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Abstract

Automatic Calibration of Freeway Models with Model-Based Sensor Fault Detection

by

Gunes Dervisoglu

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

This dissertation presents system identification, fault detection and fault handling method-

ologies for automatically building calibrated models of freeway traffic flow. Using these

methodologies, data driven algorithms were developed as part of a larger scheme of a suite

of software tools designed to provide traffic engineers with a simulation platform where vari-

ous traffic planning strategies can be analyzed. The algorithms that are presented work with

loop detector data that are gathered from California freeways.

The system identification deploys a constrained linear regression analysis that estimates the

so-called fundamental diagram relationship between flow and density at the location of a

given sensor. A triangular fundamental diagram is assumed that establishes a bi-modally

linear relationship between flow and density, the two modes being free flow and conges-
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tion. An approximate quantile regression method is used for the estimation of the congested

regime due to this mode’s high susceptibility to various external factors.

The fault detection algorithm has been developed to facilitate the automatic model building

procedure. The macroscopic cell transmission model, which is the model assumed in this

study, requires consistent observations along the modeled freeway section for an accurate

calibration to be possible. When detectors are down or missing, the model has to be mod-

ified to a less accurate representation to conform with a configuration where a sensor is

assigned to each cell of the model. In addition, on most California freeways the ramp flows

in and out of the mainline are not observed. Since the estimation of these unknown inputs to

the system also hinge on healthy mainline data, the identification of faulty mainline sensors

becomes crucial to the automatic model building process. The model-based fault detection

algorithm presented herein analyzes the parity between simulated and measured state, along

with estimated unknown input profiles. Subsequently, it makes use of a look-up table logic

and a threshold scheme to flag erroneous detectors along the freeway mainline.

Finally, the fault handling algorithm that accompanies the fault detection aims to revert the

model to its original configuration after the aforementioned modifications are made to the

model due to missing or bad sensors. Using a relaxed model-constrained linear optimiza-

tion, this algorithm seeks to fill in the gaps in the observations along the freeway that are

a result of poor detection. This method provides a reconstruction of the unobserved state

that conforms with the rest of the measurements and does not produce a state estimate in

a control theoretical sense.
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Chapter 1

INTRODUCTION

Traffic congestion in urban road networks is a major problem causing losses in time and

energy and threatening public health and environmental safety. All these adverse effects

can be quantified and regarded as monetary loss to states and municipal governing bodies.

According to The 2011 Urban Mobility Report [47] generated by The Texas Transportation

Institute, these costs accumulate to a nationwide total of over $100 Billion, which corresponds

to approximately $750 yearly average cost per passenger. The report also points to the

fact that traffic congestion has been a growing problem over the past decades. The yearly

average delay per auto commuter over the 15 large urban areas in the United States that

were included in the analysis increased from 19 hours in 1982 to 52 hours in 2010. The peak

was observed in 2005 at 60 hours. Considering the ever increasing demand and the lagging

nature of facility improvements, it can be conjectured that this trend is bound to continue.

As the problem grows, so does our arsenal of tools and strategies to tackle it. Obviously,
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the most intuitive solution to the problem of excessive demand is to increase the supply, i.e.

to enhance the present roadway infrastructure. This, however, is not a feasible solution for

every given situation. In addition to physical facility expansion, a roadway structure can

be made to operate more efficiently by the deployment of various strategies such as ramp

metering control, speed limit control, demand management, etc. Software tools that model

and simulate traffic flow become critical to the evaluation of such improvement strategies

and analyzing their benefits and drawbacks before deploying them.

Traffic engineers and city planners rely on calibrated traffic corridor models and sim-

ulation software to devise mechanisms to improve road network performance. Two main

approaches to traffic flow modeling can be classified as microscopic modeling and macro-

scopic modeling. Microscopic models of traffic model each individual vehicle as a separate

entity and evaluate their interactions with other vehicles and the road. Macroscopic models

treat the flow of traffic as a compressible fluid and evaluate the dynamic properties of the

vehicles on a given road section as a coherent mass. In theory, microscopic models tend to

be more accurate than their macroscopic counterparts, provided there exist measurements

that facilitate their calibration. However, the data requirements for the calibration of mi-

croscopic models are often very demanding. Since the level of granularity for such models

is the individual vehicle, a similar level of granularity and accuracy in the data is preferred.

This can for instance be provided by video imaging of the road networks and the subsequent

processing of these pictures. This, however, is not a feasible sensing mechanism to be imple-

mented on a large scale. Therefore, most of the sensing on the roads in California are based
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on inductive loop detectors embedded in the pavement, which are only capable of report-

ing aggregated point measurements of flow and occupancy. Moreover, even with adequate

data present, the calibration process of microscopic models is a time and labor intensive

task, which often includes manual tweaking of model parameters. In contrast, macroscopic

models are very easy to calibrate and the data requirements are relatively more consistent

with the readily available sensing infrastructure. Another major advantage of macroscopic

models over the microscopic models is the simulation speed, which, due to the simplifying

assumptions of the model, allows for a whole days’ simulation to run within a few seconds.

This leads to a more versatile deployment of macroscopic models in real-time applications

such as live decision support for traffic operators.

The work presented in this dissertation has been carried out under TOPL (Tools for Op-

erations Planning), a CalTrans and NSF funded project, launched in 2006 at PATH (Partners

for Advanced Transportation Technology) and UC Berkeley. The goal of this project is to

provide simulation tools to transportation engineers and researchers in order to assist them

with operations planning. Traffic operations to alleviate congestion can be achieved through

traffic control (e.g. ramp metering), through demand and incident management (e.g. incen-

tivization and/or congestion pricing schemes), through traffic diversion to alternate routes,

by providing information to travelers, etc. TOPL was launched to establish a software plat-

form where computationally efficient calibrated models of traffic corridors could be used to

qualitatively assess the benefits of such strategies.

The main contribution of this doctoral study to the TOPL project mentioned above is the
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automation of the parameter estimation, fault detection and fault handling procedures that

greatly facilitate the streamlined model building and calibration process. The questionable

quality and, on occasion, the sparse availability of data has been a major challenge for

the project and prior to the deployment of the presented work, the identification of faulty

mainline detectors had to be carried out manually, which substantially increased the time

and effort invested into building freeway models. With the addition of these algorithms, it is

possible to automatically build and calibrate freeway models, provided the model geometry

and the corresponding data are available to the software.

Thesis Outline

This thesis is constructed as follows: Chapter 2 explores the important concepts in the traffic

sensing and modeling literature and introduces the main ideas in the established model-based

fault detection framework. Preceding studies on fault detection in traffic sensing and mod-

eling are also presented in this chapter. Chapter 3 first introduces the model building tools

developed by the TOPL team. We then proceed to explaining the system identification and

unknown input estimation algorithms along with the Link-Node Cell Transmission Model,

the macroscopic model of choice for this study.

Chapter 4 presents the fault detection algorithm that is deployed by the TOPL suite of

software tools to identify and eliminate faulty mainline detectors in an automated fashion.

We first provide some motivating observations for the fault detection and then proceed to

introducing the Asymmetric Cell Transmission Model on which the fault detection module is

based. The next chapter demonstrates the application of the model building process on two
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example freeways that have been modeled, namely: Interstate 80 in Northern California and

Interstate 210 in Southern California. Finally, in chapter 6 we discuss the presented results

and possible future work that can potentially extend upon the automated process presented

herein.
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Chapter 2

REVIEW OF RELATED

LITERATURE

2.1 TRAFFIC MODELING

Traffic models in existing literature fall into two main categories: macroscopic models and

microscopic models. In addition to strictly microscopic and macroscopic models, there also

exist mesoscopic models that make use of the assumptions made by each paradigm to varying

extents in an attempt to establish a specific trade-off level between model simplicity and

accuracy. In essence, microscopic models of traffic flow are based on reproducing the behavior

of individual vehicle units by replicating their interactions with other units and the road

network. These are mostly built on car following models that adopt parameters such as

headway, speed and position. Due to their detailed representation of the system, microscopic
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models are not easy to calibrate and validate, especially with the available data collection

infrastructure. Due to their increased complexity, simulators based on microscopic models

are not suitable for large scale or real-time applications.

Macroscopic models, on the other hand, replicate the aggregate behavior of all vehicles

on the road instead of focusing on individual units. In effect, macroscopic models treat

the traffic flow as an incompressible fluid by specifying and evaluating quantities like speed,

flow and density. Some important definitions regarding macroscopic traffic modeling are

provided by the Highway Capacity Manual [7] as follows (x denotes the spatial and t denotes

the temporal dependencies in the following):

• Flow f(x, t): Flow is defined as the number of vehicles that pass a given cross-section

on the road during a specified time interval divided by the length of that time interval.

It is easily measured by point sensors on the road and is often given as an hourly rate.

• Density ρ(x, t): Density is defined as the number of vehicles for a specific stretch of the

road. Measurements of density are difficult to infer from point measurements and are

usually approximated from flow and speed measurements as ρ(x, t) = f(x, t)/v(x, t).

Another approach to measuring density is to monitor the detector occupancy, which

is defined as the portion of time during which the detection zone of the detector is

occupied. This measurement is called occupancy and can be translated into the density

measurement using equation (2.8).

• Speed v(x, t): Speed is the average rate of motion of vehicles on the road. Depending

7



on the measurement, it can be expressed as a space mean speed and a time mean speed.

Space mean speed is expressed as the average time spent by vehicles to traverse a certain

length on the road. Time mean speed is the average speed of vehicles passing a given

cross-section of the road, and as such, it is easier to capture using point measurements

on the road.

• Capacity: Capacity is defined as the maximum rate of hourly vehicular flow through

a certain section on the road under prevailing road conditions.

• Bottleneck: A bottleneck is a certain location on the road where the demand exceeds

the prevailing capacity. Such locations usually trigger the onset of congestion that

propagates upstream of the bottleneck location while the downstream of the bottleneck

is typically in free flow. Bottlenecks can arise due to drops in number of lanes, merges

of high volume onramps and certain topological features of the road such as grade and

curvature.

• Demand: Demand is the number of vehicles that want to traverse a certain road

section at a given time period.

Fundamental Diagram of Traffic Flow

Macroscopic models rely on constituting a relationship between the key parameters of

flow, density and speed. These are usually captured in terms of the Fundamental Diagrams.

This was first established by Greenshields in his seminal work on the Fundamental Diagram
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relationships of traffic flow in 1934 [23]. He first approximated a linear relationship between

speed and density based on his observations of captured images on a two-lane road. Based

on this relationship, he expressed flow as a parabolic function of density using ρ(x, t) =

f(x, t)/v(x, t). A sketch of these relationships are shown in figure 2.1. In this figure, ρc

denotes the critical density, where the maximum throughput is observed. Traffic flow is in

congestion mode above this density value. Hence, all models of traffic flow are based on this

bimodality of flow. ρJ denotes the jam density for the road section, which is the maximum

number of vehicles per mile that can be accommodated by that specific location. Note

that both speed and flow are zero when this density is reached. The apex of this diagram

corresponds to the section capacity and is attained at the critical density.

Figure 2.1: Greenshields’ Fundamental Diagrams

In the existing literature, there are several different shapes assumed for the Fundamental

Diagram, which essentially is an empirically determined constituent relationship between the

key macroscopic elements. Thus, it can be established in several different ways, depending

on what is chosen as the state of the model and on the chosen order of the governing differ-
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ential/difference equations of the model. Models based on Speed-Flow [18], Speed-Density

[30],[14] and Flow-Density [48],[20] have been established. The Flow-Density Fundamental

Diagram was proposed as the model most suited for use in traffic control scenarios in [37],

because it provides a direct relationship between flow, which would be the control input in

a ramp metering exercise, and density, which would be the state to be controlled.

A challenging characteristic of Flow-Density diagram is the observed discontinuities near

the capacity (maximum flow) of the road section, which gives rise to discussion on possible

shapes of this fundamental diagram. This phenomenon was observed by Edie in [15] and

in studies such as [20], [5]. Although there is widespread consensus that the Flow-Density

curve is concave and the corresponding Speed-Density curve is monotone decreasing, dif-

ferent shapes for the theoretical curve are suggested: Triangular (or V-shaped), Reverse-λ

shaped, Reverse parabolic and Trapezoidal Fundamental Diagrams have been suggested and

evaluated in the literature. Figure 2.2 provides examples for each of these shapes. Works

by Hall and Gunter [19] and Banks [4] support the V-shaped fundamental diagram. The

argument made for the V-shaped fundamental diagram in [4] is that drivers obey the car

following rule under dense and congested flow conditions but as their speed approaches the

free flow speed, their sensitivity to vehicle spacing declines. Hence, as the density decreases,

the speed of the vehicles increases at a higher rate which justifies the V-shaped fundamental

diagram. On the other hand, microscopic models mostly agree on the Reverse-λ shaped

Fundamental Diagram. [50], [33] and [17] are some examples of such studies. Contrary to

the argument made for the V-shape, the following conjecture can be made for the Reverse-λ
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claim: When the transition from congestion to free flow occurs, the vehicle speeds increase

at a slower rate than the rate at which density decreases. Hence, the increase in flow lags

the decrease in density because the downstream spacing supply is just recently available and

it takes time for the vehicles queued upstream to speed up to the free flow speeds. This

phenomenon was labeled capacity drop by Cassidy et al. in [9] and [31]. The transition

from free flow to congestion occurs smoothly and the data points traverse through the apex

of the fundamental diagram, whereas the transition from congested flow to free flow occurs

more abruptly as a jump into the free flow line, undercutting the apex of the diagram. This

phenomenon is also known as the hysteresis of traffic flow and is discussed in [27] and [51].

Current discussions on Macroscopic Fundamental Diagrams for Urban networks also consider

this hysteresis [42].

Figure 2.2: Various Flow-Density Fundamental Diagram Shapes
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In our automated model calibration tool, we assume a V-shaped Fundamental Diagram

due to its simplicity and ease of use with the Cell Transmission Model, which is the model

adopted in this work. The V-shaped Fundamental Diagram is uniquely determined by 3

parameters: The free flow speed (the slope of the free flow line), the capacity (the maximum

possible flow) and the congestion wave propagation speed (the slope of the congested regime

line). The critical density and jam density parameters can be deduced from these three

parameters.

The Cell Transmission Model

Macroscopic models are described by sets of partial differential equations that define the

evolution of density, flow and speed over space and time. The Lighthill Whitham Richads

(LWR) model [37], [46] constitutes the basis of the Cell Transmission Model (CTM), which

is the basic model adopted in this study. All macroscopic models have at their core a vehicle

conservation equation, similar to the mass conservation in fluid dynamics, and a fundamental

diagram that relates density, flow and speed. In the case of the LWR model, these equations

are given as:

δρ(x, t)

δt
+
δf(x, t)

δx
= 0 (2.1)

Φ(ρ(x, t)) = f(x, t) = ρ(x, t)v(x, t) (2.2)
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where equation (2.1) is the conservation equation and equation (2.2) specifies the funda-

mental diagram relationship. When this relationship is differentiable, the two equations can

be combined as:

δρ(x, t)

δt
+

d

dρ
Φ(ρ(x, t))

δρ(x, t)

δx
= 0 (2.3)

First order models such as the LWR assume a static fundamental diagram for any given

section of the road. Higher order macroscopic models complement the conservation equation

with a so-called momentum equation, which are partial differential equations that describe

the evolution of the space mean speed along the road. In effect, this aims to capture the

complex dynamics of drivers’ response to changes in the traffic state, rather than assuming

those to be instantaneous as their first order counterparts do. For a more detailed treatise

of higher order continuous time models, the reader is referred to the PhD thesis of Alex A.

Kurzhanskiy [35], a fellow researcher in the TOPL project.

Since the main goal of the TOPL project is to create an automated and streamlined

calibration and simulation tool that is applicable to large networks, a first order model is

chosen, namely the Cell Transmission Model.

The Cell Transmission Model (CTM), introduced by Daganzo in 1994, is a discretization

of the LWR model. The road network is represented as successive sections (cells) of uniform

length L. Here, L is chosen to be such that L = Tsvf where Ts is the discretization time step

and vf is the free flow speed. With this formulation, the dynamics of density ni of any given
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cell i is described by the following difference equation:

ni(k + 1) = ni(k) + fi−1(k) − fi(k) (2.4)

where fi−1(k) is the flow entering cell i from the upstream cell i-1 and fi(k) is the flow

leaving cell i and entering cell i+1 downstream at time k. These flows are determined by

comparing the supply and demand of each cell dictated by their corresponding fundamental

diagrams.

fi(k) = min(Demandi(k), Supplyi+1(k)) (2.5)

Demandi(k) = min(Fi, ni(k)vi) (2.6)

Supplyi+1 = min(Fi+1, wi+1(n
J
i − ni(k)) (2.7)

Here, Fi, vi and wi are fundamental diagram parameters capacity, free flow speed and

congestion wave propagation speed, respectively, for each section. A triangular fundamental

diagram is assumed. Figure 2.3 provides a visual representation for this supply - demand

relationship for determining exchanging flows between adjacent cells. In this temporal snap-

shot example, Cell 1 has a relatively low density and is therefore in free-flow. Cell 2 is

congested but has enough room to accommodate the Demand1 = n1(k)v1 from Cell 1.

Hence f1(k) = Demand1(k) in this case. Cell 2 wants to send Demand2 = F2 to Cell 3 since

it is in congestion. Cell 3, however, is heavily congested and cannot accommodate Demand2.

As a result, f2(k) = Supply3(k) = w3(n
J
3 − n3(k)) in this case. Looking at such a snapshot,
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one would expect the density in Cell 2 to increase in the next time instance since flow into

Cell 2 is greater than flow out of it at this time instance.

Figure 2.3: Cell Transmission Model send and receive relationship between successive cells

2.2 TRAFFIC SENSING

In this section, we explore the detection, reporting, analysis and archival tools available

for gathering traffic data. These data can be used to calibrate simulation models, as in

this study, or can be used in real-time by traffic operations planners for safety monitoring,

incident detection and handling and providing information to travelers about travel times,

accidents and other hazards.

Sensing Technologies There exist several sensing mechanisms deployed in California free-

ways. Here we review some of the most widely implemented technologies.

• Inductive Loop Detectors: These are inductive loops embedded into the pavement.

Their operation principle is based on detecting induced eddy currents when a vehicle
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passes over the loop. Loop detectors provide point measurements of flow and occu-

pancy, and when installed adjacently, they also provide speed measurements. They

are the most common sensing equipment implemented on California roadways. While

they are used to measure flow, occupancy and speed on freeways, on arterials, they

are mostly used to detect presence only, for queue responsive signalized intersections.

The data they provide is easily archived and reported, which makes them very suitable

for the automatic model building tools to be introduced in this dissertation. However,

their installation and maintenance costs are relatively high and due to their low fre-

quency of maintenance the data they provide are not very reliable. Nevertheless, when

maintained appropriately, loop detectors provide the best accuracy in terms of counts,

i.e. flows.

• Magnetic Sensors: Similar to the inductive loop detectors, magnetometers detect pres-

ence by evaluating the magnetic fields caused by passing vehicles. These also need to be

embedded in the pavement but they provide the additional advantages of easier main-

tenance, longer life times and some models are equipped with wireless transmission

capability.

• Video Image Processors: Video camera surveillance of roadway traffic is often used to

transmit imagery to human operators to help them with real-time management. In

addition, some stations are equipped with video image processors that digitize and

analyze the imagery. Software tools are available for converting these into the desired
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parameters like flow and density. Videos provide the highest quality and highest gran-

ularity data but come with a price tag of data complexity and size. Moreover, they

are much more susceptible to changing weather and visibility conditions, especially at

night time. Moreover, their maintenance requirements are higher due to the necessity

of frequent cleaning of the camera lenses.

• Microwave and Laser Radars: Contrary to the passive detection technologies listed

above, radars are active sensors that work on the principle of sending electro-magnetic

waves to moving vehicles and and track their presence and movement through the

reflection of these electro-magnetic waves. These have the advantage of not being

affected by weather conditions over video surveillance. While they provide direct mea-

surements of speed, additional analysis is required to infer flow and density from radar

measurements.

Other sensor technologies include ultrasonic sensors, passive acoustic sensors and infrared

sensors. Toll tag readers, license plate readers and probe vehicles can also be used for travel

time measurements. For a comprehensive report on traffic sensing technologies the reader is

referred to the Traffic Detector Handbook [36].

Measured Traffic Elements

The sensing technologies listed above are used to gather the following measurements

related to traffic on road networks:

• Occupancy: Occupancy is the percentage of time the detection zone of a detector is
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occupied by vehicles.

• Flow: Flow is the number of vehicles passing through the detection zone of a detector

within a specified time interval.

• Speed: Depending on the detection method, space mean speeds and time mean speeds

can be reported. Point sensors such as loop detectors and magnetic sensors usually

estimate time mean speeds whereas detectors that have wider detection zones, such

as video cameras, can be used to estimate space mean speeds. Use of multiple point

sensors such as double loops provide accurate time mean speed measurements.

• Travel Time: Travel times can be estimated from re-identifying vehicles at two detec-

tion stations. Toll tag readers, license plate readers and video cameras have this capa-

bility. In addition, vehicle re-identification through magnetic signatures over shorter

distances have been demonstrated to work using magnetic sensors [32]. These mea-

surements can also be used to determine Origin-Destination data, which yields demand

patterns necessary for demand management strategies.

Performance Measurement Systems (PeMS)

The automatic model calibration tools presented in this dissertation are based almost

exclusively on data provided by the PeMS (Performance Measurement Systems) archival

tool [2]. PeMS was launched in 1998 as a collaborative project of UC Berkeley, PATH and

Caltrans and the software tools have been available online since 2003 for use by traffic engi-
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neers and academics. PeMS collects data from over 25000 detectors on California freeways

and arterials and has several tools to filter, process, aggregate and examine these data. Loop

detectors are the main contributors to this extensive archive but PeMS also gathers data

from sources like toll tag readers and CHP (California Highway Patrol) incident reports.

It also provides reporting tools for a wide variety of statistical analyses from individual

detector health to daily flow trends on a specific stretch of road. Based on loop detector

data, PeMS reporting tools calculate performance measures such as VMT (Vehicle Miles

Traveled), VHT (Vehicle Hours Traveled), Congestion Delay, Productivity Loss, etc. for a

user-specified period of time and stretch of road.

For the purposes of this study, loop detector data from California freeways are of crucial

importance. In fact, as will be explained in detail in section 3.1, the automatic model building

tool relies on the detector locations on the freeway to determine the model geometry, i.e. the

detector locations are used as a starting point when specifying the model. In their raw form,

there are two components to loop detector data: 1) Flow 2) Occupancy. These are collected

at 30s granularity and PeMS subsequently aggregates them into 5 minute intervals. PeMS

also infers speed and density based on the occupancy and flow measurements following the

formulae below:

Speed =
F low

Occupancy
g-factor Density =

F low

Speed
(2.8)
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where the g-factor is an adaptively estimated time-dependent effective vehicle length

specific to the detector and the location [29].

In spite of this voluminous data collection and archival effort, detector and data health

remains to be a major problem. Figure 2.4, taken from the PeMS website, shows the per-

centages of working vs non-working detectors over the 1-year period between August 2011

and August 2012. In the vertical axis are the Districts of The State of California and it can

be seen that, on average, only about 70% of detectors were reported to be working correctly.

It is also noteworthy that District 4, containing the larger Bay Area, has had an average

detector health percentage of a dismal sub-50% value over the most recent annual period.

Figure 2.4: Detector Health throughout the Districts of California August 2011 - August
2012

PeMS implements some simple screening methods to determine detector health. It flags
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a detector to be ”not working” if the detector sends few or no samples. There are also

set thresholds that are triggered when the observed values are too high to be realistic. In

addition to these simple screens, the repository deploys other fault diagnosis methodologies

which will be explored in the next section.

Another functionality PeMS provides is the imputation of missing measurements based

on neighboring detectors and/or historical averages. This way, it is ensured that sparse

missing chunks in the data do not affect the overall analysis. The imputation algorithm used

by PeMS is based on a linear regression on the large historical database that is available.

To predict missing data on freeway mainlines, this algorithm uses data from detectors on

adjacent lanes and detectors that are immediately upstream and downstream of the erroneous

detector [8].

2.3 FAULT DETECTION

Fault Diagnosis is a relatively new subfield of control theory that grew in the last several

decades, parallel to the demands for higher system performance and better quality assurance

along with increasing system complexity in industrial applications. In their 1997 survey

of fault detection and isolation methods [44], Isermann and Balle provide the following

definitions in order to establish a basic terminology for the field:

• Fault: An unpermitted deviation of at least one characteristic property or parameter

of the system from the acceptable / usual / standard condition.
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• Fault Detection: Determination of the faults present in a system and the time of

detection.

• Fault Isolation: Determination of the kind, location and time of detection of a fault.

• Fault Identification: Determination of the size and time-variant behavior of a fault.

• Fault Diagnosis: Determination of the kind, size, location and time of detection of a

fault.

Fault diagnosis has its historical roots in the implementation of redundant hardware com-

ponents. If two or more system components are assigned the exact same task, any disparity

between them is enough to conclude a fault event. Although still an important scheme, espe-

cially for safety critical applications, a more efficient and cost-effective approach has been to

implement process models and quantitative analysis tools to tackle the issue. Current fault

diagnosis methods can be classified into two major branches: 1) Signal processing-based

approaches, 2) Model-based approaches.

Signal processing based methods of fault diagnosis are based on the assumption that some

process signals contain information about faults. By analyzing the magnitudes or other sta-

tistical metrics of the signals in the time domain or by evaluating frequency domain functions

like power spectral densities, one may be able to capture statistically aberrant measurements

that are indicative of process or sensor faults. Especially in cases where multiple sensors are

used to monitor the system, such as distributed sensor networks, for times long enough to
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establish temporal and spatial correlations over time, time-series analysis tools become suit-

able along with hypothesis testing schemes that are designed to minimize the probability of

false alarm.

Model-based fault diagnosis methods, on the other hand, make use of an analytical model

of the underlying process to generate residuals between the model and the real system. Sta-

tistical methods can nonetheless be employed while evaluating these residuals. The general

idea is depicted in figure 2.5 (figure adapted from [13]). Model-based methods of fault

diagnosis are usually classified under three frameworks [13], [25]:

Figure 2.5: Model-based Fault Diagnosis Framework

1. Observer-based Methods: The main goal of this approach is to design an observer

such that the resulting residuals have desirable features such as decoupling the faults

from unknown inputs and disturbances along with fault detectability and isolability.

These, of course, are mainly dependent on the system matrices but the observer design

procedure may exploit known properties about the system components to produce the
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most beneficial residuals for fault diagnosis. Figure 2.6 together with equations (2.9) -

(2.11) gives the block diagram schematic of this approach (fault, noise and disturbance

signals are not shown in the figure for simplicity - adapted from [25]).

Figure 2.6: Observer-based Fault Diagnosis approach - Block Diagram

Plant equations:

ẋ(t) = Ax(t) +Bu(t) + Edv(t) + Fsfs(t)

y(t) = Cx(t) + Enn(t) + Fofo(t) (2.9)

Observer equations:

˙̂x = Ax̂(t) +Bu(t) + Le(t)

e(t) = y(t) − Cx̂(t) (2.10)
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Candidate Residuals:

∆x(t) = x(t) − x0(t) , e(t) , r(t) = We(t) (2.11)

2. Parity Equations: Also called the parity space approach, the use of parity equations

for fault detection is a more straightforward approach where a fixed model is run

in parallel with the process to generate residuals. These residuals are then evaluated,

along with some threshold schemes to account for model uncertainties, to identify faults

occurring in the process or the measurements. This approach is easier to demonstrate

in discrete time.

x(k + 1) = Ax(k) +Bu(k) + Edv(k) + Fsfs(k)

y(k) = Cx(k) +Du(k) + Enn(k) + Fofo(k) (2.12)

Given a system in equation (2.12) with (C,A) observable and C full row-rank, we fix

a time instance s time steps back in time and build the augmented matrices that map

the input sequence to the output sequence from time k− s to time k, in the fault- and

disturbance-free case. In the system above, x(k) denotes the state, u(k) is the input

signal, v(k) is an unknown disturbance, fs(k) is the process fault, n(k) is measurement
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noise and fo(k) is the sensor fault. Defining:

ys(k) =

























y(k − s)

y(k − s + 1)
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y(k)
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u(k − s)

u(k − s+ 1)

...

u(k)

























(2.13)
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(2.14)

we get the relationship:

ys(k) = APx(k − s) +BPus(k) (2.15)

In equation (2.15), the only unknown is the state at time k − s, x(k − s). If s is

chosen such that s >= n, with the observability assumption, the matrix AP becomes

full column-rank with a non-empty left null-space. This left null-space constitutes the

parity space as given in equation (2.16).

Ps = {vs|vsAp = 0} (2.16)

Using any row-vector from this left null-space, the unknown state x(k − s) can be

eliminated to produce the residual, which in the fault- and disturbance-free case is 0,
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as expected.

rs(k) = vs(ys(k) −BPus(k)) = vsAPx(k − s) = 0 (2.17)

When we also consider the faults and disturbances, building matrices EsP
, FsP

, EoP

and FoP
in a similar fashion to equation (2.14), we get the residual equation:

rs(k) = vs(EsP
ds(k) + EoP

ns(k) + FsP
fss

(k) + FoP
fos

(k) (2.18)

The choice of the parity vector v has a significant effect on fault diagnosis performance

and can be chosen to cancel one or more of the disturbances if any prior information is

available on the nature of interactions between unknown signals. The parity approach

is favorable due to its simplicity, especially for discrete time systems that do not have

to be monitored in real time. For this reason, we adopt this approach in this study

as will be shown in section 4.3. Figure 2.7 provides a simplified block diagram for the

parity space approach (fault, noise and disturbance signals are not shown in the figure

for simplicity - adapted from [25]).

3. Parameter Estimation Methods: In the parameter estimation-based methods, the

fault diagnosis is performed online with the assumption that faults occurring in the

process or the sensors affect the system parameters. Figure 2.8 (adapted from [13])

shows the main idea in block diagram form. This approach requires some nominal

values for the unknown system parameters to distinguish deviant estimates from correct

ones. Isolation and identification of faults is more difficult for this method than it is

for the other two methods that have been introduced above.
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Figure 2.7: Parity-based Fault Diagnosis approach - Block Diagram

Figure 2.8: Fault Diagnosis with Parameter Estimation

Fault Detection in Traffic Systems

To the author’s knowledge, fault diagnosis literature related to the sensing of vehicular

traffic, especially using model-based approaches, is quite limited. Since the modeling and

calibration effort presented in this dissertation is based on loop detector measurements, our
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focus is on the detection of loop detector malfunction. Most of the previous work on the

subject deploys statistical methods to detect faults.

The earliest works go back to early 70’s, which coincides with the wide spread of loop

detectors as the primary traffic sensing tool, and their main principle is to establish data

reliability tests based on expected behavior and interrelation of occupancy and flow measure-

ments. The theoretical foundations for these data reliability criteria were provided by Payne

et. al back in 1976 [43], where they identified 5 types of detector errors and introduced up-

per and lower thresholds on flow, density and speed that can be reasonably assumed. Aside

from heuristic ”on the field” decisions made by operating agencies or detector installation and

maintenance personnel to make sure the detector ”works”, the first signal processing based

fault detection method that was deployed was the Washington Algorithm [28]. Developed

by Jacobson et. al in 1990, this algorithm defines an acceptable Flow-Occupancy region and

flags individual data points as unreliable if they fall outside this region. In 1991, Cleghorn

et. al [11] introduced a tighter region of acceptability, with additional constraints for dual

loops, increasing in effect the dimensions of the acceptable region to 3 by the addition of

speed. In 2000, Turochy et. al [49] added new critical thresholds on top of the existing

test on relationships between speed, flow and occupancy to better identify data points that

were reporting unreasonably high values. PeMS uses the scheme devised by Chen et. al

[8] in 2003, that introduces the first time-series methods to determine erroneous detectors.

Instead of evaluating individual data points, they detect irregularities in the time series of a

measurement taken during a day. They classify 4 such irregularities:
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1. Zero Occupancy and Flow for an extended period

2. Non-zero occupancy accompanied by zero flow

3. Very high occupancy

4. Constant occupancy and flow

If a detector reports measurements that fall into one of the categories above, that detector

is declared to be unreliable for that whole day and the data it provides are discarded. To

replace this chunk of missing data, Chen et. al introduce an imputation algorithm that

uses time-series data provided by neighboring detectors over the last 5 days (and reliable

data provided by the same detector, if any, in the past 5 days) to replace these unreliable

measurements. Improved statistical methods building upon this approach are provided by

Kwon et. al [26] and by Rajagopal et. al [45].

To the author’s knowledge, the only model-based approach to traffic sensor fault detection

in the literature apart from the work presented herein is the recent work of Claudel and Bayen

[10] where they model the freeway flow by Hamilton-Jacobi partial differential equations

and test the consistency of data collected at certain locations along the freeway against the

continuous model in the space-time domain. However, they ignore the effect of unknown

ramp flow inputs into the system.

As far as loop detector data are concerned, the major advantage the model-based schemes

have over statistical methods is the fact that some detectors are observed to carry consistent
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offsets rather than or in addition to noise or other statistically discernable anomalies. Signal

processing methods based on historical data may not be able to correctly pinpoint such

anomalies if they are consistent throughout the data collection history. We will explore

these phenomena in more depth in section 4.1
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Chapter 3

AUTOMATIC FREEWAY MODEL

CALIBRATION PROCEDURE

3.1 FREEWAY MODEL SPECIFICATION AND

THE LINK-NODE CELL TRANSMISSION

MODEL

The automated model building procedure for freeways can be summarized by the process

flow diagram in figure 3.1. The first step is to specify the stretch of freeway section to be

modeled. TOPL has a dedicated web-based software tool, named Network Editor [3], that

implements Google Maps. This tool provides a user-friendly visual platform to build freeway

or broader network geometries directly on the road network map. The user can also download
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PeMS detector information and superpose it on the map. Figure 3.2 shows a snapshot

of a specified geometry for a portion of northbound Interstate 15 near San Bernardino in

Southern California. The network is specified by placing nodes at locations where traffic

flow exchange occurs and where significant changes to mainline geometry exist, such as

lane drops. However, it is customary to build the network such that all available detectors

get associated with a separate link. Hence, the presence of detectors and their locations

substantially dictate model geometry specification. The nodes are then connected by links

and the number of lanes are specified for each link. Subsequently, sensors that are superposed

on the map at their corresponding postmiles need to be associated with the according links

by the user.

The Link-Node Cell Transmission Model

The macroscopic traffic flow model adopted by the TOPL project is the so-called Link-

Node Cell Transmission Model (LN-CTM), which is an extension of the Cell Transmission

Model introduced in section 2.1. The LN-CTM was introduced in [35] which details the

simulation tools developed by Alex Kurzhanskiy within the scope of the TOPL project.

LN-CTM represents the traffic network as a directed graph of links joined by nodes.

Each link in the network is assumed to have uniform geometry and fundamental diagram

parameters, the identification of which will be explained in the next section. Links can be

classified as mainline links, sources and sinks. Source links are links that start with a source

node and end at a mainline node. These sources specify the input boundaries to the network.

Similarly, sink links start with a mainline node and end at a sink node, and they specify
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Figure 3.1: Model Building Process Flow Diagram

the output boundaries of the network. Traffic exchange at nodes are specified by means of

a time-varying split ratio matrix which scales and assigns the incoming flows to outgoing

flows, corresponding to the evaluation of the model. Nodes do not store any vehicles and

flows are conserved, hence the entries of the split ratio matrix corresponding to each link

add to 1. Freeway nodes are allowed to have at most one on-ramp and one off-ramp. Hence,

it may be the case where two on-ramp merges are very close to each other, they may need to

be bundled together and represented as a single on-ramp. Another restriction is on the link

lengths. To ensure that the CFL conditions are satisfied by the discrete time simulation,
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Figure 3.2: A Network Editor Snapshot

the link lengths should be specified such that they can not be traversed within a single time

step of the simulation, i.e. vT < Li and wT < Li must hold for each link i where Li is the

length of link i, T is the simulation time step and v and w are the free flow and congestion

wave speeds, respectively.

Figure 3.3: Graphical representation of the LN-CTM

35



The LN-CTM replicates the evolution of flow and density by a two-layered set of govern-

ing difference equations. A conservation equation governs the density updates using flows

entering and leaving the links and the flow updates are governed by the supply-demand

dependent send-and-receive relationship between adjacent links, in accordance with the Cell

Transmission Modeling framework introduced in section 2.1. If at any exchange location the

demand exceeds the supply, the flows are scaled down to match the minimum downstream

supply and the excess demands contribute to density build-up in the upstream links. An

additional conservation equation is introduced to evaluate the queues on on-ramps and the

off-ramps are assumed to have infinite capacity, i.e. they are perfect sinks that do not get

congested. This assumption may not always be accurate, in which case the model should be

extended as suggested in [38]. For a network represented in Link - Node formulation as in

figure 3.3 the flow and density update equations are as follows:

Density Update:

n0(k + 1) = n0(k) +Q0(k) − f0(k)

ni(k + 1) = ni(k) + fi−1(k)(1 − βi−1(k)) + ri−1(k) − fi(k) i = 1, · · · , N

li(k + 1) = li(k) +Qi(k) − ri(k) i = 1, · · · , N (3.1)
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Flow Update:

fN (k) = Dn(k)

fi(k) = Di(k) ×
min(Ri(k), Si+1(k))

Ri(k)
i = 0, · · · , N − 1

ri(k) = di(k) ×
min(Ri(k), Si+1(k))

Ri(k)
i = 1, · · · , N

si(k) = fi(k)(1 − βi(k)) i = 1, · · · , N

where

Di(k) = min(ni(k)Vi, Fi),

Ri(k) = Di(k)(1 − βi(k)) + di(k),

Si+1(k) = min(Wi+1(n
J
i+1 − ni+1(k)), Fi+1)

di(k) = min (rc
i (k), li(k), Ci) (3.2)

where Table 3.1 lists all the variables and parameters in the above equations.

When modeling a freeway with the LN-CTM, the convention adopted by the TOPL

model building procedure is to collapse the stretch of the freeway between an off-ramp and

the immediately following downstream on-ramp to a single node and specify the split ratio

matrix such that flows from the incoming on-ramp to this node are not permitted into the

outgoing off-ramp. Incidentally, most of the detectors in California freeways are located in

this stretch. An example is shown in figure 3.4. The length of the upstream link (link i in

the case of figure 3.4) is re-adjusted to include the length of the collapsed region. Hence, in

effect, the off-ramp is being pushed downstream per assumption of the model geometry to
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Symbol Name Unit

Fi flow capacity of Link i veh/period
vi free flow speed of Link i section/period
wi congestion wave speed of Link i section/period
nJ

i
jam density of Link i veh/section

k simulation time step (period) dimensionless
βi(k) split ratio at node i dimensionless
fi(k) flow out of Link i veh/period
ni(k) number of vehicles (vehicle density) in

Link i

veh/period

si(k), ri(k) off-ramp, on-ramp flow in node i veh/period
di(k) on-ramp i demand veh/period
li(k) queue length on on-ramp i veh/period
Ci flow capacity for on-ramp i veh/period
Li queue capacity for on-ramp i veh/period
Qi(k) input flow for on-ramp i veh/period

Table 3.1: LN-CTM Variables and Parameters

be attached to the freeway at the same location as the on-ramp.

Figure 3.4: Link - Node representation of a freeway ramp merge location

3.2 FUNDAMENTAL DIAGRAM CALIBRATION

For both extensions of the Cell Transmission Model that are implemented by TOPL (LN-

CTM introduced in section 3.1 and ACTM, to be introduced in section 4.2), and in fact, for
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any macroscopic model of traffic flow, the identification of fundamental diagram parameters

for each cell in the network needs to be performed to obtain an accurate model. Exploiting

the abundance of Flow-Density data provided by PeMS, an automated fundamental diagram

calibration methodology has been devised, which uses multiple days’ data to calibrate a

fundamental diagram for a section that includes a loop detector. The main goal of this

algorithm is to fit the assumed triangular fundamental diagram relation to the Flow-Density

scatter plot as shown in figure 3.5. In the scatter plot, every data point corresponds to a 5

minute aggregated Flow-Density pair.

Figure 3.5: Fundamental Diagram fitting scheme

In this section, we demonstrate how the automated parameter identification process

implemented by TOPL works. The first step is to gather data from PeMS for each loop

detector station present in the modeled stretch of road network. Customarily, we download

data from the PeMS Data Clearing House (DCH), which is a repository dedicated to provide

users access to daily packets of data from each detector in the districts of California. Data

collection from PeMS can also be automated by specifying database querying scripts.

To estimate the fundamental diagram parameters at a detector location, the observed 5
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Figure 3.6: Example calibrated fundamental diagram on Interstate 210 Westbound

minute aggregated Flow - Density pairs are combined in a scatter plot as shown in figure 3.6.

In this example plot, there are 108 days’ data combined in one plot, every color corresponding

to a different day and this yields a total of 108x288 = 31104 individual data points. Three

parameters need to be identified to uniquely determine the triangular fundamental diagram:

1. Free Flow Speed (v): The free flow speed corresponds to the slope of the left-hand

side portion of the triangle, where the density is below critical. This slope is determined

by performing a linear least squares fit on the set of Flow-Density pairs that correspond

to measured speeds that are higher than 55 mph. 55 mph is the PeMS criteria for a

threshold speed between free flowing and dense traffic conditions. Here we are making

use of the fact that PeMS provide estimates of speeds in addition to flows and densities.

2. Capacity: The capacity of a freeway section is defined as the apex of the fundamental
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diagram in the macroscopic modeling context. However, care must be taken when

attributing observed maximum flows to the actual capacity of the section. First of all,

the section must get congested during the analyzed day for the capacity to be observed.

Second, the causes of congestion also determine whether the observed maximum flow

in fact corresponds to the actual section capacity. If the section gets congested due

to a lane drop as a result of an incident or because it is hit by a back-propagated

congestion wave from downstream, the observed maximum flows may be below what

can ideally be achieved. Furthermore, it is demonstrated in author’s own work [12] that

capacity, when defined as maximum flow observed during a day on which the section

got congested, shows significant variability. Figure 3.7 demonstrates this variability

in capacity (or in daily observed maximums to be more accurate) over a stretch of

southbound Interstate 880 in East Bay approximately from Oakland to Fremont. The

figure shows box plots of daily maximum flows for each detector station listed in the

horizontal axis. The vertical axis shows the maximum flow values and listed along

the upper horizontal edge of the figure are the number of days that particular section

got congested, i.e. the number of data points for each particular box plot. The red

lines inside the box plots correspond to the median of the observed capacities among

days. The lower and upper box boundaries represent 1st and 3rd quartiles, i.e. 25th

and 75th percentiles, respectively. The whiskers span from either end of the box to

the smallest and largest data points that are non-outliers, where ”outliers” are defined

as any points that are more than 1.5 interquartile range away from box boundaries.
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The interquartile range is defined as the difference between the 25th percentile and the

75th percentile of the data. Individual outliers are marked as points. It is noteworthy

that in the extreme case of detector 400352, the capacity varies between 2186 and 1324

vehicles per hour per lane. Note that both these values reflect the highest observed

flow on a single day of operation across this detector. Another important observation is

that most of the outliers fall below the lower whisker, indicating that external random

factors such as weather, incidents, events, etc., which were not controlled for in this

study, affect the capacity adversely. As for the outliers above the higher whisker, they

may be attributed to the expected offset and noise in the detectors, which will also be

explored in section 4.1. Under the light of these observations, the capacity of a section

is assigned as the maximum non-outlier value, defined as

Capacity = max
fi

(fi|fi < Q3 + 1.5IQR) (3.3)

where fi are the individual maximum flows observed on each congestion-bearing day,

Q3 is the 75th percentile of all the daily observed maximums, and IQR = 75th percentile

- 25th percentile. For sections that do not get congested for any of the observed days,

a nominal value (usually 2000 vehicles per hour per lane) is assigned as the capacity.

Of course, this nominal value should be higher than the observed flows in free flow.

Capacity was demonstrated to be the parameter to which the adopted models are most

sensitive by Muralidharan et. al in [40]. Hence, the correct estimation of capacity is

of utmost importance and is an ever evolving debate in the traffic literature.
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Figure 3.7: Box Plots of Capacity along I-880 South

3. Congestion Wave Speed (w): This parameter determines the speed at which the

congestion propagates upstream of the section. Like capacity, this parameter also

shows significant variability [6]. Following the reasoning made for the variability in

capacity, we want to exclude artificially lower flow data points since those points most

likely correspond to ”worse-than-ideal” operating conditions for the freeway. Since we

want to capture the ”ideal” values of the parameters and use our simulation tools to

replicate ”worse-than-ideal” conditions, we adopt an approximate quantile regression

scheme [34] to fit the right-hand-side portion of the triangular fundamental diagram.

Once the capacity flow is determined, the corresponding density value is deemed the

critical density. The data points that fall to the right of the vertical line drawn from

the apex to the critical density constitute the congested regime data. To estimate the

congestion wave speed, these data points are partitioned along the density axis into
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non-overlapping bins of 10 data points each. From each of these bins, one representative

point is chosen as the ”maximum non-outlier” within the bin, and then a constrained

least squares fit is performed to fit a line through these representative points and the

apex of the triangle. Figure 3.8 shows a detailed view of this procedure, where the

green rectangles in the zoomed view show the representative points for each bin. The

estimation of the w-line also establishes the jam density for the section which is the

density value where the w-line intersects the horizontal axis. When the section to be

calibrated does not get congested for any of the available days, a nominal value of 10

mph is assigned as the congestion wave speed. This value is an average value over all

the available estimations that have been carried through as part of the TOPL project.

Figure 3.8: Estimation of the congestion wave speed (w)

Once the fundamental diagram parameters are identified at each detector location, they

need to be assigned to their corresponding links. In all freeways analyzed and modeled by the

TOPL project (I-680, I-210, SR-101, I-15, I-80, I-880), the detector placement is such that
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measurements are taken just upstream of on-ramps and/or just downstream of off-ramps.

The LN-CTM, introduced in the previous section, assumes a link to start just at the on-

ramp merge. Hence we assign the fundamental diagram estimated at a sensor location to the

link just downstream of the detection. Here, the choice is between assigning the upstream

detector versus assigning the downstream detector to the cell. The choice of the upstream

assignment is justified by the model assumptions. Of the two modes a cell can be in, during

free flow we do not expect any significant difference in the normalized density (normalized

by lane and space) between the measurement location and inside of the cell and when the

cell is congested, the congestion spills back in the upstream direction, giving rise to a cell

density better captured by the upstream detector location rather than the downstream.

Due to malfunctioning or, more frequently, a lack of adequate detector placement, there

are several links with no detection. In such cases, the parameters estimated at the nearest

upstream detector station are assigned to these links (see the double assignment of the

fundamental diagram on the right, in the top part of figure 3.9). Another important exception

to the rule is the case of major on-ramp merges, such as freeway to freeway connectors where

the downstream detector gives a more accurate flow-density relationship for the link (see the

double assignment of the fundamental diagram on the left, in the bottom part of figure 3.9).
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Figure 3.9: Assignment of Fundamental Diagrams to freeway links

3.3 IMPUTATION OF UNKNOWN RAMP FLOWS

After the fundamental diagram parameters are calibrated for each link, the next step to

completing the model calibration is the estimation of unobserved ramp flows. These unknown

ramp flows are estimated using an imputation algorithm devised by Ajith Muralidharan,

another member of the TOPL team. In this section, we present a concise overview of this

algorithm to complete the picture of the automated model building procedure. For a more

detailed account and convergence analysis of the algorithm, the reader is referred to [38].

The imputation algorithm that is deployed within TOPL is a model-based algorithm

built upon the LN-CTM introduced in section 3.1. The goal of the algorithm is to construct

artificial ramp flows at specified locations using an iterative learning algorithm to match

model densities and flows with the measurements taken from the mainline.

For the purposes of the imputation algorithm, the following additional terms need to be
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introduced,

• Capacity adjusted free-flow speed (v̄(k)): v̄i(k) = v̄i(ni(k)) = min
(

vi,
Fi

ni(k)

)

• Capacity adjusted congestion wave speed (w̄(k)): w̄i(k) = w̄i(ni(k)) = min
(

wi,
Fi

(nJ
i
−ni(k))

)

• Total/effective demand (c(k)): ci(k) = ni(k)v̄i(k)(1 − βi(k)) + di(k)

Under these definitions, the demand, and supply functions are represented as

Di(k) = min(ni(k)vi, Fi) = ni(k)v̄i(k)

Si(k) = w̄i(k)(n
J
i − ni(k)) (3.4)

and the model equations become

Density Update:

ni(k + 1) = ni(k) + f in
i (k) − f out

i (k) (3.5)

Flow Update:

f in
i (k) = min

(

w̄i(k)(n
J
i − ni(k)), ci−1(k)

)

f out
i (k) = ni(k)v̄i(k)min

(

1,
w̄i+1(k)(n

J
i+1 − ni+1(k))

ci(k)

)

ci(k) = ni(k)v̄i(k)(1 − βi(k)) + di(k)

di(k + 1) = di(k) +Qi(k) − ri(k)

si(k) = βi(k)f
out
i (k)

ri(k) =
min(ci(k), w̄i+1(k)(n

J
i+1 − ni+1(k)))

ci(k)
di(k) (3.6)
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Due to the dual nature of both the incoming and the outgoing flows for each link, LN-

CTM is a piecewise nonlinear model with four modes. Depending on flow conditions up-

stream and downstream of a link, i.e. whether these are in free flow or in congested operating

conditions, the four modes and their corresponding density update equations can be written

as:

ni(k + 1) = ni(k) + ci−1(k) − ni(k)v̄i(k) (FF mode)

ni(k + 1) = ni(k) + ci−1(k) − ni(k)v̄i(k)
w̄i+1(k)(n

J
i+1 − ni+1(k))

ci(k)
(FC mode)

ni(k + 1) = ni(k) + w̄i(k)(n
J
i − ni(k)) − ni(k)v̄i(k)

w̄i+1(k)(n
J
i+1 − ni+1(k))

ci(k)
(CC mode)

ni(k + 1) = ni(k) + w̄i(k)(n
J
i − ni(k)) − ni(k)v̄i(k) (CF mode)

(3.7)

where F stands for free flow and C stands for congestion in the mode labels following

the equations. The first letter is for the flow conditions upstream and the second is for

downstream. With this formulation, the imputation algorithm solves a two stage problem:

1. Estimate the effective demand vectors ci(k) for each link on the freeway using an

adaptive learning scheme to match the density measurements on the mainline.

2. Using the estimated effective demands, evaluate incoming and outgoing flows to and

from each link. Using these flows and the measured flows (usually measured at the
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location depicted by figure 3.10), solve a linear program to produce on-ramp flows r̂i(k)

and off-ramp split ratios β̂i(k), where the ”hats” denote estimated variables.

Figure 3.10: Location of measurement with respect to the LN-CTM

3.4 MODEL VALIDATION

The identification of fundamental diagram parameters and the estimation of unknown ramp

flows (assuming there are no faulty detectors) produces a complete model. The next step

is the open-loop simulation of this model and assessing its performance. The performance

criteria adopted by TOPL are as follows:

• Density Error: The mean absolute error between the model calculated and measured

densities along the freeway.

Density error =

∑

i

∑

k |ni(k) − nmeas
i (k)|

∑

i

∑

k |n
meas
i (k)|

(3.8)
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• Flow Error: The mean absolute error between the model calculated and measured

flows along the freeway.

Flow error =

∑

i

∑

k |fi(k) − fmeas
i (k)|

∑

i

∑

k |f
meas
i (k)|

(3.9)

• VMT Error: The relative error in hourly Vehicle Miles Traveled

VMT error =

∑

κ |VMT (κ) − VMTmeas(κ)|
∑

κ VMT (κ)
(3.10)

• VHT Error: The relative error in hourly Vehicle Hours Traveled

VHT error =

∑

κ |V HT (κ) − V HTmeas(κ)|
∑

κ V HT (κ)
(3.11)

• Delay Error: The relative error in hourly Delays

Delay error =

∑

κ |V CD(κ) − V CDmeas(κ)|
∑

κ V CD(κ)
(3.12)

where VMT, VHT and Delay are defined as:

V HT (κ) =
∑

i

(κ+1)∗3600/Ts
∑

k=κ∗3600/Ts

ni(k)

VMT (κ) =
∑

i

(κ+1)∗3600/Ts
∑

k=κ∗3600/Ts

fi(k)

Delay(κ) =
∑

i

(κ+1)∗3600/Ts
∑

k=κ∗3600/Ts

(ni(k) − fi(k)/Vi) I(Vs(k) < 55mph)

In the delay formulation, the 55 mph speed is a user-specified reference speed set at this

value for freeways. In addition to the calculated measures above, the contour plots of speeds,
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flows and measurements along the freeway provide an important visual inspection tool to

assess if the model is able to replicate the congestion patterns and important bottleneck

locations on the freeway. An example set of these plots are provided in figures 3.11 and 3.12.

In these contour plots, the horizontal axis is the spatial coordinate whereas the vertical

coordinate axis corresponds to the time of day in hours. The plots show a single day, i.e.

a 24 hour period. The traffic flows from right to left in these particular plots. The color

palettes next to the plots define the color vs value matchings for the contours. This example

shows a calibrated 23 mile stretch of eastbound I-80 on August 15h, 2008 for a 24 hour time

range.
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Figure 3.11: Example Density Contour Plots for a model of I-80 Eastbound
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Figure 3.12: Example Flow Contour Plots for a model of I-80 Eastbound
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Chapter 4

FAULT DETECTION AND

HANDLING

4.1 MOTIVATION FOR MODEL-BASED FAULT

DETECTION

Before introducing the model-based fault detection scheme, we first provide a background

on common measurement errors that cannot be identified by the statistical methods applied

on the raw data by PeMS. Since the model building tools developed by TOPL are based

on data already processed and filtered by PeMS, the aim of the model-based approach is to

detect further errors in the data that have slipped through the PeMS filters. These errors will

usually arise in the form of consistent biases and off-sets rather than statistically aberrant

54



measurement noise. Therefore, the decision logic to be introduced in section 4.3 classifies

potential errors as bias in flow and density measurements. It is clear that such errors can

not be detected by comparative statistical methods if they occur in a consistent manner over

days of operation.

Measurement bias in flow counts was evidenced as a result of an ancillary study that

investigated the discrepancy between adjacent loop detectors that report to two separate

authorities but should nevertheless, in theory, report the same counts. There are many

federal Census detectors on several locations along California Freeways and a significant

portion of these are located adjacent to PeMS detectors which are under Caltrans authority,

insofar as to share the same physical inductive loop in a few cases. It was observed that

even though these Census and PeMS detectors are right next to each other, they sometimes

show consistent bias towards one of the reported total daily counts. Figure 4.1 (left) shows

a scatter plot of 143 days of total daily flows at such a location. Looking at the plot, it is

obvious that the counts are highly correlated but the Census counts are, on average, 20%

higher than the PeMS counts, as the right hand side plot of the figure exhibits. Two such

sites have been further examined in an effort to explain this discrepancy. To this goal, hand

counts were established from video feeds at these two sites to compare to the filtered PeMS

data. The details and complete results of this study are beyond the scope of this work;

however, the findings about PeMS counts are highly pertinent to the problem of finding

consistently biased measurements. For the two analyzed sites, it was found that 5 minute

aggregated PeMS data contains 4.3% positive bias relative to the hand counts. Among the
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two sites, a total of 6 hours of data were analyzed which amounts to a sample size of 72 data

points. It was also observed that the PeMS counts were always higher than the hand counts,

i.e. the bias was always positive. The error in hand counts was estimated to be around

1%. Figure 4.2 shows the 15 minute aggregated relative errors in PeMS counts with respect

to the hand counts for a four hour period. Another observation was that the relative bias

with respect to the hand counts shows no significant dependence on flow volume or traffic

conditions.

Figure 4.1: Census ve PeMS daily total flows

For density measurements, the cause of measurement bias is a predominantly structural

problem related to sensor placement and model assumptions. On California freeways the

loop detectors are customarily placed immediately upstream of on-ramps and downstream

of off-ramps. When specifying the model geometry, every link is associated with one of

these detectors. Figure 3.9, shows this association in the LN-CTM sense. ACTM has a

similar detector-link association scheme depicted in figure 4.3. In this figure, the links are

enumerated as 1 and 2, the ramp flows are indicated by the arrows below as r and s and the
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Figure 4.2: Relative bias in PeMS flows with respect to hand counts

measurements f (flow) and n (density) are taken at the locations indicated by the circles.

Every detector is associated with the link immediately downstream of the detector location.

Since the ACTM defines a link with an on-ramp at the beginning and an off-ramp at the

end, in this formulation the detector actually is within the geometrical confines of the link

but is nonetheless upstream of the on-ramp and thus may fail to capture the density of the

whole link accurately. Due to this placement of the detectors which is incompatible with

the model assumptions, it is expected that all density measurements carry an unavoidable

bias. Since density is the essential state of the model on which both the imputation and the

simulations are based, this bias can have a significant effect on the accuracy of the model.

This phenomenon constitutes the basic reason for a model-based fault detection algorithm.
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Figure 4.3: Basic ACTM representation and Location of Detectors

4.2 THE ASYMMETRIC CELL TRANSMISSION

MODEL

The Asymmetric Cell Transmission Model (ACTM) is another extension of the Cell Trans-

mission Model adopted by earlier deployments of the TOPL freeway modeling and cali-

bration process [22], [21]. Compared to LN-CTM, introduced in section 3.1, ACTM is a

simpler model that is particularly suited to modeling unidirectional freeways rather than

more complex networks. The fault detection algorithm to be introduced in the next section

exploits some favorable properties of ACTM which the LN-CTM does not provide. For this

reason, the fault detection algorithm is based on the ACTM. In this section we summarize

the ACTM and the ACTM-based imputation algorithm as an essential background to the

58



discussion of fault detection in the next section.

The ACTM specifies the freeway as a sequence of cells, each with at most one on-ramp

near the beginning of the section and at most one off-ramp near the end of the section (see

figure 4.4). Every cell is assumed to have a detector station associated with it, and when

specifying the model geometry, it is aimed to build the cells in a such a way that every cell

contains one vehicle detector station. This is depicted in figure 4.5 and should be compared

to figure 3.4 for a visual assessment of the discrepancy between the ACTM and the LN-CTM.

Figure 4.4: ACTM schematic representation

Figure 4.5: ACTM representation of a freeway portion

The equations that govern the evolution of density and flow for a given link i in the
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ACTM are as follows:

Density:

ni(k + 1) = ni(k) + fi−1(k) − fi(k) + ri(k) − si(k), 1 ≤ i ≤ N (4.1)

Flow:

fi(k) = min(vini(k) − si(k), wi+1[n
J
i+1 − ni+1(k)], Fi) 1 ≤ i < N (4.2)

Boundary Flows:

fN(k) = min(vNnN (k) − sN(k), FN) (4.3)

f0(k) = min(w1[n
J
1 − n1(k)], Q(k) + fin(k)) (4.4)

Q(k + 1) = Q(k) + fin(k) − f0(k) (4.5)

where i is the cell index and k is the discrete time index. The model variables and parameters

are as listed in table 4.1.

It is customary to specify the downstream boundary conditions as free flow and at the

upstream boundary, flow is assumed to be fed to the freeway through a queue. A cell i is

defined to be in free flow if its corresponding discharge flow fi(k) satisfies

vini(k) − si(k) < min[wi+1[n
J
i+1 − ni+1(k)], Fi] (4.6)

and it is in congestion if the inequality above is violated. Hence, the system essentially

is a piecewise affine switching mode system with congested and free flow modes for each cell.
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Symbol Name Units
Fi maximum flow (capacity) of sec-

tion i

veh/period

vi free flow speed of section i section/period
wi congestion wave speed of section

i

section/period

nc

i
critical density of section i veh/section

nJ

i
jam density of section i veh/section

fi(k) flow from section i to i + 1 at pe-
riod k

veh/period

si(k), ri(k) off-ramp, on-ramp flow in section
i at period k

veh/period

ni(k) number of vehicles in section i at
period k

veh/section

Q(k) number of vehicles in the input
queue to section 1 at period k

veh

fin(k) input flow at upstream queue at
period k

veh/period

Table 4.1: Asymmetric Cell Transmission Model (ACTM) Variables and Parameters

In contrast, the LN-CTM is a piecewise non-linear switching mode system which complicates

the building of model-based schemes like imputation and fault detection upon it.

ACTM IMPUTATION

The imputation algorithm, briefly introduced in section 3.3, was first developed for the

ACTM and it is essential to the fault detection scheme to be introduced in the following

sections. The ACTM-based imputation algorithm is also due to fellow TOPL researcher

Ajith Muralidharan [41], [38].

The ACTM-based imputation algorithm uses an iterative learning control (ILC) approach

rather than the adaptive control approach described in section 3.3 for the LN-CTM-based

imputation. The goal again is to match the mainline flows and densities by fitting artificial
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ramp flows at specified locations. In the following, the model and learning dynamics are

represented in continuous time for ease of representation and analysis, but in practice they are

implemented in discrete time with a small time step and small gains, so that the imputation

procedure as well as the model are stable. The upstream section is specified with the subscript

up and the downstream section is specified by dn. Figure 4.6 shows the parameters and

measurements used for imputation of ramp flows in section i. The upstream boundary

conditions include the upstream density, fundamental diagram parameters and the off-ramp

flow si,up. Since all the parameters and variables carry the subscript i, for clarity, we drop it

in the following equations.

Figure 4.6: Imputation Parameters and Cell Definitions

It is assumed that the density and ramp flow profiles are 24 hour periodic, and the on-

ramp and off-ramp flows are represented as a convolution of a kernel with a constant periodic

ramp flow parameter vector:

r(t) =

∫ T

0

Kr(τ, t)cr(τ)dτ, s(t) =

∫ T

0

Ks(τ, t)cs(τ)dτ (4.7)
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In equation (4.7), Kr(τ, k) and Ks(τ, k) represent periodic, time dependent kernel func-

tions with a period of 24 hours. A typical kernel function would be an impulse or a gaussian

window centered at time k.

For each section, the imputation procedure assumes initial estimates for the constant

ramp parameter vectors ĉr and ĉs. These estimates are then adapted so that the model

calculated densities match the density profile measured by the vehicle detector station. The

model variables and the estimates are denoted by a hat accent (ˆ) and the residuals by a

tilde accent (˜). The true values are represented without any accent.

The four modes considered by the imputation algorithm are:

1. P-F: Plant in Free Flow

2. P-C: Plant in congestion

3. M-F: Model in Free Flow

4. M-C: Model in Congestion

These modes for both the plant and the model are determined by equation (4.6). The

mode dependent adaptation laws for the parameters at each step are given by:

• P-F , M-F (plant and model are both in free-flow):

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t)

˙̂cs(τ, t) = −G2Ks(τ, t)f̃dn(t) (4.8)
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• P-C , M-C (plant and model are both in congestion):

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t)

˙̂cs(τ, t) = −G1Ks(τ, t)ñ(t) (4.9)

• P-C , M-F (plant is in congestion and model is in free flow):

Case(i) ñ(k) > 0

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t)

˙̂cs(τ, t) = −G1Ks(τ, t)ñ(t) −G2Ks(τ, t)
f̃dn(t) + |f̃dn(t)|

2

Case(ii) ñ(t) ≤ 0

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t)

˙̂cs(τ, t) = −G2Ks(τ, t)f̃dn(t) (4.10)
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• P-F , M-C (plant is in free flow and model is in congestion):

Case(i) ñ(k) < 0

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t)

˙̂cs(τ, t) = −G1Ks(τ, t)ñ(t) −G2Ks(τ, t)f̃dn(t)

Case(ii) ñ(k) ≥ 0

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t)

˙̂cs(τ, t) = −G2Ks(τ, t)f̃dn(t) (4.11)

where G’s are user defined positive gains. The model density is updated at each time

step using the most recent estimates of the unknown ramp flow inputs by the following set

of equations:

ñ(t) = n(t) − n̂(t) (4.12)

˙̂n(t) = f̂u − f̂d + r̂(t) − ŝ(t) − añ(t) (4.13)

f̂u = min(nup(t)vup − sup(t), Fup, w(nJ − n̂(t))) (4.14)

f̂d = min(n̂(t)v − ŝ(t), w̄dn(t)(n
J
dn − ndn(t))) (4.15)

f̃dn(t) = fdn(t) − (n(t)v − ŝ(t)) (4.16)

where w̄dn(t) = min
(

F
nJ

dn
−ndn(t)

, w
)

is introduced in order to absorb the capacity flow

into the congestion mode and the parameter a in (4.13) is chosen so as to make the error
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equations asymptotically stable. The adaptation is carried out for the entire density profile

multiple times, so as to reduce the 24-hour ‘residuals’
∑

k |n(k) − n̂(k)| and
∑

k |fdn(k) −

f̂dn(k)|. This procedure is repeated until either both the residuals become small (eg. <

0.5% of
∑

k n(k) and < 0.5% of
∑

k fdn(k)) or the residuals do not improve (eg.

change of errors of < 0.5% of
∑

k n(k) and < 0.5% of
∑

k fdn(k) across iterations)

Due to the piecewise affine formulation of the ACTM, the imputation can be carried

out sequentially for each section, starting from the most upstream section. Hence, for the

estimation of ramps in section i, only the immediate upstream section i−1 and the immediate

downstream section i + 1 are considered. This property is instrumental to the isolation of

faults for the model-based fault detection scheme to be introduced momentarily.

4.3 FAULT DETECTION ALGORITHM

In the modeling process flow outlined in figure 3.1 the identification of faulty mainline detec-

tors, when carried out manually, is the most time-consuming step of the procedure. There-

fore, an automated procedure based on the evaluation of residuals between the measured

and simulated densities and flows has been devised. Figure 4.7 shows the block diagram of

this framework.

With regard to the treatise in section 2.3, this framework can be regarded as a combination

of the parity and parameter estimation methods. The relatively simple parity approach is

applicable in this case because we have a discrete time model of the system and the data
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Figure 4.7: Fault Detection Framework

become available as daily packets in the PeMS repository. This allows for the iterative

learning of the unknown ramp flows, as explained in section 4.2, and facilitates the residual

generation for the period of one complete day. The caveat of this structure is that the

method can not be implemented in real-time due to its dependence on a complete set of

daily measurement profiles.

To analyze the effects of faults on the freeway model, we start with an artificial freeway of

only four links. Simulated data are used as measurements and fault signals are superposed

upon these measurements at a known isolated location. When the unknown ramp flows

are imputed based on these artificially polluted mainline data, the fault signals manifest

themselves in the estimated variables in very specific patterns depending on the freeway

geometry and the nature of the fault signal. A convenient consequence of using the ACTM

is that the fault in the measurements of a link only affects the link itself, and the two links

adjacent to it upstream and downstream, but not the other links.
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To demonstrate an example, we consider 3 successive cells, all of which have both an

on-ramp and an off-ramp and none of the ramp data are available (i.e. they are all to

be imputed). This configuration is depicted in figure 4.8. We inject bias terms, φ and ψ,

respectively, in the flow and density measurements just upstream of cell 2, which the model

assigns as the flow entering cell 2 and density of cell 2, respectively. To conform with the

model definition in chapter 4.2, we denote the flow measured at this location f1 whereas the

density measurement is named n2 but in reality these two measurements belong to the same

vehicle detector station. We make no additional assumptions about the additive artificial

error terms. Hence they can, in theory, be any function of time.

Figure 4.8: Example Ramp Configuration

We have:

fm
1 = fT

1 + φ1

nm
2 = nT

2 + ψ2
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where superscript m stands for measured and T stands for truth, i.e. the simulated

artificial data. In the presence of the artificial faults, the dynamics of the plant, model and

residuals in free flow evolve according to the following equations:

Plant:

ṅ1 = −v1n1 + f0 + r1

ṅ2 = −v2n2 + v1n1 − s1 + r2

ṅ3 = −v3n3 + v2n2 − s2 + r3

Model:

˙̂n1 = −v1n̂1 + fm
0 + r̂1

˙̂n2 = −v2n̂2 + v1n̂1 − ŝ1 + r̂2

˙̂n3 = −v3n̂3 + v2n̂2 − ŝ2 + r̂3

Residuals:

˙̃n1 = −v1ñ1 + r̃1

˙̃n2 = −v2n̂2 + v2ψ2 + ψ̇2 + r̃2 − φ1

˙̃n3 = −v3ñ3 + r̃3
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where the hat accents are reserved for the model and the tilde accents are reserved for

residuals. In the residual equations, we have used the fact that under free flow conditions

v1n̂1 − ŝ1 = fm
1

v2n̂2 − ŝ2 = f2

On the other hand, during congestion, the dynamics evolve according to the equations

below:

Plant:

ṅ3 = w3(n
J
3 − n3) − f3 + r3 − s3 (not affected)

ṅ2 = w2(n
J
2 − n2) − w3(n

J
3 − n3) + r2 − s2

ṅ1 = fm
0 − w2(n

J
2 − n2) + r1 − s1

Model:

˙̂n2 = w2(n
J
2 − n̂2) − f2 + r̂2 − ŝ2

n̂1 = f0 − w2(n
J
2 − n̂2) + r̂1 − ŝ1
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Residuals:

ñ2 = −ñ2w2 + w2ψ2 + ψ̇2 + d̃2

ñ1 = ñ2w2 − w2ψ2 + d̃1

where di = ri − si is the total demand.

To simplify the analysis, only the two cases where the middle cell is either in free flow or

in congestion are considered and it is assumed that the adjacent cell affected by the middle

cell (which is the upstream cell when the middle cell is in congestion and the downstream

cell when it is in free flow) is in the same mode as the middle cell. This does not compromise

the algorithm’s ability to detect faults since the instances when two successive cells are on

different flow modes are transient and do not prevail for extended periods of time. After the

imputation algorithm is applied, the model profiles converge to the following values during

free flow and congestion respectively:
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Free Flow:

n̂1 → n1

n̂2 → nm
2 (= nT

2 + ψ2)

f̂1 → fm
1 (= fT

1 + φ1)

d̂1 → dT
1 + φ1

d̂2 → dT
2 − φ1 + ψ̇2

Congestion:

n̂1 → n1

n̂2 → nm
2 (= nT

2 + ψ2)

f̂1 → fm
1 − φ1 − w2ψ2

d̂1 → dT
1 − w2ψ2

d̂2 → dT
2 + w2ψ2 + ψ̇2

It is seen that the faults manifest themselves in two distinct ways for this particular

configuration of unknown ramp flows:

1. The measured and simulated flows discharged by cell 1 do not match during congestion
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2. The estimated total demands for cells 1 and 2 show a significant instant change when

the mode switches from free flow to congestion.

Figure 4.9 depicts the artificially generated flow, density and demand profiles in compar-

ison to the simulated model based on these artificial data and the injected fault terms. The

fault signatures that were derived above are clearly visible in the figures. In the demand

(total ramp flows) plots, the red lines that show the ”true” artificial ramp flows are not

present in real applications but only the blue ”imputed” ramp flows are available. Hence it

is only the sudden switch in the profiles that provides the fault signature.

Figure 4.9: Fault Signatures due to Positive Bias in Density and Flow in an ”All Ramps
Present” configuration (Artificial Data)

There are 5 possible fault signatures that show up as residuals between the model and

the plant:
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1. Density mismatch during free flow

2. Density mismatch during congestion

3. Flow mismatch during free flow

4. Flow mismatch during congestion

5. ”Jump” in estimated demand when there is a switch in flow conditions

Since the fault signatures are dependent on which ramps are to be estimated in a cell

triplet, they were evaluated for all 64 possibilities of ramp configurations, similar to the

example given above. The given example happens to be case 64, whereas case 1 is a triplet

of cells with no ramps at all. The signatures for all ramp configuration cases are listed in

the table in Appendix A.

4 modes of systematic fault were considered:

1. Positive Bias in Density

2. Negative Bias in Density

3. Positive Bias in Flow

4. Negative Bias in Flow

If the middle cell in a three cell cascade is subject to any of the above failure modes, a

unique combination of the 5 signatures occur in all the three cells. In the given example this
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combination is ”Signature 4 in Cell 1 and Signature 5 in Cells 1 and 2”, which are due to

”Positive Bias in Density” and ”Positive Bias in Flow”.

The automated algorithm is essentially a look-up-table logic that takes the cells on the

freeway in sets of 3, determines the specific ramp configuration and checks whether the

density and flow residuals show characteristics pertaining to any of the failure modes listed

above. The next chapter presents the results of this algorithm on real freeway sections with

different ramp configurations and different fault signatures than the ones presented in this

section.

Before we present the results, there are several important characteristics of the algorithm

that need to be explained.

• Thresholds: As suggested by the discussion in section 4.1, most measurements are

subject to varying degrees of bias. For this reason the algorithm requires thresholds to

be set to accurately flag density and flow mismatches as actual fault signatures. The

models calibrated by the TOPL project customarily aim for and consistently achieve

mean absolute errors of around 3-5% and 5-10% for density and flow respectively

(see equations (3.4) and (3.8)). Such calibration efforts can be reviewed in previous

publications produced by the TOPL researchers, such as [24], [16] and [39]. In light

of the extensive previous calibration experience (roughly around 50 calibrated models)

on several different freeways the 3-5% and 5-10% errors for density and flow have been

established as achievable and acceptable error figures. These error percentages are
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averaged values over all sensors available on the modeled stretch of freeway. Therefore,

the fault detection algorithm uses these figures as a starting point for determining the

degree of mismatch for a particular sensor. Subsequently, hard thresholds have

been set at 3% for density and 10% for flows at individual sensor locations.

• Unobservable faults: As shown in the example above, detection of fault is condi-

tioned on the system switching its mode during the day. If this does not occur for a

specific sensor location, i.e. the section does not get congested, the fault in the mea-

surement is unobservable. In most cases, the model will be able to match the faulty

measurements by feeding ramp flows that will match the measurement perfectly and

the estimated ramp flow profiles will not exhibit any anomalies that can be picked up

by the algorithm. On the other hand, since we are basing the accuracy of our model

on how it compares to the measurements, this constitutes a case of ‘ignorance being

bliss” and gets ignored.

• Known ramp flows: Although the majority of ramp flows are not monitored and/or

archived on California freeways, this is not always the case. In the rare cases where the

ramp flow measurements are available, the algorithm assumes those measurements to

be fault-free and classifies the geometry as a case where the given ramp does not exist,

since it is not available to the imputation algorithm to be estimated. The decision

logic treats the case accordingly when evaluating the mainline data for faults.

• Faults in adjacent detectors: It has been empirically established (similar to the
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example above), that when two neighboring detectors both have a measurement bias,

they nevertheless produce the corresponding fault signatures in the residuals and es-

timated demand profiles. These signatures do superpose but it is virtually impossible

for them to cancel each other because this would require the fault signals to perfectly

complement each other. The superposition of the fault signatures does not constitute a

problem for the decision logic because it looks for an exact subset of signatures for each

fault mode and does not get thrown off by the fact that there are additional signatures.

In terms of classifying the fault however, it can report the section to exhibit both pos-

itive and negative bias in the same measurement. To summarize, adjacent faults do

not deteriorate fault detection performance but they may hinder fault identification.

• Algorithmic characterization of the ”Jump” phenomenon: In the automated

algorithm, there is a need to algorithmically evaluate and categorize the jump phe-

nomenon. Mathematically, this is done by taking the mean value of the demand profile

during free flow and congestion and calculating the difference. If this difference is above

the threshold of 1000 vehicles per hour, the demand profile is deemed to exhibit the

jump phenomenon. A more exact approach would be to check if the profile produces

a jump at the time instance when the flow conditions transition between free flow and

congestion. However, at these exact time instances, we also expect some spikes in the

profiles due to the discretization which can corrupt the identification of an authentic

”jump”. Figure 4.10 shows the comparison of these two approaches. It can be seen that
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the former approach is less sensitive and thus more selective in terms of identifying the

”jump”. Here, the threshold of 1000 vehicles per hour is a rather conservative value.

This figure is also based on previous model calibration and fault identification efforts.

Mainline flows have their maximum values at approximately 8000 vehicles per hour

when averaged over multiple days and compared to this average value, a difference of

1000 vehicles per hour is a conservative yet evidently effective threshold for detecting

faults.

Figure 4.10: Severity of the jump phenomenon in the estimated demand profiles on an
example freeway section

• Arbitrary Fault Profiles: When the fault signals that contaminate the measure-

ments are not biases but rather arbitrary profiles superposed on the underlying correct

measurements, they also produce fault signatures of the types enumerated above. An
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example of such a fault would be encountered when a detector is reporting measure-

ments from the opposite direction of the freeway and is highly inconsistent with its

neighboring detectors. Such faulty measurements produce similar residuals, and in fact

these residuals are much more severe and are easily identifiable with most threshold

settings. These often trigger multiple fault modes that contradict each other such as

”Negative Bias in Density” and ”Positive Bias in Density” simultaneously. This is not

surprising since an arbitrarily contaminated measurement can be both higher or lower

than the true value at different time instants throughout the day.

The next section introduces the default post-processing and fault handling procedures

that complete the picture for the automated fault diagnosis scheme.

4.4 FAULT HANDLING

Once the faulty detectors are accurately flagged, the next step is to analyze and try to

figure out how to handle the fault. For the sake of complete automation, a post-processing

unit deploys a default scheme of fault handling, which is to be introduced shortly. Here,

it is important to note that the performance of this automated scheme will be inherently

poor when compared to user-directed fault handling. The automated procedure discards

the flagged bad detectors completely whereas in reality further analysis may reveal that the

faulty detector was not necessarily reporting inaccurate data but instead it was placed at

the incorrect location during the specification of the freeway geometry, detailed in section
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3.1.

Due to the unknown inputs, a complete estimation of the fault signatures is not possible.

Instead, faults can only be detected, as shown in the previous section. The automated fault

handling approach therefore is to discard the bad detector from the analysis completely.

This method is labeled as fault exclusion in the established fault diagnosis literature.

An important caveat of discarding bad detectors is the fact that data, which already are in

short supply to begin with (about an average of 1.5 healthy detectors per mile on the modeled

freeways), are being completely disregarded once flagged as faulty. Similar to the setting of

thresholds, mentioned in the previous section, a cost vs. benefit analysis is required in an

effort to be responsible with scarce resources. Every excluded detector reduces the model

complexity and accuracy. So, although we want to exclude faulty detectors, we don’t want

to reduce our model too much by doing so. The thresholds mentioned in the previous section

are set based on previous calibration experience and if for a certain freeway section and a

given day they tend to be too strict, too many detectors (up to 50% in extreme cases) may be

deemed as faulty by the decision logic. In such cases it behooves the user to either adjust the

thresholds manually or, as it is more often the case, take a closer look at sensor placement

on the freeway geometry. When too many detectors are flagged, and if they also tend to be

succeeding each other in a certain portion of the freeway, it is usually a sign of a structural

problem with the archived data. Two such cases were encountered in the calibrated freeways

so far. One instance was in the modeling of the Eastbound Interstate 80, in the portion

between Emeryville and El Cerrito, encompassing Berkeley. Eight mainline detectors in this

80



stretch were found to be reporting data from the loops installed on the opposite direction of

the freeway, i.e. the westbound Interstate 80. A similar problem was encountered during the

modeling of northbound Interstate 680. On a portion of the freeway to the immediate south

of Walnut Creek, 4 successive detectors on the mainline were identified to be reporting data

from the opposite direction loops.

To address the issue of too many flagged detectors without compromising the complete

automation of the model building procedure, an heuristic post-processor has been devised.

It is not uncommon for some flagged detectors to not have a very adverse contribution

to the mean absolute error throughout the whole freeway. Following this argument, the

flagged detectors can be ranked in terms of how badly they affect the mean absolute error

of the complete model. Within this ranking, the default automatic threshold has been set

at an arbitrary 0.5% contribution level, i.e. if the mean absolute error of the complete

model decreases by only less than 0.5% in both density and flow errors, those detectors are

not discarded. In effect, this serves as an additional threshold scheme acting on a post-

processing level. However, attention must still be paid to the estimated unknown ramp flows

in the vicinity of such detectors. Even though the mainline profiles may match more or less

within acceptable accuracy, the estimated ramp flows may look unrealistic for detectors that

are flagged but not discarded. The software is structured so that the user can specify and

override which detectors to be excluded after the automated process determines the detectors

to be eliminated from the analysis.

The exclusion of a detector is equivalent to the very common case where a detector is
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already reported to be bad by PeMS or a detector is not installed at all at an important

location on the freeway. This physical or artificial lack of mainline detectors coupled with the

unobserved ramp flows gives rise to the creation of the so-called Mega-Cells within the model

geometry. In effect, these Mega-Cells are ordinary links in both the LN-CTM and ACTM

senses. However, both models assume the individual junction nodes (or the individual links

for ACTM) to have at most one on-ramp and at most one off-ramp. When a detector is

missing or gets discarded, it may be the case that more than one of each ramp falls between

two adjacent working detectors. In such cases, the imputation algorithm can only estimate

an effective total on-ramp flow and an effective total off-ramp flow no matter how many

on-ramps and off-ramps are between the two working mainline detectors in reality. In other

words, the model assumptions restrict the algorithm to represent an unobserved stretch of

the freeway in a simplified manner, effectively deteriorating the geometric accuracy of the

model. This theoretical formation of the so-called Mega-Cell is schematically demonstrated

in figure 4.11.

This formulation of mega-cells, although essential for the estimation of the unknown ramp

flows, poses the problem of geometric incompatibility of the model with the real world. TOPL

strives for producing calibrated models for traffic researchers to run reliable simulations and

test various planning and control strategies. To this goal, a model that represents multiple

ramps that join the freeway at different locations as a single effective ramp connecting to the

freeway at a single location is not an acceptable product. Therefore, further post-processing

of the estimated ramp flows is required to revert the geometry back to its original form.
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Figure 4.11: Forming of a Mega-Cell

This is achieved by converting the mega-cell to its original shape and splitting the estimated

effective flows in such a way that the new geometrically accurate, no-mega-cells model agrees

with the geometrically inaccurate model that was used in the imputation of effective ramp

flows. Obviously, this agreement is only sought at the measurement locations which are part

of the mega-cell model, i.e. the detectors that were used for the imputation.

This splitting of flows poses a challenge for the model construction process because the

new ramp flows assigned to the separated ramps affect the state of all links in the rest of

the model. This corresponds to going back to the top configuration in figure 4.11 from the

bottom configuration. It is easy to see that an arbitrary splitting of the total effective on-

ramp OR1+OR2 may lead to extra congestion, if for instance the on-ramp OR1 is assigned

zero flow as an extreme case and all of the estimated effective total on-ramp demand is
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assigned to the on-ramp OR2. The link to which OR2 feeds to has become shorter and

does not have an off-ramp anymore and hence can not accommodate the total demand

without getting unrealistically congested. This extra congestion would also spill upstream

and disrupt the rest of the model. Therefore, it is imperative to devise a separation scheme

for such ramps that are bundled together due to forming of mega-cells.

A graphical representation of the mega-cell splitting problem is depicted in figure 4.12.

Based on this figure, the problem can be stated as follows: For a given mega-cell i+ 1 with

simulated profiles as given in the top half of the figure, reconstruct the profiles encircled in

blue in the bottom half of the figure.

Figure 4.12: Mega-cell splitting problem

In the earlier stages of development, ad-hoc separation schemes were evaluated. These

would start by separating the imputed total demands equally and adjusting the scaling

according to the effect the new demands have on the rest of the model. If for example
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an on-ramp demand is too high for the new geometry to accommodate without excessive

congestion, the algorithm would decrease the portion that gets assigned to that particular

on-ramp. Proceeding in this fashion the algorithm would iteratively come up with the best

splitting proportion for the total demands while keeping the mainline density and flow profiles

at the boundaries of the mega-cell the same. However, this approach did not prove successful

in practice. Especially for the geometries where the original geometry has no ramp at the

very beginning or the end of the mega-cell portion, as in the case with FR1 in figure 4.11,

this algorithm could not provide a satisfactory solution.

Therefore, a re-imputation based approach has been adopted. Recall that the sole rea-

son for skewing the original geometry is for imputing the unknown ramp flows and if the

mainline measurements were appropriately available, no mega-cell would have been created

to begin with. Following this reasoning, the alternative approach is based on finding an arti-

ficial pseudo-measurement profile for the mainline that would agree with the model and the

measurements taken at the boundaries of the mega-cell. Given such a pseudo-measurement

at the missing or bad detector location in figure 4.11, there would be no need to bunch the

unknown ramps together and the imputation algorithm would estimate the ramp demands

separately.

To find these so-called pseudo-measurements, we start with the calibrated model with

mega-cells present. The terminology here bears significance. Due to the unknown inputs,

the real state of the system is inherently unobservable when a healthy mainline detection is

not present. Therefore, we can not proceed with a more rigorous state estimation approach.
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Instead we formulate the problem as a linear program and search for a mainline density

profile that agrees with the model assumptions and the model-generated flows and densities

in the links neighboring the mega-cell. This linear optimization problem is posed as follows:

min
r1,s1,r2,s2,np

1
,np

2
,fmid

|np
1 − n1| + |np

2 − n2| (4.17)

s.t. Anp
1 = f out

0 + r1 − (fmid + s1) Anp
2 = fmid + r2 − (f out

2 + s2) (4.18)

f out
0 + r1 ≤ w1(ρ

J
1 − np

1) fmid + r2 ≤ w2(ρ
J
2 − np

2) (4.19)

fmid + s1 ≤ F1 f out
2 + s2 ≤ F2 (4.20)

r1 ≤ f out
0

Fr1

F1
r2 ≤ fmid

Fr2

F2
(4.21)

fmid ≥ 0 ρJ
1 ≥ np

1 ≥ 0 ρJ
2 ≥ np

2 ≥ 0 (4.22)

r1 ≥ 0 (or r1 = 0) s1 ≥ 0 (or s1 = 0) r2 ≥ 0 (or r2 = 0) s2 ≥ 0 (or s2 = 0) (4.23)

Figure 4.13: Mega-cell splitting problem - LP formulation

Figure 4.13 provides a visual clarification to the above problem, where it can be seen that

n1 and n2 correspond to the measured density profiles and the flows on the boundaries of the
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mega-cell, encircled in blue, are generated as the result of simulation using imputed effective

ramp flows. In the equations above, np
1 and np

2 denote the pseudo-measurements of density

in the two parts of the mega-cell that is being split, whereas n1 and n2 are the measured

densities taken upstream and downstream of the mega-cell, respectively. The fundamental

diagram parameters that are assigned to the two halves are the ones calibrated based on

the data received at the measurement locations of n1 and n2 as well. The |.| operator in the

objective function 4.17 denotes l1-norm. All variables in the problem are vectors that span

values for the given day of calibration, midnight to midnight. The set of constraints in the

problem can be interpreted as a relaxed LN-CTM where we have relaxed the flow equations

to bounding inequalities due to the unknown ramp flows. The constraints 4.18 specify the

dynamics for the evolution of density in the two cells where the matrix A is the difference

matrix specified as:

A =

































−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

...
. . .

. . .
. . .

. . .
...

... · · · 0 −1 1 0

0 · · · · · · 0 −1 1

































The constraints in 4.19 ensure that flows entering the cells do not exceed the supply

during congestion, and similarly, discharge flows are bounded above by section capacities

via the constraints in 4.20. The constraints 4.21 are imposed to ensure that ramp flows are
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comparably smaller than mainline flows and so that the solution set does not include cases

where flow into the downstream half is supplied predominantly by the ramp and the mainline

flow between the cells hits zero. The rest of the constraints specify the trivial bounds within

which the profiles should stay. Depending on the ramp geometry, constraints in 4.23 are set

to either equal or greater than zero for each individual ramp inside the boundaries of the

mega-cell.

The results of the above linear program are only the two pseudo-measurement profiles for

the densities of the two new halves of the former mega-cell. The ramp flows that correspond

to the solution of the linear program are not accurate estimates for the unknown ramp flows

because of the relaxed nature of the model specification in the optimization. However, the

main goal of the mega-cell de-construction is to obtain on-ramp demands and split ratio

profiles for the individual ramps in the original geometry. This is accomplished by re-

imputation using the pseudo-measurements of density along with the actual measurements

where available. To summarize, the iterative algorithm that produces the separated ramp

flow profiles is structured as follows:

Mega-cell Splitting Algorithm:

1. Use the linear program 4.17 - 4.23 to find pseudo-measured densities for the new cells

2. Feed pseudo-measurements into the imputation algorithm along with the actual mea-

surements

3. Impute for the unknown ramp flows of the new configuration
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4. Simulate to get new boundary flows at the boundaries of the mega-cell

5. • If after the splitting, the second cell is still a mega-cell (i.e. still has ramps that

are bundled together), assign the density and the downstream flow of the first cell

as the new upstream boundary conditions and go back to step 1.

• Otherwise, proceed to the next mega-cell in the geometry.

Before proceeding to the results chapter, there is a need to clarify the choice of target

density profile n2 in the objective function 4.17 for the downstream half of the mega-cell.

This target profile actually is the measurement that is assigned to the link downstream of

the mega-cell. However, due to the relaxed formulation of the problem, the pseudo-measured

density profile np
2 needs to be associated with a realistic density profile. Otherwise, there

is too much freedom in the free-flow mode, which gives rise to unrealistically high densities

and flows at times during the night, where we expect both to be low. Therefore, a realistic

density profile is required for the estimated np
2 to hinge on.

Another practical modification that was implemented was to internalize the equality

constraints 4.18 in the optimization by adding them to the objective function as follows:

min
r1,s1,r2,s2,np

1
,np

2
,fmid

|np
1 − n1| + |np

2 − n2| + |Anp
1 − f out

0 − r1 + (fmid + s1)| (4.24)

+ |Anp
2 − fmid − r2 + (f out

2 + s2)|

s.t. 4.19 - 4.23
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This relaxation is required because of the excessive number of equality constraints that

these constraints impose on the problem, especially with small simulation time-steps such as

5 seconds which makes the A matrix, although sparse, a 17280-by-17279 matrix. The range

of values for densities are often in the range of 50-300 vehicles per mile, whereas the common

range for flows are around 1000-8000 vehicles per hour. Hence, the flows are penalized more

severely by a factor of approximately 20 in the cost formulation (4.24).

The next chapter provides case studies on the modeling of two freeways that make use

of all of the tools introduced so far.
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Chapter 5

EXAMPLE CASE STUDIES AND

RESULTS

5.1 INTERSTATE 210 IN SOUTHERN

CALIFORNIA

In this section we present the results of the automated modeling and calibration procedure

applied to a certain portion of the eastbound Interstate 210 in Southern California. The

modeled section of the freeway spans the portion of the freeway starting near Pasadena and

extending to near San Dimas, California. The first step of the model building procedure is

to construct the geometry in Network Editor as shown in 5.1.

The modeled section is 27.3 miles long with 44 mainline detectors placed along the
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Figure 5.1: Modeled portion of the eastbound Interstate 210

mainline. There are 31 on-ramps and 27 off-ramps in this stretch. 26 of the on-ramps have

working detectors whereas the remaining 5 on-ramp detectors were off-line for the day of the

calibration. None of the off-ramp flows are observed. Hence, the 5 on-ramp and all of the

off-ramp flows need to be imputed. There is a 24 hour active HOV lane (High Occupancy

Vehicle Lane, also commonly known as car pool lane). This HOV lane has detectors separate

from the mainline vehicle detector stations with individual IDs. Therefore, the model treats

this lane as a separate road parallel to the mainline and specifies vehicle-type specific split

ratio profiles for the mixing of flows. The key parameter for the model here is the PPV

(passenger per vehicle) which specifies what portion of the vehicles are classified as HOV

vehicles. This is customarily set to a nominal 1.2 which translates into 20% of the vehicles

being HOV eligible. The TOPL simulation tool has the capability of keeping track of differen

vehicle types such as single occupancy vehicles, high occupancy vehicles and trucks.

The freeway is represented by 66 links. These links need to be joined to form cells

such that each cell has a working mainline detector associated with it as required by the

92



imputation algorithm. Since the imputation of unknown ramp flows hinges on the mainline

data, the 66 link freeway representation needs to be condensed into a cell representation

where a new cell is initiated at each detector location and the succeeding links are attached

end to end until a new detector is reached along the freeway. Due to missing or not working

detectors, this particular freeway needs to be reduced to a 30 cell representation. On the day

of February 15th, 2011, for which the following model calibration results are presented, 10

mainline detectors were reported to be down by PeMS and 4 detectors were discarded due

to redundancy. When two detectors are in close proximity with no ramps in between, they

do not provide additional information and one must define very short links to make use of

both detectors. These short links can violate the CFL conditions during simulation and are

therefore avoided. Figure 5.2 shows a spatio-temporal detector health contour plot for the

year 2011, spanning the months between February and October. The horizontal axis is the

space vertex listing the post miles of the detectors and the vertical axis is the temporal vertex

showing the dates. Hence, every row in the plot corresponds to a day and every column to

a detector. Detector health is represented as a percentage value which corresponds to the

percentage of data received by PeMS from the detector for the given day. We can see from

the plot that the month of February shows relatively better overall detector health.

The next step is to calibrate the fundamental diagrams for each of the detectors and feed

the calibrated model into the imputation and fault detection algorithms. We first present

the simulation results with imputed ramp flows without performing any fault detection on

the available mainline data. We visualize the simulation results in form of the speed, density
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Figure 5.2: Detector Health Space Time Diagram for eastbound Interstate 210

and flow contour plots shown in figures 5.19, 5.20 and 5.21. These plots are similar to

figure 5.2, where each column corresponds to a detector and each row to a 5 minute time

instance during the day. Therefore, although the horizontal axis is labeled according to the

post-miles of the detectors, the column widths are uniform and hence do not reflect actual

detector spacing along the freeway. In the speed contours, the color bar is not included since

there are only 3 shades of color associated with these plots: Black corresponds to speeds

lower than 40 mph (congested flow), Grey corresponds to flows between 40 mph and 55 mph

(dense flow) and White corresponds to speeds higher than 55 mph (free flow).

Before the faulty detectors are excluded, the mean absolute errors for density and flow

are 5.63% and 10.53% respectively. Out of the 30 available detectors, 5 were flagged to

be faulty and excluded. After removal of these bad detectors, the density and flow errors
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Figure 5.3: I-210E Speed Contours before Fault Detection / Exclusion

Figure 5.4: I-210E Density Contours before Fault Detection / Exclusion

decrease to 1.96% and 6.33% respectively. The speed, density and flow contours after fault

detection and exclusion are given below.

In the latest configuration of the freeway, there exist 11 mega-cells to be de-constructed
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Figure 5.5: I-210E Flow Contours before Fault Detection / Exclusion

Figure 5.6: I-210E Speed Contours after Fault Detection / Exclusion (11 mega-cells present)

into their corresponding original geometries. The first step is estimating pseudo-measurements

for each conjoined link inside the mega-cells. Recall that these are daily density profiles that

are feasible in the LN-CTM sense and are as close as possible to the nearest available mea-
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Figure 5.7: I-210E Density Contours after Fault Detection / Exclusion (11 mega-cells
present)

surements. The objective function of the linear program (4.24) is also posed to preserve

the flow profiles at the boundaries of the mega-cell. Flow and density profiles for an ex-

ample section with the original configuration (i.e. with mega-cells still intact), and after

re-imputation are shown in figures 5.9 to 5.12. That is to say, in the following plots, the

green dotted lines are the actual measurements, the blue lines are the simulated profiles with

mega-cells intact and the red lines are simulated profiles after the re-imputation using the

pseudo-measurements obtained from the optimization problem.

To assess the resulting calibrated model after the de-construction of the mega-cells,

we present the speed, density and flow contours with mega-cells intact and mega-cells de-

constructed juxtaposed against the available data along the modeled freeway section. These

plots are similar to the above plots except for the uniform column width for each cell. The
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Figure 5.8: I-210E Flow Contours after Fault Detection / Exclusion (11 mega-cells present)

Figure 5.9: Flows at the upstream boundary of the example mega-cell

columns widths in these plots are directly proportional to cell lengths. That is to say, each

cell is assigned a number of successive columns proportional to its size. This way, it is easy

to see how big the mega-cells are and for how long a portion of the modeled freeway the lack

of data extends. The top plots in all three of the figures reflect the taken measurements and
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Figure 5.10: Densities of the upstream half of the example mega-cell

Figure 5.11: Flows at the downstream boundary of the example mega-cell

the blacked-out bands correspond to the portions where the data is bad or non-existent. The

set of columns corresponding to mega-cells are bounded by boxes superposed on the plots

and the numbers on top of these plots specify the number of original links that are bundled

together to construct that specific mega-cell.
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Figure 5.12: Densities of the downstream half of the example mega-cell
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Figure 5.13: I-210E Speed Contours: Measurements (top), Mega-cells intact (middle), Mega-
cells split (bottom)
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Figure 5.14: I-210E Density Contours: Measurements (top), Mega-cells intact (middle),
Mega-cells split (bottom)
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Figure 5.15: I-210E Flow Contours: Measurements (top), Mega-cells intact (middle), Mega-
cells split (bottom)
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Finally, figure 5.16 shows an example of the ramp flow profiles before and after splitting

the mega-cell. The three plots on the left hand side show the total on-ramp, total off-ramp

and net (on-ramp − off-ramp) ramp flows before and after the decomposition of the mega-

cell from a single cell to 5 individual cells. The right hand side plots show the on-ramp

and off-ramp flows that are assigned to each newly created individual cell in an alternating

fashion. I.e., the top two profiles are the on-ramp and off-ramp of the first (most upstream)

cell, the third and fourth plots belong to the second cell and so on. Due to the fact that this

mega-cell consists of 5 individual cells, we get 10 such plots on the right hand side.

Figure 5.16: I-210E Ramp Flow and Demand Profiles for Mega-cell 3

104



5.2 INTERSTATE 80 IN NORTHERN

CALIFORNIA

In this section we present the results of the automated modeling and calibration procedure

applied to a certain portion of the eastbound Interstate 80 in the San Francisco Bay Area.

The modeled section of the freeway spans the portion of the freeway starting near the end

of the Bay Bridge in Oakland / Emeryville and extending to the beginning of the Car-

quinez Bridge in Crockett California. The portion of the modeled freeway section is first

constructed in the Network Editor to produce the geometry shown in 5.17, including the

mainline detectors placed along the freeway.

This modeled section is 21.6 miles long with 51 mainline detectors placed along the

mainline. Contrary to the I-210 example, this freeway has no observation of ramp flows

and for this reason all of the ramps need to be estimated using the imputation algorithm.

Within the modeled portion there exist 25 on-ramps and 23 off-ramps. There is a time-of-

day-activated HOV lane, active during the morning and evening peak hours of 5:00am to

10:00am and 3:00pm to 7:00pm, respectively. Unlike the I-210 case study, the detection on

the HOV lane is not separate. Therefore the data reported by the single loops on the left-

most lanes are used to calibrate the fundamental diagrams for the HOV lanes. In simulation,

the activation and de-activation of the HOV lane is achieved by specifying correspondingly

time-varying split ratios at the nodes where mainline and HOV lane flow interactions occur.

The freeway is represented by 79 links, most of which need to be joined into mega-cells
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Figure 5.17: Modeled portion of the eastbound Interstate 80

for the imputation algorithm to estimate the unknown on-ramp demands and off-ramp split

ratios. This is again due to either the poor health or a lack of mainline detection. Moreover,

on the 2.6 mile stretch between the Powell street and the University Avenue exits, the PeMS
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archives (a total of 8 detectors) were found to be reporting data from the opposite freeway

direction. With no PeMS data available for this stretch, an alternate source of data was used.

These 8 sensors happen to fall into the exact test bed of the Berkeley Highway Laboratory

Project [1] and the archives from the year 2008 were available to us for use. Hence, the

calibration and imputation were carried through based on 2008 data. In particular, the

unknown ramp flows are imputed for the single day of August 21st, 2008 in the following

analysis. Looking at a 3 month period in 2008, the spatio-temporal detector status contours

provide an overall picture of data health along the modeled freeway (5.18). The portion

where the BHL data is used corresponds to the post mile range between 9.31 and 11.91. It

can be seen in the plot that PeMS reports relatively healthy detection for this stretch.

Figure 5.18: Detector Health Space Time Diagram for eastbound Interstate 80

On the particular day of August 21st 2008, the PeMS analysis reports 14 of the 51
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mainline detectors to be of poor health. Again, for the imputation algorithm, the 79 link

freeway representation needs to be condensed into the cell representation. For this particular

case, the 79 link representation is transformed into a 33 cell representation due to the 14

bad detectors reported by PeMS and a few other additional merges as a result of redundant

detectors. It is sometimes the case that two detectors are placed within close proximity and

do not provide additional information. In such cases, one of the two is discarded, especially

if the distance between the two is shorter than the required minimum cell length for the CFL

condition to be met by the simulation. Hence, in this particular example we have a 33 cell

representation of the freeway although we have 37 healthy detectors available.

The next step is to calibrate the fundamental diagrams for each of the detectors and feed

the calibrated model into the imputation and fault detection algorithms. We first present

the simulation results with imputed ramp flows without performing any fault detection on

the available mainline data. Similar to the 210 example, the speed, density and flow contour

plots are shown in figures 5.19, 5.20 and 5.21.

Before the faulty detectors are excluded, the mean absolute errors for density and flow are

6.22% and 8.39% respectively. Out of the 33 available detectors, 4 were flagged to be faulty

and excluded. After removal of these bad detectors, the density and flow errors decrease to

3.08% and 6.8% respectively. The speed, density and flow contours after fault detection and

exclusion are given in figures 5.22 through 5.24 below.

In this latest configuration of the freeway, there exist 7 mega-cells to be de-constructed

into their corresponding original geometries. We again present the speed, density and flow
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Figure 5.19: I-80E Speed Contours before Fault Detection / Exclusion

Figure 5.20: I-80E Density Contours before Fault Detection / Exclusion

contours with mega-cells intact and mega-cells de-constructed juxtaposed against the avail-

able data along the modeled freeway section. Contrary to uniform column width for each

cell, the columns widths in these plots are directly proportional to cell lengths. The top

109



Figure 5.21: I-80E Flow Contours before Fault Detection / Exclusion

Figure 5.22: I-80E Speed Contours after Fault Detection / Exclusion (7 mega-cells present)

plots in all three of the figures reflect the taken measurements and the blacked-out bands

correspond to the portions where the data is bad or non-existent. Finally, figure 5.28 shows

an example of the ramp flow profiles before and after splitting the mega-cell.
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Figure 5.23: I-80E Density Contours after Fault Detection / Exclusion (7 mega-cells present)

Figure 5.24: I-80E Flow Contours after Fault Detection / Exclusion (7 mega-cells present)
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Figure 5.25: I-80E Speed Contours: Measurements (top), Mega-cells intact (middle), Mega-
cells split (bottom)
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Figure 5.26: I-80E Density Contours: Measurements (top), Mega-cells intact (middle), Mega-
cells split (bottom)
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Figure 5.27: I-80E Flow Contours: Measurements (top), Mega-cells intact (middle), Mega-
cells split (bottom)
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Figure 5.28: I-80E Ramp Flow and Demand Profiles for Mega-cell 2
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In summary, the constructed model goes through the following steps:

1. Imputation of unknown ramp flows: In this step, freeway links are bunched together

to build mega-cells due to PeMS-reported malfunctioning detectors

2. Fault detection: The fault detection algorithms flags and removes further bad detectors

not reported by PeMS

3. Re-imputation of unknown ramp flows: Mega-cells are extended due to additional

detectors being removed from analysis

4. Splitting of mega-cells: This step is done in two steps as explained in section 4.4. First,

surrogate density measurements are found using the LP approach and second, imputing

the unknown ramp flows for a third and last time using the pseudo measurements.

Table 5.1 summarizes the faulty detector information and the errors calculated for each

of the models presented above, after each iteration.
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Freeways I-210E I-80E
Total Number of detectors 36 51
Number of bad detectors reported by PeMS 6 14
Number of bad detectors removed by the fault detection algorithm 5 4
Density Error after first pass with mega-cells 5.63% 6.22%
Flow Error after first pass with mega-cells 10.53% 8.39%
Density Error after fault detection with mega-cells 1.96% 3.08%
Flow Error after fault detection with mega-cells 6.33% 6.80%
Density Error after mega-cell splitting 3.02% 3.69%
Flow Error after mega-cell splitting 5.82% 6.92%

Table 5.1: Model Calibration Results
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Chapter 6

CONCLUSIONS AND DISCUSSION

This dissertation explored system identification, fault detection and fault handling method-

ologies developed for the automated freeway model building and calibration software, as part

of the Tools for Operations Planning (TOPL) project. A macroscopic flow model is adopted

in order to simplify the model building and provide very fast simulation performance to

facilitate live decision support for traffic operators and engineers.

In chapter 2 we have presented the current data collection infrastructure that feeds the

data required by the data driven algorithms presented in this work. It has been shown

that despite extensive collection and archival capabilities, the quality and availability of

data still remains the biggest challenge for the accurate and completely autonomous model

construction effort. The main power of the macroscopic modeling approach is its swiftness

of operation. Therefore, the challenges posed by poor data have to be tackled efficiently

to leverage this convenient feature. Two imputation algorithms, explained in sections 3.3
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and 4.2, are used to estimate the ramp flows which are usually not observed in Califor-

nia freeways. Fault detection and handling algorithms that further tackle low quality data

problems have been introduced in sections 4.3 and 4.4. A look-up table logic automatically

assesses the health of individual detectors along the modeled freeway and the removal of

the faulty detectors from the analysis reduces mean absolute errors in density and flow by

40-50% and 20-40%, respectively. For extended portions of freeway with poor detection,

a mega-cell decomposition methodology produces substitute measurements that agree with

the rest of the healthy mainline detectors in order to keep the automated model building

procedure functional even when good data are unavailable. Obviously, this solution should

not be interpreted as anything more than a temporary fix. As shown in section 4.4, these

pseudo-measurements do not provide estimates of the inherently unobservable state. The

correct fix for this problem should be to revive, repair and install the required detectors or

collect the necessary data by other means. Yet another algorithm introduced in section 3.6

was the Fundamental Diagram identification, which again addressed the wavering nature of

the observed data by utilizing statistical tools to estimate the parameters.

Future research into the model-based sensor fault detection should be exploring the extension

of the algorithm presented herein to more complex networks rather than unidirectional free-

ways. Obviously, this is a shortcoming of the underlying model-based imputation scheme

rather than the fault detection algorithm itself. If the imputation algorithm were to be

extended to more complex networks, the fault detection scheme would readily carry over.

Advancements to the fault detection method can be made in terms of threshold setting. If
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the model building process were to be inserted within a consolidated software framework,

complete with continuous database access, within a few months there would be enough cal-

ibrated days to start establishing a threshold learning scheme for individual detectors. This

scheme can subsequently be configured to automatically update and tune the thresholds as

more calibrated days become available. Another improvement can be made towards remov-

ing the assumption that ramp measurements are fault-free whenever they are available. This

is a simplifying assumption made while developing the fault detection framework and due to

this assumption, any mismatch between the simulated and measured profiles is attributed

to the mainline measurement, while in reality this may not necessarily be the case.

120



Bibliography

[1] Bhl website. http://bhl.path.berkeley.edu/project, accessed 08/24/2012.

[2] PeMS website. http://pems.dot.ca.gov, accessed 08/24/2012.

[3] TOPL network editor. http://vii.path.berkeley.edu:8097/NetworkEditor, accessed

08/24/2012.

[4] J.H. Banks. Freeway speed-flow concentration relationships: More evidence and inter-

pretations. In Transportation Research Record 1225, pages 53–60, 1989.

[5] J.H. Banks. The two-capacity phenomenon: Some theoretical issues. In Transportation

Research Record 1320, pages 83–90, 1991.

[6] J.H. Banks. Review of empirical research on congested freeway flow. Transportation

Research Record, 1802:225–232, 2002.

[7] Transportation Research Board. Highway Capacity Manual 2000, December 2000.

121



[8] C. Chen, J. Kwon, J. Rice, A. Skabardonis, and P. Varaiya. Detecting errors and

imputing missing data for single loop surveillance systems. In Transportation Research

Record, volume 1855, pages 160–167, Washington DC, 2003. TRB, National Research

Council.

[9] Cassidy, M. and R. Bertini. Some traffic features at freeway bottlenecks. Transportation

Research Part B, 41B:82–95, 2007.

[10] C. Claudel and A. Bayen. Minimal error certificates for detection of faulty sensors

using convex optimization. 2009. Allerton Conference on Communication and Control,

Allerton, IL.

[11] D. Cleghorn, F. Hall, and D. Garbuio. Improved data screening techniques for free-

way traffic management systems. In Transportation Research Record 120, pages 17–23,

Washington, DC, 1991. TRB, National Research Council.

[12] G. Dervisoglu, G. Gomes, J. Kwon, R. Horowitz, and P. Varaiya. Automatic calibration

of the fundamental diagram and empirical observations on capacity. Transportation

Research Board, 88th Annual Meeting, 2009.

[13] X.S. Ding. Model-Based Fault Diagnosis Techniques. Springer, 2008.

[14] L.C. Edie. Car following and steady-state theory for non-congested traffic. In Operations

Research 9, pages 66–76, 1961.

[15] L.C. Edie. Flow Theories in Traffic Science. Wiley, New York, 1974.

122



[16] A. Chow et al. TOPL: Tools for operational planning of transportation networks. 2008.

ASME Dynamic Systems and Control Conference, Ann Arbor, Michigan, USA.

[17] W. Mauser F. Siebel. On the fundamental diagram of traffic flow. ArXiv Condensed

Matter e-prints, 2008.

[18] J.H. Banks F.L. Hall, V.F. Hurdle. Synthesis of recent work on the nature of speed-flow

and flow-occupancy (or density) relationships on freeways. In Transportation Research

Record 1365, pages 12–18, Washington, DC, 1992. TRB, National Research Council.

[19] M.A. Gunter F.L. Hall. Further analysis of the flow-concentration relationship. In

Transportation Research Record 1091, pages 1–9, 1986.

[20] M.A. Gunter F.L. Hall, B.L. Allen. Empirical analysis of freeway flow-density relation-

ships. In Transportation Research 20A, pages 197–210, 1986.

[21] G. Gomes. Optimization and microsimulation of on-ramp metering for congested free-

ways. PhD thesis, University of California, Department of Mechanical Engineering,

Berkeley, CA, 2004.

[22] G. Gomes and R. Horowitz. Optimal freeway ramp metering using the asymmetric cell

transmission model. Transportation Research, Part C, 14(4):244–262, 2006.

[23] B. Greenshields. A study of traffic capacity. 1934. Proceedings of the 14th annual

meeting of the Highway Research Board.

123



[24] J. Huper and et al. Macroscopic modeling and simulation of freeway traffic flow. 2009.

12th IFAC Symposium on Control in Transportation Systems.

[25] R. Isermann. Model-based fault detection and diagnosis - status and applications.

Annual Reviews In Control, 29:71–85, 2005.

[26] J. Kwon, C. Chen, and P. Varaiya. Statistical methods for detecting spatial configuration

errors in traffic surveillance. Transportation Research Record, 1870:124–132, 2005.

[27] J.A. Myers J. Treiterer. The hysteresis phenomenon in traffic flow. In Proceedings of

the 6th International Symposium on Transportation and Traffic Theory.

[28] L. Jacobson, N. Nihan, and J. Bender. Detecting erroneous loop detector data in a

freeway traffic management system. In Transportation Research Record 1287, pages

151–166, Washington, DC, 1990. TRB, National Research Council.

[29] Z. Jia, B. Coifman, C. Chen, and P. Varaiya. The PeMS algorithm for accurate, real-time

estimates of g-factors and speeds from single loop detectors. In 2001 IEEE Intelligent

Transportation Systems Proceedings, pages 536–541, Oakland, CA, 2001.

[30] A.D. May J.S. Drake, J.L. Schofer. A statistical analysis of speed density hypotheses.

In Highway Research Record 154, pages 53–87, 1967.

[31] M.J. Cassidy K. Chung, J. Rudjanakanoknad. Relation between traffic density and

capacity drop at three freeway bottlenecks. Transportation Research B, 33B:25–42,

1999.

124



[32] R. Rajagopal P. Varaiya K. Kwong, R. Kavaler. Arterial travel time estimation based

on vehicle re-identification using wireless magnetic sensors. Transportation Research

Part C: Emerging Technologies, 17:586–606, 2009.

[33] B.S. Kerner. Dependence of empirical fundamental diagram on spatial-temporal traffic

patterns features. ArXiv Condensed Matter e-prints, 2003.

[34] R. W. Koenker. Quantile Regression. Cambridge U. Press, 2005.

[35] A. Kurzhanskiy. Modeling and Software Tools for Freeway Operational Planning. PhD

thesis, University of California, Berkeley, 2007.

[36] D.R.P. Gibson L.A. Klein, M.K. Mills. Traffic detector handbook: Third edition. Tech-

nical report, Federal Highway Administration, 2006.

[37] M. Lighthill and G. Whitham. On kinematic waves I: Flow movement in long rivers. II:

A theory of traffic flow on long crowded roads. Proc. Royal Society of London, Part A,

229(1178):281–345, 1955.

[38] A. Muralidharan. Tools for modeling and control of freeway networks. PhD thesis,

University of California, Berkeley, 2012.

[39] A. Muralidharan, G. Dervisoglu, and R. Horowitz. Freeway traffic flow simulation using

the link node cell transmission model. American Control Conference, 2009.

125



[40] A. Muralidharan, G. Dervisoglu, and R. Horowitz. Probabilistic graphical models of

fundamental diagram parameters for simulations of freeway traffic. Transportation Re-

search Record, 2011.

[41] A. Muralidharan and R. Horowitz. Imputation of ramp flow data using the asymmetric

cell transmission traffic flow model. ASME Dynamic Systems and Control Conference,

2009.

[42] C.F. Daganzo N. Gerolimnis. Existence of urban-scale macroscopic fundamental dia-

grams: Some experimental findings. Transportation Research Part B, 42:759–770, 2008.

[43] H.J. Payne, E.D. Helfenbein, and H.C. Knobel. Development and testing of incident

detection algorithms. Technical Report FHWA-RD-76-20, Federal Highway Adminis-

tration, Washington DC, 1976.

[44] P. Balle R. Isermann. Trends in the application of model-based fault detection and

diagnosis of technical processes. Control Engineering Practice 5, pages 709–719, 1997.

[45] R. Rajagopal, X. Nguyen, S. C. Ergen and P. Varaiya. Distributed online simultaneous

fault detection for multiple sensors. In Proceedings of the 2008 Intl. Conf. on Information

Processing in Sensor Networks (IPSN 2008), 2008.

[46] P. Richards. Shock waves on the highway. Operations Research, 4(1):42–51, 1956.

[47] Schrank, D. and T. Lomax. The 2011 Annual Urban Mobility Report. Technical report,

Texas Transportation Institute, 2011. http://mobility.tamu.edu.

126



[48] A.D. May S.M. Easa. Generalized procedures for estimating single- and two-regime

traffic flow models. In Transportation Research Record 772, pages 24–37, 1980.

[49] R. E. Turochy and B. L. Smith. A new procedure for detector data screening in traffic

management systems. In Transportation Research Record 1727, pages 127–131, Wash-

ington, DC, 1991. TRB, National Research Council.

[50] R. Horowitz A. Skabardonis X.Y. Lu, P. Varaiya. Fundamental diagram modeling

and 374 analysis based on ngsim data. 2009. 12th IFAC Symposium on Control in

Transportation Systems.

[51] H.M. Zhang. A mathematical theory of traffic hysteresis. Transportation Research Part

B, 33:295–300, 1999.

127



Appendix A

Table of Fault Signatures

The table below lists the fault signatures corresponding to the four modes of fault considered:

1. Positive Bias in Density

2. Negative Bias in Density

3. Positive Bias in Flow

4. Negative Bias in Flow

The fault signatures are enumerated as follows:

1. Density mismatch during free flow

2. Density mismatch during congestion

3. Flow mismatch during free flow
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4. Flow mismatch during congestion

5. ”Jump” in estimated demand when there is a switch in flow conditions

The ramp configurations are encoded as binary numbers from 0 to 63. Each digit in the 6

digit number stands for a ramp. Read from left to right (which is the direction in which

traffic is assumed to be flowing), the first entry corresponds to the onramp in the first cell,

the second entry to its offramp, the third entry to the onramp of the second cell and so on.

The fault is assumed to be isolated to the middle cell, i.e. the second cell only.

Ramp Configuration Fault Modes Fault Signatures

0 0 0 0 0 0

0 0 0 0 0 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 2

Cell 3 1

(2) Negative Bias in Density

Cell 1 2

Cell 2 2

Cell 3 1

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 0 0 1 0

0 0 0 0 1 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 2

Cell 3 5

(2) Negative Bias in Density

Cell 1 2

Cell 2 2

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 0 1 0 0

0 0 0 1 0 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 3,5

Cell 3 1

(2) Negative Bias in Density

Cell 1 2

Cell 2 1,3

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 0 1 1 0

0 0 0 1 1 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 3,5

Cell 3 -

(2) Negative Bias in Density

Cell 1 2

Cell 2 1,3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 1 0 0 0

0 0 1 0 0 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 4

Cell 3 1

(2) Negative Bias in Density

Cell 1 2

Cell 2 3,5

Cell 3 1

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 1 0 1 0

0 0 1 0 1 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 4

Cell 3 5

(2) Negative Bias in Density

Cell 1 2

Cell 2 3,5

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 1 1 0 0

0 0 1 1 0 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 5

Cell 3 -

(2) Negative Bias in Density

Cell 1 2

Cell 2 3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 0 1 1 1 0

0 0 1 1 1 1

(1) Positive Bias in Density

Cell 1 2,4

Cell 2 5

Cell 3 -

(2) Negative Bias in Density

Cell 1 2

Cell 2 3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 0 0 0 0

0 1 0 0 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 1

(2) Negative Bias in Density

Cell 1 2

Cell 2 2

Cell 3 1

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 0 0 1 0

0 1 0 0 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 5

(2) Negative Bias in Density

Cell 1 2

Cell 2 2

Cell 3 5

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 0 1 0 0

0 1 0 1 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 3,5

Cell 3 1

(2) Negative Bias in Density

Cell 1 2,4,5

Cell 2 1,3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 0 1 1 0

0 1 0 1 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 3,5

Cell 3 -

(2) Negative Bias in Density

Cell 1 2,4,5

Cell 2 1,3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 1 0 0 0

0 1 1 0 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 4

Cell 3 1

(2) Negative Bias in Density

Cell 1 2,4,5

Cell 2 1,3,5

Cell 3 1

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 1 0 1 0

0 1 1 0 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 4

Cell 3 5

(2) Negative Bias in Density

Cell 1 2,4,5

Cell 2 2

Cell 3 -

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 1 1 0 0

0 1 1 1 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 5

Cell 3 1

(2) Negative Bias in Density

Cell 1 2,4,5

Cell 2 3

Cell 3 1

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

0 1 1 1 1 0

0 1 1 1 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 5

Cell 3 -

(2) Negative Bias in Density

Cell 1 2,4,5

Cell 2 3

Cell 3 5

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 2,3,5

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 0 0 0 0

1 0 0 0 0 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 2

Cell 3 1

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 1

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 0 0 1 0

1 0 0 0 1 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 2

Cell 3 5

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 0 1 0 0

1 0 0 1 0 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 3,5

Cell 3 1

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 1,3,5

Cell 3 1

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 0 1 1 0

1 0 0 1 1 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 3,5

Cell 3 -

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 1,3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 1 0 0 0

1 0 1 0 0 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 4

Cell 3 1

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 3

Cell 3 1

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 1 0 1 0

1 0 1 0 1 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 4

Cell 3 5

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 3

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 1 1 0 0

1 0 1 1 0 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 5

Cell 3 5

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 3,5

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 0 1 1 1 0

1 0 1 1 1 1

(1) Positive Bias in Density

Cell 1 2,4,5

Cell 2 5

Cell 3 5

(2) Negative Bias in Density

Cell 1 4,5

Cell 2 3,5

Cell 3 5

(3) Positive Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

(4) Negative Bias in Flow

Cell 1 3,4

Cell 2 -

Cell 3 -

152



Ramp Configuration Fault Modes Fault Signatures

1 1 0 0 0 0

1 1 0 0 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 1

(2) Negative Bias in Density

Cell 1 -

Cell 2 2

Cell 3 1

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 0 0 1 0

1 1 0 0 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 5

(2) Negative Bias in Density

Cell 1 -

Cell 2 2

Cell 3 5

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 0 1 0 0

1 1 0 1 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 3,5

Cell 3 1

(2) Negative Bias in Density

Cell 1 -

Cell 2 1,3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 0 1 1 0

1 1 0 1 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 3,5

Cell 3 5

(2) Negative Bias in Density

Cell 1 -

Cell 2 1,3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 1,3

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 1,3

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 1 0 0 0

1 1 1 0 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 2

Cell 3 1

(2) Negative Bias in Density

Cell 1 -

Cell 2 2

Cell 3 1

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 1 0 1 0

1 1 1 0 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 4

Cell 3 5

(2) Negative Bias in Density

Cell 1 -

Cell 2 2

Cell 3 5

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 1 1 0 0

1 1 1 1 0 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 5

Cell 3 1

(2) Negative Bias in Density

Cell 1 -

Cell 2 3,5

Cell 3 5

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 5

Cell 3 -
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Ramp Configuration Fault Modes Fault Signatures

1 1 1 1 1 0

1 1 1 1 1 1

(1) Positive Bias in Density

Cell 1 4,5

Cell 2 5

Cell 3 -

(2) Negative Bias in Density

Cell 1 -

Cell 2 3,5

Cell 3 -

(3) Positive Bias in Flow

Cell 1 4,5

Cell 2 5

Cell 3 -

(4) Negative Bias in Flow

Cell 1 -

Cell 2 5

Cell 3 -

Table A.1: Fault Signatures for Different Ramp Config-

urations
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