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ABSTRACT
A statistical learning methodology is proposed for characterizing and identifying key parameters of
the fundamental diagram that describes the dependence of traffic flow (or speed) on traffic density
in a roadway section, based on traffic data obtained from a vehicle detection station. The proposed
fundamental diagram characterization not only provides the expected value of flow (or speed) given5

a density measurement, but also a random probability distribution of the flow (or speed) given the
density measurement. The former can be used to conduct deterministic traffic flow simulations,
while the later can be used to conduct statistical flow simulation studies, by using first order traffic
flow models such as the cell transmission model.



INTRODUCTION
As the amount and heterogeneity of real-time traffic data increases, it becomes necessary to de-
velop practical methodologies of relating these data to established concepts of traffic theory, and
extracting information in a condensed form, which provides both deterministic and probabilistic
descriptions of well-known traffic flow behavior, such as the traffic flow (or speed) versus density5

fundamental diagram. Of interest are the three main macroscopic properties of traffic – the average
speed, the flow, and the density – that define traffic conditions in a section of the roadway at a given
time. In this paper we propose a statistical learning methodology for characterizing the dependence
of traffic flow (or speed) on traffic density in a roadway section, based on traffic data obtained from
a vehicle detection station (VDS), in the form of a mixture of conditional probability density func-10

tions (PDF). Such a probabilistic characterization of the fundamental diagram provides both the
expected value of flow (or speed) and a PDF of the flow (or speed) given a density measurement.

To begin, we assume that average speed v, flow f , and density ρ in a roadway section, as
measured by a VDS, are related by

v =
f

ρ
. (1)

Of greater concern is the relationship between flow and density. This relationship is often consid-15

ered to be static and time invariant, and described in the form of a function f(ρ), known as the
fundamental diagram.

Many forms of the fundamental diagram have been proposed. Perhaps the most well-known
is the Greenshields model

f(ρ) = vfρ(1− ρ

ρf
) (2)

where vf and ρf are coefficients to be determined. Eq. (2) is clearly a parabolic function of ρ. An-20

other frequently used fundamental diagram function is piecewise affine, as depicted in Fig. 1(a),
which is frequently used in first order macroscopic traffic models, such as the Cell Transmission
Model (CTM) (1). Other functions that have been proposed in the past include logarithmic, ex-
ponential, exponential to the quadratic, and various forms of polynomials (2). Del Castillo (3)
contains a review of many of these fundamental diagram functional descriptions, as well as a his-25

torical perspective.
A limitation of using static functions to describe the fundamental diagram is that it is dif-

ficult to characterize the variability of flow, given a measured value of density, unless the joint
flow-density PDF, Γ(f, ρ), is also provided. Determining Γ(f, ρ) for each VDS is often infeasible.
Several methodologies have been proposed to characterize the variability of flow, particularly in30

the so called congestion regime, from the nominal value provided by the fundamental diagram.
Examples include the three-phase theory of Kerner (4), which proposes an explicit static function
ff (ρ) for free-flow regime, but uses a so called congested region domain inclusion to describe the
flow versus density relation when traffic is congested. Kim and Zhang (5) attempted to explain how
variation in the drivers efforts to accelerate or decelerate, as well as the spacing between specific35

cars along the freeway route, lead to variations in values of the fundamental diagram. Sumalee
et al. (6) use different fundamental diagrams depending on whether a particular roadway section
is transitioning between free flow and congestion traffic regimes, or is in steady state of one of
the two regimes. None of the above mentioned works provides a methodology for determining,
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in a statistical sense, what is the conditional expected flow and the conditional probability density
function (PDF) of the flow, given a density value.

In this paper, we present a statistical learning methodology for determining a probabilis-
tic description of the fundamental diagram, obtained from traffic flow data provided from a VDS.
In contrast to a traditional static piecewise affine fundamental diagram, as the one depicted in Fig.5

1(a), the proposed methodology produces a stationary piecewise affine mixture of conditional prob-
ability functions of flow, given values of density, as schematically depicted in Fig. 1(b). The graph
in Fig. 1(b) is the conditional expected value of the flow given density f̄(ρ) = E{f |ρ}. Also,
referring to Fig. 1(b), given a value of density ρ, there is 95 % probability that the corresponding
value of flow is contained between the interval [a, b], demarcated by the shaded region.10

(a) (b)

FIGURE 1 (a) A piecewise affine fundamental diagram with its associated parameters.
(b) A stationary piecewise affine mixture of conditional probability functions of flow used in
this paper, with the some of its associated parameters

The parameters that characterize the probabilistic piecewise-affine fundamental diagram
depicted in Fig. 1(b) are obtained from VDS traffic data, collected through many days, as shown
for example by the actual traffic data graphed in Fig. 2. The graph of the conditional expected value
of the flow given density f̄(ρ) depicted in Fig. 1(b) has three distinct piecewise affine functions as
opposed the the more common graph shown in Fig. 1(a).15

f̄(ρ) =


v ρ 0 ≤ ρ ≤ ρt

vtρ+ ρt(v − vt) ρt ≤ ρ ≤ ρc

w(ρc − ρ) +Q ρc ≤ ρ ≤ ρj

The density region [0, ρt] corresponds to the constant speed v free-flow traffic region, where
ρt will be called the free-flow transition density in this paper. The density region [ρt, ρc] corre-
sponds to the variable speed free-flow traffic region, where ρc is the well-known critical density.
The region [ρc , ρj] corresponds to the congested traffic flow region, where ρj is the jam density.
Q is the expected value of the maximum flow, also known as the capacity. w can be interpreted20

as the rate at which congestion propagates reverse of the flow direction of traffic at this particular
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point. As stated above, the shaded regions in Fig. 1(b) demarcate the 95 % confidence interval
of measuring a flow value, given a density measurement. Thus, given density ρ, the lower limit
a is approximately one standard deviation below the expected flow f̄(ρ), while upper limit b is
approximately one standard deviation below the expected flow f̄(ρ). As will be detailed in the
next sections, the conditional flow PDFs associated with both the constant speed free flow region5

[0, ρt] and the congested region [ρc , ρj] are exponential, while the conditional flow PDF associated
with both variable speed free flow region [ρt, ρc] is normal.

This effort to develop this new form of the fundamental diagram depends upon the use of a
large number of data for a particular position. Today, there are sensors within the road network that
capture this large amount of data on a regular basis. In California, these data for the freeways are10

stored in one location – the Performance Measurement Systems (PeMS) (7). It is from this source
that all the data used here will be extracted. This source contains many years worth of information,
but only a select amount will be used. Enough information is used, however, to provide a rich
amount of information from which to derive the necessary parameters. It is important to note that a
proper understanding of the distribution of data cannot be made without a reasonably large sample15

size from which to derive the distribution. PeMS provides this source.

FIGURE 2 A set of real 5-min aggregate data for eastbound Interstate 80 at Richmond
for the period of December 1-December 20, 2012. Each dot represents one data reading.

TRANSITION DENSITY AND FREE-FLOW DISTRIBUTIONS
To get through the first steps of establishing the form of the fundamental diagram, one approxi-
mates the free flow data to be that of data with density less than that of the data point with the
highest flow value. In most cases, this will be approximately accurate, and in any case will des-20

ignate a starting set to measure the necessary values. Typical in a linear model of the free flow
regime is an assumption that the speed remains a constant, that is, there exists a constant free flow
speed that is maintained on average by all the vehicles on the road. Non-linear models, however,
do not need to make this assumption, and in fact the data does not support this assumption either.
Figure 3 makes this more clear with the sample data. This is a speed-density plot of data from the25

free-flow regime (as approximated in the way discussed). As density increases, the value of speed
tends to decay from a higher value at a steady rate.

In order to recognize the detrimental effects of moderate density on the average free-flow
speed while maintaining a piece-wise linear system that keeps the parameters easily identifiable
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FIGURE 3 The speed-density plot of the Interstate 80 data in the free-flow regime, with
the mean of the two distributions marked with solid black dots, the region at which Γ2 = 1
as an ellipse, and the transition density location as a solid line.

features, this section will be divided into two regions. The value of density that divides the two
regions will be called the transition density. This feature will identify where vehicular interference
becomes more prominent, and thereby where the free-flow speed begins to degrade.

Though motivated by the nature of the data, this feature can also be considered in more
theoretical terms. In 1998, Newell (8) described the effects of a large vehicle or convoy that was5

moving at a speed that was lower than the prevailing traffic. In essence, he determined that this
large vehicle could be considered a bottleneck from the frame of reference of the slow moving
vehicle, and that in this frame of reference, the traditional concepts of bottleneck could be applied.
When considering that real data is taking averages over time at a particular location, the resulting
figure when applied to a linear model is identical to that of the proposed structure. It may thereby10

be best to assume that what is being observed with this proposed formation is the effects of the
slower moving traffic, which act as a continuous bottleneck around which the faster moving traffic
has to move around. What is captured in sensors is then the average of this effect.

A calculation of the value of the transition density begins with an estimation of the distribu-
tion space that will cover all possible variation of data. The law, limitations of vehicles, and most
importantly safety define an upper bound for the velocity at which vehicles can travel. Naturally,
almost all valid data points will be below this upper bound. This upper bound holds the free-flow
speed at a constant value for a region of low density. As the density increases, however, the mov-
ing bottleneck effect has a greater influence than the upper bound, and a more Gaussian form of
distribution is identifiable. Thereby, the easiest way to consider the distribution of real data is as
two different distributions in the speed-density field. The speed-density distribution that will be
used to identify the data of Region 1 of Fig. 3 is given by the following exponential distribution.

Γ1(v, ρ|v̄, ρ̄,Σ) =
1

(vmax − v̄)ρ̄
e(vmax−v)/(vmax−v̄)eρ/ρ̄ (3)

where vmax is the maximum speed and v̄ and ρ̄ are the appropriate average parameters, and Σ is a
variable included for notational purposes. Notice that Γ1 decays in both speed and density, since
the goal is to find a limited space distribution that has less of an influence with the larger density.
The distribution will be used to identify the speed-density data in Region 2 of Fig. 3 is a Gaussian
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distribution, centered at (v̄, ρ̄) and with variance Σ:

Γ2(v, ρ|v̄, ρ̄,Σ) = N ([v̄, ρ̄],Σ) (4)

These two distributions are shown in figure 4.

FIGURE 4 A general plot of the one standard deviation space of the two probability
distributions assumed by equations (3) and (4).

Using the above two distributions as the base assumption distributions, the Expectation-
Maximization (EM) algorithm from (9) for Gaussian mixtures will be adapted to define the fol-
lowing results. The modification in distribution will not effect the convergence of the algorithm
because the equation set used here continues to have only one solution. Let πi be the unconditional
probability that a data point is in set i for i = 1, 2. Then the conditional probability,τ in of a data
point xn = [vn, ρn]T being a part of set i given parameters µi = [v̄n, ρ̄n]T is

τ in =
πiΓi(xn|µi,Σi)∑
j πjΓj(xn|µj,Σj)

(5)

Through this value, the mean and the appropriate covariance matrix for each distribution (as
needed) can be determined

µi =

∑
n τ

i
nxn∑

n τ
i
n

(6)

Σ2 =

∑
n τ

2
n(xn − µ2)(xn − µ2)T∑

n τ
2
n

(7)

where Σ1 is a variable included for clarity to the equations and has no meaning. These values of
conditional probability can in turn be used to determine the unconditional probability

πi =
1

N

∑
n

τ in (8)

where N is the number of data points. Using equations (5)-(9) in iteration from an initial esti-
mation of πi provides an EM algorithm that can converge to the appropriate solution. From the
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determination of these two sets, the transition density can be identified as the location where the
Gaussian distribution, Γ2 has a significant contribution. In the case of this work, this location has
been approximately identified as

ρt = min(ρ|Γ2(v, ρ) = 0.1) (9)

The equation is highly likely to have a solution because Γ2 is a Gaussian distribution and
thereby always decreasing to zero as (v, ρ) → ∞ from a maximum value at the mean given valid
parameters. So given that the value of Γ2 at the mean is greater than 0.1, continuity implies a solu-
tion. From a more intuitive standpoint, the region outside the ellipse generated by Γ2(v, ρ) = 0.1
contains all the points with Γ2(v, ρ) < 0.1. This means that for all of these points, the probability5

of a value of from the distribution approaching a small neighborhood ∆A of these points is less
than 0.1∆A. What is being decided here is that this qualifies as not a significant contribution to
the distribution.

FREE-FLOW REGIME - LINEARIZATION
Now that the transition density has been identified, the actual linearization of the free-flow region
must be considered. Typically, this is done through a basic linearization formula. The assumption
made with this formula is that the data is distributed according to the formula

fi = v · ρi + ε (10)

where ε is a random, Gaussian distributed variable. Eq. (11) is not valid in this situation, because10

the distribution is not Gaussian. Instead, as discussed previously, the distribution contains an upper
bound which cannot be passed. In order to recognize the bound and use it to create a more accurate
model of the distribution, the previous model described in Eq. (3) could be used to determine v̄
and applied to this region. Since this distribution was created with some uncertainty in whether
these data were contained in the distribution, however, this may not provide the value of v which15

is being sought here because this value ought to be derived from the deterministic presence of all
the data points in this region. Instead, a different kind of linear fit on the flow-density data will
be attempted using the following assumption: In the region where density is below the transition
value, there exists an upper bound on the speed, vmax. Using the values ṽi = vmax − vi, the set in
this region has a value that is approximately an exponential distribution in flow. That is, given a20

value of the density, ρ, the distribution is approximately exponential with a mean at ṽρ.
It is a straightforward process to determine the value of ṽ from this assumption. The ex-

ponential distribution provides the context of a generalized linear model. At this time, it is worth
discussing a simple algorithm to determine a value of ṽ and part of the proof of this equation. The
goal in the present linearization is to maximize the likelihood that a given value of ṽ is the correct25

value. As noted in (10), the log-likelihood of any particular value of ṽ given the data set {(ρn, fn)}
is

l(ṽ) = logP(ṽ|{(ρn, fn)}) (11)

= log
N∏
n=1

exp(ηnf̃n − A(ηn)) (12)

=
N∑
n=1

(ηnf̃n − A(ηn)) (13)
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where ηn = −ν−1
n , νn = ṽρn, A(ηn) = − log(−ηn), and f̃n = vmaxρn − fn with the flow fn, as is

the structure of this exponential distribution.

Taking the derivative with respect to ṽ,

dl

dṽ
=

N∑
n=1

dl

dηn

dηn
dṽ

(14)

=
N∑
n=1

(f̃n − νn)
dηn
dνn

ρn (15)

=
N∑
n=1

(f̃n − νn)
1

ν2
n

ρn (16)

This gradient provides information about approaching the optimum value. An algorithm that fol-5

lows the gradient will tend to approach the maximum value of likelihood, which is the value de-
sired. Typical of an on-line algorithm of this form is

ṽt+1 = ṽt + γ(f̃n − νnt)ν−2
nt ρn (17)

where νnt = ṽtρn and γ is a step size. (10) Repeated iterations should approach the correct value
of ṽ from which v can be derived.

The remaining region between the transition density and the approximate location of crit-10

ical density is more reasonably a Gaussian by the structure of Eq. (4) that was proposed ear-
lier. Thereby, a calculation of the line in this region, starting at the end point of the previ-
ously determined line (ρend, fend), can take advantage of the basic linear equation. Let R =
[ρ1 − ρend, ρ2 − ρend, ..., ρN − ρend]

T be the density data values of this region written in vector
form and reparametized and F = [f1 − fend, f2 − fend, ..., fN − fend]T be the flow data values in15

the same order in vector form and also reparametized. Then the solution is arrived at by

vt = (RT ·R)−1 ·RT · F (18)

CAPACITY DETERMINATION
Having completed the free-flow region, the capacity of this model has to be identified. The most
simple solution would be to take the largest value of flow provided by all of the data and declare
it, or some percentage of it, as the capactiy, Q20

Q = max(fn) (19)

The problem with this value of Q is the non-representative data. Because these values are being
determined from actual data, there is a chance that some data will be above what would be consid-
ered the nominal capacity. These data are isolated from the general trend of the data because they
mark a particular moment when traffic conditions reached an unusually high value of flow, which
would not be a valid point to consider when asking about the general capacity of the road. Given25

that data sets are relatively dense, however, it is still possible to exclude those points for more
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FIGURE 5 The nominal value in the free flow regime shown with the lower line, with the
upper bound with the upper line. The transition density value is indicated by the vertical
line.

reasonable, lower values of capacity. Given that xmax = [ρmax, fmax] = arg max(fn), consider the
value of

min
xmax 6=xj

dist(xmax, xj) = min
xmax 6=xj

||xmax − xj||
?
> a (20)

where the value of a is pre-set and dependent on the number of data points available. If this
equation proves to be true, then the data point falls outside the general range of data, and should
therefore be ignored during the calculation of the capacity. The value of capacity should be deter-5

mined again from the remaining data points.
Again, however, there is the problem of the capacity at this point being the maximum of

the majority of the data. The point being a maximum is a problem for this work because the
determinant line so far has attempted to follow the nominal value of the data. Given that the values
are at a peak in this region, there will be effects upon the congestion regime, as well as a loss in the10

nominal value of the system. To properly consider all of this, the nominal capacity is intentionally
reduced from the maximum data point by some small percentage. Moreover, the range of about 100
veh/hr less in flow that the maximum data point is a reasonable qualification, which is generally a
little more than one percent of the maximum flow. From practice then, the most obvious way to
develop the nominal point is to declare that15

Q = 0.98 max(fn| min
xn 6=xj

||xn − xj|| ≤ a) (21)

Figure 5 shows the results of the calculation of sections 2 and 3. This figure defines the
nominal value line in the free-flow regime, as well as the end point of this regime. There is also an
upper bound that defines the variation of the data in an understandable fashion. The nominal value
of the data becomes the starting point for the congestion regime. Note the extremely high value of
the upper limit compared to the actual data near with density near critical. The error supports the20

breakdown of the exponential distribution, that a Gaussian distribution whose variation is derived
from the variation of the data would more accurately model the distribution in this region.
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CONGESTION REGIME
Given that the free-flow expected deterministic function has been determined, as well as the ca-
pacity, for this paper the congestion region will be defined as all data points that are greater than
the density at capacity, that is, the critical density. Unlike the free-flow regime, there is no obvious
reason for an upper bound of flow on the congestion region. However, congestion describes the5

deteriorating conditions of the road, and thereby there is a general upper bound on most cases on
these data. Given adequate data from the congestion regime, one can make the assumption that
like in the free-flow case, traffic conditions never exceed a state above this upper bound. There
may be conditions, for example an unexpected bottleneck in the road, that would cause traffic to
come to a state far below this upper bound, and these conditions cannot be ruled out. Thereby, it10

seems reasonable to use as in the free-flow case an exponential distribution as the distribution of
the random variation.

Given this conclusion, the upper bound is defined as the line connecting the maximum flow
data point with the maximum flow data point among the data points with the ten largest density
values. This should be a reasonable approximation, with data points above this line ignored.15

An initial point at the critical density can be, and in this case will be, defined. It may be
useful not to define this point and allow for the existence of a capacity drop when entering the
congestion regime. The equations are approximately the same, except for the existence of a two-
dimensional unknown vector, instead of a one-dimensional vector. The existence of this initial
point also emphasizes caution. Because data in the congested region tend to be towards lower20

density, this can distort the slope of the congestion line if started with poor initial conditions. The
value of capacity as the initial condition at the critical density has proven to produce reasonable
results.

FIGURE 6 The completed fundamental diagram, with the upper bounds defined.

To use an algorithm similar to Eq. (16), some algebraic formulation will be applied to the
data. Let the upper bound line be given by the equation f = −wuρ + cu. Let the capacity be Q25

and the critical density be ρc. Then the iterated algorithm to find the slope in the congested region,
−w, is

w̃t+1 = w̃t + γ(f̃n − µnt)µ−2
nt (ρn − ρc) (22)
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where γ is a constant step-size,

w̃t = −wu + wt (23)
f̃n = −wuρc + cu − fn (24)
µnt = w̃t(ρn − ρc)−Q− wuρc + cu (25)

This section completes the description of the fundamental diagram. The results applied to the
sample data are shown in figure 6.

EXPERIMENTAL RESULTS
Using the above described steps, the fundamental diagram can be produced for any number of5

sensor locations. To confirm that such results are accurate for the state of California, several VDS
data sets from locations around the state are shown in figure 7. Note that these locations do not
necessarily have the perfect measure of sensor data, but a fit can be made to the data that is given.

(a) (b)

(c) (d)

FIGURE 7 Four other sample locations, in order, Interstate 15 southbound near Escon-
dito, State Route 99 northbound in Sacramento, Interstate 210 westbound near Pasadena,
State Route 101 northbound near San Francisco.

These data sets contain one month worth of 5-minute data points, over the period of De-
cember 1 to December 31, 2012. The data were aggregated from individual lane data to aggregate10

flow and density parameters. What results is a large number of variations to the pattern of the
data, and consequently a wide variation to the value of the parameters. In some cases, the final
distance between the upper boundary and the nominal value, which is one standard deviation of
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the exponential distribution, is within 2000 veh/hr, which indicates that the potential variation of
the parameter w is relatively low and the amount of confidence of the nominal value is high. This
is true of figures 7a and 7d. There are some situations, however, where the final distance is nearly
3000 veh/hr or larger, where the range of potential values for the parameter w is quite larger, and
confidence on the nominal value given cannot be so high. The large variation measure is usually5

an indication of wide variation in data more than a fault of the algorithm. And in such a situation
the algorithm can be useful, because the uncertainty is made obvious from this calculated distance
and considered in the model. The visibility of large variation is true of figures 7b and 7c.

CONCLUSION
The paper proposed a new method of estimating a fundamental diagram model that would allow for10

an expected value deterministic structure while also providing potential identification of variation
from the expected value. It used fittings that attempted to be realistic to the provided data and
conveyed concisely all the information of the flow-density data within several small parameters. It
also allowed the possibility of identifying and retaining knowledge of the upper bounds as a form
of variation. Since the variation is taken to be of an exponential distribution, the upper bounds and15

the mean values would provide information about the standard deviation, and thereby the variance
of the data. The model can thereby be both deterministic and probabilistic, and can be used in
either context depending on need.

Clearly, the discussion contained here is only the start of the study of the model. A further
investigation could be made on how to implement this model with variation onto a simulation. The20

simulation would add the time element that has been mostly assumed inconsequential in this paper.
Another potential direction is through investigating how changes in the environment can change
the variation of the data, for example whether it is light or dark, the effects of limited visibility,
and precipitation. Likely, there will be an effect on the fundamental diagram, and with the given
information, it might be enough to make predictions when the given event occurs in the future.25

As traffic congestion continues to be a problem, it is important to be able to make pre-
dictions about how traffic will behave in the near future. With this additional knowledge of the
fundamental diagram, there is potential to build up a better model to make these predictions of the
future.
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