., off–ramp), and merges (e.g., on–ramp).

2.3.1 Bottleneck: One Incoming Link and One Outgoing Link

A bottleneck is a simple network that involves two links i = 1 (incoming) and i = 2 (outgoing).

Figure 6 shows a sample bottleneck junction where number of lanes changes from four lanes

to three. The constant initial data for (17) is

u−1 = (ρ−1 , µ
−
1 , ρ

−
1 w
−
1 ), u+

2 = (ρ+
2 , µ

+
2 , ρ

+
2 w

+
2 ),
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f1
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Figure 6: Bottleneck junction.

where u1(·) and u2(·) are traffic states on link 1 and link 2.

Vehicles with different properties interact with each other, and an intermediate state uM

is generated at the downstream side of the junction, i.e., at x+
0,2 (see Section 2.2.4 for details).

One sees that the intermediate state has the same property as the upstream vehicles since

vehicles preserve their property, i.e., uM = (ρM, ρMw
−
1 ). Next, the junction problem is solved

between the states u−1 and uM, which have the same property w−1 . This is equivalent to a

junction problem for the LWR model.

The methodology to obtain a unique admissible solution to the junction problem applying

the LWR model is introduced in [10, 11]. In summary, one solves a maximization problem

max f

s.t. 0 ≤ f ≤ S1

(
ρ−1 , w

−
1 , µ

−
1

)
,

0 ≤ f ≤ R2

(
ρM, w

−
1 , µ

+
2

)
,

where f represents the realized flow across the junction, S1(·) is the sending function of link

1, and R2(·) represents the potential to receive vehicles on the link 2, which are defined in

(14). Here, the receiving function is a function of the intermediate density ρM obtained from

(16). Accordingly, the realized flow f∗ between the links is the minimum of the sending and

receiving functions:

f∗ = min
{
S1

(
ρ−1 , w

−
1 , µ

−
1

)
, R2

(
ρM, w

−
1 , µ

+
2

)}
.
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Based on the solver to the junction problem introduced in [10, 11], one obtains u∗1 = (ρ∗1, ρ
∗
1w
∗
1)

and u∗2 = (ρ∗2, ρ
∗
2w
∗
2). Note that w∗1 = w∗2 = w−1 . Then, an inverse problem is solved to obtain

the densities given flows. The rules to obtain a unique solution are introduced in [10, 11].

For strictly concave flux functions, each flow value may correspond to two distinct densi-

ties, for a fixed property w and regime variable µ. On road i, one solves for density ρ∗i given

flow f∗i as follows:

Q(ρ∗i , wi, µi) = f∗i , Q(ρ∗i , wi, µi) = ρ∗iVi(ρ
∗
i , wi, µi),

where wi and µi are the property quantity and the regime variable on road i, and Vi(·) is

the velocity function of the road i. For a given flow f∗i , two distinct density solutions may

generated. The unique density solution is selected from the following rules. For the ith

incoming link, the density solution belongs to domain Diin that is defined as

ρ∗i ∈ Diin =


{
ρ−i
}
∪
(
Λ(ρ−i ), µ−i ρmax(w−i )

]
, if 0 ≤ ρ−i ≤ µ

−
i ρc(w

−
i ),[

µ−i ρc(w
−
i ), µ−i ρmax(w−i )

]
, if µ−i ρc(w

−
i ) ≤ ρ−i ≤ µ

−
i ρmax(w−i ),

(20)

where ρ−i , w−i and µ−i represent the density, property and regime variable of the ith incoming

road, respectively, and ρc(·) and ρmax(·) are the critical density and the maximum density

that depend on w. Here, they are defined with respect to a single lane, i.e., µ = 1. Moreover,

Λ(·) is defined such that Q (ρ, w, µ) = Q (Λ(ρ), w, µ), for ρ ∈ [0, µρmax(w)]. For example,

Λ(0) = µiρmax(wi) on road i. Similarly, the unique density solution on the jth outgoing road

ρ∗j belongs to the domain Djout that is defined as

ρ∗j ∈ D
j
out =


[
0, µ+

j ρc(w
+
j )
]
, if 0 ≤ ρ+

j ≤ µ
+
j ρc(w

+
j ),{

ρ+
j

}
∪
[
0, Λ(ρ+

j )
)
, if µ+

j ρc(w
+
j ) ≤ ρ+

j ≤ µ
+
j ρmax(w+

j ),
(21)

where where ρ+
j , w+

j and µ+
j are the density, property and regime variable of the jth outgoing
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Figure 7: (a) is a diverge junction, and (b) is a merge junction.

road. In summary, the inverse problem that gives a unique solution is

Q
(
ρ∗i , w

−
i , µ

−
i

)
= f∗i , ρ∗i ∈ Diin, i ∈ δ−,

Q
(
ρ∗j , w

+
j , µ

+
j

)
= f∗j , ρ∗j ∈ D

j
out, j ∈ δ+,

(22)

where δ− and δ+ are the sets of incoming links and outgoing links, respectively, and Diin and

Djout are defined in (20) and (21).

Next, two initial boundary value problems are solved on each road segment to obtain weak

entropy solutions u1(x, t) and u2(x, t):

(ui)t + (viui)x = 0, i = 1, 2,

u1(x, 0) =

 u−1 , if x < x−0,1

u∗1, if x ≥ x−0,1

 ,

u2(x, 0) =

 u∗2, if x ≤ x+
0,2

u+
2 , if x > x+

0,2

 .

(23)
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2.3.2 Diverge: One Incoming Link and Two Outgoing Links

The initial value problem (17) of a diverge junction (see Figure 7a) uses the following constant

initial data:  u+
1 = (ρ+

1 , µ
+
1 , ρ

+
1 w

+
1 ),

u+
2 = (ρ+

2 , µ
+
2 , ρ

+
2 w

+
2 ),

u−3 = (ρ−3 , µ
−
3 , ρ

−
3 w
−
3 ).

where i = 1, 2 represent the two outgoing links, and i = 3 denotes the incoming link. Similar

to the bottleneck problem, the Riemann problem of a diverge junction can also be reduced

to the classical network problem for the LWR model.

The solver proceeds in two steps:

1. Two intermediate states uM
i =

(
ρM
i , ρ

M
i w

M
i

)
, i = 1, 2 are generated at the starting points

of two outgoing links, i.e., at the positions a1 and a2, with wM
1 = wM

2 = w−3 . Again, these

intermediate states exist because drivers with different properties (from the upstream

or incoming links) try to match the velocity of the downstream vehicles (the outgoing

links) at a junction.

2. A junction problem is solved with initial data uM
1 , uM

2 and u−3 . One sees that this is a

network problem based on the LWR model (see [10, 11] for detail) since the property

quantities are the same. The solutions are represented as u∗1, u∗2, and u∗3. In particular,

w∗1 = w∗2 = w∗3 = w−3 .

One refers to (16) to solve for the intermediate states in the first step. For the second step,

the allocation rule (19) is imposed to render a unique solution, as presented in [10, 11, 24].

For a diverge problem, the following maximization problem is solved (see Figure 8):

max (f1 + f2)

s.t. 0 ≤fi ≤ Ri
(
ρM
i , w

−
3 , µ

+
i

)
, i = 1, 2,

0 ≤f1 + f2 ≤ S3

(
ρ−3 , w

−
3 , µ

−
3

)
,

(24)

where Ri(·), i = 1, 2 are the receiving functions on the outgoing links (downstream), and

30



P

case (a)

f1 + f2 = f̃

f2 =
1−α

α
f1

R1

R2

f1

f
2

(a)

P

case (b)

f1 + f2 = f̃

f2 =
1−α

α
f1

R1

R2

f1

f
2

(b)

P

case (c)

f1 + f2 = f̃

f2 =
1−α

α
f1

R1

R2

f1

f
2

(c)

Figure 8: Maximization problem for diverge junction. Here, three cases (a), (b), (c) illustrate different
selections of priority rule. The points P that are marked blue–star represent the solutions which
maximize the inflow or outflow.
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S3(·) is the sending function from the incoming link (upstream) (16). Again, the receiving

functions are functions of the intermediate traffic densities ρM
i , i = 1, 2, and they depend on

the upstream property w−3 . This maximization problem is equivalent to

f̃ = max{f1 + f2} = min
{
R1

(
ρM

1 , w
−
3 , µ

+
1

)
+R2

(
ρM

2 , w
−
3 , µ

+
2

)
, S3

(
ρ−3 , w

−
3 , µ

−
3

)}
. (25)

Without the priority rules specified by (19), infinitely many solutions are generated that

satisfy:

f1 + f2 = f̃ , (f1, f2) ∈ Ω, (26)

where Ω = [0, R1

(
ρM

1 , w
−
3 , µ

+
1

)
]× [0, R2

(
ρM

2 , w
−
3 , µ

+
2

)
] ⊂ R2 (see the interval that is marked

with red color in Figure 8). Note that on this interval (26), flow is maximized. In particular,

the interval (26) shrinks to a single point if f̃ = R1 + R2, which is respect to the case when

R1 +R2 < S3.

Here, a distribution rule (19) is specified, where a3,1 is the percentage of vehicles from

link 3 that goes to link 1, and a3,2 represents the portion that goes to link 2. For notational

convenience, letting α = a3,1, and (1−α) = a3,2, a unique solution is obtained for each of the

three cases (see Figure 8) based on different priority rules. The priority rule is as follows:

f2

f1
=

(1− α)f̃

αf̃
=

1− α
α

= κ. (27)

Whenever possible, vehicles traveling through a diverge junction should follow the priority

rule (27). Note that the interval (26) at the point does not necessarily intersect with the

linear function defined by the priority rule. In these cases, the solution is selected on the

interval (26) that has the smallest distance to the line (27) (see Figs. 8b, 8c).

In case (a) (see Fig. 8a), the solution is the unique intersection

f∗1 =
f̃

1 + κ
, f∗2 =

κf̃

1 + κ
.
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In case (b) (see Fig. 8b), the solution is

f∗1 = f̃ −R2, f∗2 = R2.

In case (c) (see Fig. 8c), the solution is

f∗1 = R1, f∗2 = f̃ −R1.

In case (a) and case (b), the solution no longer follows the priority rule in order to maximize

the traffic flow. Instead, flow is maximized and the priority rule is obeyed [10]. Then, inverse

problem (22) is solved to obtain the densities ρ∗i given the flows f∗i .

Next, by applying the solutions of the junction problem to the Riemann problem defined

in (17), three initial value problems are solved on each road segment:

(ui)t + (viui)x = 0, i = 1, 2, 3,

ui(x, 0) =

 u∗i , if x ≤ x+
0,i

u+
i , if x > x+

0,i

 , i = 1, 2,

u3(x, 0) =

 u−3 , if x < x−0,3

u∗3, if x > x−0,3

 .

(28)

2.3.3 Merge: Two Incoming Links and One Outgoing Link

The initial value problem (17) for a merge junction (see Figure 7b) is defined using the

following constant initial data.

 u−1 =
(
ρ−1 , µ

−
1 , ρ

−
1 w
−
1

)
,

u−2 = (ρ−2 , µ
−
2 , ρ

−
2 w
−
2 ),

u+
3 =

(
ρ+

3 , µ
+
3 , ρ

+
3 w

+
3

)
,

where i = 1, 2 denote the incoming links, and i = 3 is the outgoing link. Mathematically,

merge problem is equivalent to the diverge problem for the LWR model [10, 11]. For the
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GOSM, there is an important distinction between these two types of junctions: the property

on the outgoing link is defined in an average sense, which depends on the flows from the two

incoming links, i.e.,:

w∗3 =
w−1 f1 + w−2 f2

f1 + f2
, (29)

where w∗3 represents the property on the outgoing link, and f1 and f2 are the flows from two

incoming links.

To see this distinction more clearly, one investigates the following maximization problem:

max (f1 + f2)

s.t. 0 ≤fi ≤ Si
(
ρ−i , w

−
i , µ

−
i

)
, i = 1, 2,

0 ≤f1 + f2 ≤ R3

(
ρM

3 , w
∗
3, µ

+
3

)
, with ρM

3 = ρM
3 (u+

3 , w
∗
3),

(30)

where the intermediate state ρM
3 (·) is computed from (16), which depends on both the down-

stream state u+
3 and the property of vehicles from the upstream wM

3 . Note that the maximiza-

tion problem (30) is a nonlinear optimization problem, since the receiving function depends

on w∗, which itself depends on f1 and f2. In this work, a different method is applied to obtain

a unique solution for the merge junction [24].

Based on the discussion in [24], the nonlinear optimization problem can be simplified to

a linear optimization problem by forcing the vehicles to follow the priority rule (19). Here,

the priority rule is recognized as a mixture rule that describes how vehicles of incoming links

mix when they enter the outgoing link. Let α be the percentage of vehicles from the first

incoming link, with α > 0, and (1 − α) be the portion of vehicles from the second incoming

link. The property on the outgoing link is given as

w∗3 = αw−1 + (1− α)w−2 , (31)

which is independent of the flows from two incoming links f1 and f2. Note that the mixture

rule in a merge problem must be satisfied, and therefore the flow is not necessarily maximized.
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Fixing the priority rule, the following linear optimization problem is solved:

max (f1 + f2)

s.t. f2 = κf1,

0 ≤fi ≤ Si
(
ρ−i , w

−
i , µ

−
i

)
, i = 1, 2

0 ≤f1 + f2 ≤ R3

(
ρM

3 , w
∗
3, µ

+
3

)
,

(32)

where κ is defined as (27), and ρM
3 is the intermediate state, where the property w∗3 is calcu-

lated by (31). The unique solution is therefore

f∗1 = min {S1, S2/κ,R3/(1 + κ)} , f∗2 = κf∗1 , f∗3 = (1 + κ)f∗1 . (33)

Next, the density solutions ρ∗i are obtained by solving the inverse problem (22). Moreover,

w∗1 = w−1 , w∗2 = w−2 , and w∗3 is determined by (31)

Similar to the diverge problem, the following initial value problems are solved:

(ui)t + (viui)x = 0, i = 1, 2, 3,

ui(x, 0) =

 u−i , if x < x−0,i

u∗i , if x ≥ x−0,i

 , i = 1, 2,

u3(x, 0) =

 u∗3, if x ≤ x+
0,3

u+
3 , if x > x+

0,3

 ,

(34)

where u∗1, u∗2, and u∗3 are the solutions to the merge junction problem. Next, an approximate

solver to network problems is developed based on the multiple model 2CTM. As shown in the

next section, only the f∗ and w∗ are necessary in the discrete formulation.

Remark 3. The solution does not necessarily maximize the flow. For instance, consider the

case there are no vehicles on the first incoming link. The physically meaningful solution that

maximizes the traffic flow has f∗1 = 0. By (29), one obtains w∗3 = w−2 , which contradicts (31).
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2.3.4 A Multiple Model Framework on a Road Network

In this section, the multiple model 2CTM on a road network is summarized.

Generally, one considers an incoming link i, where the cell adjacent to the junction is the

nth cell. The update equations for the nth cell on each link i is given by:

ρk+1
i,n = ρki,n +

∆t

∆x

(
F ρi,n−1/2 − f

∗
i

)
,

yk+1
i,n = yki,n +

∆t

∆x

(
wki,n−1F

ρ
i,n−1/2 − w

∗
i f
∗
i

)
.

(35)

where ρki,n and ρk+1
i,n are traffic densities of the cell i, at time t = k∆t and t = (k + 1)∆t,

respectively, and yki,n and yk+1
i,n are the associated quantities of total properties, e.g., yki,n =

wki,nρ
k
i,n, where wki,n represents the property of vehicles in the cell. Moreover, F ρi,n−1/2 is the

inflow of the cell i, and the outflow f∗i is the solution to the junction problem at the ith

incoming link. Furthermore, w∗i = wki,n, i.e., the property always follows that of the upstream

flow.

Similarly, for an outgoing link j, the evolution equations at the first cell of the jth outgoing

link are

ρk+1
j,1 = ρkj,1 +

∆t

∆x

(
f∗j − F

ρ
j,3/2

)
,

yk+1
j,1 = ykj,1 +

∆t

∆x

(
w∗jf

∗
j − wkj,1F

ρ
j,3/2

)
,

(36)

where f∗j and F ρj,3/2 are the upstream and downstream flows of the cell. The inflow f∗j and

the upstream property w∗j are the solutions of the junction problem. The solvers for a diverge

network and a merge network are summarized in Algorithm 2 and Algorithm 3, respectively.

2.4 A Hybrid State Estimation Problem

The challenges for solving the proposed hybrid state estimation problem are due to the non-

linearities and switching dynamics associated with the traffic model. In the past, a number

of techniques in the estimation community have been developed to solve hybrid estimation
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Algorithm 2 Network Solver: Diverge

Current Time Step (t = k∆t): initial traffic states in the initial cells of two outgoing links
(cell one for link one and link two), and the end cell (nth cell) of the incoming link three:
uk1,1 =

(
ρk1,1, µ

k
1,1, ρ

k
1,1w

k
1,1

)
, uk2,1 =

(
ρk2,1, µ

k
2,1, ρ

k
2,1w

k
2,1

)
, and uk3,n =

(
ρk3,n, µ

k
3,n, ρ

k
3,nw

k
3,n

)
.

Intermediate State: Two intermediate states uM
i,1 = (ρM

i,1, ρ
M
i,1w

M
i,1), i = 1, 2 are generated

at the left bounds of the first cells.

• Because vehicles conserve their property through the junction, one obtains wM
1,1 =

wM
2,1 = wk3,n.

• The intermediate densities ρM
1,1 (between uk3,n and uk1,1) and ρM

2,1 (between uk3,n and

uk2,1) are computed from (16):

ρM
1,1 = argminρ

{
V
(
ρk1,1, w

k
1,1, µ

k
1,1

)
− V

(
ρ, wk3,n, µ

k
3,n

)}
,

ρM
2,1 = argminρ

{
V
(
ρk2,1, w

k
2,1, µ

k
2,1

)
− V

(
ρ, wk3,n, µ

k
3,n

)}
.

Solve Junction Problem: A diverge junction problem is solved with initial data uM
1,1,

uM
2,1 and uk3,n. Here, (25) is solved, and f∗1 , f∗2 , and f∗3 are chosen to obey the priority rule

(27) as much as possible. Moreover, w∗1 = w∗2 = w∗3 = wk3,n.
Next Time Step (t = (k + 1)∆t): the traffic density and the total property y = ρw are
updated to the next time step:

• In cell one for link one and link two (outgoing links):

ρk+1
i,1 = ρki,1 +

∆t

∆x

(
f∗i − F

ρ
i,3/2

)
,

yk+1
i,1 = yki,1 +

∆t

∆x

(
w∗i f

∗
i − wki,1F

ρ
i,3/2

)
, i = 1, 2,

wk+1
i,1 = yk+1

i,1 /ρk+1
i,1 .

• In cell n for link three (incoming link):

ρk+1
3,n = ρk3,n +

∆t

∆x

(
F ρ3,n−1/2 − f

∗
3

)
,

yk+1
3,n = yk3,n +

∆t

∆x

(
wk3,n−1F

ρ
3,n−1/2 − w

∗
3f
∗
3

)
,

wk+1
3,n = yk+1

3,n /ρ
k+1
3,n .

• In all other cells: apply the multiple model 2CTM (see Section 2.2.5).
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Algorithm 3 Network Solver: Merge

Current Time Step (t = k∆t): initial traffic states in the end cells of link one and
link two, and the initial cell of the incoming link three: uk1,n1

=
(
ρk1,n1

, µk1,n1
, ρk1,n1

wk1,n1

)
,

uk2,n2
=
(
ρk2,n2

, µk2,n2
, ρk2,n2

wk2,n2

)
, and uk3,1 =

(
ρk3,1, µ

k
3,1, ρ

k
3,1w

k
3,1

)
.

Intermediate State: An intermediate state uM
3,1 = (ρM

3,1, ρ
M
3,1w

M
3,1) is generated at the left

bound of link three.

• By the mixture rule (19), one obtains wM
3,1 = αwk1,n1

+ (1− α)wk2,n2
.

• By (12), the intermediate density ρM
3,1 is generated

ρM
3,1 = argminρ

{
V
(
ρk3,1, w

k
3,1, µ

k
3,1

)
− V

(
ρ, wM

3,1, µ
k
3,1

)}
.

Solve Junction Problem: A merge junction problem is solved with initial data uk1,n1
,

uk2,n2
and uM

3,1. Here, (33) is solved for f∗1 , f∗2 , and f∗3 . Moreover, w∗1 = wk1,n1
, w∗2 = wk2,n2

,

and w∗3 = wM
3,1.

Next Time Step (t = (k + 1)∆t): the traffic density and the total property y = ρw are
updated to the next time step:

• In cells n for link one and link two (incoming links):

ρk+1
i,ni

= ρki,ni
+

∆t

∆x

(
F ρi,ni−1/2 − f

∗
i

)
,

yk+1
i,ni

= yki,ni
+

∆t

∆x

(
wki,ni−1F

ρ
i,ni−1/2 − w

∗
i f
∗
i

)
, i = 1, 2,

wk+1
i,ni

= yk+1
i,ni

/ρk+1
i,ni

.

• In cell one for link three (outgoing link):

ρk+1
3,1 = ρk3,1 +

∆t

∆x

(
f∗3 − F

ρ
3,3/2

)
,

yk+1
3,1 = yk3,1 +

∆t

∆x

(
w∗3f

∗
3 − wk3,1F

ρ
3,3/2

)
,

wk+1
3,1 = yk+1

3,1 /ρk+1
3,1 .

• In all other cells: apply the multiple model 2CTM (see Section 2.2.5).
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problems in the form of (1).

The multiple model particle filter (MMPF) [47] solves the hybrid state estimation problem

by allowing the system to have several models. It has a model transition step that describes

the switching dynamics of the system mode, and particles are generated for likely system

models. The idea of the MMPF is that if the state uk generated by a model variable µk

matches well with the measurements, then the estimator believes the system is operating

in model µ at time k. One central challenge for the MMPF to work in practice is due to

its large computational load. When a system has multiple models and some models have

very low probability of occurrence (e.g., system fault detection, traffic incident detection),

the estimation algorithm requires a large sample size so as to generate enough samples for

all possible models of the system. This will lead to a large computational load and possibly

prevent the algorithms from being implemented in real time. This problem is addressed by

[49], where a model–conditioned PF algorithm is proposed as an modification to the standard

MMPF. The computation time can be significantly reduced using this algorithm when a

hybrid state system contains rare modes.

Another group of the estimation techniques for solving the hybrid state estimation problem

exploits the multiple model (MM) approach and the Kalman filter. One of the widely used

approaches is the interactive multiple model (IMM) Kalman filter [7, 37, 43]. This method is a

model–conditioned Kalman filtering approach. It first computes the weights for all the models

of the hybrid system based on the switching probabilities among the models. Then, a Kalman

filter is performed on each model. The choice of the Kalman filter (e.g., extended Kalman

filter, EnKF, unscented Kalman filter) is problem dependent. The system state is estimated

by the estimation results from each model–conditioned Kalman filter and the weight of each

model computed by transitional probabilities among the system models.

Recently, the MMPF has been deployed for traffic state estimation and incident detection

in [51]. A multiple model particle filter is used to accommodate the nonlinearity and the

switching dynamics of the traffic incident model based on the scalar LWR traffic model. The

solution is a posterior distribution of system state u and system model µ. In this work, we
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apply the MMPF to the second order traffic flow model (3). The multiple model particle

filter algorithm proposed in [51] is summarized in Algorithm 4.

Algorithm 4 Multiple model particle filter [47]

Initialization (k = 0): generate M samples τ0
l and assign equal weights ζ0

l = 1/M , where
l = 1, · · · ,M
for k = 1 to kmax do

Regime transition: µkl = Π
(
µk−1
l

)
for all l

Prediction: ukl = F
(
uk−1
l , µkl

)
+ ηk−1 for all l

Measurement processing:
calculate the likelihood: p

(
zk|τkl

)
for all l

update weights: ζkl = ζk−1
l p

(
zk|τkl

)
for all l

normalize weights: ζ̂kl = ζkl /
∑M

l=1 ζ
k
l for all l

Resampling: multiply/ suppress samples τkl with high/ low importance weights ζ̂kl
Output: posterior distribution of uk and µk

Reassign weights: ζkl = 1/M for all l
k = k + 1

end for

Since the objective of the algorithm is to jointly estimate the traffic state uk and the

model variable µk, the algorithm defines an augmented state as τk = (uk, µk), which is to be

estimated.

The regime variable is modeled as a g state first-order Markov chain [47] with transition

probabilities defined by:

πed = p {µk = d|µk−1 = e} , e, d ∈ Γ, (37)

where the set Γ defines all possible incident conditions. The transition probability matrix is

defined as Π = [πed], which is a g × g matrix satisfying

πed ≥ 0 and

g∑
e=1

πed = 1. (38)

Equation (37) indicates the probability of the transition from one model to another. In

the traffic incident detection problem, it specifies how many lanes will likely be open at each
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time step.

The MMPF works as follows. First, the algorithm constructs an initial distribution of the

augmented system state τk based on the prior knowledge. Here, the notation l is used to index

the particles. At the initial time step, all the particles are assigned with equal weights. Then,

according to the transition probability and the model variable from the previous time step,

for each particle, the algorithm determines the model variable for the current time step. Next,

the model prediction step is performed to calculate the prior distribution of the system state

uk. This gives the prediction by the traffic model. When the measurement for the current

time step is obtained, the algorithm computes the likelihood of each particle and updates the

weight of each particle based on the computed likelihood and its previous weight. Finally,

the algorithm resamples the particles based on their weights. During resampling, if a particle

has a high weight, the algorithm will generate more of that particle, while particles with low

weights are removed from the sample set.

The idea of the MMPF is that if a particle is generated by the correct model for the

current time step, it should match well with the measurements received from the sensor.

Consequently, the particle will be assigned with high weight and treated more importantly in

the posterior distribution. Similarly, if a particle is generated by a wrong model, it will not

match with well the measurements, and be assigned with less weight. Then, after resampling,

the particle will be removed from the sample set.

2.5 Simulation Results Based on CORSIM

We test the MMPF (Algorithm 4) applied to a second order traffic flow model (3) through

a numerical experiment using CORSIM, where the true state is known. CORSIM is a mi-

croscopic traffic simulation software developed by the Federal Highway Administration [42],

which is constructed from car–following and lane switching models. This microscopic sim-

ulator is very different from the second order macroscopic traffic flow model used in the

estimation algorithm, and therefore provides a more realistic simulation platform to test the
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Figure 9: True evolution of the traffic density and the model variable.

algorithm.

To generate the true state to be estimated, a CORSIM simulation is performed on a 4

mile highway with a speed limit of 65 mph. The simulation time is one hour (180 30-second

timesteps). An incident is created in cell four, which is 1.36 miles from the starting point

of the highway. The incident starts 20 minutes after the simulation starts and lasts for 20

minutes (i.e. from time step 60 to time step 120 in the traffic model). The evolutions of the

traffic density and model parameter are shown in Figs. 9a and 9b.

Next, synthetic GPS measurements are created by extracting the trajectory data from

the CORSIM simulation. Various subsets of the vehicles are selected as probe vehicles, and

speed measurements are generated from these vehicles to simulate GPS measurements. In

this work, the penetration rate of GPS equipped vehicles is specified by adjusting the headway

between these vehicles.

In order to run the second order traffic flow model, the fundamental diagram shape and

parameters must be determined. Because the velocity function must be strictly decreasing

with respect to the density in the second order model, a piecewise quadratic fundamental
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diagram is selected:

Q(ρ, w, µ) =

 vmaxρ (1− ρ/µρ̄) if ρ ≤ µρc

a(w, µ)ρ2 + b(w, µ)ρ+ c(w, µ) if ρ ≥ µρc,
(39)

To calibrate the parameters of the fundamental diagram, a number of CORSIM simu-

lations were generated under a range of different traffic conditions. In each simulation, the

densities and speeds were recorded to simulate data available from an inductive loop detec-

tor. To fit this data, the parameters of the fundamental diagram were set as vmax = 65

mph, ρmax ranges from 235-245 vpm/lane, Qmax ranges from 2100 - 2700 vph/lane, and ρ̄

is 30000 vpm/lane. The large value of ρ̄ forces the quadratic function in free flow to closely

approximate a linear function. Finally, the parameters a, b, and c in (39) are a function of w

and can be determined by solving the following system of equations:


aµρmax(w)2 + bµρmax(w) + c = 0

− b
2a = µQw

max
vmax

4ac−b2
4a = µQwmax,

(40)

where ρmax(w) = wρmax1 + (1 − w)ρmax2 and Qwmax = wqmax1 + (1 − w)qmax2 Here, ρmax1

and ρmax2 are the upper and lower bounds of the maximum traffic density, qmax1 and qmax2

are the upper of lower bounds of the maximum flow in the second order traffic model. The

resulting fundamental diagram for the second order traffic model is shown in Figure 10 for

several values of w.

Several numerical experiments are run by implementing the MMPF on the second order

traffic model, and generating measurements uisng different headways between GPS vehicles.

In the numerical simulation, we run the proposed algorithm with 1000 particles. We assume

there is no incident with 99 percent probability, and there is only only incident at a time. All

incident models are equally likely. With these assumptions, the transitional probability can

be constructed. In CORSIM, the left boundary condition is set as 7000veh/hour and the right
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Figure 10: Calibrated fundamental diagrm for the second order traffic flow model.

boundary condition is set as free flow. In the estimation model, in left boundary condition is

set as 6900 +N (6900, 2002) and the right boundary condition is also set as free flow.

The simulation results are shown in Figure 11. The three rows separately show the estima-

tion results corresponding to GPS equipped vehicle headways of 10 seconds, 20 seconds, and

40 seconds. When the headway is 10 seconds, the estimation algorithm detects the incident

with good accuracy and correctly estimates the traffic state. However, as the penetration rate

decreases, the estimation accuracy also decreases. At lower penetrations, it becomes hard to

correctly estimate the traffic state and detect incidents. The density estimation error of the

three tests is illustrated in Figure 12.

Next, we compared the proposed algorithm to the traditional particle filter approach,

where a deterministic second order traffic model without any incident dynamics is used.

Figure 13 shows the estimation results when the headway between vehicles is 10 seconds.

Clearly, when the traditional second order model and particle filter are used, the resulting

traffic density estimate is poor, and the resulting congestion is completely missed. Adding

incident dynamics to the model can significantly improve the estimation performance.

Finally, the computation time of the proposed algorithm is assessed. All simulations were

performed on a Macbook pro, with 2.7 GHz Intel Core i7 processor and 4 GB memory. The
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Figure 11: Estimation results of the MMPF, probe vehicle headway 10 seconds (first row), probe
vehicle headway 20 seconds (second row), probe vehicle headway 20 seconds (third row).
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Figure 12: Estimated density error, probe vehicle headway 10 seconds (left), probe vehicle headway
20 seconds (center), probe vehicle headway 40 seconds (right).
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Figure 13: probe vehicle headway 10 seconds, estimated density (left), and estimation error (right).
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computation time for each of the three one-hour filtering runs is approximately 10 minutes,

which is about six times faster than real–time.

3 Heterogeneous Traffic Flow Model with Creeping

3.1 Classification of Multiclass Traffic Models

Consider a system of conservation laws model of multiclass traffic flow in a general framework

(ρj)t + (ρjvj)x = 0, j = 1, · · · , n,

vj = Vj (ρ) , with ρ = (ρ1, · · · , ρn) ,

(41)

which describes the conservation of vehicles for n vehicle classes indexed by j. Here, ρj =

ρj(x, t) is the traffic density of the jth class, which depends on both the location x and

time t, and Vj (·) is the corresponding velocity function, which is a function of the density

of each class. In the special case when n = 1, the system becomes the well-known LWR

model [38, 46], and the flux function Q(ρ) = ρV (ρ) is the so-called fundamental diagram

(e.g., [23, 48]). Thus, the model (41) can be interpreted as a multiclass extension of the

LWR model. The existing models for multiclass traffic flow that fit into framework (41) can

be classified based on their assumptions on the interaction rules of different vehicle classes

characterized by the specific form of the velocity functions Vj (·) (see Table 1).

3.1.1 Homogeneous Multiclass Models

When all velocity functions are identical, i.e., vj = V (ρ), (41) is a homogeneous multiclass

model since all vehicle classes follow the same kinematic behavior. These models are equivalent

to the Keyfitz–Kranzer system [30] arising in elasticity theory. It is noted that homogeneous

multiclass models are not strictly hyperbolic in general, with exceptions when n ≤ 2 [3, 30].

An example of a homogeneous multiclass model is the Logghe and Immers mode [40],

which relates different vehicle classes by a scaling factor known as a passenger car equivalent
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Model Velocity vj Overtaking Creeping

Homogeneous
Logghe & Immers [40] vj = V

(∑
i βiρi

)
no no

Daganzo [15] vj = V
(∑

i ρi
)

no no

Zhang & Jin [54] vj = V (ρ1, ρ2) no no

Heterogeneous

Ngoduy & Liu [45] vj = Vj

(
βj
∑

i ρi
)

freeflow no

with vj = V in congestion

Fastlane [50] vj = Vj

(∑
i βiρi

)
, freeflow no

with vj = V in congestion

Wong & Wong [52] vj = Vj

(∑
i ρi
)

yes no

Zhu et al. [57] vj = vmax
j V

(∑
i ρi
)

yes no

n–populations [3] vj = vmax
j V

(∑
i `iρi

)
yes no

Nair et al. [44] vj = pVc(s) + (1 − p)Vf(s), yes yes

p =
∫ sj
0
g(s)ds,

g(s) is distribution of s

Creeping model vj = Vj

(∑
i `iρi

)
, yes yes

with Vj(0) = vmax

Table 1: Classification of multiclass models according to the definition of velocity functions.

(PCE). Accordingly, each class is modeled with a scaled fundamental diagram with a constant

maximal speed, and the velocity function depends on a weighted sum of the densities of

all vehicle classes called the effective density. Hence, the velocity function is defined as

vj = V (
∑

i βiρi), where βi is the PCE applied to the ith class. A similar model of this form

is Daganzo’s 1-pipe special lane model [15]. Moreover, Zhang and Jin’s model [54] can be

treated as a special case of the Keyfitz–Kranzer system with n = 2.

Homogeneous multiclass models with n = 2 are also equivalent to a class of second order

models in the GOSM framework [34] when the velocity is a strictly decreasing function of

ρ1 and ρ2 (see Section 3.2). A primary limitation of homogeneous models is that they do

not allow one vehicle class to overtake another [3], which is an important feature for highly

heterogeneous flows. Consequently, the GOSM cannot model creeping (i.e., overtaking when

one vehicle class has stopped).
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3.1.2 Heterogeneous Multiclass Models

Many research efforts are devoted to the design of heterogeneous multiclass models by dis-

tinguishing Vj(·) for each class. The model by Ngoduy and Liu [45] characterizes vehicle

classes by their maximum velocities, and assumes that the freeflow velocity depends on a

PCE–scaled density, i.e., vj = Vj (βj
∑

i ρi), where βj is the PCE factor of the jth class. The

model uses the same velocity function for all classes in congestion. The Fastlane model [50]

also supposes that all vehicle classes have distinct velocity functions in freeflow but the same

function in congestion, however, it defines the velocity as a function of the effective density

(e.g., vj = Vj (
∑

i βiρi)). As a consequence, the Ngoduy and Liu and Fastlane models [45, 50]

allow overtaking in the freeflow regime, but not in congestion.

Wong and Wong [52] introduced a simplified heterogeneous multiclass model of the form

(41) that admits overtaking in freeflow and congestion. The velocity function of each class is

a function of the total density (e.g. vj = Vj (
∑

i ρi)) and they are distinct except at the jam

density. The model of Zhu et al. [57] also follows the same principle. Later, Benzoni–Gavage

and Colombo [3] introduced the n–populations model, which extended Wong and Wong’s

model [52] by explicitly taking the size of each vehicle class into account. Hence, the PCE

is chosen as the average length of each vehicle class `j . Instead of explicitly conserving the

number of vehicles, the system expresses conservation of the space occupied by each vehicle

class. Consequently, the velocity function depends on the total occupied space r =
∑

j `jρj ,

i.e., vj = Vj (r). As presented in [3], by substituting ρ̂j := `jρj in the n–populations model,

both models [3, 52] fit into the same mathematical framework

(ρ̂j)t + (ρ̂jvj)x = 0, j = 1, · · · , n,

vj = Vj(r), with r =

n∑
j=1

ρ̂j .
(42)

The models [3, 52, 57] suppose all vehicle classes either never stop [52], or stop at a common

maximum occupied space rmax (or equivalently an effective jam density), i.e., Vj(r
max) = 0,
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j = 1, · · · , n. In circumstances when the vehicles are highly heterogeneous in size, this as-

sumption may be violated. Indeed, one can observe that at a certain level of congestion, larger

vehicles such as cars and buses completely stop, while smaller vehicles such as motorcycles

continue to move through the gaps between the large vehicles. This creeping behavior can be

interpreted as a special lane which can only be used by small vehicles.

A heterogeneous multiclass model that allows for creeping is proposed by Nair et al. [44],

which also fits into the generic framework (42). In this model, the velocity of each vehicle

class is determined by the availability of empty spaces s (pores) for which vehicles of various

sizes compete. Letting sj represent a critical pore size for the jth class, vehicles may be in

freeflow (s ≥ sj) or congestion (s < sj) with velocity functions Vf(·) and Vc(·), respectively.

The overall velocity of the jth class is

vj = Vj (s) =

(∫ ∞
sj

g(ω)dω

)
Vf(s) +

(∫ sj

0
g(ω)dω

)
Vr(s), (43)

where g(·) is the probability density function of the pores sizes for a given time, and Vc(s) ≤

Vf(s). The creeping property is shown by numerical simulations for a flow with two vehicle

classes, but significant analytical results are missing due to the complexity of the model (43),

e.g., the density function g(s) evolves with time. Interestingly, the model [44] reduces to

homogeneous multiclass model when Vc(s) = Vf(s).

In this study, a two class heterogeneous model that exhibits creeping is proposed. To

understand the reason why second order traffic models (GOSM) are not suitable to model

creeping, a connection between the GOSM and the two class homogeneous multiclass traffic

model is established next.

3.2 Interpretation of the GOSM as a Two Class Homogeneous Multiclass

Model

As pointed out in [4, 17, 19], the GOSM [17, 34] (3) can be interpreted as a second order gen-

eralization of the LWR model, which allows for different vehicle properties such as aggressivity
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[16]. In the GOSM framework, vehicles with the property w adjust their spacing s = 1/ρ for

a given velocity level v, where ρ is determined such that v = V (ρ, w). An aggressive driver

tends to select a smaller space when traveling at the same speed as a passive driver.

Similarly, the various interaction behaviors among different classes in multiclass flow can

also be interpreted as an assignment of road space to vehicle classes [41]. Hence, it is possible

to link two class heterogeneous models with the ARZ model. Consider a multiclass flow that

is composed of cars (j = 1) and trucks (j = 2). By letting ρ = (ρ1 + ρ2) be the total density

and defining w = ρ1/ρ as the fraction of vehicles in the first class, the second equation in (3)

is simply a conservation law for the first class, i.e., y = ρw = ρ1. Note that it is equivalent to

set the property as the fraction of the second vehicle class, i.e., w = ρ2/ρ. Thus, the GOSM

(3) becomes

(ρ)t +
(
ρV (ρ, ρ1/ρ)

)
x

= 0,

(ρ1)t +
(
ρ1V (ρ1, ρ1/ρ)

)
x

= 0.

(44)

By subtracting the second equation from the first one in (44), one obtains Zhang and Jin’s

[54] homogeneous two class model

(ρ1)t +
(
ρ1Ṽ (ρ1, ρ2)

)
x

= 0,

(ρ2)t +
(
ρ2Ṽ (ρ1, ρ2)

)
x

= 0,

(45)

with Ṽ (ρ1, ρ2) = V (ρ1 + ρ2, ρ1/(ρ1 + ρ2)). Furthermore, one verifies that the requirement

∂ρV < 0 in the GOSM is met under a sufficient condition:

∂ρ1 Ṽ (ρ1, ρ2) < 0, and ∂ρ2 Ṽ (ρ1, ρ2) < 0. (46)

Thus, the GOSM is equivalent to a two class homogeneous multiclass model of the form (45)

under the condition (46). Note that v = V (ρ, w), w = ρ1/ρ generates a family of velocity

curves that is parametrized by the fraction of cars. As the fraction of cars increases for a

fixed total density ρ, the velocity curve shifts upwards.
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Based on the equivalent formulations established, one concludes that (i) similar as homo-

geneous multiclass models, the GOSM is not appropriate to capture creeping; and (ii) all the

analytical results of the GOSM (e.g., [2, 34, 53]) transfer over to the models of the general

form (45) provided the velocity function is monotonically decreasing in the total density. This

completes the mathematical analysis of homogeneous two class models, e.g., the Logghe and

Immers model [40]. This justifies the need for making distinctions in the velocity function

among different vehicle classes in order to model overtaking behavior including creeping.

3.3 A New Heterogeneous Model with Creeping

A new two class model is proposed under the framework (42) in terms of occupied space

ρ̂j = `jρj , which distinguishes rmax in each vehicle class. By allowing rmax to vary between

vehicle classes, the creeping phenomenon can be captured. For notational simplicity, let ρj

represent the occupied space of the jth class, instead of using ρ̂j in (42). Hence, r = ρ1 + ρ2

is the total occupied space. Suppose that the first class represents small creeping vehicles,

and the second class is composed of large vehicles.

The new model is posed as a phase transition model [6, 12, 13] that considers two phases:

a non-creeping phase and a creeping phase, which are defined as follows

D1 =
{

(ρ1, ρ2) ∈ R2 | ρj ≥ 0, j = 1, 2; 0 < ρ1 + ρ2 ≤ rmax
2

}
,

D2 =
{

(ρ1, ρ2) ∈ R2 | 0 ≤ ρ2 ≤ rmax
2 ; rmax

2 ≤ ρ1 + ρ2 ≤ rmax
1

}
.

In D1, the model is a system of conservation laws, where the dynamics of both vehicle classes

can be studied. In D2, the large vehicles are stationary at a time t, and thus the density

remains unchanged, i.e., (ρ2)t = 0. In this case, the system reduces to the LWR model for

ρ1 with possibility of discontinuous fluxes in space, which correspond to shock profiles of ρ2.

Thus, D2 represents a creeping phase, and D1 is a non-creeping phase (see Figure 14(b)). The

domain D of the model (48) is defined as a union of D1 and D2:

D =
{

(ρ1, ρ2) ∈ R2 | 0 ≤ ρj ≤ rmax
j , j = 1, 2; 0 < ρ1 + ρ2 ≤ rmax

1

}
, (47)
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Figure 14: (a) Velocity functions of the creeping model (51). Here, the solid-gray line represents the
velocity of the first vehicle class, and the dashed-blue line is the velocity of the second vehicle class.
(b) The domain of the creeping model (51).

which has a trapezoidal shape. Note that the vacuum is excluded from D.

The model is written as

 (ρ1)t +
(
ρ1V1 (r)

)
x

= 0,

(ρ2)t +
(
ρ2V2 (r)

)
x

= 0,
if (ρ1, ρ2) ∈ D1,

 (ρ1)t +
(
ρ1V1 (r)

)
x

= 0,

with (ρ2)t = 0,
if (ρ1, ρ2) ∈ D2,

(48)

where a phase change is defined between D1 and D2.

Here, the velocity functions Vj(·), j = 1, 2 have the following properties

V ′j (r) < 0, Vj(0) = vmax, V1(rmax
1 ) = V2(rmax

2 ) = 0, rmax
2 < rmax

1 < 2rmax
2 , (49)

where rmax
j are the maximum occupied spaces. Moreover, assume that the velocity functions

are strictly decreasing, and both vehicle classes possess a common maximal speed vmax (see

Figure 14(a)). The latter assumption is valid when the maximum velocities of different vehicle

classes are restricted by a speed limit achievable by both classes. The condition rmax
1 < 2rmax

2
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is a realistic condition on the maximum occupied space that simplifies the mathematical

analysis.

Remark 4. The phase transition models [6, 12, 13] apply a scalar conservation law in freeflow,

and a system of conservation laws in congestion. In the creeping model (51), a scalar model

is employed in the creeping phase, and a system of conservation laws is applied in the non-

creeping phase.

Based on the assumptions in (49), one may propose various velocity functions to gener-

ate multiclass fundamental diagrams, such as Drake’s exponential model, the smooth three-

parameter model [19], or Greenshields model [23]. Note that some of these models may

generate intersections between velocity curves for r > 0, which causes a loss of strict hyper-

bolicity away from the vacuum. This can be avoided depending on the choice of the free

parameters in each model. For simplicity, the linear Greenshields model is used:

V1(r) = vmax(1− r/rmax
1 ), V2(r) = vmax(1− r/rmax

2 ). (50)

The model (48) with Greenshields velocity functions (50) is written as



 (ρ1)t +
(
ρ1v

max(1− (ρ1 + ρ2)/rmax
1 )

)
x

= 0,

(ρ2)t +
(
ρ2v

max(1− (ρ1 + ρ2)/rmax
2 )

)
x

= 0,
if (ρ1, ρ2) ∈ D1,

 (ρ1)t +
(
ρ1v

max(1− (ρ1 + ρ2)/rmax
1 )

)
x

= 0,

with (ρ2)t = 0,
if (ρ1, ρ2) ∈ D2.

(51)

By observing Figure 14(a), it is clear that the two velocity profiles only intersect at

the vacuum. As shown later, this simplifies the analysis of the creeping model compared to

intersections elsewhere in the domain. Because the velocity functions are linear, the deviation

between the two velocity functions strictly increases with r. Alternative velocity functions

may be considered to provide more control over the deviations and to potentially improve

the predictive capabilities of the model. Moreover, one sees that the Greenshields model (50)
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generates a negative velocity for the second vehicle class for r > rmax
2 . The creeping model

(51) successfully excludes the presence of this nonphysical negative velocity by applying a

phase transition.

Remark 5. Another approach one may consider to avoid negative velocity in the second vehicle

class while avoiding the need to pose the creeping model as a phase transition model is to

redefine the velocity function as

Ṽ2(r) =

 V2(r), if r ≤ rmax
2 ,

0, if rmax
2 < r ≤ rmax

1 .

This approach is penalized by the loss of strict hyperbolicity for r > rmax
2 .

Note that (51) also reduces to the LWR model in the sub-domain D3 = D1 ∩
(
{ρ1 = 0} ∪

{ρ2 = 0}
)
, when one vehicle class is absent. Accordingly, it is natural to use an LWR model

in D3, and to define phase transitions between D3 and other domains. However, this ap-

proach significantly increases the complexity in constructing Riemann solutions among dif-

ferent phases. Moreover, it is unnecessary since the creeping model (51) is strictly hyperbolic

in D1, and as shown in Section 3.4.4, it is consistent with the LWR model in D3.

3.4 Model Analysis

The ultimate goal of the analysis is to show that (51) is well-posed in D, and that the solution

is physically meaningful. In D2, the creeping model is rewritten as

(ρ1(x, t))t +
(
f1(ρ2(x), ρ1(x, t))

)
x

= 0, (52)

where the flux function f1 = ρ1v
max(1 − (ρ1 + ρ2)/rmax

1 ) is smooth in ρ1 and ρ2, and ρ2(x)

is a bounded piecewise smooth function with a finite number of discontinuities. The well-

posedness of a scalar conservation law model in the form of (52) is established in [26, 27].

Thus, it remains to analyze the creeping model (51) in D1.
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In D1, well-posedness of a system of conservation laws is shown in a general approach that

is based on constructing a solution to the Riemann problem for (51) with piecewise constant

initial data

u(x, 0) =

 u+, if x > 0,

u−, if x < 0,
(53)

where u− =
(
ρ−1 , ρ

−
2

)
and u+ =

(
ρ+

1 , ρ
+
2

)
are initial states. Based on the Riemann solver,

the existence theory follows from Glimm’s random choice method [21, 39] and the wavefront

tracking algorithm [1, 8, 9]. These techniques both require a strictly hyperbolic system of

conservation laws. As a result, a first and key issue is to establish the hyperbolicity of the

creeping model (51) in D1.

3.4.1 Hyperbolicity of the Creeping Model in D1

The conservation laws system in D1 is rewritten in a compact form

ut + f(u)x = 0,

where u = (ρ1, ρ2) is the vector of occupied space by class, and f =
(
ρ1V1(r), ρ2V2(r)

)
is the

flux function. The Jacobian is calculated as

A = ∂f(u) =

 V1 + α1 α1

α2 V2 + α2

 , (54)

where α1 = ρ1V
′

1 , and α2 = ρ2V
′

2 . Strict hyperbolicity of (51) in D1 is established in the

following lemma.

Lemma 1. The creeping model (51) is strictly hyperbolic in D1.

Proof. The model is strictly hyperbolic if and only if the Jacobian has two distinct eigenvalues.
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The characteristic polynomial of A is:

P (λ) = det (A− λI) = λ2 − (κ1 + κ2)λ+ κ1κ2 − α1α2,

where κj = vj + αj , and αj ≤ 0, j = 1, 2. It is easy to see that P always has two real roots

because

δ = (κ1 − κ2)2 + 4α1α2 ≥ 0,

thus, the system is hyperbolic. The only possibility to lose strict hyperbolicity is when δ = 0,

which occurs when α1 = 0 and V1 = κ2, or α2 = 0 and V2 = κ1. These conditions hold only

at the vacuum point, which does not belong to D1. Thus, λ1 and λ2 are distinct in D1, and

the creeping model (51) is strictly hyperbolic in D1.

Remark 6. Lemma 1 also holds for creeping models with velocity functions satisfying the

conditions in (49).

Furthermore, the characteristic speeds of (51) in D1 are

λ1 = 0.5
(
κ1 + κ2 −

√
δ
)
, λ2 = 0.5

(
κ1 + κ2 +

√
δ
)
, (55)

where λ1 < λ2. The left and right eigenvectors associated to each eigenvalue λ are

`λ =

 1
V1−λ

1
V2−λ

 , γλ =

 α1
V1−λ

α2
V2−λ

 . (56)

The next lemma establishes that the creeping model (51) is anistropic.

Lemma 2. The characteristic speeds (55) are bounded above by the fastest vehicle class:

max {λ1, λ2} ≤ max {V1, V2} .

57



Proof. From (55) and the fact that αj ≤ 0, j = 1, 2, the bound for λ1 is given as

λ1 ≤ min {κ1, κ2} ≤ min {V1, V2} ≤ max {V1, V2} .

For the second characteristic, one checks that

P
(
max {κ1, κ2}

)
≤ 0, and P

(
max {V1, V2}

)
≥ 0.

By the intermediate value theorem, the bound for λ2 is established:

max {κ1, κ2} ≤ λ2 ≤ max {V1, V2} . (57)

Both λ1 and λ2 are bounded above by max {V1, V2}.

3.4.2 Property of the Characteristic Fields

Next, it is shown that the hyperbolic system (51) fits the Lax framework [31] in D1. This

is crucial for the construction of solutions to the Riemann problem, since it implies that the

Riemann solver consists of simple waves (or elementary waves). By the definition of Lax [31],

one needs to check that both characteristic fields
(
λ (u) , γλ (u)

)
are either genuinely nonlinear

(∇λ (u) · γλ (u) 6= 0), or linearly degenerate (∇λ (u) · γλ (u) = 0) for all u in D1. Here, ∇λ

denotes the gradient of the function λ (u). The following lemma verifies that the creeping

model (51) is a Lax system in D1.

Lemma 3. Both characteristic fields of (51) are genuinely nonlinear in D1.

Proof. The proof follows the procedure outlined in [3]. Instead of evaluating ∇λ · γλ directly,

one defines ϕλ(γλ) as

ϕλ(γλ) = `λ · ∇2f(u) · (γλ, γλ) = (∇λ · γλ) (`λ · γλ) ,
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and checks whether ϕλ(γλ) is non zero, since (`λ · γλ) 6= 0. One calculates ϕλ as

ϕλ(γλ) = vmax/rmax
1 (λ− V2)

((
γ

(1)
λ

)2
+ γ

(1)
λ γ

(2)
λ

)
+ vmax/rmax

2 (λ− V1)

((
γ

(2)
λ

)2
+ γ

(1)
λ γ

(2)
λ

)
,

where γ
(1)
λ and γ

(2)
λ denote entries of the eigenvector γλ, i.e., γλ =

(
γ

(1)
λ , γ

(2)
λ

)
.

For the slower characteristic λ1, it is clear that γ
(1)
λ1
γ

(2)
λ1
≥ 0 for the eigenvector γλ1 in (56).

Moreover, from Lemma 2, one sees that ϕλ1 < 0 in D1. Thus, the first characteristic field is

genuinely nonlinear in D1.

For the faster characteristic λ2, ϕλ is rewritten as

ϕλ2(γλ2) = (γ
(1)
λ2

+ γ
(2)
λ2

)
(
vmax/rmax

1 γ
(1)
λ2

(λ2 − V2) + vmax/rmax
2 γ

(2)
λ2

(λ2 − V1)
)
.

Thus, ϕλ2 vanishes if and only if

γ
(1)
λ2

+ γ
(2)
λ2

= 0, or vmax/rmax
1 γ

(1)
λ2

(λ2 − V2) + vmax/rmax
2 γ

(2)
λ2

(λ2 − V1) = 0. (58)

The first equality in (58) implies κ2 + α1 − κ1 − α2 = 0, which holds when V1 = V2. This

implies that the second characteristic is genuinely nonlinear except at the point where two

velocities coincide, i.e., at the vacuum.

Furthermore, the second equality of (58) gives

λ2 =
κ2V1 + κ1V2

V1 + V2
. (59)

Based on (57), it is clear that λ2 ≥ max {κ1, κ2}. In contrast, (59) implies

λ2 =
κ2V1 + κ1V2

V1 + V2
≤ max {κ1, κ2} ,

so

λ2 =
κ2V1 + κ1V2

V1 + V2
= max {κ1, κ2} . (60)
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This further implies κ1 = κ2, in order for the second equality in (60) to hold. Moreover,

by (55), λ2 = max {κ1, κ2} implies α1α2 = 0. One solves for κ1 = κ2, and α1α2 = 0. The

solution also lies at the vacuum. All together, ϕλ2 = 0 holds only at the vacuum, which is

not in D1. Hence, the second characteristic field is also genuinely nonlinear in D1.

3.4.3 Elementary Waves

Lemma 3 implies that the Riemann solution of the creeping model can be constructed from

shocks or rarefactions in D1. To construct a Riemann solver, one needs to investigate the

geometries of Lax curves [31].

The Lax shock curves are computed from the Rankine–Hogoniot condition:

σ(u+ − u−) = f(u+)− f(u−), (61)

where σ ∈ R is the speed of the shock. To obtain an admissible solution in the presence of a

shock, the Lax entropy condition [31] should be met:

λj
(
u+
)
≤ σj ≤ λj

(
u−
)
, j = 1, 2, (62)

where λj and σj are the characteristic and the shock speed of the jth family.

The Lax rarefaction curves are the integral curves of the eigenvectors. Note that one can

choose various eigenvectors. For simplicity, consider those introduced in [3]:

γλ1 =

 λ1 − κ2 + α1

λ1 − κ1 + α2

 , γλ2 =

 −λ2 + κ2 + α1

λ2 − κ1 − α2

 . (63)

By Lemma 2, one sees that

γ
(1)
λ1
≤ 0, γ

(2)
λ1
≤ 0; γ

(1)
λ2
≤ 0, γ

(2)
λ2
≥ 0. (64)
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Figure 15: Lax shock curves starting at u0 ∈ D1. (a) illustrates the case when u0 is interior of D1.
(b) shows the case with u0 on the ρ2-axis. (c) corresponds to the case with u0 on the ρ1-axis. In (a),
the curves with r > ρ01 + ρ02 are marked as red, and those with r < ρ01 + ρ02 are in blue color. In (b)
and (c), 1–shock curves (squared-gray) remain in D3, and 2–shock curves (solid-red) are convex and
monotonic.
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Geometry of the Lax Shock Curves From the Rankine–Hogoniot condition (61), Lax

shock curves starting from an initial state u0 = (ρ0
1, ρ

0
2) are

ρ1 (V1 − σ) = ρ0
1

(
V 0

1 − σ
)
, ρ2 (V2 − σ) = ρ0

2

(
V 0

2 − σ
)
, (65)

where V 0
1 = V1

(
ρ0

1 + ρ0
2

)
and V 0

2 = V2

(
ρ0

1 + ρ0
2

)
. By solving for σ in the first equation of

(65), and substituting it into the second equation, (65) is rewritten as

ρ2

(
(ρ1 − ρ0

1)V2 −
(
ρ1V1 − ρ0

1V
0

1

))
= ρ0

2

(
(ρ1 − ρ0

1)V2 −
(
ρ1V1 − ρ0

1V
0

1

))
. (66)

Thus, Lax shock curves starting at u0 are represented as

H(u0) =
{

(ρ1, ρ2) ∈ R2 | s.t. (66) holds
}
.

If u0 ∈ D1 \ D3, (66) is a hyperbola, which is convex and monotonic in the interior of D1.

Moreover, 1–shock curves are strictly increasing, while 2–shock curves are strictly decreasing

that exit from the ρ1-axis (see Figure 15(a)).

When u0 ∈ D3, e.g., on the ρ2-axis, (66) implies either ρ1 = 0, or σ = V1. In the former

case, (66) reduces to the Rankine–Hogoniot condition for an LWR model applied to the second

vehicle class. This is a 1–shock curve that coincides with the ρ2-axis. In the latter case, the

shock speed is the same as the velocity of the first vehicle class σ = V1. The hyperbola (66)

for 2–shock curves becomes

(rmax
2 − rmax

1 ) ρ2 (ρ1 + ρ2)− rmax
2 ρ0

2 (ρ1 + ρ2) + rmax
1 ρ0

2

(
ρ0

1 + ρ0
2

)
= 0,

which is convex, monotonic, and exits from the boundary ρ2 = 0 (see Figure 15(b)). The

analysis of the case when u0 is on the ρ1-axis follows the same process, in which 1–shock

curves coincide with the ρ1-axis, and 2–shock curves are convex and monotonic, which exit

from the boundary ρ1 = 0 (see Figure 15(c)).
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Geometry of the Lax Rarefaction Curves The lemma below gives the properties for

the Lax rarefaction curves.

Lemma 4. (i) the Lax rarefaction curves of (51) defined by (63) are monotonic and convex

in D1\D3; moreover (ii) the 1–rarefaction curves are monotonically increasing, while the

2–rarefaction curves are monotonically decreasing in D1\D3; and (iii) in D3, 1–rarefaction

curves coincide with the ρ1-axis and ρ2-axis. In contrast, 2–rarefaction curves only coincide

with the ρ2-axis.

Proof. First, the monotonicity of the Lax rarefaction curves follows from (64). To show the

concavity properties of the rarefaction curves, it is noted that the curvature of an integral

curve is positively proportional to γλj ∧ (∇γλj · γλj ) [3], where “ ∧ ” represents the exterior

product. One calculates that

γλj ∧ (∇γλj · γλj ) =
2(a1 − a2)

(λj − V2)γ
(1)
λj

+ (λj − V1)γ
(2)
λj

(λj − V1)γ
(1)
λj
γ

(2)
λj

(
γ

(1)
λj

+ γ
(2)
λj

)
.

Here, aj = vmax/rmax
j , and a1 < a2 by (49). Moreover, one checks that in D1

γλj ∧ (∇γλj · γλj ) ≤ 0, j = 1, 2. (67)

By the definition of the eigenvectors (64), one sees the curvature center of each integral curve

lies above the integral curve, which implies that the rarefaction curves are convex.

Moreover, these curves have zero curvature if the equality in (67) holds:

γ
(1)
λj

+ γ
(2)
λj

= 0, or λj = V1, or γ
(1)
λj

= 0, or γ
(2)
λj

= 0. (68)

For the 1–rarefaction curves, the conditions in (68) are equivalent to

ρ1 = 0, ρ2 > 0, or ρ2 = 0, ρ1 > 0.

In other words, 1–rarefaction curves starting from a point in D3 remain in D3.
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For the 2–rarefaction curve, the equality λ2 = V1 in (68) gives ρ1 = 0, ρ2 > 0, and the

other equalities in (68) are not possible for the creeping model (51) in D1. Thus, the 2–

rarefaction curves starting from a point lying on the ρ2-axis coincide with the ρ2-axis. When

starting from a point on the boundary ρ2 = 0, the rarefaction curves are convex, monotonic,

and exit the boundary ρ1 = 0.

Based on the discussion in previous sections, the properties of the Lax curves in D1 have

been established. To assure admissible solutions, the Lax entropy condition (62) must be

satisfied for shock and rarefaction solutions [3, 55]. In particular, the total occupied space r

increases along a shock curve, i.e., ρ−1 +ρ−2 < ρ+
1 +ρ+

2 . In contrast, rarefaction curves connect

a higher r at the upstream to a lower one on the downstream, i.e., ρ−1 +ρ−2 > ρ+
1 +ρ+

2 . Hence,

the Lax curves that violates the entropy condition are truncated. For instance, 2–shock curves

starting at the boundary ρ2 = 0 connect to smaller r values (see Figure 15(c)), thus, these

curves are not admissible.

The investigation of the elementary waves is completed by studying the Lax curves in the

creeping phase D2. In this case, the creeping model reduces to an LWR model for the first

vehicle class, and ρ2 is stationary. Thus, in the ρ2 vs. ρ1 plane, the characteristic curves are

parallel to the ρ1-axis.

3.4.4 Riemann Solver in D

Recall that the Riemann problem is the building block to construct a weak solution to the

Cauchy problem for hyperbolic conservation laws. Due to the difficulty to obtain the Rie-

mann invariant [8, 31, 32] associated with each characteristic field in heterogeneous multiclass

models, it is extremely difficult to construct an explicit Riemann solver [3, 55]. Alternatively,

the existence and uniqueness of a solution to the Riemann problem is established based on

the existing theories. Moreover, as shown later in Section 3.5.1, the lack of an exact Riemann

solver does not cause a problem in the numerical solver.

Following the standard theory for hyperbolic conservation laws, a general solution to the
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Riemann problem with piecewise constant initial states (53) is defined by first connecting the

left state u− to an intermediate state u* with curves of the first family (1–Riemann invariant

is constant along 1–Lax curves), and then connecting u* to the right state u+ with curves of

the second family (2–Riemann invariant is constant along 2–Lax curves).

When both initial states are in D1, one constructs a unique Riemann solution based on

the structure of the Lax curves [31]. Here, it is important to verify that the solutions are

physically meaningful. In D3, an example that gives non-physical solutions is considered in the

n–populations model [3]. Given an initial condition with no vehicles of the second type, the

solution to the Riemann problem produces an intermediate state (ρ*
1, ρ

*
2) with the presence

of the second class, i.e., ρ*
2 > 0. This is clearly incorrect because the second vehicle class

appears in the solution when initially it did not exist. The correct solution should be ρ*
2 = 0,

and the Riemann solution should be consistent with the LWR model. The issue illustrated

in this example [3] is due to the loss of strict hyperbolicity in the n–populations model.

One verifies that the creeping model (51) is consistent with the LWR when only one vehicle

class is present. Based on the investigations of the geometry of Lax curves in Section 3.4.3,

1–Lax curves remain in D3. Therefore, it is clear that Riemann solutions are consistent with

those of the LWR model.

When u− and u+ are in D2, a Riemann problem for the LWR model is solved (see e.g.,

[36]). Thus, to complete the Riemann solver in D, it remains to define a solution for phase

transitions between D1 and D2. Consider the Riemann problem (53) with u− ∈ D2, and

u+ ∈ D1. In order to construct a Riemann solution with phase transition, one needs to find

intermediate states u∗ based on the elementary waves. Thus, a Riemann solution with two

intermediate states is defined:

1. A phase transition is defined by connecting u− = (ρ−1 , ρ
−
2 ) to the phase boundary

ρ1 + ρ2 = rmax
2 along a curve that is parallel to the ρ1-axis. It is a rarefaction curve

in the conservation equation for the first vehicle class. This intermediate state can be

solved explicitly as u*
1 = (rmax

2 − ρ−2 , ρ
−
2 ).
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2. The second intermediate state u∗2 is constructed for a hyperbolic system with two initial

states u∗1, u+ ∈ D1.

The construction of a Riemann solution with u+ ∈ D2, and u− ∈ D1 follows the same

procedure.

3.4.5 Invariance of D

To guarantee a physical Riemann solution [2], one verifies that D (47) is an invariant region

for the Riemann problem. For convenience, the invariance of the two subdomains D1 and D2

is shown, and then the cases in the presence of a phase transition are considered.

First, it is easy to check that D1 is invariant since the creeping model (51) meets the

sufficient conditions proposed by Hoff [25].

Second, the domain D2 is invariant. This is because the Lax curves in D2 are parallel

to the ρ1-axis, and thus Riemann solution remains in D2 given both initial states in D2.

Finally, in the presence of a phase transition, the Riemann solution also remains in D (see

Section 3.4.4). It is concluded that D is invariant.

Remark 7. The invariance of D excludes the appearance of an intermediate vacuum state,

which exists for example in the ARZ model [2, 17].

By the Riemann solver described in Section 3.4.4, the Riemann solution always depends

continuously on the initial data, even with the presence of phase transitions. Therefore, it can

be verified that the size of the wave that connects two initial states
∑

(u−, u+) of a Riemann

problem is bounded

c · ‖u+ − u−‖ ≤
∑

(u−, u+) ≤ C · ‖u+ − u−‖, (69)

where c and C are given constants.

Next, the well-posedness of the Cauchy problem for the creeping model in D is established.
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3.4.6 Cauchy Problem

Following the theories of phase transition models in [6, 12, 13], a weak solution to the Cauchy

problem of the system (51) is defined following a standard formulation. In particular, the

fluxes on the left and right states are defined when there is a phase change:

f− =


∑

j ρ
−
j Vj(ρ

−
1 + ρ−2 ), if (ρ−1 , ρ

−
2 ) ∈ D1

ρ−1 V1(ρ−1 + ρ−2 ), if (ρ−1 , ρ
−
2 ) ∈ D2

,

f+ =


∑

j ρ
+
j Vj(ρ

+
1 + ρ+

2 ), if (ρ+
1 , ρ

+
2 ) ∈ D1

ρ+
1 V1(ρ+

1 + ρ+
2 ), if (ρ+

1 , ρ
+
2 ) ∈ D2

,

where the Rankine–Hogoniot condition (61) must be satisfied:

σ ·

∑
j

ρ+
j −

∑
j

ρ−j

 = f+ − f−.

The existence of an admissible solution to the Cauchy problem of the creeping model

(51) is proved by a standard wavefront tracking procedure [1, 8, 9]. Here, a sketch of the

proof is provided. Given a piecewise constant initial state with small total variation, the

front tracking algorithm defines a sequence of piecewise constant approximations (uk)k>1

by piecing together Riemann solutions at each interface where two fronts interact for each

time step. Based on (69), one sees that the total variation of uk(·, t) is bounded uniformly

for arbitrary initial states with small total variation. Finally, following the Glimm scheme

[21, 39], one can construct a subsequence of approximation solutions that converges to a

unique admissible weak solution, which depends continuously with initial data in D.

3.4.7 Vacuum Problem

The mathematical analysis of the previous sections is restricted to D, which excludes the

vacuum. In practice, vacuum initial states are physically meaningful, e.g., the downstream

of a red traffic light is empty. Thus, an appropriate model should define a solution to the
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Riemann problem with an initial state or both initial states at the vacuum. The latter case

is trivial: the Riemann solution remains at the vacuum. The cases with only one initial state

at the vacuum are explored next.

Upstream Vacuum State One studies the Lax curves emanating from the vacuum u0 =

(0, 0). By the Rankine–Hogoniot condition:

ρ1 = 0, σ = V2 (ρ2) , or ρ2 = 0, σ = V1 (ρ1) .

These give 1–shock curves along the ρ2-axis, and 2–shock curves along the ρ1-axis.

Hence, in the case connecting the vacuum on the left to u+ ∈ D1, the shock solution first

connects to an intermediate state on the ρ2-axis with a 1–shock curve that coincides with the

ρ2-axis. A physical interpretation of this case is to consider a road with a queue of both large

and small vehicles at the downstream, and an empty road at the upstream. By the definition

of velocity function (see Figure 14(a)), the smaller vehicles possess a higher velocity for the

same total occupied space r. Thus, after a short period of time, only the larger vehicle class

ρ2 is observable at back of the queue because the first vehicle class overtakes them, i.e., ρ∗1 = 0

and ρ∗2 > 0. Therefore, starting from a vacuum state on the left, the Lax shock curves always

travel along the ρ2-axis and to connect with the slower class. Furthermore, one checks that

the shock speed of the 1–shock wave is the same as that predicted by the LWR model.

Downstream Vacuum State Based on the discussion in Section 3.4.3, 1–rarefaction

curves connect to the vacuum along the boundaries ρ1 = 0 and ρ2 = 0. Thus, the solu-

tion to the case with u− ∈ D3 is clear, where u− is connected with the vacuum along the

boundaries ρ1 = 0 and ρ2 = 0. It remains to discuss the case when u− ∈ D1\D3.

By the features of Lax rarefaction curves (see Section 3.4.3), 1–rarefaction curves are

monotonic, convex, and exit from the ρ2 = 0 boundary. Thus, u− first connects to an

intermediate state on the ρ1-axis via a 1–rarefaction curve. This also has clear physical
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interpretation. As two vehicle classes flow into an empty road, the smaller vehicle class ρ1

advances to the front of the traffic, since it possesses higher speed for the same total occupied

space r (see Figure 14(a)). Thus, the intermediate state u∗ that connects to the vacuum at the

downstream contains only vehicles of the first class. Moreover, the u∗ and u+ are connected

along the ρ1-axis.

Riemann Solver at Vacuum The Riemann solver for the vacuum problem is summarized

as

Case 1: u− is at the vacuum (shock solution):

1. ρ+
1 > 0, ρ+

2 > 0: It is a shock solution that connects u− to u∗ = (0, ρ∗2) by a 1–shock

curve along the boundary ρ1 = 0, with ρ+
1 + ρ+

2 > ρ∗2 > ρ+
2 , then connects u∗ and u+

with a 2–shock curve.

2. ρ+
1 = 0, ρ+

2 > 0: The solution simplifies to a single 1–shock curve that connects u−

with u+ along the ρ2-axis.

3. ρ+
1 > 0, ρ+

2 = 0: The intermediate state u∗ coincides with the vacuum. Hence, u− and

u+ are connected by a 2–shock curve along the ρ1-axis.

Case 2: u+ is at the vacuum (rarefaction solution):

1. ρ−1 > 0, ρ−2 > 0: In this case, the intermediate state appears on the ρ1-axis, i.e.,

u∗ = (ρ∗1, 0) with ρ−1 + ρ−2 > ρ∗1 > 0. Thus, the Riemann solution first links u− and u∗

with 1–rarefaction, and then to connect u∗ and the vacuum state along the ρ1-axis.

2. ρ−1 = 0, ρ−2 > 0, or ρ−1 > 0, ρ−2 = 0: The left state u− connects to the vacuum on the

right hand side directly via 1–rarefaction curves.

Case 3: both initial states are at the vacuum: Solution remains at the vacuum.
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Stability Near the Vacuum The stability of the Riemann solver with initial data near

the vacuum is briefly discussed. Riemann solutions are constructed for a left state perturbed

away from the vacuum, and a fixed right state.

1. u− is perturbed to the ρ2-axis, ρ−1 = 0, 1� ρ−2 > 0: The Riemann solution is composed

of a 1–shock curve that connects u− to u* = (0, ρ*
2) with ρ+

1 + ρ+
2 > ρ*

2 > ρ−2 along the

ρ2-axis, and then a 2–shock curve that connects u* to u+.

2. u− is perturbed into the interior of D1, i.e., u− ∈ D1\D3, 1� ρ−1 > 0, 1� ρ−2 > 0: In

this case, the 1–shock curve is slightly shifted away from the ρ2-axis. The structure of

the solver is similar to the previous case, and the deviation between these two solutions

is small.

3. u− is perturbed to the ρ1-axis, 1 � ρ−1 > 0, ρ−2 = 0: It gives an intermediate state

u* = (ρ*
1, 0) with ρ*

1 > ρ+
1 + ρ+

2 . First, u− connects to u∗ along a 1–shock curve that

coincides with the ρ1-axis. Second, u* connects to u+ via a 2–rarefaction curve.

In the third case, the 1–shock wave has a larger amplitude than the previous two cases,

and the 2–shock wave is replaced by a 2–rarefaction wave. Thus, the structure of the Riemann

solution changes for a small perturbation of the Riemann data. This may result in a loss of the

continuous dependence on the initial data. Consequently, it is possible to lose well-posedness

when the vacuum is involved. Due to the difficulty to obtain explicit solutions to the Riemann

problems, the well-posedness of the creeping model in the presence of the vacuum problem is

an open question.
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3.5 Numerical Simulations

3.5.1 Numerical Method

This section is devoted to illustrate the creeping model (51) in numerical simulations, using

the Godunov method [22, 36]. The update rule is given explicitly as

 ρk+1
1,i

ρk+1
2,i

 =

 ρk1,i

ρk2,i

− ∆t

∆x


 (F1)ki+ 1

2

(F2)ki+ 1
2

−
 (F1)ki− 1

2

(F2)ki− 1
2


 , (70)

where ∆x and ∆t are sizes of the space and time step, and ρkj,i represents the density of the

jth class in the ith cell at time t = k∆t. Moreover, (Fj)
k
i− 1

2
and (Fj)

k
i+ 1

2
are numerical fluxes

through the upstream and downstream boundaries of the ith cell for the jth vehicle class at

time t = k∆t. These fluxes are obtained by explicitly analyzing the sending and receiving

potential for each vehicle class as an analogy to the CTM [14]. In [40], a generalization of

the CTM to homogeneous multiclass models is proposed. Here, a scheme for heterogeneous

extension of CTM is developed.

In the CTM framework, the flow is the minimum of sending and receiving functions, where

the sending function defines the number of vehicles available to be sent from upstream, and

the receiving function describes the number of vehicles available to be received downstream.

For simplicity, the initial states of upstream and downstream cells are represented as u− =

(ρ−1 , ρ
−
2 ) and u+ = (ρ+

1 , ρ
+
2 ). The flows of the two vehicle classes through the cell interface

are determined as

F1 = min
{
S1(ρ−1 , ρ

−
2 ), R1(ρ+

1 , ρ
+
2 )
}
, F2 = min

{
S2(ρ−1 , ρ

−
2 ), R2(ρ+

1 , ρ
+
2 )
}
, (71)

where Sj(·) and Rj(·), j = 1, 2 represent the sending and receiving functions of the two vehicle

classes.
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Sending and Receiving Functions for ρ1 The flux function is of the first vehicle class

is defined as

Q1(ρ1, ρ2) = ρ1V1(ρ1 + ρ2). (72)

The sending and receiving functions of the first vehicle class are defined as

S1(ρ−1 , ρ
−
2 ) =

 Q1(ρ−1 , ρ
−
2 ), if ρ−1 ≤ ρc

1(ρ−2 ),

Qmax
1 (ρ−2 ), if ρ−1 > ρc

1(ρ−2 ),

R1(ρ+
1 , ρ

+
2 ) =

 Qmax
1 (ρ+

2 ), if ρ+
1 ≤ ρc

1(ρ+
2 ),

Q1(ρ+
1 , ρ

+
2 ), if ρ+

1 > ρc
1(ρ+

2 ),

where Qmax
1 (ρ2) = maxρ1 {Q1(ρ1, ρ2)} is the maximum of (72), and ρc

1(ρ2) =
rmax
1 −ρ2

2 is the

critical density of ρ1 such that Qmax
1 is obtained.

Sending and Receiving Functions for ρ2 The second vehicle class is stationary in the

creeping phase D2. To capture creeping, the flux function of the second vehicle class is

extended in the following way

Q2(ρ1, ρ2) = max {ρ2V2(ρ1 + ρ2), 0} .

The sending and receiving functions for ρ2 become

S2(ρ−1 , ρ
−
2 ) =

 Q2(ρ−1 , ρ
−
2 ), if ρ−2 ≤ ρc

2(ρ−1 ),

Qmax
2 (ρ−1 ), if ρ−2 > ρc

2(ρ−1 ),

R2(ρ+
1 , ρ

+
2 ) =

 Qmax
2 (ρ+

1 ), if ρ+
2 ≤ ρc

2(ρ+
1 ),

Q2(ρ+
1 , ρ

+
2 ), if ρ+

2 > ρc
2(ρ+

1 ),

where Qmax
2 (ρ1) = maxρ2 {Q2(ρ1, ρ2)}, and ρc

2(ρ1) =
rmax
2 −ρ1

2 is the critical density of the

second vehicle class such that Qmax
2 is obtained.

It can be shown that the numerical scheme (70) converges to the admissible weak solution
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of the Cauchy problem of (51). In D1, by checking the propagating directions of shock

or rarefaction waves predicted by the model (51), the flux through each cell boundary is

consistent with that predicted by the numerical scheme (71) that is based on the sending and

receiving of vehicles. In D2, (70) collapses to the CTM [14]. Furthermore, it can be verified

that the numerical solver is consistent with the creeping model with phase transitions, e.g.,

F2 = 0, if u+ ∈ D2.

To avoid interactions of waves from neighboring Riemann problems, the time step should

satisfy the CFL condition: vmax ∆t
∆x ≤ 1.

3.5.2 Numerical Simulations and Comparisons

Numerical simulations are performed to illustrate the properties of the creeping model, and

they are compared with those of the n–populations model [3] with two vehicle classes. For

these numerical tests, the following parameters for the creeping model are used:

vmax
1 = vmax

2 = 1.8, and rmax
1 = 1.8, rmax

2 = 1.0.

In the n–populations model, let

vmax
1 = 1.8, vmax

2 = 1.0, and rmax
1 = rmax

2 = 1.8.

Here, vmax
1 and vmax

2 are the maximum velocities, and rmax
1 and rmax

2 are the maximum

effective densities of the two vehicle classes. Thus, the first vehicle class is assumed to move

faster in both models. Furthermore, the computational domain is chosen as x ∈ [0, 50], with

∆x = 0.05 and the time step ∆t is chosen based on the CFL condition ∆t = ∆x/vmax, where

vmax = max {vmax
1 , vmax

2 }.
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Figure 16: Example 1: an experiment of overtaking. (a) exhibits the traffic state of the n–populations
model at t = 50; (b) shows the numerical results of the creeping model at t = 33. In each figure, the
densities of the first vehicle class (thick-solid-gray) and the second vehicle class (thick-dashed-black),
together with the initial condition (thin-dashed-red) are shown.

Example 1: Overtaking In this test, the larger vehicle class ρ2 is in front of the smaller

class ρ1 at t = 0. The initial condition for both vehicle classes is given as follows

ρ1(x, 0) =

 0.9, if x ∈ [1, 10],

0, otherwise,
ρ2(x, 0) =

 0.9, if x ∈ [11, 20],

0, otherwise.

On the boundaries, assume the upstream inflow in zero, and vehicles are allowed to flow out

of the study area freely, i.e., the downstream of the study region is empty.

As time evolves, the first vehicle class overtakes the second class. Both the n–populations

model [3] and the creeping model (51) exhibit overtaking (see Figure 16), although at different

time due to the structure of the two models.

Example 2: Creeping The next example depicts a scenario when two vehicle classes

approach a red traffic light. Here, the same model parameters are applied as in the Example 1,
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Figure 17: Example 2: an experiment of creeping. (a) and (c) (left panel) are the simulation results
of the n–populations model at t = 33 and t = 150, respectively. (b) and (d) (right panel) exhibit the
results of the creeping model at t = 33 and t = 150, respectively.
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but a new initial condition is given as follows

ρ1(x, 0) =

 0.7, if x ∈ [1, 19],

0, otherwise,
ρ2(x, 0) =

 0.7, if x ∈ [20, 50],

0, otherwise.

The initial condition describes the situation where the first vehicle class starts behind the

second vehicle class. For the boundary condition, the inflow from upstream is zero and the

downstream outflow for both vehicle classes is prescribed as zero to model a red traffic light.

Example 2 is suitable to illustrate the difference between the n–populations model [3] and

the creeping model (see Figure 17).

At time t = 33, overtaking occurs in both models (see Figures 17(a), 17(b)), where the first

vehicle class catches up and competes for free spaces with the second vehicle class. For the

second vehicle class, shock waves are triggered from the right boundary and travel backwards

into the computational domain. One observes that the second vehicle class accumulates at

the traffic light.

At t = 150, one sees very different configurations of the density profiles in the two models

(see Figures 17(c), 17(d)). In the n–populations model, the road segment adjacent to the red

traffic light x ∈ [42, 50] is occupied exclusively by larger vehicles, while traffic on the road

segment x ∈ [32, 42] is composed by two vehicle classes. It is clear that the n–populations

model does not allow creeping.

In the creeping model, the first vehicle class with smaller size is able to overtake the

second vehicle class even through the larger vehicles are stationary due to the red traffic

light. At t = 150, both vehicle classes appear near the right boundary of the study area, and

the smaller vehicle class creeps up to the front of the queue. Thus, this test shows that the

creeping model is appropriate to model the creeping in a heterogeneous traffic flow.
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4 Conclusion

In this work, the joint traffic state estimation and incident detection problem is formulated as

a hybrid state estimation problem. A second order traffic flow model with incident dynamics

is implemented with a MMPF to solve the estimation problem in simulation, using traffic

incident data generated from CORSIM. Compared to a particle filter applied to a second

order traffic flow model with time-invariant parameters, the new algorithm can significantly

improve traffic estimates while also estimating the location and severity of incidents.

Next, a new heterogeneous model for two vehicle classes is developed, which is based on

the philosophy that vehicles with different sizes occupy different spaces on the roadway. The

model is designed to capture the creeping scenario when large vehicles are stopped, while

smaller vehicles continue to move. To achieve this goal, velocity functions are introduced

that have the same maximum velocity but distinct maximum occupied spaces. The model is

described as a phase transition model where a 2 × 2 system reduces to the LWR model as

the occupied space increases above a critical point rmax
2 . A Riemann solver is defined across

the phase transition. Finally, numerical tests based on finite volume Godunov scheme are

performed, and comparisons between creeping model and the two class n–populations model

are carried out. These tests show that the creeping model can not only describe overtaking

behavior, but also model the dynamics of creeping in heterogeneous flow.
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