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The paper presents an algorithm for the prediction and estimation of the state of a road net-
work comprising freeways and arterials, described by a Cell Transmission Model (CTM).
CTM divides the network into a collection of links. Each link is characterized by its funda-
mental diagram, which relates link speed to link density. The state of the network is the vec-
tor of link densities. The state is observed through measurements of speed and flow on some
links. Demand is specified by the volume of vehicles entering the network at some links, and
by split ratios according to which vehicles are routed through the network. There is model
uncertainty: the parameters of the fundamental diagram are uncertain. There is uncertainty
in the demand around the nominal forecast. Lastly, the measurements are uncertain. The
uncertainty in each model parameter, demand, and measurement is specified by an interval.
Given measurements over a time interval [0, t] and a horizon s P 0, the algorithm computes
a set of states with the guarantee that the actual state at time (t + s) will lie in this set, con-
sistent with the given measurements. In standard terminology the algorithm is a state pre-
diction or an estimate accordingly as s > 0 or =0. The flow exiting a link may be controlled by
an open- or closed-loop controller such as a signal or ramp meter. An open-loop controller
does not change the algorithm, indeed it may make the system more predictable by tight-
ening density bounds downstream of the controller. In the feedback case, the value of the
control depends on the estimated state bounds, and the algorithm is extended to compute
the range of possible closed-loop control values. The algorithm is used in a proposed design
of a decision support system for the I-80 integrated corridor.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Standard control theory provides a useful framework for formulating and answering questions of real time traffic man-
agement. In this framework the evolution of the road network traffic is modeled as a dynamical system,
xðt þ 1Þ ¼ f ðt; xðtÞ; uðtÞ;vðtÞÞ; t P 0; ð1:1Þ
yðtÞ ¼ hðt; xðtÞ;wðtÞÞ; ð1:2Þ
in which x(t) is the traffic state vector at time t. The evolution of x(t) is affected by both controlled inputs (ramp metering,
signal settings, changeable message signs) denoted by u(t), and uncontrolled inputs or disturbances (demand, events, weath-
er, incidents) denoted by v (t). The vector y(t) of detector measurements (flow, density, speed, incidents) provides informa-
tion about the traffic state according to (1.2), in which w(t) is the measurement ‘noise’. In the framework, the traffic
management strategy is just a feedback function U
. All rights reserved.
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uðtÞ ¼ Uðt; y½0; t�Þ;
which specifies how the control u(t) is selected on the basis of the measurements available up to that time, namely
y[0, t] = {y(s), s 6 t}.

Suppose we are given the road network model {f,h}, the feedback function U, and a probabilistic characterization of the
uncertainties in the forecast demand, disturbances and measurement noise {v (t), w(t)t P 0}. Then the prediction of the traf-
fic state at a future time is summarized by the probability distribution of the future state, conditioned on the measurements
available at the present time (Kumar and Varaiya, 1986). That is, the prediction of x(t + s) is the function
Wðn; t þ s; t; y½0; t�Þ ¼ Probðxðt þ sÞ ¼ njyðsÞ;0 6 s 6 tÞ;
which is the probability density that x(t + s) = n, conditioned on the measurements y[0, t]. The function W summarizes every-
thing one can know about the road network performance under the specified feedback function or management strategy. For
example, from W one can calculate the average performance of the feedback function in terms (say) of the expected delay as
well as the risk in terms (say) of its variance. As another example, from W one can calculate the likelihood or probability of
the event that congestion will develop during [t, t + s]. One can then determine whether a proposed management strategy
provides adequate average performance and acceptable risk, or whether a proposed strategy improves upon the baseline
strategy.

Two difficulties make it virtually impossible to calculate the function W. The first difficulty is computational. To appre-
ciate it, consider a 20 km long two-directional highway, with detectors every 500 m reporting speed and density every 30 s.
Then y(t) is a 160-dimensional vector. Suppose the freeway is modeled as a nonlinear discrete-space, discrete-time system,
with 500 m links in each direction, with the state as the vector of link densities. Then x(t) is a vector of dimension 80. So W is
the probability distribution of the 80-dimensional vector x(t + s) which depends on the 80 � t-dimensional measurements
y[0, t]. Computing W is at present impossible. However, with sufficient computational resources, one may be able to calculate
more or less satisfactory approximations to W, although to our knowledge no one has attempted to do this calculation. Much
more commonly, one resorts to an approximate calculation of the expected value of x(t), conditional on y[0, t], with no at-
tempt to calculate the risk or dispersion of the distribution around this point estimate. As a consequence, one cannot esti-
mate performance measures, such as travel time or delay, which are nonlinear function of the density.

The second difficulty may be more fundamental. The calculation of W assumes that f, g, U and the probability distribu-
tions of the demand forecast errors, disturbances and measurement errors, are accurately known. This assumption, however,
does not hold in practice. The assumed models and probability distributions will have specification errors which must be
accounted for in the prediction W. One possible move that overcomes this difficulty is to parameterize the unknown spec-
ification errors in a (large) parameter vector H, place a prior distribution on H, and augment (1.1) with the additional state
vector H(t), with
Hðt þ 1Þ ¼ HðtÞ:
The prediction function is correspondingly augmented:
Wðn; h; t þ s; t; y½0; t�Þ ¼ Probðxðt þ sÞ ¼ n;Hðt þ sÞ ¼ h j yðsÞ;0 6 s 6 tÞ:
The computation of this function is thereby much more difficult, and makes this standard control theory formulation
more impractical.

Previous work on the traffic state estimation and prediction using macroscopic traffic models consists of variations on the
theme of Kalman Filter and Monte Carlo methods. In (Sun et al., 2003), a piecewise linear replacement of the CTM is intro-
duced and the Mixture Kalman Filter (MKF) is used to estimate the discrete and continuous state of the system. In (Tampère
and Immers, 2007) the Extended Kalman Filter (EKF) framework for freeway traffic state estimation presented in (Wang and
Papageorgiou, 2007) was applied to CTM. The Uncented Kalman Filter (UKF) (Julier et al., 2000), which overcomes some dis-
advantages of EKF, such as the need for linearization and complicated calculations of Jacobians and Hessians, was compared
to EKF in (Hegyi et al., 2006), and it was concluded that their performance was comparable. Particle Filter (PF) approach and
its comparison to UKF is described in (Mihaylova et al., 2007). These stochastic filtering techniques rely on assumptions
about distributions of the inputs (MKF, EKF), or require large number of simulations to get reasonable result from Monte
Carlo methods (UKF, PF): for example, the system with K uncertain inputs and no parametric uncertainty would require a
minimum of 2K simulations to reasonably represent the distribution of the system state.

We propose a different approach for traffic state prediction and estimation, based on set-valued (or bounding) philosophy
(Kurzhanski, 1972, 1989; Milanese et al., 1996), that is computationally feasible. We incorporate all of the probabilistic and
modeling uncertainty in a (large) parameter vector c and rewrite the dynamical system as a deterministic system with an
unknown uncertainty parameter c:
xðt þ 1Þ ¼ f ðt; xðtÞ; uðtÞ; cÞ; ð1:3Þ
yðtÞ ¼ hðt; xðtÞ; cÞ: ð1:4Þ
We assume that we have prior knowledge that the unknown c belongs to a known set C. Instead of the probability dis-
tribution W we now seek to find sets X(t + s, t, y[0, t]) such that, consistent with the measurements y[0, t], we can guarantee
that
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xðt þ sÞ 2 Xðt þ s; t; y½0; t�Þ; for all c 2 C: ð1:5Þ
We call X a (set-valued) guaranteed prediction. With a guaranteed prediction, we can calculate guaranteed upper and lower
bounds on system performance. Note that whereas the prediction W tells us the likelihood that the state x(t + s) = n, guar-
anteed prediction only tells us that x(t + s) = n for some n 2 X(t + s, t,y[0, t]). By convention, X is called a predictor (estimator)
when s > 0(=0).

The usefulness of guaranteed prediction depends on the answer to two questions. Q1: How ‘tight’ is the guaranteed pre-
diction relative to possible behaviors of (1.3) and (1.4)? Q2: How difficult is it to compute a guaranteed prediction?

There is one obvious answer to Q1: the set bXðt þ s; t; y½0; t�Þ comprising all x(t + s) that can be attained by a trajectory of
(1.3) for some c 2 C such that h(s,x(s),c), s 2 [0, t], agrees with the given measurements y[0, t], is the smallest possible guar-
anteed prediction satisfying (1.5). This is simply a consistency condition. Unfortunately, calculating the set bX that satisfies
this consistency condition is extremely difficult; moreover, the computational complexity will grow with t.

To make this calculation of acceptable difficulty we look for a recurrent prediction. We wish that X(t + s + 1, t,y[0, t]) can be
calculated from X(t + s, t,y[0, t]) and that X(t + s, t + 1, y[0, t + 1]) can be calculated from X(t + s, t, y[0, t]) and the new measure-
ment y(t + 1). The algorithm to calculate (1.5) will be recursive, its complexity will be bounded independently of t, and one
can use it for online prediction.

In the succeeding sections we consider the Cell Transmission Model (CTM) of a road network of freeways and signalized
arterials. We will take the parameter vector c to comprise the uncertainties in the link fundamental diagrams, the demand
forecast and the measurements. These uncertainties will be specified by intervals:
C ¼ c ¼ ðciÞjci 2 �ci � ��i ; �ci þ �þi
� �� �

:

Thus C is a ‘box’ of parameter vector, surrounding the nominal vector �c ¼ ð�ciÞ. The guaranteed prediction that we provide
is also a box. In some special cases, it will turn out that the guaranteed prediction is the best possible, i.e., it coincides with bX .

This work was inspired by the behavior analysis of CTM in (Gomes et al., 2008). It extends the set-valued estimation
method of (Kurzhanskiy et al., 2009) for freeways and significantly improves the prediction/estimation result of (Kurzhan-
skiy and Varaiya, 2010) for road networks by exploiting the properties of the underlying dynamical model. We also pay spe-
cial attention to the impact of the feedback control on the state prediction.

The rest of the paper is organized as follows. Section 2 introduces notation and formulates the underlying dynamical traf-
fic model. Section 3 defines the uncertainty in the system parameters and inputs, explains the assumptions about the mea-
surements, and sets up the problems of guaranteed traffic state prediction and estimation. Section 4 presents the state
prediction algorithm and explores its properties. State estimation as a prediction–correction process is covered in Section
5. Section 6 addresses the impact of the closed-loop control on the prediction algorithm. Section 7 illustrates the use of guar-
anteed prediction in a real time decision support system for the I-80 integrated corridor management. Finally, Section 8 pro-
vides a conclusion.
2. Dynamical traffic model

We start by introducing the Cell Transmission Model (Daganzo, 1994; Daganzo, 1995). The road network consists of di-
rected links and nodes: links represent stretches of roads and nodes connect the links. Denote by L the set of links, and by N
the set of nodes in the network. A node must always have at least one input and at least one output link. A link is called an
arameters and variables.

bol Description Value Unit

Length of link l 2 L 2[0.05,0.2] Miles
Size of time step 2 1

3600 ;
1

360

� �
Hours

Capacity of link l 2 L for 1 lane 2[1500, 2000] Vehicles per hour
Free flow speed in link l 2 L For freeways 2[60,75]

For marterials 2[25,40] Miles per hour
Congestion wave speed in link l 2 L 2[5,20] Miles per hour
Jam density in link l 2 L For 1 lane 2 [160,210] Vehicles per mile
Critical density in link l 2 L For 1 lane 2 [20,50] Vehicles per mile
Time 2[0,1] Hours
Split ratio matrix in node m 2 N bijðtÞ 2 ½0;1�;

P
jbijðtÞ ¼ 1 Dimensionless

Demand at origin link l 2 L Variable Vehicles per hour
Flow entering link l 2 L Variable Vehicles per hour
Flow exiting link l 2 L Variable Vehicles per hour

Traffic speed in link l 2 L Variable Miles per hour
Vehicle density in link l 2 L Variable Vehicles per mile
Vector of densities in all links in L Variable Vehicles per mile

) Control that restricts flow out of link l Variable Vehicles pre hour



Fig. 1. Simple road network – links are numbered from 1 to 6, nodes are shown in dark gray.
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ordinary link, if it has both begin and end nodes. A link with no begin node is an origin, and a link with no end node is a
destination.

Table 1 lists the model variables and parameters with plausible values. Each link l 2 L is characterized by its length Dxl,
and the triangular fundamental diagram defined by capacity Fl, free flow speed vl, and congestion wave speed wl (or alter-
natively, by Fl;qc

l , and �qlÞ. Fl takes into account the number of lanes. Origins are the links through which vehicles enter the
system, and therefore have demand profiles rl(�) assigned to them. Each node m 2 N is characterized by a split ratio matrix Bm

that determines how the incoming flows are distributed among the output links. Nodes may be used not only to represent
intersections, merge, or diverge points, but also to break up long links into smaller ones.

In the simple example of a single-directional freeway of Fig. 1, nodes are places where on-ramps merge into and off-
ramps diverge from the freeway, or where freeway characteristics, such as the fundamental diagram, change; ordinary links
are the stretches of freeway going from node to node; origins are on-ramps; and destinations are off-ramps.

The state of the road network at time t consists of the vehicle density in each link, ql(t). Given some initial condition,
which usually comes from measurements, qlðt0Þ ¼ q0

l , the system evolves in time according to
1 Thi
1928).

2 In t
model o
of (Blie
conserv
was pro
(Chow e
model m
qlðt þ DtÞ ¼ qlðtÞ þ
Dt
Dxl

f u
l ðtÞ � f d

l ðtÞ
� �

for each l 2 L; ð2:1Þ
where Dt must satisfy Dt 6 minl
Dxl
v l

n o
and Dt 6minl

Dxl
wl

n o
.1 For origins, f u

l ðtÞ ¼ rlðtÞ, where rl(t) is the demand – the flow that
desires to enter the system through origin l at time t. For destinations, f d

l ðtÞ ¼ v lqlðtÞmin 1; Fl
v lqlðtÞ

n o
. For ordinary links, f u

l ðtÞ is
determined by the begin or upstream node and f d

l ðtÞ is determined by the end or downstream node of link l.
The node m with m input and n output links has the m � n split ratio matrix BmðtÞ ¼ fbijðtÞg

j¼1;...;n
i¼1;...;m. This matrix is nonneg-

ative and the sum of the elements in each row equals 1. bij(t) is the portion of the vehicle flow coming from input link i that
has to be directed to output link j at time t. Input flows f d

i ðtÞ and output flows f u
j ðtÞ, i = 1, . . . ,m, j = 1, . . . ,n, for the node are

computed in steps 1–7 that follow.2

1. Compute available supply for each output link:
sjðtÞ ¼min Fj;wjð�qj � qjðtÞÞ
n o

; j ¼ 1; . . . ;n; ð2:2Þ

where Fj is the capacity, wj is the congestion wave speed, �qj is the jam density, and qj(t) is the current density of output
link j.
2. Set iteration p = 0. (Below, p = 1, . . . ,n will index output links.)
3. Compute demands from each input link:
d½0�i ðtÞ ¼ v iqiðtÞmin 1;
Fi

v iqiðtÞ
;
Ciðt;qÞ
v iqiðtÞ

� 	
; i ¼ 1; . . . ;m; ð2:3Þ

where Fi is the capacity, vi is the free flow speed, qi(t) is the current density of the input link i, and Ci(t,q) represents a
controller function, e.g., ramp meter, variable speed limit, signal, potentially restricting the flow from link i. Observe
that this permits formulating both open-loop (Ci(t,q) not depending on q) as well as traffic responsive control. If there
is no flow control in link i, Ci(t,q) =1. Quantity d½0�i ðtÞ represents the flow desiring to exit input link i, restricted by the
control, but not yet restricted by the output links.
4. Compute output demands:
s necessary condition for convergence while solving hyperbolic PDEs numerically is known as Courant–Friedrichs–Lewy (CFL) condition (Courant et al.,

his paper we use the node model of Aurora Road Network Modeler (Kurzhanskiy et al., 2009; Aurora RNM Homepage, n.d.), which is similar to the node
f (Jin and Zhang, 2003 and Bliemer, 2007). Depending on the structure of split ratio matrix the proposed node model performs better or worse than that

mer, 2007) in terms of maximization of the total output flow. It was shown in (Tampère et al., 2011), however, that these node models may be overly
ative in restricting the output flow, in some cases violating the invariance principle of (Lebacque and Khoshyaran, 2005), and a more robust node model
posed instead. In most node configurations, however, namely, freeway merges (m-to-1) or diverges (1-to-n) and arterial intersections modeled as in
t al., 2010), where incoming flows do not compete for the downstream supply because of being assigned to conflicting signal phases, the proposed node
aximizes the output flow subject to the upstream demand, downstream supply and the first-in-first-out rule restrictions.



Fig. 2. Uncertainty in the fundamental diagram of link l 2 L.
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d�½p�j ðtÞ ¼
Xm

i¼1

bijðtÞd
½ p�
i ðtÞ; j ¼ 1; . . . ;n: ð2:4Þ

Quantity d�½0�j ðtÞ represents the total flow that desires to enter the output link j.

5. For p = 1, . . . ,n, and for each input link i, i = 1, . . . ,m, repeat
(a) scale down input demand to satisfy the output supply if necessary:
d½ p�i ðtÞ ¼
d½ p�1�

i ðtÞ; if bipðtÞ ¼ 0

d½ p�1�
i ðtÞmin 1; spðtÞ

d�½ p�1�
p ðtÞ

� 	
; otherwise;

8><>: ð2:5Þ

(b) if p < n, recompute output demand d�½p�pþ1ðtÞ according to (2.4).

This step implements the proportional priority rule for merging links (Jin and Zhang, 2003), and the first-in-first-out
rule for diverging links as stated in (Daganzo, 1995).3
6. Flow leaving the input link i is
fiðtÞd ¼ d½n�i ðtÞ; i ¼ 1; . . . ;m: ð2:6Þ
7. Flow entering the output link j is
f u
j ðtÞ ¼

Xm

i¼1

bijðtÞd
½n�
i ðtÞ; j ¼ 1; . . . ; n: ð2:7Þ

Given the initial condition t = t0,q(t0) = q0, at each time step of the system evolution t(t P t0), first the input and output
flows for each node m 2 N are computed using steps 1–7 above, and then the system state is updated via the conser-
vation Eq. (2.1).
3. Problem statement

Traffic state estimation and prediction requires knowledge of the initial conditions, inputs (demands) and system param-
eters. Initial conditions can be derived from incoming real-time traffic measurements. Future demands cannot be known ex-
actly, but several approaches are available to estimate them using historical measurement data, such as (Lin, 2001; Okutani
and Stephanedes, 1984; Smith et al., 2002). System parameters, i.e., fundamental diagrams and split ratio matrices, can also
be obtained from the historical data. (Of course, the Dxl are known exactly, and the time step Dt is chosen based on values
of Dxl and v l; l 2 L.) Estimating capacity and calibrating the fundamental diagrams is addressed in (Dervisoglu et al., 2009).
Empirical data show that measurements on the free flow side of the fundamental diagram are well represented by a straight
line, whereas measurements in the congested region are scattered (Dervisoglu et al., 2009; Kurzhanskiy and Varaiya, 2010;
Muralidharan et al., 2011). In particular, in (Muralidharan et al., 2011) it is stated that freeway measurement data analysis
indicates no significant variations in free flow speed, and while capacity and congestion speed both vary noticeably, the im-
pact of capacity variation is much stronger than that of congestion speed variation. Using maximum daily flow measure-
ments from a traffic database such as PeMS (PeMS Homepage, n.d.), we can construct a box plot describing the capacity
variation for each detector station in our road network, similar to the one in Fig. 4 of (Muralidharan et al., 2011). Then,
F�l and Fþl can be defined as lower and upper quartiles of the box plot for the corresponding link l. For marterials it is safe
to assume that the free flow speed equals the speed limit, jam density can be reliably estimated, but it is difficult to measure
the capacity. Thus, in this paper we assume both the capacity and congestion wave speed to be uncertain.
portional priority rule means that each output link accommodates vehicles from the input links in proportion to the input demands. First-in-first-out
ans that the input-to-output flows in the node should always be in proportion to each other as defined by the split ratio matrix.



168 A.A. Kurzhanskiy, P. Varaiya / Transportation Research Part C 21 (2012) 163–180
We assume that demands rl(t) at origin links are estimated or forecast with uncertainty expressed by intervals
r�l ðtÞ 6 rlðtÞ 6 rþl ðtÞðr�l ðtÞ and rþl ðtÞ are known)4; link capacities Fl and jam densities �ql; l 2 L, lie within given intervals
F�l 6 Fl 6 Fþl ðF

�
l and Fþl are known) and �q�l 6 �ql 6 �qþl ð�q�l and �qþl are known). Consequently w�l 6 wl 6 wþl , with
4 Tra
several
have re
future
measur

5 It is
ratios a
w�l ¼
F�l

�q�l � F�l =v l
and wþl ¼

Fþl
�qþl � Fþl =v l

;

We assume that the free flow speeds vl are known exactly. Fig. 2 illustrates the uncertainty in the fundamental diagram. It is
assumed that split ratio matrices BmðtÞ, m 2 N , are known exactly.5 For now, we shall also assume that the traffic flow control
function from expression (2.3) is known, and depends only on the time but not the state, i.e., Cl(t,q) = Cl(t) (the control is open-
loop). The case of known feedback traffic flow control is considered in Section 6.

There is additive ‘noise’ in measurements of the output flow
yð f Þl ðtÞ ¼ f d
l ðtÞ þxð f Þl ðtÞ; ð3:1Þ
and speed
yðVÞl ðtÞ ¼ VlðtÞ þxðVÞl ðtÞ; ð3:2Þ
in each link. Here xðf Þl ðtÞ 2 ½�x0;ðf Þ
l ðtÞ;x0;ðf Þ

l ðtÞ� is the flow measurement noise, xðVÞl ðtÞ 2 �x0;ðVÞ
l ðtÞ;x0;ðVÞ

l ðtÞ
h i

is the speed

measurement noise; the bounds x0;ðf Þ
l ðtÞ and x0;ðVÞ

l ðtÞ are known. Thus, for each link we get an estimate of the density from
the measurements alone:
q̂�l ðtÞ 6 q̂lðtÞ 6 q̂þl ðtÞ; ð3:3Þ
with
q̂�l ðtÞ ¼
yðf Þl ðtÞ �x0;ðf Þ

l ðtÞ
yðVÞl ðtÞ þx0;ðVÞ

l ðtÞ
and q̂þl ðtÞ ¼

yðf Þl ðtÞ þx0;ðf Þ
l ðtÞ

yðVÞl ðtÞ �x0;ðVÞ
l ðtÞ

: ð3:4Þ
The problems we intend to solve can now be succinctly stated.

1. Guaranteed traffic state prediction. Find curves q�(�) (the best case) and q+(�) (the worst case) such that the trajectory of
the system (2.1)–(2.7) with above specified demand and fundamental diagram uncertainties, q(�), is bounded as
q�l ðtÞ 6 qlðtÞ 6 qþl ðtÞ; t P t0; ð3:5Þ

for all l 2 L, where t0 is the initial (current) time. By ‘best (worst) case’ we mean the smallest (largest) density, and by
‘curve’ we mean a function of time t.

2. Guaranteed traffic state estimation. At given time instants t0 < s1 < s2 < . . . < sk < . . ., for each link l 2 L, the measure-
ment bounds q̂�l ðsÞ; q̂þl ðsÞ

� �
(if measurements are available) are received. Compute prediction bounds q�l ðs1Þ;qþl ðs1Þ

� �
,

from the initial conditions at t0, and use the measurement bounds at time s1 to correct them; then use the corrected pre-
diction bounds as new initial conditions for computing the prediction from s1 to s2, and at time s2 perform the measure-
ment correction again; and so on for s = s3, . . . ,sk, . . .. At any given time t P t0, the estimates for the system state are the
prediction bounds corrected by measurements.

Remark. The term guaranteed is borrowed from the control theory (Kurzhanski, 1972, 1989; Milanese et al., 1996). It means
that the current system state lies within calculated worst and best case bounds given that our assumptions about parameter
(fundamental diagram) and input (demand) uncertainty, as well as measurement noise are correct.

4. Guaranteed traffic state prediction

Recalling the conservation Eq. (2.1), define the state update equation for density bounds:
q�l ðt þ DtÞ ¼ q�l ðtÞ þ
Dt
Dxl

f u
l
�ðtÞ � f d

l
�ðtÞ


 �
for each l 2 L: ð4:1Þ
ffic measurement databases such as PeMS (PeMS Homepage, n.d.), allows us to construct time series of input flow data. For each origin link, we can take
time series without significant structural differences and obtain bounding curves r�l ð�Þ, rþl ð�Þ for them. Generally, it is observed that the same weekdays
peating demand patterns. Thus, historic Monday demand data should be used for future Monday demand forecast, historic Tuesday demand data – for
Tuesday demand forecast, and so on. In real time, the forecasted demand bounds r�l ð�Þ should be continuously corrected by the incoming flow
ements at origin links.
important to note that split ratio matrices must be well defined. Although it is possible to extend the result of the current paper to the case when split

re specified within intervals, or depend on the state of the system, such extension is beyond the scope of this work.



Table 2
Parameters and variables for model with uncertainty.

Symbol Description Unit

F�l Lower capacity bound of link l 2 L Vehicles per hour
Fþl Upper capacity bound of link l 2 L Vehicles per hour
�q�l Lower jam density bound in link l 2 L Vehicles per mile
�qþl Upper jam density bound in link l 2 L Vehicles per mile
w�l Congestion wave speed in link l 2 L

corresponding to F�l and �q�l Miles per hour
wþl Congestion wave speed in link l 2 L

corresponding to Fþl and �qþl Miles per hour

r�l ðtÞ Best case (lower) demand bound at origin link l 2 L Vehicles per hour
rþl ðtÞ Worst case (upper) demand bound at origin link l 2 L Vehicles per hour

f u
l
�ðtÞ Best case flow bound entering link l 2 L Vehicles per hour

f u
l
þðtÞ Borst case flow bound entering link l 2 L Vehicles per hour

f d
l
�ðtÞ Best case flow bound exiting link l 2 L Vehicles per hour

f d
l
þðtÞ Worst case flow bound exiting link l 2 L Vehicles per hour

q�l ðtÞ Best case (lower) predicted density bound in link l 2 L Vehicles per mile
qþl ðtÞ Worst case (upper) predicted density bound in link l 2 L Vehicles per mile
q�(t) Vector of best case (lower) density bounds in all links in L Vehicles per mile
q+(t) Vector of worst case (upper) density bounds in all links in L Vehicles per mile
q̂�l ðtÞ Lower measured density bound in link l 2 L Vehicles per mile
q̂þl ðtÞ Upper measured density bound in link l 2 L Vehicles per mile

Fig. 3. Supply bounds for f u
j
�ðtÞ and f u

j
þðtÞ.

A.A. Kurzhanskiy, P. Varaiya / Transportation Research Part C 21 (2012) 163–180 169
Any equation like the above involving the ‘ ± ’ symbol in superscripts represents two separate equations, with ‘ � ’ for
the lower (best case) bound, and ‘ + ’ for the upper (worst case) bound calculation. As before, Dt satisfies the CFL

condition Dt 6minl
Dxl
v l

n o
and Dt 6 minl

Dxl �q�
l
�Fþ

l
=v lð Þ

Fþ
l

� 	
. For origin links, f u

l
�ðtÞ ¼ r�l ðtÞ. For destination links, f d

l
�ðtÞ ¼

v lq�l ðtÞmin 1; Fþ
l

v lq�l ðtÞ

n o
, and f d

l
þðtÞ ¼ v lqþl ðtÞmin 1; F�l

v lqþl ðtÞ

n o
. For ordinary links, f u

l
�ðtÞ are determined by its begin node, and

f d
l
�ðtÞ by its end node.

Table 2 summarizes newly introduced notation.
For a general node m 2 N with m input, n output links, and split ratio matrix BmðtÞ ¼ fbijðtÞg

j¼1;...;n
i¼1;...;m, the incoming flows

f d
i
�
; i ¼ 1; . . . ;m, and outgoing flows f u

j
�
; j ¼ 1; . . . ;n, are computed using the following algorithm.6

1. For each output link j, j = 1, . . . ,n, compute the lower bounds of supply:
s�j ðtÞ ¼min F�j ;max 0;w�j �q�j � q�j ðtÞ

 �n on o

; ð4:2Þ

and the upper bounds of supply:

�s�j ðtÞ ¼min Fþj ;w
þ
j

�qþj � q�j ðtÞ

 �n o

: ð4:3Þ

From (4.2) and (4.3) it follows that s�j ðtÞ 6 �s�j ðtÞ, sþj ðtÞ 6 s�j ðtÞ and �sþj ðtÞ 6 �s�j ðtÞ. Fig. 3 illustrates what the values s�j ðtÞ and
�s�j ðtÞ represent. We need to ensure that sþj ðtÞP 0, since it is possible that qþj ðtÞ > �q�j . (Hence the 0 in (4.2).)
6 Implementing the guaranteed prediction algorithm for the node model of (Tampère et al., 2011) is the subject of future research.



Fig. 4. Demand bounds for f d
i
�ðtÞ and f d

i
þðtÞ.
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2. Set iteration p = 0.
3. For each input link i, i = 1, . . . ,m, compute the lower bounds of demand:
d�½0�i ðtÞ ¼ d�½0�i ðtÞ ¼ v iq�i ðtÞmin 1;
F�i

v iq�i ðtÞ
;

CiðtÞ
v iq�i ðtÞ

� 	
; ð4:4Þ

and the upper bounds of demand:

�d�½0�i ðtÞ ¼ �d�½0�i ðtÞ ¼ v iq�i ðtÞmin 1;
Fþi

v iq�i ðtÞ
;

CiðtÞ
v iq�i ðtÞ

� 	
: ð4:5Þ

From (4.4), (4.5) it follows that d�½0�i ðtÞ 6 �d�½0�i ðtÞ, d�½0�i ðtÞ 6 dþ½0�i ðtÞ and �d�½0�i ðtÞ 6 �dþ½0�i ðtÞ. Fig. 4 illustrates what the values
d�½0�i ðtÞ and �d�½0�i ðtÞ represent.

4. For each output link j, j = 1, . . . ,n, compute output demand lower bounds:
d��½p�j ðtÞ ¼
Xm

i¼1

bijðtÞd
�½p�
i ðtÞ; ð4:6Þ

and upper bounds:

�d��½p�j ðtÞ ¼
Xm

i¼1

bijðtÞ�d
�½p�
i ðtÞ: ð4:7Þ

Evidently, d��½0�i ðtÞ 6 �d��½0�i ðtÞ; d��½0�i ðtÞ 6 d�þ½0�i ðtÞ and �d��½0�i ðtÞ 6 �d�þ½0�i ðtÞ.
5. For p = 1, . . . ,n, and for each input link i, i = 1, . . . ,m, repeat

(a) scale down the best case auxiliary upper input demand bound �d�½p�i ðtÞ to satisfy the best case upper supply bound
�s�p ðtÞ:
�d�½p�i ðtÞ ¼
�d�½p�1�

i ðtÞ; if bipðtÞ ¼ 0

�d�½p�1�
i ðtÞmin 1;

�s�p ðtÞ
�d��½p�1�

p ðtÞ

� 	
; otherwise;

8><>: ð4:8Þ

(b) scale down the worst case auxiliary lower input demand bound �d�½p�i ðtÞ to satisfy the worst case lower supply bound
sþp ðtÞ:

dþ½p�i ðtÞ ¼
dþ½p�1�

i ðtÞ; if bipðtÞ ¼ 0

dþ½p�1�
i ðtÞmin 1;

sþp ðtÞ
d�þ½p�1�

p ðtÞ

� 	
; otherwise;

8><>: ð4:9Þ

(c) scale down the best case upper input demand bound �d�½p�i ðtÞ to satisfy the best case upper supply bound �s�p ðtÞ:

�d�½p�i ðtÞ ¼
�d�½p�1�

i ðtÞ; if bipðtÞ ¼ 0

�d�½p�1�
i ðtÞmin 1;max

�s�p ðtÞ
�d��½p�1�

p ðtÞ
;

sþp ðtÞ
d�þ½p�1�

p ðtÞ

� 	� 	
; otherwise;

8><>: ð4:10Þ
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(d) scale down the worst case lower input demand bound �d�½p�i ðtÞ to satisfy the worst case lower supply bound sþp ðtÞ:

dþ½p�i ðtÞ ¼
dþ½p�1�

i ðtÞ; if bipðtÞ ¼ 0

dþ½p�1�
i ðtÞmin 1;

sþp ðtÞ
d�þ½p�1�

p ðtÞ
;

s�p ðtÞ
d��½p�1�

p ðtÞ

� 	
; otherwise;

8><>: ð4:11Þ

(e) if p < n, recompute the best case upper output demand bounds �d��½p�pþ1 ðtÞ according to (4.7) and the worst case lower
output demand bounds d�þ½p�pþ1 ðtÞ according to (4.6).

6. For each input link i, i = 1, . . . ,m, the best case flow leaving the link is
7 The
f d
i
�ðtÞ ¼ �d�½n�i ðtÞ; ð4:12Þ
and the worst case flow leaving the link is
f d
i
þðtÞ ¼ dþ½n�i ðtÞ: ð4:13Þ
7. For each output link j, j = 1, . . . ,n, repeat
(a) for p = 1, . . . ,n repeat

i. scale down the best case lower input demand bound d�½p�i ðtÞ to satisfy the worst case lower supply bound sþp ðtÞ for
p – j, and the best case lower supply bound s�j ðtÞ for p = j:
d�½p�i ðtÞ ¼

d�½p�1�
i ðtÞ; if bipðtÞ ¼ 0

d�½p�1�
i ðtÞmin 1;

sþp ðtÞ
d��½p�1�

p ðtÞ

� 	
; if bip > 0 and p – j

d�½p�1�
i ðtÞmin 1;

s�
j
ðtÞ

d��½p�1�
p ðtÞ

� 	
; if bip > 0 and p ¼ j;

8>>>>><>>>>>:
ð4:14Þ

This is a step in computation of the best case incoming flow for the output link j. So, the corresponding demand
bound d�½p�i ðtÞ is scaled down to satisfy the best case lower supply bound only for the output link j, whereas for
the other output links it is scaled down even more – to satisfy the worst case lower supply bounds.
ii. Scale down the worst case upper input demand bound �dþ½p�i ðtÞ to satisfy the best case upper supply bound �s�p ðtÞ: for
p – j, and the worst case upper supply bound �sþp ðtÞ for p = j:
�dþ½p�i ðtÞ ¼

�dþ½p�1�
i ðtÞ; if bipðtÞ ¼ 0

�dþ½p�1�
i ðtÞmin 1;

�s�p ðtÞ
�d�þ½p�1�

p ðtÞ

� 	
; if bip > 0 and p – j

�dþ½p�1�
i ðtÞmin 1;

�sþ
j
ðtÞ

�d�þ½p�1�
p ðtÞ

� 	
; if bip > 0 and p ¼ j;

8>>>>><>>>>>:
ð4:15Þ

This is a step in computation of the worst case incoming flow for the output link j. So, the corresponding demand
bound dþ½p�i ðtÞ is scaled down to satisfy the worst case upper supply bound only for the output link j, whereas for the
other output links it is scaled down less – to satisfy the best case upper supply bounds.
iii. Recompute the best case lower output demand bounds d��½p�pþ1 ðtÞ according to (4.6) and the worst case upper output
demand bounds �d�þ½p�pþ1 ðtÞ according to (4.7);
(b) the best case flow entering the link is

f u
j
�ðtÞ ¼

Xm

i¼1

bijðtÞd
�½n�
i ðtÞ; ð4:16Þ

and the worst case flow entering the link is

f u
j
þðtÞ ¼min �sþj ðtÞ;

Xm

i¼1

bijðtÞ�d
þ½n�
i ðtÞ

( )
: ð4:17Þ

Given the initial conditions t = t0, q�ðt0Þ ¼ q�0 and qþðt0Þ ¼ qþ0 , such that q�l ðt0Þ 6 qþl ðt0Þ for all l 2 L,7 at each time step of
the prediction system evolution t(t P t0) we (1) compute f u

l
�ðtÞ and f d

l ðtÞ
� using steps 1–7 for all l 2 L, and (2) update

the density bounds q�l ðt þ 1Þ using (4.1) for all l 2 L. The following facts describe the properties of the constructed system
(4.1)–(4.17).
initial density bounds may come from the measurement (3.4) or previous state estimation.
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Theorem 4.1. If the initial conditions q�l ðt0Þ ¼ qþl ðt0Þ, and there is no uncertainty in demands r�l ðtÞ ¼ rþl ðtÞ; t P t0
� �

and
fundamental diagrams F�l ¼ Fþl ; �q�l ¼ �qþl

� �
, for all l 2 L, then q�(�) = q+(�) = q(�), where q(�) is a trajectory of system 2.1, 2.2, 2.3,

2.4, 2.5, 2.6, 2.7.
Proof. The proof is a direct consequence of the fact that s�j ðtÞ ¼ sþj ðtÞ ¼ �s�j ðtÞ ¼ �sþj ðtÞ; j ¼ 1; . . . ;n, and
d�½0�i ðtÞ ¼ dþ½0�i ðtÞ ¼ �d�½0�i ðtÞ ¼ �dþ½0�i ðtÞi ¼ 1; . . . ;m, where s�j ðtÞ;�s�j ðtÞ are defined in (4.2) and (4.3), and d�½0�i ðtÞ; �d

�½0�
i ðtÞ are defined

in (4.4) and (4.5). h
Theorem 4.2 (Monotonicity). System 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 pre-
serves partial order: if q�l ðt0Þ 6 qþl ðt0Þ for each l 2 L, then q�l ðtÞ 6 qþl ðtÞ for each l 2 L and any t P t0.
Proof. Suppose, at some time t P t0 q�l ðtÞ 6 qþl ðtÞ for all l 2 L. We must show that for any l 2 L;q�l ðt þ DtÞ;qþl ðt þ DtÞ
obtained from (4.1)–(4.17) satisfy q�l ðt þ DtÞ 6 qþl ðt þ DtÞ. From (4.1) we get
qþl ðt þ DtÞ � q�l ðt þ DtÞ ¼ qþl ðtÞ � q�l ðtÞ þ
Dt
Dxl

f uþ
l ðtÞ � f u�

l ðtÞ þ f d�
l ðtÞ � f dþ

l ðtÞ
� �

:

We shall consider three cases.

Case 1: q�l ðtÞ 6 qþl ðtÞ 6 qc�
l ¼

F�l
v l

.
Since f u�

l ðtÞ 6 f uþ
l ðtÞ,
qþl ðt þ DtÞ � q�l ðt þ DtÞP qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

f dþ
l ðtÞ � f d�

l ðtÞ
� �

P qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

v lqþl ðtÞ � v lq�l ðtÞ
� �

¼ qþl ðtÞ � q�l ðtÞ
� �

1� v lDt
Dxl

� 
P CFL condition : 1 P

v lDt
Dxl

� 	
P 0:
Case 2: qc�
l 6 q�l ðtÞ 6 qþl ðtÞ.

Since f d�
l ðtÞP f dþ

l ðtÞ,
qþl ðt þ DtÞ � q�l ðt þ DtÞP qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

f u�
l ðtÞ � f uþ

l ðtÞ
� �

P qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

w�l ð�q�l � q�l ðtÞÞ �wþl �qþl � qþl ðtÞ
� �� �

P qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

wþl �qþl � q�l ðtÞ
� �

�wþl �qþl � qþl ðtÞ
� �� �

¼ qþl ðtÞ � q�l ðtÞ
� �

1�wþl Dt
Dxl

� 
P CFL condition : 1 P

wþl Dt
Dxl

� 	
P 0:
Case 3: q�l ðtÞ 6 qc�
l 6 qþl ðtÞ.
Since f u�
l 6 F�l and f dþ

l ðtÞ 6 F�l ,
qþl ðt þ DtÞ � q�l ðt þ DtÞP qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

F�l � f uþ
l ðtÞ þ F�l � f d�

l ðtÞ
� �

P

qþl ðtÞ � q�l ðtÞ �
Dt
Dxl

F�l �wþl ð�qþl � qþl ðtÞÞ þ F�l � v lq�l ðtÞ
� �

¼

qþl ðtÞ � qc�
l þ qc�

l � q�l ðtÞ �
Dt
Dxl

w�l �q�l � qc�
l

� �
�wþl �qþl � qþl ðtÞ

� �
þ v lqc

l � v lq�l ðtÞ
� �

P

qþl ðtÞ � qc�
l þ qc�

l � q�l ðtÞ �
Dt
Dxl

wþl �qþl � qc�
l

� �
�wþl �qþl � qþl ðtÞ

� �
þ v lqc

l � v lq�l ðtÞ
� �

¼

qþl ðtÞ � qc�
l

� �
1�wþl Dt

Dxl

� 
þ qc�

l � q�l ðtÞ
� �

1� v lDt
Dxl

� 
P

CFL condition : 1 P
wþl Dt
Dxl

and 1 P
v lDt
Dxl

� 	
P 0: �
Theorem 4 shows that the trajectory of the system (4.1)–(4.17) is a box-valued tube: at each time t P t0 the state of this
system is a box
XðtÞ ¼ ~qjq�l ðtÞ 6 ~ql 6 qþl ðtÞ;8l 2 L
� �

: ð4:18Þ



Fig. 5. Simple network – a node with 1 input and 2 output links.
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From Theorem 4 follows the next statement.

Corollary 4.1 (Theorem of two policemen). Any trajectory q(�) of system 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 with uncertain demands
and fundamental diagrams satisfies q�(�) � q(�) � q+(�), 8 or q(t) 2X(t) for t P t0.

This corollary means that X(t) is an overapproximation of the reachable set for system (2.1)–(2.7) with given uncertainty
in demands and fundamental diagrams. Hence X(t) is a guaranteed prediction. Note that the computation of X(t) is recurrent
and only requires solving the two Eq. (4.1). We now explore the tightness of this overapproximation.

Theorem 4.3 (System in free flow). If f dþ
l ðtÞ ¼ v lqþl ðtÞ for all l 2 L and t P t0, then q�(�) and q+(�) are trajectories of system 2.1,

2.2, 2.3, 2.4, 2.5, 2.6, 2.7 with demands r�l ðtÞ and rþl ðtÞ at origin links respectively.
Proof. The proof follows from the fact that d�½0�i ðtÞ ¼ �d�½0�i ðtÞ where d�½0�i ðtÞ and �d�½0�i ðtÞ are defined in (4.4) and (4.5) respec-
tively; and the fact that d�½p�i ðtÞ ¼ �d�½p�i ðtÞ ¼ d�½p�1�

i ðtÞ ¼ �d�½p�1�
i ðtÞ for p = 1, . . . ,n, in (4.10), (4.11), (4.14) and (4.15). h

The intuition behind this theorem is that if even the worst case density bounds are in the free flow region, the uncertainty
in the fundamental diagrams plays no role in the system dynamics. Theorem 4.3 shows that if the road network is in free
flow, the prediction box X(t),t P t0, defined in (4.18) is the smallest box containing the reachable set of the system (2.1)–
(2.7) with given uncertainty in demands and fundamental diagrams. This tightness in prediction of the system state in free
flow is important because it yields a more accurate detection of the initial congestion. Another interpretation of Theorem 4.3
is that in free flow the system 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 is monotone.

If at some time t P t0 there exists a link l whose desired worst case exiting flow exceeds its lower capacity bound
v lqþl ðtÞP F�l
� �

or downstream supply, the curves q�(�) and q+(�) are not necessarily trajectories of the system (2.1)–(2.7).
The following example illustrates this fact, showing also that the system (2.1)–(2.7) is not monotone.

Example. Consider the road network comprising a single node with 1 input and 2 output links, depicted in Fig. 5. All three
links have the same fundamental diagram without uncertainty: F1 = F2 = F3 = F; v1 = v2 = v3 = v; and w1 = w2 = w3 = w
(qc

1 = qc
2 = qc

3 = qc and �q1 ¼ �q2 ¼ �q3 ¼ �qÞ. The initial conditions at time t0 = 0 are ql
±(0) = ql

±, l = 1, 2,3, where
q�1 ¼ qþ1 ¼ q1 6 qc;q�2 ¼ qc;qþ2 ¼ �q and q�3 ¼ qþ3 ¼ q3 6 qc; and no flow is entering link 1. Split ratio matrix at the node
is B ¼ 1

2
1
2

� �
. We also assume that Dx1 = Dx2 = D x3 = 1 mile.

First, we compute the state of system (4.1)–(4.17) at time t ¼ Dt;XðDtÞ ¼ ~qjq�ðDtÞ � ~q � qþðDtÞf g:
8 For
q�ðDtÞ ¼
q1 � vq1Dt

qc � F � 1
2 vq1

� �
Dt

q3 � vDtq3

0B@
1CA and qþðDtÞ ¼

q1

�q� FDt;

q3 � vDt q3 � 1
2 q1

� �
0B@

1CA:

Then, we compute the states of system (2.1)–(2.7) with initial conditions qw(0) = [q1qcq3]T and qHð0Þ ¼ q1 �q q3½ �T at time

t = Dt:
q
H
ðDtÞ ¼

q1 � vq1Dt

qc � F � 1
2 vq1

� �
Dt

q3 � vDt q3 � 1
2 q1

� �
0B@

1CA and qHðDtÞ ¼
q1

�q� FDt;

q3 � vDtq3

0B@
1CA:
If q1 > 0, vectors qw(Dt) and qw(Dt) cannot be ordered, because although qlHðDtÞ 6 qH

l ðDtÞ; l ¼ 1;2;q3H
ðDtÞ > qH

3 ðDtÞ,
which confirms that system (2.1)–(2.7) is not monotone. At the same time, both qw(Dt) and qw(Dt) are bounded by q�(D
t) and q+(Dt):q�(Dt) � qw(Dt),qw(Dt) � q+(Dt).

The quality of the proposed traffic state prediction mechanism depends on the time horizon (the shorter, the better), and
the sizes of the uncertainty intervals (the larger the interval sizes, the less predictable is the system). In the studies of
California freeways conducted within TOPL research project (TOPL Project, n.d.), we use 2-h prediction time horizon, and
measurement data from PeMS (PeMS Homepage, n.d.) to construct capacity box plots and interval time series describing the
demand. We observed that it is the uncertainty in the fundamental diagrams that affects the prediction results the most. The
vectors a, b 2 RN, expression ‘‘a � b’’ means that component-wise a is less or equal to b: ak 6 bk, k = 1, . . . ,N.



Fig. 6. Illustration of the traffic state estimation algorithm.
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reason is that when the system state approaches the lower bound of the critical density, q�l ends up on the free flow side of
the fundamental diagram, while qþl ends up on its congested side, and if the difference between qc�

l and qcþ
l is large enough,

bounds q�l and qþl can grow apart very fast. Thus, if the original maximum daily flow measurements produce prohibitively
large capacity spread, we filter them by eliminating days with incidents and days with significantly different traffic patterns
(e.g. if we model a weekday, we exclude weekends and vice versa).
5. Guaranteed traffic state estimation

The guaranteed estimation algorithm combines the guaranteed prediction (4.1)–(4.17) with measurement corrections
(3.3) and (3.4) coming at times t0 < s1 < s2 < � � �sk < � � �.

1. At time s0 = t0 generate measurement bounds q̂�l ðs0Þ; q̂þl ðs0Þ according to (3.4) for all l 2 L.
2. Assign
q�l ðs0Þ ¼ q̂�l ðs0Þ and qþl ðs0Þ ¼ q̂þl ðs0Þ ð5:1Þ
for all l 2 L.
3. For k = 1,2, . . . , repeat

(a) compute q�l ðskÞ and qþl ðskÞ using (4.1)–(4.17) with initial conditions q�l ðsk�1Þ;qþl ðsk�1Þ for all l 2 L;
(b) acquire measurement bounds q̂�l ðs0Þ; q̂þl ðs0Þ according to (3.4) for all l 2 L;
(c) presuming that
q�l ðskÞ;qþl ðskÞ
� �\

q̂�l ðskÞ; q̂þl ðskÞ
� �

–;; ð5:2Þ
perform measurement correction:
q�l ðskÞ  max q�l ðskÞ; q̂�l ðskÞ
� �

and qþl ðskÞ  min qþl ðskÞ; q̂þl ðskÞ
� �

ð5:3Þ
for all l 2 L.

At any time t P t0, the density estimate for link l 2 L is the interval q�l ðtÞ;qþl ðtÞ
� �

, and if t ¼ sk;q�l ðskÞ;qþl ðskÞ are pre-
sumed after the correction (5.3).

Fig. 6 illustrates the estimation algorithm: for every k = 1,2, . . . the trajectory of the system (4.1)–(4.17) is computed
from sk�1 to sk, then it is intersected with the measurement, and the result of this intersection serves as new initial condition.
If a measurement occurs every time step, there is a prediction–correction at each step.

Non-emptiness of the interval Section (5.2) must be true in principle; otherwise, it would mean that we made wrong
assumptions about the range of uncertainty. In practice, however, empty intersections do occur. What to do in case condition
(5.2) is not satisfied, depends on the specific situation. If we trust our model more than the measurements, we should skip
the correction (5.3). Moreover, we can use the dynamical model (4.1)–(4.17) to detect faulty measurement devices. If, on the
other hand, we believe that, although an outlier, the measurement data are reliable, the measurement bounds should be
used as initial conditions for the next prediction period, modifying the correction (5.3) as
q�l ðskÞ  q̂�l ðskÞ; and qþl ðskÞ  q̂þl ðskÞ: ð5:4Þ
It is possible that for some links in L the measurements do not exist or cannot be obtained. For such links, the correction
(5.3) is skipped. The observability problem (what if the flow is measured but not the speed, or vice versa) is addressed in
(Kurzhanskiy, 2009).

The quality of the proposed estimation technique depends on the spatial density of the healthy detector measurements.
In the absence of measurements, any traffic state estimation attempt is as inadequate as a random guess. If there are too few



Fig. 7. Simple network – a node with 2 input and 1 output links.
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measurements, the proposed method will produce a gap between the best and the worst cases that may be too large to be of
use. The second important factor is the quality of the prediction discussed earlier — obviously, the shorter the interval be-
tween the measurement corrections, the smaller is the estimation interval.

6. Impact of feedback control

The controller that restricts the vehicle flow leaving link l 2 L is modeled by the function Cl(t,q): recall expressions (2.3),
(4.4) and (4.5). In case of the open-loop control (time of day ramp metering, fixed timing plans for signalized intersections,
etc.), function Cl(t,q) = Cl(t) produces a single number at time t. For a node with m inputs and n outputs, if there exists an
input link i 2 {1, . . . ,m} such that CiðtÞ < Fþi , the interval size of d�½0�i ðtÞ; �d

�½0�
i ðtÞ

h i
from (4.4) and (4.5) is reduced, which can

potentially reduce the interval size of q�j ðt þ DtÞ;qþj ðt þ DtÞ
h i

; j ¼ 1; . . . ; n, making the state in the downstream links more
predictable.

In real time, when the system (4.1)–(4.17) is used as dynamical filter for the measurements, we know exactly the flow
rates assigned by the controllers no matter whether these controllers are open- or closed-loop, and thus, the closed-loop
control makes no difference in computation of q�(�) and q+(�). The situation is different, however, when the system (4.1)–
(4.17) is used for prediction. Then, in the closed-loop case we do not know the values of Cl(t,q), because, as was mentioned
in Section 4, all we know about q(t) is that it belongs to a box-valued set X(t) defined in (4.18) for each t P t0.

Define
C�l ðt;XðtÞÞ ¼ min
~q 2 XðtÞ

Clðt; ~qÞf g and Cþl ðt;XðtÞÞ ¼ max
~q 2 XðtÞ

Clðt; ~qÞf g: ð6:1Þ
Formulas (4.4) and (4.5) from step 3 of the algorithm in Section 4 must be modified as follows:
d�½0�i ðtÞ ¼ d�½0�i ðtÞ ¼ v iq�i ðtÞmin 1;
F�i

v iq�i ðtÞ
;
C�i ðt;XðtÞÞ

v iq�i ðtÞ

� 	
ð6:2Þ
and
�d�½0�i ðtÞ ¼ �d�½0�i ðtÞ ¼ v iq�i ðtÞmin 1;
Fþi

v iq�i ðtÞ
;
Cþi ðt;XðtÞÞ

v iq�i ðtÞ

� 	
ð6:3Þ
for every input link i = 1, . . . ,m. Just as (4.4) and (4.5), formulas (6.2) and (6.3) guarantee that
d�½0�i ðtÞ 6 �d�½0�i ðtÞ; d

�½0�
i ðtÞ 6 dþ½0�i ðtÞ and �d�½0�i ðtÞ 6 �dþ½0�i ðtÞ.

Note that definition (6.1) cannot be replaced with
C�l ðt;XðtÞÞ ¼min Clðt;q�ðtÞÞ;Clðt;qþðtÞÞf g and Cþl ðt;XðtÞÞ ¼max Clðt;q�ðtÞÞ;Clðt;qþðtÞÞf g;
since function Cl(t,q) is not necessarily monotone in q. The next example explains this fact.

Example. Consider the road network comprising a single node with 2 input and 1 output links, shown in Fig. 7. All three
links have fundamental diagrams without uncertainty: F�l ¼ Fþl and w�l ¼ wþl ðq

c�
l ¼ qcþ

l , and �q�l ¼ �qþl Þ; l ¼ 1;2;3. The initial
conditions at time t0 = 0 are q�l ð0Þ ¼ q�l ; l ¼ 1;2;3, where q�1 ¼ qþ1 ¼ 0;q�2 ¼ 0;qþ2 > qc

2 and q�3 < qc
3;q

þ
3 > qc

3; no flow is
entering link 1, and flow f d

2 ðtÞ is entering link 2.
Suppose, the traffic flow coming from the input link 2 is metered using the ALINEA algorithm (Papageorgiou et al., 1991).

ALINEA is an example of a closed-loop control function defined by the formula
A2ðt;q3ðtÞÞ ¼ v3 qc
3 � q3ðtÞ

� �
þ

f u
2 ðtÞ; if t ¼ 0

A2ðt � Dt;q3ðt � DtÞÞ; otherwise;

�
ð6:4Þ
where subscripts ‘2’ and ‘3’ refer to links 2 and 3 respectively, and A2 is the ALINEA flow rate.
Let us compute the range of ALINEA flow rates for t = 0. Since A2(t,q3) is monotone in q3, for C2(t,q(t)) = A2(t,q3(t)) formula

(6.1) at t = 0 translates into
C�2 ð0;Xð0ÞÞ ¼ A2 0;qþ3
� �

and Cþ2 ð0;Xð0ÞÞ ¼ A2 0;q�3
� �

:
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It is possible, however, for a controller such as ALINEA to work in conjunction with a queue controller that prevents the
vehicle queue from growing too much, causing traffic spillback further upstream. The most common queue controller uses
the queue override algorithm:
Q2ðt;q2ðtÞÞ ¼ f u
2 ðtÞ þ v2 q2ðtÞ � qc

2

� �
; ð6:5Þ
where Q2 is the flow rate prescribed by the queue override controller. With both ALINEA and queue override active at the
same time, the controller flow rate is computed as
C2ðt;qðtÞÞ ¼max A2ðt;q3ðtÞÞ;Q 2ðt;q2ðtÞÞf g; ð6:6Þ
which for t = 0 yields
C2ð0;q�ð0ÞÞ ¼ A2 0;q�3
� �

¼ f u
2 ð0Þ þ v3 qc

3 � q�3
� �
and
C2ð0;qþð0ÞÞ ¼ Q 2 0;qþ2
� �

¼ f u
2 ð0Þ þ v2 qþ2 � qc

2

� �
:

Now we fix ~qð0Þ ¼ 0 q�2 qþ3
� �T . Obviously, 0 q�2 q�3

� �T ¼ q�ð0Þ � ~qð0Þ � qþð0Þ ¼ 0 qþ2 qþ3
� �T . That is, ~qð0Þ 2 Xð0Þ. Following

formula (6.6),
C2ð0; ~qð0ÞÞ ¼ A2ð0; ~qð0ÞÞ ¼ f u
2 ð0Þ þ v3 qc

3 � qþ3
� �

< min C2 0;q�ð0Þð Þ;C2ð0;qþð0ÞÞf g:
Although in this paper we assume the split ratio matrices to be well defined and do not consider the case when their val-
ues depend on the traffic state, the described above treatment of the closed-loop control gives us a hint about the way of
handling the state dependent split ratios.
7. Decision support system

Fig. 8 situates the guaranteed traffic state estimation and prediction algorithm within a proposed design of a decision sup-
port system. Real time measurements and control actions are routed through the control center. A repository stores a col-
lection of scenarios. Each scenario consists of: (a) a road network with fundamental diagrams, possibly uncertain, for all
the links; (b) a set of forecasted demands, possibly uncertain, for all the origin links; (c) expected split ratios for all the nodes;
(d) a set of controllers residing at some nodes; and (e) a set of events that change link parameters (e.g. capacities), split ratios,
demands, or controller configurations at given times. For example, one Tuesday 8 AM event might specify a 2% increase in
demand above the historical average, together with a random change of ± 100 vehicles per hour per lane in the capacity of
each freeway link. A pair of events might specify an incident that begins at 8 AM and clears at 8:30 AM, and which reduces
the capacity of the link with the incident by 50%. Controller sets with split ratio changing events describe control strategies.
One strategy may consist of ALINEA ramp metering in a collection of ramps. Another strategy may consist of a changeable
message sign that suggests a route around an incident. The latter strategy is modeled by a change in the split ratios. This
repository would grow over time as new events and control strategies are considered. The ‘risk assessment’ box takes the
best and worst cases of the state estimation and prediction algorithm and evaluates them according to various performance
measures.

The decision support system would be used by the operator as follows. The state estimation block receives real time mea-
surement and control information and continuously updates its current state estimate, following the algorithm of Section 5.
The operator selects a time horizon s, say 2 h, and one or more scenarios. Each scenario is executed by the prediction algo-
rithm of Section 4. For each scenario, the operator examines the predicted best and worst case outcomes evaluated by the
Fig. 8. Real time decision support system.



A.A. Kurzhanskiy, P. Varaiya / Transportation Research Part C 21 (2012) 163–180 177
‘risk assessment’ block and determines whether the worst case outcome (a) poses such a small risk that the operator con-
tinues with the current control strategy; (b) poses significant risk, but in the operator’s judgement the likelihood of this out-
come is so small as to justify continuation with the current control strategy for the immediate future; or (c) poses such a high
risk that the operator looks for a strategy in the repository that reduces the risk of the worst case outcome to an acceptable
level.

In the absence of significant events, the operator would generally run scenarios, where no events are specified, only test-
ing available control strategies for the forecasted demands. Large incidents, which have critical impact on the state of traffic
are rare, and their time and location are unpredictable. When such an incident is reported, the operator can create a capacity
reducing event at the location of the incident, and test a performance of various potential responses (i.e. controller sets in
combination with split ratio changing events), as well as assess the impact of clearance time.

We simulate such a decision support system for the I-80 integrated corridor system, using a CTM model whose param-
eters are calibrated from I-80 data. This model is used in the ‘traffic state estimation and prediction’ block of Fig. 8. The ‘risk
assessment’ block consists of various performance measures, including speed, delay and freeway productivity. The signals
from the ‘real time measurement and control’ block are simulated using historical data rather than by actual ‘real time’ data.
Thus the simulated system could be implemented in the I-80 corridor traffic management center, simply by replacing his-
torical measurement data by actual data. We simulate two scenarios that the corridor operator may consider.

The first scenario concerns the 23 mile-long segment of eastbound I-80, from A (near the Oakland-San Francisco Bay
Bridge) to B (near the Carquinez Bridge) in Fig. 9. I-80 eastbound is the afternoon commute direction. Traffic moves from
post mile 3 to 27. Historical data for September 2, 2008, are used. The real time estimation algorithm provides the estimate
of the state at 2 PM. At that time, the prediction algorithm is run for two hours, 2-4PM. The scenario specifies that the de-
mand varies randomly between ±2% of nominal (which is taken to be the actual demand) and the capacity in each link varies
randomly between ±2% of the calibrated capacity.

The plots on the top right in Fig. 9 predict the best and worst case speed profiles along the freeway segment at 3:30 PM
under ‘no control’. The plots show a large gap in these speeds between post miles 3 and 12, indicating the risk of congestion
before 3:30 PM. The operator may find this risk unacceptable, and considers a congestion mitigation strategy that turns on an
ALINEA control at three on-ramps between post miles 3 and 10. The plots on the lower right indicate that with this strategy
the gap between worst and best case speed has been reduced between post miles 3 and 10. However, the risk of congestion
Fig. 9. Estimation and prediction for scenario 1.



Fig. 10. Estimation and prediction for scenario 2.
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further downstream is unchanged. The operator may conclude that the reduction in risk is sufficient to justify starting the
ramp metering at 2 PM. The operator may decide to change the control strategy to consider the benefit of ramp metering
further downstream.

The second scenario concerns the same segment of I-80, but in the westbound morning commute direction. Historical
data for January 14, 2009 are used. The real time estimation algorithm estimates the traffic state at 6 AM, and the prediction
algorithm is run for two hours, 6-8 AM. See Fig. 10. The scenario specifies the occurrence of an accident starting at 6:35 AM
and clearing at 6:50 AM, which disables two (out of four) lanes. This is modeled as a 50% capacity reduction. The scenario
further specifies that demand during 6–8 AM varies randomly between ±2% of nominal. The bottom left panel shows the
speed contour plots (the horizontal axis represents post miles with traffic moving from left to right, the vertical axis repre-
sents time between 6 and 8 AM increasing from bottom to top, and color represents speed) for the best and worst cases un-
der ‘no control’: in either case, the 15-min incident causes congestion to spread over 12 miles within 40 min. The operator
decides to examine a strategy that combines ALINEA ramp metering upstream of the incident together with diversion of traf-
fic around the incident by making using of the parallel westbound I-580 freeway. The road network was modified by adding
two detour routes that overlap on I-580 and merge back into I-80 downstream of the incident, shown in red on the map. The
diversion strategy is modeled as a change in the split ratio that diverts 10% of the traffic. The best and worst case speed
contours for one of the detour routes (marked ‘CMS detour’ on the map) are shown in the bottom right panel; evidently
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the extent of congestion has been reduced dramatically.9 Since historical data indicate that the link with the incident is an
accident ‘hot spot’, the operator is more likely to decide to implement ALINEA control, but to hold back on diversion advice un-
less an actual accident is reported.
8. Conclusion

The paper presented an algorithm for guaranteed traffic state prediction and estimation of road networks described by a
CTM model with uncertainty in demand, model parameters and measurement. The prediction and the estimate are in the
form of sets of states that are guaranteed to include the actual state. The practical value of the proposed algorithm is its sim-
ple implementation. The only required data are the uncertainty ranges, which must be specified as intervals.

The algorithm calculates bounding curves q�(�), q+(�), which guarantee that any state trajectory q(�) of the original system
satisfies q�(�) � q(�) � q+(�). The box-valued set X(t) described by its extreme points q�(�) and q+(�) is thus an overapprox-
imation of the reachable set of the system (2.1)–(2.7), tight in the class of boxes. In one important special case (Theorem 4.3),
however, the curves q�(�), q+(�) become trajectories of (2.1)–(2.7).

A link through which traffic enters the network can be controlled by an open- or closed-loop controller. The presence of
the open-loop controller does not interfere with the prediction algorithm of Section 4 and, as mentioned in Section 6, may
even make the system more predictable by tightening density bounds downstream of the controller. The impact of the
closed-loop flow control is the same as that of the open-loop, when the system (4.1)–(4.17) is used in real time for state esti-
mation. If, on the other hand, the system (4.1)–(4.17) is used just for prediction, the closed-loop controller produces an inter-
val of potential flow rates, which is used in the input demand bound computation for (formulas (6.2) and (6.3) replace (4.4)
and (4.5)).

The proposed method could be used in the following way. Several prediction algorithms with different pre-configured
control strategies are run continuously by the traffic operator for a time horizon of 1-2 hours with initial conditions coming
from estimation. Based on the prediction results, the operator chooses to deploy one control strategy or another. This choice
may depend on how predictable the system is (the smaller the intervals between the worst and the best cases, the more
predictable the system), how bad the worst case is on particular links, which strategy yields the smallest total delay, or some
other criteria.

The algorithm described here is implemented in Aurora Road Network Modeler, an open source software package for
macroscopic traffic simulation (Aurora RNM Homepage, n.d.). This software was used to illustrate how the algorithm can
provide real time decision support to an operator managing the I-80 corridor in the San Francisco Bay Area.
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