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Abstract

To evaluate the traffic state over time and space, several models can be used.
A typical model for estimating the state of the traffic for a stretch of road or
a road network is the cell transmission model, which is a form of state space
model. This kind of model typically needs to be calibrated since the different
roads have different properties. This thesis will present a calibration framework
for the velocity based cell transmission model, the CTM-v.

The cell transmission model for velocity is a discrete time dynamical system
that can model the evolution of the velocity field on highways. Such a model
can be fused with an ensemble Kalman filter update algorithm for the purpose
of velocity data assimilation. Indeed, enabling velocity data assimilation was
the purpose for ever developing the model in the first place and it is an essential
part of the Mobile Millennium research project.

Therefore a systematic methodology for calibrating the cell transmission is
needed. This thesis presents a framework for calibration of the velocity based
cell transmission model that is combined with the ensemble Kalman filter.

The framework consists of two separate methods, one is a statistical ap-
proach to calibration of the fundamental diagram. The other is a black box
optimization method, a simplification of the complex method that can solve
inequality constrained optimization problems with non-differentiable objective
functions. Both of these methods are integrated with the existing system, yield-
ing a calibration framework, in particular highways were stationary detectors
are part of the infrastructure.

The output produced by the above mentioned system is highly dependent
on the values of its characterising parameters. Such parameters need to be
calibrated so as to make the model a valid representation of reality. Model
calibration and validation is a process of its own, most often tailored for the
researchers models and purposes.

The combination of the two methods are tested in a suit of experiments for
two separate highway models of Interstates 880 and 15, CA which are evaluated
against travel time and space mean speed estimates given by Bluetooth detectors
with an error between 7.4 and 13.4 % for the validation time periods depending
on the parameter set and model.
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Chapter 1

Introduction

Today’s traffic society has numerous methods available for estimating the traf-
fic state on a highway. The methods can be based on different theories and
approaches e.g. kinematic wave theory, statistical theory or queueing the-
ory. The methods based on kinematic wave theory are often derived from
Lightham-Whitham-Richards partial differential equitation (the LWR PDE)
and discretized with a Godunov scheme. This kind of highway representation
is also known as the cell transmission model (CTM). Such macroscopic simula-
tion models usually have numerous parameters. These parameters have to be
calibrated so that the model can be validated and produce as accurate results
as possible.

Traffic model calibration and validation is a time consuming effort that has to
be conducted for each individual model. The literature available on the subject
is numerous but still does not define what calibration. Even the meaning of
the central terminology might differ depending on which kind of source that is
consulted and applications of model calibration, i.e. the method of choice, are
often tailored for the individual model.

In 2008 a project called Mobile Century was driven by the California Center
for Innovative Transportation (CCIT, later part of the Partners for Advanced
Transportation Technology, or PATH), the Nokia Research Center (NRC) and
the University of California, Berkeley [1]. The project’s purpose was mainly a
proof of concept; to prove that it is possible to collect data with GPS-equipped
devices travelling with vehicles and use such observations for traffic state esti-
mation, in real-time and in conjunction with a cell transmission model tailored
for assimilation of velocity observations. The outcome was deemed successful
in the controlled environment and the system from Mobile century evolved into
the Mobile Millennium project for implementation on a more ambitious scale.

The purpose of the Mobile Millennium highway state estimation model
(henceforth highway model) was to integrate and fuse data from different sources,
such as stationary sensors and probes, combined with a cell transmission model
in order to predict the traffic state on highways [1]. During the development
and the research with the traffic state estimation model, the only calibration
that was made, was ad-hoc.

Since there are no specified calibration methods for calibrating parameters
in the highway model, this model will be the test subject for the thesis. Even
though the literature points out that the usual approach is tailor made calibra-
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tion methods for different models, this thesis will try to create a more general
framework. This framework should be able to be applied to other models than
the highway model. This thesis will also present two procedures for calibrating
different types of parameters1.

1.1 Purpose and objectives

The purpose of this thesis is to develop a framework for calibrating a traffic
state space model. Since the definition of calibration and validation can differ
between articles, authors or other sources, it is required to define the concepts
of calibration and validation in this thesis.

The framework should fulfil some criteria. The second criteria is to provide
a general working process for how to calibrate and validate a traffic state space
model. It should also provide some calibration procedures as examples of how
to estimate parameters connected to the model. Another purpose is to provide
some results from calibrated test cases using the calibration framework for a
certain traffic state estimation model and thereby validate the framework.

The objective with this thesis, is to produce a calibration framework for
a traffic state estimation model. The framework should contain certain parts.
The first part should be a general working process that describes the proce-
dure in which the calibration should be made. It should also contain a general
calibration procedure as well as a parameter specific procedure. Another aim
is to measure and evaluate the performance of the traffic model when using
calibrated parameter sets for the test sites.

1.2 Method

The two major approaches for developing and creating the framework was a
literature survey as well as a system analysis.

The literature survey was conducted as to bring in knowledge about the Mo-
bile Millennium system, specifically the cell transmission model for velocity and
data assimilation with the ensemble Kalman filter. In parallel, the literature
survey also included the topics calibration, validation, empirical parameter esti-
mation and black-box calibration so as to form the backbone of the calibration
framework.

Even though the framework as such can be used for other systems, it was
developed for a specific traffic state space model, the Mobile Millennium system,
being in the development stage and a large research topic at that, an extensive
system analysis was needed. The primary goals for doing the analysis was to
understand and identify all issues in the system. The analysis pointed out that
it was necessary to make modifications to the system, so that the system could
be calibrated using the calibration framework.

1.3 Limitations

This thesis will mainly focus on two different calibration procedures for cali-
brating parameters connected to the highway model. The two methods consists

1These procedures are exchangeable in the framework.
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of a black box calibration method called the complex method and the other is
an empirical calibration method for calibration of the parameters connected to
the fundamental diagram.

The data sources will be of three different kinds; probe data, inductive loop
detector data (from Caltrans Performance Measurement System, PeMS) and
Bluetooth data. Only limited data sets were available during the thesis. Pro-
cessing of raw traffic data is outside the scope of this thesis although some
quality assessment of filtered data will be conducted as part of the framework.

Due to lack of time, only two different calibration procedures was tested dur-
ing the thesis in the frame work. Due to the factors mentioned, the performance
of the calibration procedures will not be compared against other calibration
methods.

Only off-line calibration of parameters is addressed in this thesis. This means
that the framework presents calibration methods that are used with historical
data when calibrating parameters.

1.4 Outline

The outline for the rest of this thesis is as follows; first a literature review will be
presented in chapter. It consists of two chapters where the first chapter, chapter
2, will focus on the transformation of the CTM to the CTM-v, the network
algorithm and the theory behind the ensemble Kalman filter. The second part of
the literature review, chapter 2, will focus on the theories behind the calibration
framework and calibration procedure. The purpose of the literature review is
to present the theoretical foundation on which this thesis resides.

The following chapters will be the main contribution of this thesis. Chapter
4, presents the system description, which have the purpose of presenting a more
detailed overview of the highway models and the relevant parameters connected
to each part. It will also present the data flow of the highway model. After
the system description, in 5, the implementation of the calibration framework
together with the calibration procedures chapter are introduced. These two
chapters system description and the implementation chapter, describes for the
reader how the author developed and adapted the calibration procedures and
integrated them into the highway model.

To prove that the calibration framework and the calibration procedures work,
experiments are conducted. In chapter 6 the test sites, which is the subjects
when conducting the experiments, as well as the layout are introduced and
presented. Chapter 7 summarizes and concludes the results from conducting
the experiments. The two last chapters in this thesis is the chapter 8 and
chapter 9. Chapter 8 contains the analysis and discussion of the results from
the work made. The final chapter which is chapter 9, concludes the work made
in thesis and gives propositions for future work.
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Chapter 2

Literature Review Part I:
Highway Model

This chapter provides the literature review over the theoretical background for
the highway model in the Mobile Millennium system [2]. This highway model
is the traffic state space model that will be the experimental subject for the
calibration framework presented in this thesis. The chapter describes the math-
ematics behind the highway model that lie within the scope of the thesis. The
main focus lie on derivatio of the velocity based cell transmission model and the
ensemble Kalman filter.

2.1 Traffic flow model review

This section will present a brief explanation to the Lightham-Whitham-Richard’s
(LWR) kinematic wave theory with a small introduction to cell transmission
models (CTM), which is a recognized method for describing traffic states over
time and space. A review of different flux functions and the Godunov scheme
will be presented. It will also introduce an inversion of the CTM into a velocity
based cell transmission model for which a network update algorithm is applied.

Macroscopic traffic models often use the CTM version from the Lightham-
Whitham-Richard’s partial differential equation (LWR PDE). The theory was
developed by Lightham, Whitham (1955), see [3] and Richards (1956), see [4].
To express the flow as a function of density the PDE utilize a fundamental
diagram. This diagram have evolved in many ways and there are different ver-
sions. This report will give a brief explanation for three different fundamental
diagrams; Greenshields [5], Daganzo-Newell [6] and the Hyperbolic-Linear fun-
damental diagram and how they are connected to the LWR PDE.

The outline for the traffic model review section of this chapter is as follows.
First a brief network representation to explain how a highway is simplified and
modelled. Thereafter an introduction to the theories behind the traffic flow
model. Next, a transformation from the density domain to the velocity domain
will be introduced and explained. After a more detailed and link specific section,
the cell transmission model for velocity (CTM-v) model is introduced. This kind
of modelling are generally used to represent homogeneous stretches of road; a
network representation these homogeneous stretches of road are defined as links.
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To be able to extend the link modelling to a network representation, junctions
are introduced. The junctions acts as connection between links and distributes
the traffic flows over the outgoing links. Lastly, the network algorithm of how
to estimate the state for the whole network is provided.

2.1.1 Transformation of the Lightham-Whitham-Richard
partial differential equation

In the LWR theory there is a partial differential equation known as the LWR
PDE that expresses how the density ρ evolves for a certain stretch of road with
a length of L, for a time period T . The LWR PDE is (2.1).{

∂ρ(x,t)
∂t + ∂Qρ(x,t)

∂x = 0, (x, t)ε(0, L)× (0, T )

ρ(x, 0) = ρ0(x), ρ(0, t) = ρl(x), ρ(L, t) = ρr(x)
(2.1)

where Q(·) is the fundamental digram1 for ρ ∈ [0, ρmax], where ρmax is the
maximum density. Note that Q(·) often is assumed to be concave and piecewise
differentiable. The initial condition, left boundary condition and right boundary
condition are expressed by the terms ρ0(·), ρl(·) and ρr(·). It is assumed that
the flow can be described as (2.2).

Q = ρV (ρ) (2.2)

where the velocity V (·) is a function of the density ρ.
To be able to characterize the behaviour of the LWR PDE correctly, under

the assumption that the desired density or measured density is not always equal
to the modelled density gives that boundary conditions are needed to solve
the PDE. They can be either strong or weak, depending on how the network2

representation is formulated. The boundary conditions will be described more
closely in the next part. Notations for the initial conditions as well as for the
boundary conditions is as described above.

The initial boundary condition is directly corresponding to the density along
the stretch of the modelled highway at time t = 0, this gives (2.3).

ρ(x, 0) = ρ0(x), x ∈ [0, L] (2.3)

where x is a specific stretch of road. In general, when trying to estimate the
state of a traffic system on a stretch of road, it is generally difficult to estimate
the initial conditions. To be able to cope with this problem, a system warm
up can be used. By letting the system run over a sufficiently long time period,
the significance of the initial conditions will be negligible. This is also called
the flush out effect [2]. However, to solve (2.1) for the left and right boundary
conditions, [2] states that at least weak boundary conditions are used3. By
introducing the weak boundary conditions, it is meant that the modelled density

1The fundamental digram express the relation between flow and density.
2The network is a representation of the modelled highway, with junctions e.g. on and off

ramps.
3By weak boundary conditions, it is meant that they are no longer required to hold abso-

lutely. In this way it is possible to use concepts from linear algebra to solve PDE:s. In this
case it used to transform the PDE into an entropy function to be able to prove that a solution
exists.

5



and the desired density which is represented by ρ(l, t) = ρl(t) and ρ(r, t) = ρr(t)
not always have to be absolute for all t.

According to [7] a simplification of the weak boundary conditions can be
expressed as (2.4) and (2.5). However for the mathematical specifics of the
hyperbolic conservation law, which the LWR PDE is, the reader is referred
to [8].

(I) ρ(l, t) = ρl(t) and Q′(ρl(t)) ≥ 0 or

(II) Q′(ρ(l, t)) ≤ 0 and Q′(ρl(t)) ≤ 0 or

(III) Q′(ρ(l, t)) ≤ 0 and Q′(ρl(t)) ≥ 0 and Q(ρ(l, t)) ≤ Q(ρl(t))

 for all t

(2.4)
and

(I) ρ(r, t) = ρr(t) and Q′(ρr(t)) ≤ 0 or

(II) Q′(ρ(r, t)) ≥ 0 and Q′(ρr(t)) ≥ 0 or

(III) Q′(ρ(r, t)) ≥ 0 and Q′(ρr(t)) ≤ 0 and Q(ρ(r, t)) ≤ Q(ρr(t))

 for all t

(2.5)
where Q′(·) = dq

dρ . Case (I) represents that the desired density is equal to

the modelled density. Case (II) represents the traffic state where both the
desired inflow as well as the modelled inflow, therefore the boundary condition is
pushed by the current state. Case (III) represents that the boundary condition
is not able to push the inflow. This due to that the modelled density is in
congestion and larger than the uncongested desired density. According to [7]
this formulation ensures that it is possible to find an existing and unique entropy
solution for a bounded domain.

So to be able to transform the density based CTM to a velocity based CTM-
v it is needed to consider the density entropy solution, see (2.6), everything in
line with [2]. This is also needed due to discontinuity that can appear in (2.1).
The weak entropy solution for the density evolution model, the LWR PDE,
can be written as (2.6). Note that earlier in the report, it is mentioned that
the fundamental diagram is generally differential, piecewise linear and concave.
However it is not possible to differentiate the Daganzo-Newell fundamental di-
agram, which in turn rends it impossible to use in the entropy solution. It is
a necessity that the fundamental diagram used in the entropy function can be
twice differentiable (which the Daganzo-Newell digram is not) and is strictly
concave with super linear growth. This is the motivation that [2] uses to intro-
duce the hyperbolic-linear fundamental diagram.

L∫
0

T∫
0

(
|ρ(x, t)− k| ∂

∂t
ϕ(x, t) + sgn(ρ(x, t)− k)(Q(ρ(x, t))−Q(k))

+
∂

∂x
ϕ(x, t)

)
dtdx+

L∫
0

T∫
0

sgn(k)(Q(Υρ(x, t))−Q(k)) · nϕ(x, t)dtdx ≥ 0

∀ϕ ∈ C2
c ([0, L]× [0, T );R+), ∀k ∈ R

(2.6)

where Υ is the trace operator and n is the normal vector to the domain. To
transform the solution of the density based LWR PDE, which means that addi-
tional boundary conditions for the initial conditions, left boundary conditions
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and right boundary conditions is needed to be reformulated for this specific case.
Not only in the weak sense but in a strong sense as well.

sup
k∈D(u(0,t),ul(t))

sgn(u(0, t)− ul(t))(F (u(0, t))− F (k)) = 0, a.e. t > 0. (2.7)

where D(x, y) = [inf(x, y), sup(x, y)]. 2.7 is the proper weak description for the
trace of the solution for u(0, t) and ul(t) for the left boundary condition of 2.1.

2.1.2 Transformation to the velocity domain

To be able to extend the LWR-v to a network model with proper boundary con-
ditions, it is required to formulate them as strong boundary conditions instead
of weak conditions. In [2], they prove that the strong boundary conditions for
this case can be formulated as (2.8)-(2.9).

Q′(u(0, t)) ≥ 0 and Q′(ul(t)) ≥ 0

Q′(u(0, t)) ≤ 0 and Q′(ul(t)) ≤ 0 and u(0, t) = ul(t) xor

Q′(u(0, t)) ≤ 0 and Q′(ul(t)) > 0 and Q(u(0, t)) > Q(ul(t)) xor

 a.t. t > 0

(2.8)
and

Q′(u(L, t)) ≤ 0 and Q′(ur(t)) ≤ 0

Q′(u(L, t)) ≥ 0 and Q′(ur(t)) ≥ 0 and u(L, t) = ur(t) xor

Q′(u(L, t)) ≥ 0 and Q′(ur(t)) < 0 and Q(u(L, t)) > Q(ur(t)) xor

 a.t. t > 0

(2.9)
Note that u(·) is measured data, l and r is the boundaries, Q is the fundamental
diagram and u(·, ·) is the solution.

Lastly, to be able to show that it is possible to recreate the LWR PDE for the
velocity domain with the same attributes as the density based LWR PDE, [2]
introduces a modified velocity based entropy function that solves the PDE in
its weak sense4, see (2.10).

L∫
0

T∫
0

(
P (v(x, t))

∂ϕ

∂t
(x, t) +Q(P (v(x, t)))

∂ϕ

∂x
(x, t)

)
dxdt

+

L∫
0

P (v0(x))ϕ(x, 0)dx = 0, ∀ϕ ∈ C2
c ([0, L]× [0, T ])

(2.10)

The first step to formulate the CTM-v, [2] wants to formulate the LWR-v PDE
conservation law in the velocity based domain according to (2.11).

∂

∂t
v(x, t) +

∂

∂x
R(v(x, t)) = 0

v(x, 0) = v0(x)
(2.11)

4By its weak sense, it is meant that a solution for the PDE cannot be guaranteed for the
whole domain.
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where R(v) is a convex, velocity based fundamental diagram. Q = ρv is invert-
ible, due to a strictly linear relationship.

This is done with the same approach as earlier, by introducing weak bound-
ary conditions for the entropy function (2.10). The boundary conditions then
needs to be reformulated, see (2.12) and (2.13) for (2.10).

u(0, t) = ul(t)

Q′(u(0, t)) ≤ 0 and Q′(ul(t)) ≤ 0 and u(0, t) 6= ul(t) xor

Q′(u(0, t)) ≤ 0 and Q′(ul(t)) > 0 and Q(u(0, t)) ≥ Q(ul(t)) xor

.

 a.e. t > 0

(2.12)
and

u(L, t) = ur(t)

Q′(u(L, t)) ≥ 0 and Q′(ur(t)) ≥ 0 and u(L, t) 6= ur(t) xor

Q′(u(L, t)) ≥ 0 and Q′(ur(t)) < 0 and Q(u(L, t)) ≥ Q(ur(t)) xor

.

 a.e. t > 0

(2.13)
where ul(·), ur(·) are of non differentiable functions. The functions ul(·) and
ur(·) strong boundary conditions applied to the left and right boundaries5.

2.1.3 Discretization

To discretize (2.13), [2] uses the Godunov scheme. This is a method to discretize
the LWR PDE and is commonly used in the traffic society. The Godunov
scheme is a numerical approximation to the weak solution of the PDE in its
conservative form. It discretize the PDE in both time and space. In other
words, by applying the Godunov scheme it is possible to reformulate the LWR-
v PDE as a non-linear, dynamic system that is discrete in space and time. In
other words, the cell transmission model. To ensure numerical stability, it is

required that vmax
∆T

∆x
≤ 1, where vmax is the maximum modelled velocity. In

the descretization, the space step i ∈ {0, · · · , imax} with length ∆x is introduced
as well as the time step n ∈ {0, · · · , nmax} with length ∆T . (2.14) is the cell
transmission function for the LWR PDE.

ρn+1
i = ρni −

∆T

∆X
(G(ρni , ρ

n
i+1)−G(ρni−1, ρ

n
i )) (2.14)

where ρ is the density and G(ρ1, ρ2) is the Godunov density flow function, where
the Godunov velocity flow function is defined as (2.15).

G(ρ1, ρ2) =



Q(ρ2) if ρcr ≤ ρ2 ≤ ρ1
Q(ρcr) if ρ2 ≤ ρcr ≤ ρ1
Q(ρ1) if ρ2 ≤ ρ1 ≤ ρcr
min

(
Q(ρ1), Q(ρ2)

)
if ρ1 ≤ ρ2

(2.15)

where Q(·) is the fundamental diagram, ρ1 is the upstream density and ρ2 is
the downstream density.

Since (2.14) is for estimating the traffic state for a certain cell in a certain
time step using density, a transformation to the velocity domain is needed. The

5This to ensure that a solution to the PDE can be found.
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inversion is made by stating that Q(ρ) = Q̃(v) = V −1(v)v. It is possible if
V (·) is strictly decreasing and ρ1 ≤ ρ2 while v1 = V (ρ1) and v2 = V (ρ2) and
v1 ≤ v2, where v1 is the upstream velocity and v2 is the downstream velocity. It
is also required that V (·) is monotonically decreasing and invertible. By using
this statement, the relationship Q(ρ) = Q̃(v) = V −1(v)v can be assumed. By
inverting (2.14) and transforming (2.15), results in the velocity based cell trans-
mission model, the CTM-v, see (2.16) and (2.17). Note that if the fundamental
diagram is not affine, the inversion is needed to be made after the discretization
to yield the CTM-v.

vn+1
i = V

(
V −1vni −

∆T

∆x

(
G̃(vni , v

n
i+1)− G̃(vni−1, v

n
i )
))

(2.16)

where the Godunov velocity flow G̃(v1, v2) is given by (2.17).

G̃(v1, v2) =



Q̃(v2) if vcr ≤ v2 ≤ v1
Q̃(vcr) if v2 ≤ vcr ≤ v1
Q̃(v1) if v2 ≤ v1 ≤ vcr
min

(
Q̃(v1), Q̃(v2)

)
if v1 ≤ v2

(2.17)

2.1.4 Fundamental diagrams

This section will provide an introduction to the Greenshields [5], Daganzo-
Newell [6] and the Hyperbolic-Linear fundamental diagram. It will also provide
the inversion of the Hyperbolic-Linear fundamental diagram [2], which is later
used in the CTM-v.

vf

qmax

II.

ρcr ρmax

v

vf

vcr

ρ

q

I.

ρcr ρmax

vf
vcr

III.

ρcr ρmax

1

Figure 2.1: Three different fundamental diagrams is pairwise shown in
this figure. The first pair I is the Greenshields fundamental diagram where
the upmost diagam is represented in the velocity density domain and the
lower is represented in the flow density domain. The second pair is the
Daganzo-Newell fundamental digram and the third pair is the Hyperbolic-
Linear fundamental diagram.
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Greenshields fundamental diagram

The Greenshields fundamental diagram was invented by Bauce D. Greenshields
in 1934. It was observed that the speed depended on the density. In [5], they
state the affine velocity function as (2.18). It expresses a linear relationship
between speed and density.

v = VG(ρ) = vmax

(
1− ρ

ρmax

)
(2.18)

where v is the estimated velocity and ρ is the density, G is a notation for
Greenshields fundamental diagram, in graphical representation, see figure 2.1.

Daganzo-Newell fundamental diagram

In July 1993, Carlos F. Daganzo presented a cell transmission model in [9], as
a dynamic representation of highway traffic. In this article, instead of using the
Greenshields fundamental diagram, the author presents another fundamental
diagram, see figure 2.1. A triangular where the differentiation between the
congested regime and the uncongested regime is strengthened. The fundamental
diagram is expressed by (2.19).

v = VDN (ρ)

vmax, if ρ ≤ ρcr
−wf

(
ρmax

ρ

)
, otherwise

(2.19)

where vmax is the maximum velocity (free flow velocity), ρmax is the maxi-
mum density, wf is the backward propagating shock wave velocity and DN
is a notation for Daganzo-Newell fundamental diagram. The Daganzo-Newell
fundamental diagram is not invertible since it is not strictly monotonic in free
flow.

Hyperbolic-Linear fundamental diagram

The main reason to why the Hyperbolic-Linear fundamental diagram is intro-
duced is that the Daganzo-Newell fundamental diagram is not invertible. So the
Hyperbolic-Linear fundamental diagram is a combination between the Green-
shields and the Daganzo-Newell fundamental diagram. For the mathematical
expression of the Hyperbolic-Linear, see (2.20) and for graphical presentation
see 2.1.

v = VHL(ρ) =


vmax

(
1− ρ

ρmax

)
, if ρ ≤ ρcr

−wf
(

1− ρmax

ρ

)
, otherwise

(2.20)

where ρmax is the maximum density, ρcr is the critical density, wf is the back-
ward propagating shock wave velocity, vmax is the free flow velocity and HL
stands for that this fundamental diagram is the Hyperbolic-Linear fundamental
diagram.

Since the system requires that everything should be expressed in the velocity
domain, an inversion of the Hyperbolic-Linear fundamental diagram is needed.
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To be able to invert the fundamental diagram, continuity is required, especially
where ρ = ρcr. To achieve this, the authors in [2] introduce the continuity
constraint 2.21.

ρcr
ρmax

=
wf
vmax

(2.21)

After the continuity constraint is introduced, it is possible to invert (2.21), and
the inverted fundamental diagram is formulated as 2.22.

2.1.5 Cell transmission model for velocity

This section presents a summary of the CTM-v model proposed by [2] as well
as all the reasoning previously made. Just as for the network representation, all
declarations are in line with those of [2]. To express the density as a function
of speed (2.22) is used.

ρ = V −1HL (v) =


ρmax

(
1− v

vmax

)
, if v ≥ vcr

ρmax

(
1

1 + v
wf

)
, otherwise

(2.22)

In (2.22), V −1HL (v) denotes the inverted Hyperbolic-Linear velocity function,
which is the inverse function of the approximated Daganzo-Newell velocity func-
tion (see e.g. [2] for details). ρ is the vehicle density, v is the velocity, ρmax is the
maximum, or jam, density, vmax is the free flow speed, vcr is the critical velocity
corresponding to the critical density vcr and wf is the backwards propagating
shock wave velocity.

The predicted velocity in the next time step for cell i is calculated via (2.23).
This expression is what is called the Cell Transmission Model for velocity, or
CTM-v.

vn+1
i = V

(
V −1(vni )− ∆T

∆x

(
G̃(vni , v

n
i+1)− G̃(vni−1, v

n
i )
))

(2.23)

where G̃ is the transformed Godunov velocity flux.
Transforming G̃ and using (2.22), it is possible to yield the Hyperbolic-Linear

model (2.24).

G̃(v1, v2) =



Q̃(v2) = v2ρmax

(
1

1 +
v2
wf

)
, if vcr ≥ v2 ≥ v1

Q̃(vcr) = vcrρmax

(
1− vcr

vmax

)
, if v2 ≥ vcr ≥ v1

Q̃(v1) = v1ρmax

(
1− v1

vmax

)
, if v2 ≥ v1 ≥ vcr

min
(
V −1HL (v1)v1V

−1
HL (v2)v2

)
, if v1 ≥ v2

(2.24)

For the first and last cell however, the velocity at the next time step is calculated
with (2.25) instead.

11



vn+1
0 = V

(
V −1

(
vn0

)
− ∆T

∆x

(
G̃
(
vn0 , v

n
1

)
− G̃

(
vn−1, v

n
0

)))
vn+1
imax

= V
(
V −1

(
vnimax

)
− ∆T

∆x

(
G̃
(
vnimax

, vnimax+1

)
−

G̃
(
vnimax−1, v

n
imax

))) (2.25)

So at the boundaries of an edge, (2.23) will reference to points vn−1 and vnimax+1.
These points are not within the physical domain, but are given by boundary
conditions. (2.24) can result in situations were the boundary conditions are not
imposed on the physical domain.

2.1.6 Model representation of junctions

Physical restrictions requires that the flow distributions at the junctions are
solved. The first two restrictions (vehicle conservation and an imposed routing
scheme) can be represented according to (2.26) and (2.27).∑

ein∈Ij

Q̃ein
(
vein
(
Lein , t

))
=

∑
eout∈Oj

Q̃eout
(
veout

(
0, t
))

(2.26)

∑
eout∈Oj

αj,eout,ein = 1 (2.27)

where αj,eout,ein is the allocation parameter and Aj ∈ [0, 1]|Oj |×|Ij | is the alloca-
tion matrix for junction j. We also have the relations Aj(eout, ein) = αj,eout,ein
and αj,eout,ein ≥ 0. The purpose of the allocation parameters in the allocation
matrix is to distribute the traffic flow from the incoming edges to the outgoing
edges according to routing information.

The restrictions expressed by (2.26) and (2.27) cannot always be fulfilled
since they combined impose strong boundary conditions at the end of the edges
(note the equality). To solve this issue the third restriction is included (traf-
fic flow is maximized over the junction) and the strong boundary conditions
represents upper bounds for that problem. The result is an optimization proce-
dure (a LP-problem). The LP-problem solves the exiting flow on each incoming
edge for the junction j. The dummy vector variable ξ ∈ R|Ij | is introduced for
the incoming edges ein of junction j. It is the possible to conclude the three
restrictions into the following LP-problem.

maximize: 1T ξ

Subject to: Ajξ ≤ γmax
Oj

0 ≤ ξ ≤ γmax
Ij

(2.28)

where the upper bounds are set by γmax
Oj

:=
(
γmax
eout,1 , . . . , γ

max
eout,|Oj |

)
and γmax

Ij :=(
γmax
ein,1 , . . . , γ

max
ein,|Ij |

)
. The LP-problem expressed by (2.28) will have an optimal

solution ξ∗ for junction j. After estimating the maximum admissible outgoing

flux, it is possible to determine the state for G̃
(
vn−1, v

n
0

)
and G̃

(
vnimax−1, v

n
imax

)
in (2.25) by (2.29).
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Ḡein
(
vnimax, v

n
imax+1

)
= ξ∗ein ,

Ḡeout

(
vn−1, v

n
0

)
=

∑
ein∈Ij

αj,eout,einξ
∗
ein

(2.29)

The maximum admissible outgoing and incoming maximum flow in (2.28) is
defined via (2.30) and (2.31) respectively.

γmax
eout

(
veout(0, t)

)
=



ρmax

(
1− vcr,eout

vmax

)
vcr,eout

if veout(0, t) ∈ [vcr,eout , vmax,eout ]

ρmax

(
1

1+
veout (0,t)

wf

)
veout

(0, t)

if veout
(0, t) ∈ [0, vcr,eout

]

(2.30)

and

γmax
ein

(
vein(Lein , t)

)
=



ρmax

(
1− vein (Lein

,t)

vmax

)
vein(Lein , t)

if vein(Lein , t) ∈ [vcr,ein , vmax,ein ]

ρmax

(
1

1+
vcr,ein

wf

)
vcr,ein

if vein(Lein , t) ∈ [0, vcr,ein ]

(2.31)

2.1.7 Network algorithm

The authors of [2], apart from deriving the CTM-v from the LWR PDE, defined
an algorithm that progresses the velocity field in the network in time. The algo-
rithm basically applies the CTM-v for each individual network edge and solves
the LP-problem for each junction. The velocity field for the entire network, that
is, for every cell i ∈ {0, · · · , imax} on all edges, is

vn :=
[
vn0,e0 , · · · , vnimax,e0 , · · · , vn0,e|ε| , · · · , v

n
imax,e|ε|

]
The velocity at time t = (n+ 1)∆T is given by

vn+1 =M[vn] (2.32)

Where M[v] denotes the update algorithm presented below.

Step 1. For all junctions j ∈ J :

Compute γnimax,ein

(
vnimax,ein

)
∀ein ∈ Ij and

γn0,eout

(
vn0,eout

)
∀eout ∈ Oj using (2.30)-(2.31).

Solve the LP-problem (2.28) and update

G̃ein
(
vnimax

, vnimax+1

)
and

G̃eout

(
vn−1, v

n
0

)
using (2.29).

Step 2. For all edges e ∈ ε:
Compute vn+1

i,e ∀i ∈ {1, · · · , imax,e}
according to the CTM-v (2.23) and (2.25).
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2.2 Data assimilation: The ensemble Kalman
filter

One of the more noticeable features of the Mobile Millennium system is its
ability to assimilate data in real time and offline mode from multiple sources
together with the highway model. This increases model performance in the
sense that it becomes more knowledgeable about the true velocity state on the
road. This section will highlight the filtering technique that is used for data
assimilation in the Mobile Millennium system.

Evensen [10] presented a new method for sequential data assimilation, later
called the ensemble Kalman filter, a variation of the Kalman filter which orig-
inates from the 1960’s [11]. Evensen’s contribution was said to be a solution
to unwanted unbounded error growth in the extended Kalman filter, another
version of the Kalman filter, due to the simplifications in the error covariance
estimation [10]. Evensen used Monte Carlo methods to forecast the error statis-
tics since the error covariance approximation in the extended Kalman filter was
deemed to be to costly from a computational viewpoint but also because the new
approach would eliminate the unbounded error growth in the extended Kalman
filter [10].

The main purpose of this section is to present the ensemble Kalman filter as
well as some background in statistics, data assimilation, the original Kalman fil-
ter and the extended Kalman filter. This should make the reader aware of what
these data assimilation techniques are, what an analysis scheme is, why neither
the Kalman filter nor the extended Kalman filter can be used for data assimila-
tion with the highway model update algorithm for velocity presented earlier and
highlight some important simplifications made in the extended Kalman filter.

The outline of the Data Assimilation: The ensemble Kalman filter section
is as follows; the next section includes some background to statistics that is
carried throughout the description of Kalman filtering techniques. The best
possible estimate of a state is then presented for circumstances where a prior
state and measurements of the true state are known. After the introduction to
state estimates with data assimilation the original Kalman filter is presented,
followed by the extended Kalman filter and the ensemble Kalman filter. The
usual pattern in this section is that the presentation is done in a scalar case first
and them moved into a spatial domain.

2.2.1 Statistics

Before the Kalman filter or any of its variations are presented some statistical
terms and definitions upon which the data assimilation technique is founded
will be presented.

Assume a random variable Ψ that is continuous over its domain. The ran-
dom variable has an associated function F (ψ) which is known as a distribution
function. This distribution function is defined as (2.33).

F (ψ) =

ψ∫
−∞

f(ψ′) dψ′ (2.33)

where f(ψ) is a probability density function. f(ψ′) is therefore the change in
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probability (density) and the distribution function F (ψ) states the cumulative
probability that Ψ takes a value less than, or equal to ψ. As (2.33) is defined the
probability density function f(ψ) must be the first derivative of the distribution
function F (ψ):

f(ψ) =
∂F (ψ)

∂ψ
(2.34)

The function f(ψ) expresses the probability of the random variable Ψ being
equal to ψ. Note that f(ψ) ≥ 0 always holds, that the probability of Ψ taking
a value within a very small interval is equal to f(ψ)dψ on the one hand and on
the other hand that the probability of Ψ to take a value in ]−∞, ∞[ , is equal
to one. The probability of Ψ being in an arbitrary interval [a, b] is defined by
(2.35).

Pr(Ψ ∈ [a, b]) =

b∫
a

f(ψ) dψ (2.35)

The probability distribution called the Gaussian (or normal) distribution is
commonly referred to in this thesis. The probability density functions for these
kinds of distributions are characterized by their variance σ2, mean value µ and
are defined by (2.36).

f(ψ) =
1

σ
√

2π
exp

(
− (ψ − µ)2

2σ2

)
(2.36)

Bayesian statistics in 2-dimensional spaces

Consider a case with two random variables Ψ and Φ. The joint probability den-
sity function expresses the probability of Ψ and Φ occur together, this function
is denoted as f(ψ, φ). The conditional probability density function expresses
the probability of occurrence Ψ if occurrence Φ already took place, this function
is denoted f(ψ |φ) and is defined by (2.37).

f(ψ |φ) =
f(ψ, φ)

f(φ)
⇔ f(ψ, φ) = f(ψ |φ)f(φ) (2.37)

where

f(φ) =

∞∫
−∞

f(ψ, φ)dψ (2.38)

Equation (2.37) states that f(ψ, φ) = f(ψ |φ)f(φ) where the right hand side
interpreted as the likelihood Ψ given Φ times the probability of Φ. Note that if
the occurrence Ψ is independent of the occurrence Φ and vice versa is the joint
probability density function f(φ, ψ) = f(φ)f(ψ).

Equation (2.37) gives Bayes’ theorem as (2.39) which states the conditional
(after Φ) probability of Ψ which is more knowledgeable than the probability of
Ψ alone since the data Φ now is taken into account.

f(ψ |φ) =
f(ψ)f(φ |ψ)

f(φ)
(2.39)
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Consider Figure 2.2 below for example, before any information of the event
Φ is Pr(Ψ = ψ1) a volume that stretches the entire φ-space. This probability,
or volume, considers the marginal distribution of Ψ alone and follows what is
called a prior probability distribution. Assume now that Ψ and Φ are depending
events and that information about the event (Φ = φ1) is known. This results in
a conditional probability of Ψ given Φ expressed by a new intersection volume
Pr(Φ = φ1 ∩ Ψ = ψ1), a new probability following a posterior probability dis-
tribution. According to the figure, the conditional probability can be expressed
by (2.40).

Pr(Ψ = ψ1 |Φ = φ1) =
Pr(Φ = φ1 ∩ Ψ = ψ1)

Pr(Φ = φ1)
(2.40)

φ

ψf(ψ, φ)

ψ1

φ1

dφdψ

Pr(Φ = φ1 ∩ Ψ = ψ1)

Pr(Ψ = ψ1)

Figure 2.2: Visualization of Bayes’ theorem with a marginal distribution
of only Ψ called a prior and a conditional distribution of Ψ given Φ called
the posterior.

This knowledge about a prior and a posterior is important during the un-
derstanding of the Kalman filtering techniques that are to be presented in this
chapter. A good thought to keep track of is the idea of a model estimate as a
prior while information about the true state through a field measurement allows
increased knowledge of the true state.

Bayesian statistics in n-dimensional spaces

Since models which operates on n-dimensional spaces often are referred to in
this thesis, Bayesian statistics will be presented in a case more general than the
2-dimensional one. Consider an event ψ ∈ <n, it has an associated function
F (ψ) and a probability density function f(ψ), which is also called the joint
probability density function for (ψ1, . . . , ψn). The associated function and the
probability density function are related according to (2.41) and the probability
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density function is still the derivative of the associated function similar to (2.34).

F (ψ1, . . . , ψn) =

ψ1∫
−∞

. . .

ψn∫
−∞

f(ψ′1, . . . , ψ
′
n) dψ′1 . . . dψ

′
n (2.41)

(2.35) is also true in the n-dimensional case, which means that the probability
of ψ lying somewhere in <n is equal to one.

Consider the random variable ψ ∈ <n to be a model state which has an
associative function as well as a probability density function. In line with data
assimilation, introduce a measurement vector d holding measurement of the true
(real world) state and let the likelihood of d given ψ be expressed by f(d |ψ).
The joint probability density function of model state and measurements then
becomes

f(ψ, d) = f(ψ)f(d |ψ) = f(d)f(ψ |d) (2.42)

The relationships given by (2.42) can, again, be used to express Bayes’ the-
orem

f(ψ |d) =
f(ψ)f(d |ψ)

f(d)
(2.43)

which now expresses the model state probability density function with measure-
ments, as a proportion to the probability density function of the model state
alone times the likelihood for a certain set of measurements.

Two important statistical moments and covariance

Probability density functions have so far been introduced as functions that de-
fines the probability of a random variable to take a certain value (see (2.35)).
The probability density function contains information, such as its own expected
value µ, standard deviation σ and variance σ2.

The expected value for a function h(Ψ) where Ψ is a random variable is given
by (2.44).

E[h(Ψ)] =

∞∫
−∞

h(ψ)f(ψ)dψ (2.44)

and the expected value of a random variable Ψ is then given by (2.45).

µΨ = E[Ψ ] =

∞∫
−∞

ψf(ψ)dψ (2.45)

The expected value given by equations (2.44)-(2.45) expresses the expected av-
erage value of Ψ if one performs an infinite number of realizations from that
distribution.

The variance of a random variable Ψ is expressed by (2.46). This value states
the spread of a probability distribution around the expected value.

σ2 = E[(Ψ − E[Ψ ])2] =

∞∫
−∞

(ψ − E[Ψ ])2f(ψ)dψ = E[Ψ2]− E[Ψ ]2 (2.46)
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(2.46) states that the variance is the expected square deviation of Ψ from the
expected value E[Ψ ], also known as the mean squared deviation.

Before moving on to estimation of statistics we present a measure, the covari-
ance, which states how much two random variables Ψ and Φ follow one another.
If a small Ψ corresponds to a small Φ this would give a positive covariance, a
small Ψ corresponding to a big Φ would give a negative covariance. The covari-
ance for two random variables, for which the joint probability density function
is given by (2.37), is defined as (2.47).

Cov(Ψ, Φ) = E
[(
Ψ − E

[
Ψ
])(

Φ− E
[
Φ
])]

= E
[(
ΨΦ− E

[
Ψ
]
Φ− E

[
Φ
]
Ψ + E

[
Ψ
]
E
[
Φ
])]

= E
[
ΨΦ
]
− E

[
ΦE
[
Ψ
]]
− E

[
ΨE
[
Φ
]]

+ E
[
Ψ
]
E
[
Φ
]

= E
[
ΨΦ
]
− E

[
Ψ
]
E
[
Φ
]
− E

[
Ψ
]
E
[
Φ
]

+ E
[
Ψ
]
E
[
Φ
]

= E
[
ΨΦ
]
− E

[
Ψ
]
E
[
Φ
]

=

∞∫
−∞

∞∫
−∞

ψφf(ψ, φ)dψdφ− E
[
Ψ
]
E
[
Φ
]

(2.47)

Note in the last line of (2.47) that the probability density function f(ψ, φ) =
f(ψ)f(φ) if Ψ and Φ are independent. In that case (2.47) is reduced to 0
according to (2.48).

Cov(Ψ, Φ) =

∞∫
−∞

∞∫
−∞

ψφf(ψ, φ)dψdφ− E
[
Ψ
]
E
[
Φ
]

=

∞∫
−∞

∞∫
−∞

ψφf(ψ)f(φ)dψdφ− E
[
Ψ
]
E
[
Φ
]

=

∞∫
−∞

φf(φ)
( ∞∫
−∞

ψf(ψ)dψ
)
dφ− E

[
Ψ
]
E
[
Φ
]

= E
[
Ψ
] ∞∫
−∞

φf(φ)dφ− E
[
Ψ
]
E
[
Φ
]

= E
[
Ψ
]
E
[
Φ
]
− E

[
Ψ
]
E
[
Φ
]

= 0

(2.48)

Estimations from samples

As pointed out by [12], there is no practical way to make integrations as the
ones presented earlier in this chapter using a computer (performing numerical
integrations) if the dimensionality of the probability functions is high (i.e. > 3).

There is an alternative to numerical integrations called Markov Chain Monte
Carlo methods in which a large number of realizations (draws), N , of the dis-
tribution f(ψ) are known. Statistical moments can be estimated from such
samples. In this section it will be shown how the expected value, µ, the vari-
ance, σ2, and the covariance can be estimated from samples.
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Assume a set {ψi} with i = 1, . . . , N where ψi is one observed value from the
distribution f(ψ), the expected value of a random variable from that distribution
can then be approximated by a best guess, the sample mean, according to:

µ = E[Ψ ] ' ψ =
1

N

N∑
i=1

ψi (2.49)

where the notation ' represents that the expected value of Ψ will tend to ψ as
N → ∞. Note that ψ is an unbiased estimation of E[Ψ ], which is proven by
(2.50).

E
[
ψ
]

= E
[
n−1

N∑
i=1

ψi
]

=

N∑
i=1

E[ψi]/n = nE[ψi]/n = E[Ψ ] (2.50)

The variance given by (2.46) can be approximated by the sample variance
according to (2.51).

σ2 = E
[(
Ψ − E[Ψ ]

)2]
'
(
ψ − ψ

)2
=

1

N − 1

N∑
i=1

(
ψi − ψ

)2 (2.51)

(2.51) is said to be an unbiased estimator of the variance. That the variance
estimator is unbiased means that it does not deviate from the expected variance.
This can be proven by following the reasoning of (2.52).

ψi − ψ = (ψi − µ) + (µ− ψ)⇔
(ψi − ψ)2 = (ψi − µ)2 + 2(ψi − µ)(µ− ψ) + (µ− ψ)2 ⇒

N∑
i=1

(ψi − ψ)2 =

N∑
i=1

(ψi − µ)2 + 2

N∑
i=1

(ψi − µ)(µ− ψ) +

N∑
i=1

(µ− ψ)2 ⇔

N∑
i=1

(ψi − ψ)2 =

N∑
i=1

(ψi − µ)2 + 2(µ− ψ)(

N∑
i=1

ψi −Nµ) +N(µ− ψ)2 ⇔

N∑
i=1

(ψi − ψ)2 =

N∑
i=1

(ψi − µ)2 + 2(µ− ψ)(Nψ −Nµ) +N(µ− ψ)2 ⇔

N∑
i=1

(ψi − ψ)2 =

N∑
i=1

(ψi − µ)2 −N(ψ − µ)2 ⇔

N∑
i=1

(ψi − ψ)2 = Nσ2 −N(σ)2/N

(2.52)

From which (2.51) can be deduced easily. Finally there is the covariance of
samples defined as (2.53).

Cov(Ψ, Φ) = E
[(
Ψ − E

[
Ψ
])(

Φ− E
[
Φ
])]

'
(
ψ − ψ

)(
φ− φ

)
=

1

N − 1

N∑
i=1

(
ψi − ψ

)(
φi − φ

) (2.53)
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This ends the introduction to statistics, presented thus far are the terms
probability density functions, accumulative probability functions and their prop-
erties, Bayes’ theorem, the keywords prior and posterior, likelihood, expected
value, variance and covariance. It was also then proven that the expected value,
the variance and the covariance can be estimated from samples.

This information will be used in the upcoming sections when state estimation
by models and data assimilation is discussed.

2.2.2 Analysis schemes for combined model prediction and
data assimilation

The previous section introduced the notion of an available measurement d of
the state. This section will bring together the measurement with the model
prediction in an effort to increase the performance of the state estimate, or
rather minimize the difference between the true state and the state estimate
produced by the combined model prediction and measurement.

The outcome of this section should be awareness of what is commonly re-
ferred to as the analysis scheme [12]. An analysis scheme is a way of combining
model predictions with field measurements where both the model state and the
measurement usually are dependent of time and space although this section
doesn’t include any time dependency.

The analysis scheme for a scalar state-space

Assume that the state at one specific location in space at one specific time is ψt

where the superscript t denotes true state. Now assume that two estimations of
ψt are available. The first estimation is expressed by (2.54).

ψf = ψt + pf (2.54)

where the superscript f denotes forecast, or the prior estimate, or the first guess,
of the true state and pf is the forecast error, ψf is then the state forecast.
The estimate of the true state expressed by (2.54) is a model estimate unlike
the estimate expressed by (2.55) which is an measurement d which contains a
measurement error ε.

d = ψt + ε (2.55)

The task at hand is to find a new estimate ψa, the analysed estimate, which is
a better estimate of ψt than both ψf and d. The issue is that, if new conditions
are imposed upon (2.54) in the form of the measurements d, the system will be
overdetermined [13]. The task at hand can then be reformulated to find a new
estimate ψa that minimizes the error terms.

Assume that the error terms pf and ε are random variables with zero mean
such that:

pf = 0

ε = 0

(pf )2 = Cfψψ

ε2 = Cεε

(2.56)
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where C denotes the covariance of the subscripted random variable pair. Assume
a linear estimator such that:

ψa = ψt + pa = α1ψ
f + α2d (2.57)

I.e. ψa is a linear combination of the forecast and the measurement. Given
(2.54) and (2.55) stating the model state forecast ψf and the measurement d
(2.57) can be expressed as:

ψt + pa = α1ψ
f + α2d

= α1(ψt + pf ) + α2(ψt + ε)

= (α1 + α2)ψt + α1p
f + α2ε

(2.58)

for which the expected value is used to find an expression for α1 and α2.

E[ψt + pa] = E[(α1 + α2)ψt + α1p
f + α2ε]⇔

E[ψt] + E[pa] = (α1 + α2)E[ψt] + α1E[pf ] + α2E[ε]⇔
E[ψt] + 0 = (α1 + α2)E[ψt] + α10 + α20⇔

E[ψt] = (α1 + α2)E[ψt]⇔
1 = (α1 + α2)

(2.59)

With this result in mind (2.57) will be reduced according to (2.60):

ψa = α1ψ
f + α2d

= (1− α2)ψf + α2d

= ψf + α2(d− ψf )

(2.60)

It is also possible to deduce the error pa of the analyzed state ψa according to:

ψa = ψf + α2(d− ψf )⇔
ψt + pa = ψt + pf + α2(ψt + ε− ψt − pf )⇔

pa = (1− α2)pf + α2ε

(2.61)

In which case the error variance of ψa, namely (pa)2, is expressed by (2.62).
Note the assumption that the model and measurement errors are uncorrelated.

(ψa)2 = Caψψ =
(
(1− α2)pf + α2ε

)2
= (1− α2)2(pf )2 + 2α2(1− α2)pf ε+ α2

2ε
2

=
/
pf ε = 0

/
=

= (1− α2)2Cfψψ + α2
2Cεε

(2.62)

Since Cfψψ and Cεε are both positive and constant parameters the minimum
variance can be found by minimizing Caψψ with respect to α2:

dCaψψ
dα2

= 0⇔

0 = −2(1− α2)Cfψψ + 2α2Cεε ⇔

α2 =
Cfψψ

Cfψψ + Cεε

(2.63)
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The analyzed error variance is minimized for this choice of α2 and (2.60) becomes

ψa = ψf +
Cfψψ

Cfψψ + Cεε
(d− ψf ) (2.64)

And the error variance expressed by (2.62) becomes

Caψψ = Cfψψ

(
1−

Cfψψ

Cfψψ + Cεε

)2

+ Cεε

(
Cfψψ

Cfψψ + Cεε

)2

⇔

Caψψ = Cfψψ

(
1−

Cfψψ

Cfψψ + Cεε

) (2.65)

(2.64) defines an unbiased and optimal estimation of a scalar state variable with
a measurement and is an improved estimate of the state that includes both of
the estimations given by (2.54) and (2.55).

The Bayesian analysis scheme for a scalar state-space

Returning to Bayesian statistics and the notion of prior and posterior estimates,
assume an initial guess ψf for which there is a probability density function f(ψ).
The likelihood of getting a measurement d given ψ is f(d |ψ) and it was shown
previously that Bayes’ theorem gives f(ψ | d) ∝ f(ψ)f(d |ψ). The notation ∝
means that the probability density function of ψ given d is proportional to the
right hand side of that expression.

Assume that two estimates of the state similar to (2.54) and (2.55) are
available and that all distributions are Gaussian (see (2.36)). The density of the
prior estimate of the state is given by

f(ψ) ∝ exp
(
− 1

2
(ψ − ψf )(Cfψψ)−1(ψ − ψf )

)
(2.66)

while the likelihood of d given ψ, or simply the likelihood, is given by

f(d |ψ) ∝ exp
(
− 1

2
(ψ − d)C−1εε (ψ − d)

)
(2.67)

Considering (2.66)-(2.67) the posterior density can be expressed in the same
way as (2.43), which gives:

f(ψ | d) ∝ exp
(
− 1

2
J [ψ]

)
(2.68)

Where the operator J follows the notation of Evensen and shortens the expres-
sion in (2.68) while being defined as equation (2.69) [12].

J [ψ] = (ψ − ψf )(Cfψψ)−1(ψ − ψf ) + (ψ − d)C−1εε (ψ − d) (2.69)

Since exp(−β) = 1/(eβ), a minimization of J with respect to ψ will give a
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maximization of the posterior density in (2.68).

J [ψ] = (ψ − ψf )(Cfψψ)−1(ψ − ψf ) + (ψ − d)C−1εε (ψ − d)⇒

dJ
dψ

= 2(ψ − ψf )(Cfψψ)−1 + 2(ψ − d)C−1εε = 0⇔

ψ =
ψfCεε + dCfψψ

Cfψψ + Cεε
⇔

ψ = d
Cfψψ

Cfψψ + Cεε
+
ψfCεε + ψfCfψψ − ψfC

f
ψψ

Cfψψ + Cεε
⇔

ψ = ψf +
Cfψψ

Cfψψ + Cεε
(d− ψf )

(2.70)

Where the last row is noted to be equivalent to the result of (2.64), so the likeli-
hood maximization given by a variance minimization in the case with Gaussian
distributions for all error terms. It is always true that a minimum-variance esti-
mate yields a maximum-likelihood estimate when the distributions are Gaussian.
Note that this equivalence is not true for non-Gaussian distributions but that
(2.69) still can be used to find the estimator that minimizes the variance [13].

The analysis scheme for spatial state-spaces

The previous section outlined the problem of combining modelled states with
measurements of the same in a scalar case (a single location), this section will
expand this problem to a spatial domain (the whole length of a road for ex-
ample). The task at hand is still to find a way of combining state estimates
given by a prediction model with those given by field measurements but now in
a spatial domain, say x = (x, y, z) or a discrete spatial domain such as a cell
representation of a road. The outcome is an analysis scheme. It is used later
when the Kalman filter is presented.

Consider a variable ψf (x) expressing the first guess of the state at a location
x. Let d ∈ <M be a measurement vector with M measurements. Say that these
measurements can be mapped to the true state with M ∈ <M which is called a
measurement functional. The basic spatial formulation of the first guess of the
state expressed by (2.54) can then be expressed as

ψf (x) = ψt(x) + pf (x) (2.71)

while the measurement vector, that can be compared to (2.55), is

d = M
[
ψt(x)

]
+ ε (2.72)

Both of (2.71) and (2.72) contains an error term with unknown values (otherwise
would the true state be known). Note that ε ∈ <M . Regarding the measurement
functional can such an operator be

Mi

[
ψ(x)

]
=

∫
D
ψ(x)δ(x− xi)dx (2.73)
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where δ is the delta function that is equal to zero for every x ∈ D except for
x = xi. The subscript i is a measurement location index.

There is no way to do any further analysis about the state estimate in the
spatial domain without making some assumptions about the error statistics,
since no information about the errors pf (x) or ε is known [12]. Let the informa-
tion in (2.56) be true in the spatial case . This means that both of the errors have
a mean value equal to zero, and there is information present about the variance
of the measurement errors and there is knowledge about the covariance between
two spatial points xi and xj in the forecast step.

pf (x) = 0

ε = 0

pf (xi)pf (xj) = Cfψψ(xi, xj)

εεT = Cεε

(2.74)

where Cεε ∈ <M×M is a covariance matrix which is not to be confused with
(2.53) since it is not deduced from sample averages but from the true state.

Given the statistical null hypothesis (2.74) the next step of the discussion
is to define a function J that can be used to punish large deviations between
the state ψ and the model forecast ψf and the measurements d respectively.
Evensen [12] stated (2.75) as an example of such a function. (2.75) contains two
terms. The first of those two terms states a weighted measurement between the
forecast ψf (x) and the state estimate ψ(x). The second term measures (in a
weighted fashion) the distance between the field measurement d and the state
estimate.

J [ψ] =

∫∫
D

(
ψf (x1)− ψ(x1)

)
W f
ψψ(x1,x2)

(
ψf (x2)− ψ(x2)

)
dx1x2

+
(
d−M(3)[ψ3]

)T
Wεε

(
d−M(4)[ψ4]

) (2.75)

W and W are the (functional) inverses of Cfψψ(x1, x2) and Cεε respectively,
the subscripts of the expression M(i)[ψi] indicates dummy variables that are
used later during the derivation of the analysis scheme [12]. The inverses of the
covariances are the weights mentioned earlier.

The function J [ψ] given by (2.75) will grow if the state estimate deviates
from the forecast state and the field measurements. It is therefore desirable to
find the optimal solution ψ(x) = ψa(x) that minimizes that expression. If the
weights are inverses of error covariances following Gaussian distributions the
variance minima equals the likelihood maxima [12].

It can be proven that (2.76) is an optimal solution to (2.75) by deriving the
Euler-Lagrange equation from δJ = J [ψ+ δψ]−J [ψ] = O(δψ2) [12]. The idea
is to take the variational derivative of the variational functional J and assume
that J → 0 as δψ(x)→ 0.

ψa(x)− ψf (x) = MT
(3)[C

f
ψψ(x,x3)]Wεε(d−M(4)[ψ

a
4 ]) (2.76)

(2.76) is not a satisfactory solution to (2.75) since ψa is included in both the
right hand side and the left hand side of the expression. It is more desirable to
search for an expression for ψa such as the analysis

ψa(x) = ψf (x) + bTr(x) (2.77)
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where

b = Wεε(d−M(4)[ψ
a
4 ]) (2.78)

is a vector in <M . (2.77) can be proven to be a variance minimizing (optimal)
which is both unique and linear [12]. r(x) are called representers. If (2.77) is
inserted in the optimal solution given by (2.76) can it be shown that

r(x) = M(3)[C
f
ψψ(x,x3)] (2.79)

A different expression for the vector b can be deduced from (2.77)-(2.79) and
is given by (2.80) [12].(

M(3)MT
(4)[C

f
ψψ(x3,x4)] +Cεε

)
b = d−M(4)[ψ

f (x4)] (2.80)

The missing piece is to derive an error estimate for (2.77) similar to the one
done for the scalar analysis scheme that was expressed by (2.65). This is done
with greater effort than for the scalar case and by taking the error covariance
given by (2.74) which is

Ca
ψψ(x1,x2) = (ψt(x1)− ψa(x1))(ψt(x2)− ψa(x2)) (2.81)

and substituting this expression in (2.77) which leads to (2.82) if the procedure
presented in Evensen [12] is followed.

Ca
ψψ(x1,x2) = Cf

ψψ(x1,x2)

− rT (x1)
(
M(3)MT

(4)[C
f
ψψ(x3,x4)] +Cεε

)−1
r(x2)

(2.82)

Formulation of the analysis scheme for discrete domains

The previous section outlined the analysis scheme in a spatial domain e.g. x =
(x, y, z) which is continuous. It is usually desirable to make a vector or matrix
representation of the spatial domain that is modelled, so as to represent the
domain with a discrete numerical grid ψ. In that case (2.71) and (2.72) would
be

ψf = ψt + pf

d = Mψt + ε
(2.83)

where ψ is a vector (numerical grid) representation of the spatial domain, pf

and ε are error terms in vector form, d is a measurement vector and M is a
discrete version of the measurement functional M, meaning that M is a matrix
that maps between the measurement vector and the state vector.

Similar to the procedure made in the previous sections it can be proven that
(2.84) is an optimal solution to the minimized variational functional problem
[12].

ψa = ψf + rT b (2.84)

where

r = MCf
ψψ (2.85)
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is a matrix that holds the elements of the error covariance matrix at the spots
of the measurements.

The vector b in (2.84) can be derived from the discrete formulation of (2.80)
which is given by (2.86).(

MCfψψM
T +Cεε

)
b = d−Mψf (2.86)

Finally there is the discrete formulation of the time evolution of the error statis-
tics in the discrete case. The discrete formulation of (2.82) is

Ca
ψψ = Cf

ψψ − rT
(
MCfψψM

T +Cεε

)−1
r (2.87)

Looking back at this section it can be seen that the analysis scheme gives
an estimate ψa of the true state ψt and that this estimate is composed by an
inverse of the estimate ψf as well as a linear combination rT b which is just a
collection of influence functions, the amount of which is equal to the number of
measurements [12]. Given the expression of b is it clear that b will be small if
the forecast state ψf is close to the measurements d [12].

This concludes the introduction to analysis schemes, the introduction is used
in the coming section where the Kalman filter is presented and, through the
Kalman filter, is it also used when the extended Kalman filter and the ensemble
Kalman filter are presented.

It is important to note that the analysis scheme so far has been presented as
being independent of time, the concept of a time dynamical scheme is introduced
with the Kalman filter. This presentation of the analysis scheme in scalar and
spatial cases only regarded what was early on presented as a prior, or a forecast,
ψf of the state and that a posterior, or the optimal conditional estimate, ψa

was computed once extra knowledge in the form of measurements d was brought
into the picture.

2.2.3 Kalman filter

The previous section presented analysis schemes for time independent scalar
and spatial cases. The discussion was oriented around the notions of a prior,
or a forecast, and measurements of the state and how these two components
could be combined to yield the optimal (the variance minimizing, or likelihood
maximizing) state estimate ψa.

These analysis schemes can be used to perform sequential data assimilation
and model state updates. As previously shown an improved state estimate
in vector form ψa can be computed from the forecast ψf , the forecast error
covariance matrix Cf

ψψ, the measurement vector d and the measurement error
covariance matrix Cεε. These components can also be used to compute Ca

ψψ,
the analyzed error covariance matrix.

This can be done in the time dynamic and discrete case, this section will
outline this process for linear time dynamical cases. It is referred to as the
Kalman filter.

The scalar case

Let G be a linear model operator that evolves the state ψtk = ψt(tk) in time,
where tk is the kth time value. This time evolution process is expressed by the
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time dynamical system

ψtk = Gψtk−1 + qk−1 (2.88)

with

ψt0 = Ψ0 + a (2.89)

where qk is a time dependent error term, Ψ0 is the initial state and ψt0 is that
same initial state but including an error term a.

The true state estimation model cannot be expressed directly as equations
(2.88) and (2.89), since the error qk, that could represent error sources such as
model limitations, is unknown. Instead, the actual model is expressed as (2.90)
and (2.91).

ψfk = Gψak−1 (2.90)

with

ψa0 = Ψ0 (2.91)

Equation (2.90) states the following: A forecast estimate of the state at time
tk is given by integrating the best guess ψak−1 forward in time according to the
model operator G.

Since (2.88) is the true state and (2.90) is the best guess that can be made,

the forecast will have a state error (ψtk−ψfk ), which can be used to estimate the
unknown error statistics:

ψtk − ψfk = G(ψtk−1 − ψak−1) + qk−1 (2.92)

In which case

Cfψψ(tk) = (ψtk − ψ
f
k )

= (G(ψtk−1 − ψak−1) + qk−1)2

= G2(ψtk−1 − ψak−1)2 + 2G(ψtk−1 − ψak−1)qk−1 + q2k−1

(2.93)

Assuming that the model error qk and the state error (ψtk−ψfk ) are uncorrelated

is (ψtk−1 − ψak−1)qk−1 = 0, and (2.93) is reduced to

Cfψψ(tk) = G2(ψtk−1 − ψak−1)2 + 0 + q2k−1

= G2Caψψ(tk−1) + Cqq(tk−1)
(2.94)

The model evolves in time as given by the dynamical equation (2.90) with
starting conditions given by (2.91). The model state error covariance Caψψ(tk−1),
the model error covariance Cqq(tk−1) and the initial error covariance Cψψ(t0)
evolves according to

Caψψ(tk−1) = (ψtk−1 − ψak−1)2 (2.95)

Cqq(tk−1) = (q2k−1) (2.96)

Cψψ(t0) = Caa = a2 (2.97)

Which then concludes the model evolution and the error covariance evolution
as a consistent time dynamical system.

When a measurement d is available the analysis scheme given by (2.64) will
yield an analysed state estimate.
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The vector case

The state in a spatial domain can be mapped to a discrete grid represented by
the elements in a state vector ψtk. With a linear model operator in matrix form
the true state vector representation will evolve according to

ψtk = Gψtk−1 + qk−1 (2.98)

where the variables follows the description of those in (2.88). The estimation of
(2.98) is

ψfk = Gψak−1 (2.99)

The error covariance matrix Cf
ψψ(tk) can be found by a procedure similar to

the one used to find Cfψψ(tk) in (2.94).

Cf
ψψ(tk) = GCa

ψψ(tk−1)GT +Cqq(tk−1) (2.100)

The time evolution equations (2.99) and (2.100) together with the analysis equa-
tions (2.101)-(2.103) is the Kalman filter [12,14].

ψak = ψfk +Kk(dk −Mkψ
f
k ) (2.101)

where d is the measurement vector and M is a matrix that maps the state
vector to the measurements, it is also known as a measurement matrix. The
covariance matrix Ca

ψψ time evolution is given by

(Cψψ)ak = (I −KkMk)(Cψψ)fk (2.102)

Both of the equations (2.101) and (2.102) contains a matrix K, this matrix is
called the Kalman gain and is given by

Kk = (Cψψ)fkM
T
k (Mk(Cψψ)fkM

T
k + (Cεε)k)−1 (2.103)

(2.101)-(2.103) are the more common way to post the analysis (or update) equa-
tions of the Kalman filter than (2.84)-(2.87) and one of these equation sets can
be deduced directly from the other [12,14].

2.2.4 Extended Kalman filter

The previous section presented the Kalman filter, which produces the optimal
state estimate for linear functions G. In the case of non-linear functions G
however, the Kalman filter cannot be used directly. But if G is differentiable
can it be approximated by a Taylor expansion.

This section will briefly outline the extended Kalman filter for sequential
data assimilation in which an estimate of the error covariance time evolution is
used and for linear measurement operators.

The scalar case

Let (2.104) represent a time dynamical non-linear model of the state of a single
scalar value ψtk.

ψtk = G(ψtk−1) + qk−1 (2.104)
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Just as in the previous section is it noted that the error q depends on e.g. model
inaccuracies and that q is unknown. Assume a numerical model of the state that
is approximated by:

ψfk = G(ψak−1) (2.105)

In which case the error between the models given as equations (2.104) and
(2.105) is the difference

ψtk − ψfk = G(ψtk−1)−G(ψak−1) + qk−1 (2.106)

Assume that G is infinitely differentiable, the next step includes a Taylor
expansion of G(ψtk−1)) in the close proximity of ψak−1:

G(ψtk−1) = G(ψak−1) +G′(ψak−1)(ψtk−1 − ψak−1)

+
1

2
G′′(ψak−1)(ψtk−1 − ψak−1) + . . .

(2.107)

By substituting this expansion of G(ψtk−1) in equation (2.106) the error distance
becomes

ψtk − ψfk = G(ψak−1) +G′(ψak−1)(ψtk−1 − ψak−1)

+
1

2
G′′(ψak−1)(ψtk−1 − ψak−1) + · · · −G(ψak−1) + qk−1 ⇔

ψtk − ψfk = G′(ψak−1)(ψtk−1 − ψak−1)

+
1

2
G′′(ψak−1)(ψtk−1 − ψak−1) + · · ·+ qk−1

(2.108)

According to equation (2.51) the forecast error covariance time evolution,

Cfψψ(tk), can be expressed as the expected value of the square of equation
(2.108):

Cfψψ(tk) = (ψtk − ψ
f
k )2

= (G′(ψak−1))2(ψtk−1 − ψak−1)2

+G′(ψak−1)G′′(ψak−1)(ψtk−1 − ψak−1)3

+
(1

2

)2
(G′′(ψak−1))2(ψtk−1 − ψak−1)4

+ . . . Cqq(tk−1)

(2.109)

Note that equation (2.109) contains an infinite number of terms, or moments,
which can be interpreted as infinite knowledge about the error statistics. As-
suming that there is no need to have more information about the error statistics
than the first and second order moments will equation (2.109) be simplified to
equation (2.110) [12].

Cfψψ(tk) ≈ Caψψ(tk−1)(G′(ψak−1))2 + Cqq(tk−1) (2.110)

Observe that equations (2.105) and (2.110) states the extended Kalman fil-
ter for a scalar state variable when they are combined with equations (2.64) and
(2.65) [12]. (2.64) and (2.65) states the analyzed estimate and the error vari-
ance of the analyzed estimate. Note that this follows an assumption of linear
measurement operators [12].
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The matrix case

Following the same form of calculations as for the scalar case can the extended
Kalman filter be derived for the non-scalar case (when a spatial domain is rep-
resented by vector notation) [12]. In that case will equation (2.111) represent
the true state vector ψtk at time tk

ψtk = G(ψtk−1) + qk−1 (2.111)

while the forecast is stated as

ψfk = G(ψak−1) (2.112)

where, in both (2.111) and (2.112), G is a non-linear matrix operator.
In line with (2.109)-(2.110) the error statistics (the error covariance) will

develop in time according to (2.113) [12,14].

Cf
ψψ(tk) = G′k−1C

a
ψψ(tk−1)G′Tk−1 +Cqq(tk−1) + . . .

' G′k−1Ca
ψψ(tk−1)G′Tk−1 +Cqq(tk−1)

(2.113)

with Cqq(tk−1) as the model error covariance matrix and G′k−1 being the Jaco-
bian given by

G′k−1 =
∂G(ψ)

∂ψ

∣∣∣∣
ψk−1

(2.114)

Again, note that (2.113) contains an infinite number of terms that are disre-
garded in the summation. This simplification still equals the assumption that
higher order statistical moments are unnecessary since the contribution to the
error statistics is assumed to be negligible and that the information can be left
out [14].

The extended Kalman filter in matrix form is finally given by (2.112) and
(2.113) together with (2.101)-(2.103).

2.2.5 Ensemble Kalman filter

The issue with the extended Kalman filter is that it is operated under the
assumption that the error covariance Cf

ψψ progress can be approximated by
equation (2.109) in the scalar case or (2.113) when lie within the spatial domain
and are represented by a numerical grid (a vector).

As stated in the previous section, both of these equations can be considered
simplifications, since they really should be expressed as an indefinite continua-
tion of the error statistics according to the same equations.

A continuation of the error statistics, in the vector case, means a summa-
tion of the higher statistical moments and derivatives of the non-linear model
operator G.

The ensemble Kalman filter, which is used in the Mobile Millennium system
and will be presented here, was developed to overcome the issues associated with
the extended Kalman filter [2,10]. The ensemble Kalman filter is more suitable
for handling large state spaces than the original Kalman filter. It is better suited
for capturing the time evolution of error statistics, it relieves the user from the
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burden of storing and forwarding the error covariance matrix of the model state
and no error terms are neglected due to a simplification of the linearization of
the model operator. The ensemble Kalman filter has also been noted as being
easier on the computational side than the extended Kalman filter [10,12,14,15].

The ensemble Kalman filter was derived from the viewpoint of an ocean
model [10]. While such models are uninteresting for the subject of this thesis
there are some noteworthy similarities. The oceanic model had, among others,
the following features:

1. The model operator was non-linear.

2. The state was integrated forward in time based on an initial state.

3. The initial state was a guess or an estimate from measurements.

4. The initial state guess will have errors originating from e.g. interpolated
data (since measurements are sparse in the physical domain) and errors
in the actual measurements.

This section outlines the ensemble Kalman filter as it was presented in [10]
but in accordance with the corrections made to the filter in [16] and with the
notation used in [12]. The first step is an introduction to the time evolution of
error statistics represented by an ensemble of model states.

Evolution and predictability of error statistics

Assume that the state of the (unspecified) model subject at time t ∈ <+ is
represented by a vector of state variables ψ(t) ∈ <n and that this vector holds
all dependants.

Let this state vector ψ(t) be a point in the n-dimensional space D. This
point will continuously move around in that space along some trajectory as the
model progresses. As noted earlier, the true initial state is unknown and the
model imperfect. Assume that this uncertainty is represented by an ensemble,
or a cloud, of points of infinite size in the space D. A probability density
distribution function can then be defined as

φ(ψ) =
dN

N
(2.115)

where ψ is the initial state guess ψ(t = 0), N is the number of ensemble
members (n-dimensional points) and dN is a the number of points per each
small increment in volume or simply the point density.

The probability density distribution function can vary depending on the
location in D, introduce

φ(ψ)dψ (2.116)

as the probability that the system is in a state at some location in the volume
dψ with dψ being in the close proximity of ψ. If φ ≥ 0 for any point ψ and
time t is ∫

D
φ(ψ)dψ = 1 (2.117)
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Meaning that the probability of finding the system in some state in the entire
space D is equal to one.

Taking a quantity h(ψ) and applying equation (2.44) with equation (2.116)
gives the expected value of h(ψ) as

E[h(ψ)] =

∫
h(ψ)φ(ψ)dψ

' h(ψ)

(2.118)

in which case the expected value of the element i of the state-space vector ψ is

µi ' ψi (2.119)

with i ∈ {1, . . . , n}. According to equations (2.51) and (2.53) will then the
elements of the variance matrix Cii and the covariance matrix Cij become

Cii = E[(ψi − µi)2]

' (ψi − µi)(ψi − µi)
(2.120)

and

Cij = E[(ψi − µi)(ψj − µj)]
' (ψi − µi)(ψj − µj)

(2.121)

where i 6= j in equation (2.121). The results for all elements i and j in these two
equations are stored at the locations (i, j) in the covariance matrix Cij (with
the variances along the diagonal for i = j).

The expected value and the covariance matrix substitute the first and second
order statistical moments. In the same fashion can the third and the fourth order
moments (the skewness and the kurtis) be defined [10]:

Θijk ' (ψi − µi)(ψj − µj)(ψk − µk)

Γijkl ' (ψi − µi)(. . . )(. . . )(ψl − µl)
(2.122)

Even higher order moments can be defined in this way.
Assume that the initial state guess follows a normal distribution, i.e. the

probability density function φ(ψ, t = 0) is a Gaussian distribution with the
mean µ(t = 0) coinciding with ψ(t = 0) and with a covariance Cij(t = 0) that
describes the uncertainty of the initial state guess [10].

Since the distribution is Gaussian, ensemble members far from the initial
guess will be less probable than members close to the initial estimate µ(t = 0)
[10].

Each of the possible state vectors, or ensemble members will evolve forward
in time by whatever non-linear model G they are subject to. This evolution is
a motion in the space D which is deterministic with an outcome depending only
on the location of the initial ensemble. The evolution given by the model is also
called the forecast [10].

As previously stated, every initial ensemble member is generated around the
initial guess, which, at the time, was the mean value of the distribution. During
the time evolution however, the member that represent the mean might drift
away from what is the most likely state among the members of the forecast [10].
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It is also possible that the ensemble forecast might grow or shrink in D,
according to e.g. equation (2.120) the variance will grow as well. A result of
this is that the prediction error statistics changes with the change of variance of
the forecast. If the ensemble changes with respect to spread in D the associated
probability density function that describes the ensemble will change as well.
The conclusion is that the ensemble density probability can be predicted by the
same equations that are given by the model (since the density probability is
derived from the ensemble) [10].

Consider the members in a fraction of the state space, dψ. Those members
are subject to the same time evolution model, which is deterministic. No en-
semble members can be destroyed during this evolution, neither can they be
created, thus will the probability be conserved as stated by (2.123) [10].

∂φ

∂t
+

n∑
i=1

∂Giφ

∂ψi
= 0 (2.123)

where Gi is the i:th component of the model operator G. (2.123) can be com-
pared to the conservation of vehicles with respect to traffic flow; the inflow and
outflow of probability over dψ is balanced by the change in probability density
over time. The chain rule (f · g)′ = f ′ · g + f · g′ is applied in (2.123):

∂φ

∂t
+

n∑
i=1

∂Giφ

∂ψi
= 0⇔

∂φ

∂t
+

n∑
i=1

(
φ
∂Gi
∂ψi

+Gi
∂φ

∂ψi

)
= 0⇔

∂φ

∂t
+

n∑
i=1

Gi
∂φ

∂ψi
= −φ

n∑
i=1

∂Gi
∂ψi

(2.124)

(2.124) is useful since the right hand side of the final equality states that the
probability density will increase or decrease with the model integrations. An
alternative viewpoint is that it describes a motion of the point cloud in a small
portion of the state space D. Therefore, that cloud is contracting or expanding
[10].

Following a single ensemble member (point) will dφ/dt describe if the ensem-
ble is contracting (when dφ/dt > 0) or expanding (when dφ/dt < 0). These two
situations would then equal cases where the error is becoming smaller (during
a cloud contraction since the deviation around the mean is smaller) and larger
respectively [10].

Assume a stochastic differential equation with a non-linear model operator
for the coming steps:

dψ = G(ψ)dt+ dq (2.125)

where dψ is the state vector, G is a non-linear model operator and dq ∈ <n are
the white noise model error terms in vector representation. This error follow a
Gaussian distribution with zero mean and covariance Cqq. (2.125) states that a
small increment in time, dt, equals a state location change in D denoted as dψ.

Considering the ensemble of points in the state space the probability density
function of the model state φ(ψ) will follow (2.126) as the points are forwarded
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in time according to G [10, 12]:

∂φ

∂t
+
∑
i

∂(giφ)

∂ψi
=
∑
i,j

Cqq
2

∂2φ

∂ψi∂ψj
(2.126)

(2.126) is comparable to (2.123), the difference is the model error that were intro-
duced in (2.125) which have been assumed throughout this chapter. Evensen [12]
notes that (2.126) is not the result of any simplifications of importance and that
it is a fundamental expression for how the error statistics are evolved in time.
If (2.87) could be solved, it would be possible to deduce the error statistics at
an arbitrary time but it becomes overpowering for state spaces other than the
scalar case [10,12].

The question that remains is just how the error statistics represented by
the probability density function φ should be determined and forwarded in time
during the analysis step. It was already concluded that sometimes it is not
desirable to do the linearization of the non-linear model operator as it was done
for the extended Kalman filter. It is not even possible in some cases (considering
e.g. a certain update algorithm that is the CTM-v model). Neither is it possible
to solve (2.126) in an efficient way, if it even is possible [10].

The next assumption made in this discussion is that all initial conditions for
the process (2.125) are assumed to follow a Gaussian distribution, just as the
error terms dq. In accordance with (2.36) is such a distribution characterized
by the mean µ and the variance σ2. If the model operator G in (2.125) was
linear, these two statistical moments would be completely sufficient to perfectly
describe the probability density [12].

In the original paper Evensen [10] presented Monte Carlo methods as an
alternative for prediction of the error statistics. Recall the idea of a large collec-
tion of points in the state space, a form of a cloud that is called an ensemble. At
some time instant, each of these points represent a different state and each of the
points are forwarded in time according to the same non-linear model operator.
The mean value of these states and the covariance matrix may be insufficient to
describe the error statistics completely, but they will describe the average path
through time in the state space (by the mean, or the approximated expected
value) as well as how the points spread around that average path (the disper-
sion is given by the covariance matrix). The good thing is, that if this ensemble
contains enough points, the approximation of these two statistical moments will
be equivalent to solving (2.126) [10,12].

Consider a large collection {ψ1, . . . ,ψN} of points in the state space D. The
expected value of these points is given by an approximation from a sample and
is denoted ψ. According to (2.120) and (2.121) the error covariance matrices
for the forecast estimate (the prior) and the analysed estimate (the posterior)
then becomes

Cf
ψψ = (ψf −ψf )(ψf −ψf )T

Ca
ψψ = (ψa −ψa)(ψa −ψa)T

(2.127)

The major assumption made here is that the ensemble mean, the mean value
among all states represented by the points in the clouds is the best estimate of
the true state ψt which is completely unknown. (2.127) then states the best
guess of the covariance as the spread around this mean value given by the prior
and posterior guesses of the true state.
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Analysis scheme for the ensemble Kalman filter

In the original report, Evensen [10] made a slight error by not treating the
measurements d as an ensemble of random variables in the derived analysis
scheme that was presented [16]. If the measurements are not treated as an
ensemble of random variables with a mean equal to the first observation value,
one might risk an update with to low variance [16]. An ensemble of observations
is therefore introduced:

dj = d+ εj (2.128)

where j = 1, . . . , N denotes the measurement member index, d is the original
observation, dj is the j:th random observation drawn and εj is a random term
with zero mean. The covariance matrix of the measurement ensemble is then
approximated by

Ce
εε = εεT (2.129)

where the superscript e denotes that Ce
εε is an ensemble representation of the

true measurement errors covariance matrix Cεε that was applied in the Kalman
filter. Note that Cεε ' Ce

εε as N → ∞. N will be limited for practical im-
plementations and the error statistics of the measurements will therefore be an
approximation (another source of error). Evensen [12] notes that this approxi-
mation can be justified since the observation noise seldom is known anyway and
that a sufficient amount of ensemble members can be enough to make a fair
representation.

Just as for the Kalman filter and the extended Kalman filter is the analysis
ψaj made at each time when measurements are available and for every single en-
semble member j according to (2.101). The sample mean can thus be computed
as

ψa = ψf +Ke(d−Mψf ) (2.130)

where Ke is the Kalman gain given by (2.103) but with the approximation

Cf
ψψ = (Ce

ψψ)f and d is given by the average of all dj given by (2.128).
Given the definition of Ce

ψψ in (2.127) it is also possible to derive an expres-
sion for the time evolution of the error statistics [12]:

(Ce
ψψ)a = (I −KeM)(Ce

ψψ)f (2.131)

which is the error covariance minimization also used in the standard Kalman
filter.

This marks the end of the presentation of the ensemble Kalman filter. The
discussion was started off with a presentation of statistical definitions and Bayesian
statistics where the notion of a prior and a posterior estimate was given. The
analysis scheme was then presented in general as a way of assimilating observed
data with a prior guess, or a forecast of the state for time independent cases
in both scalar and spatial domains. The next step was the presentation of
the original Kalman filter which is the optimal estimate of the state for linear
systems. The extended Kalman filter was presented as an alternative for non-
linear systems and it could be noted that both of these two schemes may be
impossible to use in some applications. Implementation difficulties might be
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due to a non-linear model operator (demanded by the Kalman filter), a non-
differentiable model operator or underestimation of the error statistics as well
as computational difficulties in the linearisation of the model operator (for the
extended Kalman filter). Finally the ensemble Kalman filter was presented as
an alternative and this is the analysis scheme used in the Mobile Millennium
system.

2.3 Combining CTM-v and EnKF

Presented in the thesis so far is a network update algorithmM given by (2.32)
that adopts a velocity based cell transmission model (the CTM-v).

The adoption of the CTM-v was motivated as a way of simplifying the ve-
locity estimation problem. This is especially efficient when considering probes6.
The extension of the CTM-v from a single edge model to arbitrary networks
makesM non-linear and non-differentiable and, as a result, neither the Kalman
filter or the extended Kalman filter cannot be used for velocity data assimila-
tion from probe data with M [2]. The (so far general) ensemble Kalman filter
(EnKF) for data assimilation that was outlined in Section 2.2.5) is a suitable
alternative for velocity data assimilation because the subject, the general model
operator G was neither differentiable nor linear. We are also relieved by the
problems (unbounded error growth) that can arise from the simplifications in
the linearisation in the extended Kalman filter.

The combination of the network update algorithm M and the EnKF data
assimilation technique is summarized by the following EnKF-algorithm [2]. Re-
lating to Section 2.2.5 we leave the arbitrary model operator G and state space
ψ by assuming that G =M and ψ = v.

Step 1. Make an initial state guess v̄a, this can be an observed state.
Repeat a process where N ensemble members indexed by j are
created by adding perturbations from a Gaussian distribution
with zero mean and the covariance Ca to the guess v̄a.

Step 2. This is the forecast step. Update each of the N ensemble members
vj by the network update algorithm M and add perturbations qj
to each of those time evolutions, i.e:

vfj =M[vaj ] + η

where η ∼ (0,Q) is the Gaussian zero-mean white noise with
covariance Q that captures inaccuracies in the model M.
Then update the error statistics (Ce

vv)
f according to (2.127).

Step 3. This is the analysis step. Once measurements d are available;
compute the Kalman gain Ke. Then draw an ensemble of
observations dj according to (2.128) and then update each
ensemble member vaj according to (2.101).

Step 4. Return to step 2, which is repeated until measurements are
available.

6A probe is a mobile sensor that traverses the highway and that is capable of transmitting
velocity data. It can e.g. be a cell phone equipped with GPS.
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Note that the EnKF-algorithm above is time dynamical. Step 1 gives the state
and error statistics at the time origin. The forecast is then made in order to get
the state at the net time step, i.e. the time step is incremented in step 2 and
the analysis carried from step 3 to step 2 then lags one step behind the forecast.

2.3.1 Implementation of the CTM-v and EnKF combina-
tion

Reference [2] noted that the above mentioned EnKF-algorithm posed some prac-
tical issues for their real-time and large scale implementation of the same algo-
rithm. First, they noted that correlations between distant parts of the highway
network might arise from the covariance representation even though networks
edges far apart are unlikely to have correlated states. Second, the forecast error
covariance ((C)evv)

f for a large cell transmission model might reach the extent
were the computer’s working memory is heavily loaded.

Such issues were tackled by an adoption of a covariance localization method
in [2]. The authors assumed that such correlations were not network wide but
that only neighbouring links could have correlated states. The update equations
then, were solved in a distributed fashion with smaller covariance matrices. The
alternative EnKF-algorithm was adopted for each individual edge, the forecast
error covariance ((C)evv)

f was calculated for each of the edges and measurements
used in the analysis for each edge was only obtained from the current edge and
for its neighbouring links, see [2] for details.
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Chapter 3

Literature Review Part II:
Calibration

Being the second part of our literature review, the aim for this chapter is sort
out the what and the hows of model calibration in general. This chapter forms
the foundation upon which the calibration framework later presented rests.

The first part of this chapter, section 3.1, sorts out the what of model calibra-
tion. The terms validation and verification are often mentioned together with
model calibration. This literature review makes no exception from this rule but
calibration remains the primary focus, especially the methods that defines such
a process.

The second part of this chapter, section 3.2 presents an automatic empiri-
cal calibration method, tailored for estimation of Daganzo-Newells fundamental
diagram, see 2.1.4 for more details about the fundamental diagram. The cali-
bration method is then described via an example when applying the method to
a real data set.

The final part of the this chapter, section 3.3 is section 3.3 where a review of
the non-gradient search algorithm called the Complex method. The behaviour
of the method is demonstrated by an application to a simple optimization prob-
lem with two unknown and a differentiable objective function and for a more
relevant problem were a single edge cell transmission model for velocity has its
parameters estimated by the Complex method.

These two later parts then form the initial how of model calibration, the
start of point to the upcoming calibration method implementation presented in
a later chapter, i.e. the framework.

3.1 Calibration and validation of traffic models

The centrepiece of this thesis is calibrating a macroscopic traffic model. Traffic
models have many useful applications that are not mentioned in this report. As
models in general however, they must first be proven to be valid replications of
the infrastructure and the traffic dynamics that they capture before the appli-
cations can be made [17]. It must be proven that the model is a good enough
representation of reality before the user can make any analysis. An important
step towards having a valid model is model calibration.

38



To present traffic model calibration is important since it has been noted that
calibration of macroscopic traffic models lack the amount of literature the re-
searcher would like to have available [17]. It might therefore be considered to be
an unclosed topic, or a subject of debate and therefore it is important to define
what the calibration process is for the researcher that applies it. The following
quotes are examples of this:

”The processes of model verification, validation and calibration are crit-
ical to the credibility and reliability of the model results. However, in
current traffic engineering practice, there appears to be little uniformity
in the definition and conduct of these process elements.”

– Hellinga [17].

”So far relatively few calibration results for general macroscopic traffic
flow models have been reported.”

– Ngoduy & Maher [18].

”[...] there appears to be a lack of consensus among traffic model devel-
opers as to the terminology to be used in the traffic model development
and testing exercise.

– Rakha, et al. [19].

”[...] it was indicated that simulation model calibration and validation
often were discussed and informally practiced among researchers, but
seldom have been formally proposed as a procedure or guideline.”

– Park & Qi [20].

Summarizing the literature, it would seem that traffic model calibration is a
non-trivial topic and that the subject must be presented more precisely so that
there is no question about the meaning of the word in the context of this thesis.

This section will sort out what model calibration and validation is. Model
verification will be presented as well as these three terms often are mentioned
together.

Calibration of traffic models is here described in such a way that it can be
applied in the development of both microscopic1 and macroscopic traffic models.
Much of the literature reviewed regards microscopic traffic models in particular
but without being specific to a greater extent than placing model calibration in
the model development process and defining what calibration is.

3.1.1 Literature survey

In order to remove any of the doubt that was captured in the quotations earlier, a
literature survey of twelve different papers was conducted. Some of the reviewed
papers covers efforts of how to define calibration and validation in the context
of both macroscopic and microscopic models [17–25]. Some of those papers also

1Microscopic simulation models capture the movement of individual vehicles in highly
detailed infrastructure representations. Such model can include signal plans, public trans-
portation schemes, pedestrian movements, individual driver behaviour. Such models are of a
lower scale compared to macroscopic simulation models where e.g. the velocity of the entire
traffic stream is modelled.
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covers examples of implementation of calibration and validation. The other
papers make no effort to define these terms, but they do apply calibration
techniques [26–28].

The literature survey is summarized by Tables 3.1 (macroscopic models) and
3.1 (microscopic models and one unknown). It must be pointed out that the
placement of the authors definitions has been done to the best ability and that
if the exact words match it will determine the placement in the table.

Verification of traffic models

Although it is not of primary interest of this thesis it can be noted that the
term verification has not passed unnoticed in the cited papers [17,19,25,27,28].

For the papers regarding microscopic simulation software, can it be noted
that model verification leans towards being a process of code reviewing which
is carried out in the software development stage [17,19,25].

Among the two macroscopic simulation papers that mentioned verification
is this term a part of a greater process called quantitative model validation in
which parameter values are determined and sanity checked by evaluating model
output [27,28].

Calibration of traffic models

From the literature survey summarized by Tables 3.1 and 3.2 can it be noted that
calibration of traffic models leans towards being an iterative process where the
model parameters are adjusted in such a way that the model output matches
field observations [17, 18, 20, 23–25, 27, 28]. If possible it would be preferable
if this iterative change in model parameters was managed by an automated
algorithm [18,20,23,27,28].

Validation of traffic models

The definition of model validation differs between the reviewed papers (see Ta-
bles 3.1 and 3.2). However most of those papers, for both macro and microscopic
models, states that validation in this context is a process where the output from
the calibrated model is compared to field observations [18,20,23,24, 26]. These
papers also states that this validation should be performed for datasets spanning
different time periods than those used during the calibration process.

Cremer [23] took model validation one step further than this as they included
a sensitivity analysis of the model parameters with respect to model output
deviation against field observations.
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Table 3.1: Summary of the literature review. Every row gives the identified
definition of the respective term. The table states the literature survey for
sources were macroscopic models were considered.

Verification is Calibration is Validation is

Not included [18]. An automated iterative
process where model pa-
rameters are adjusted by
an algorithm in such a way
that it increases model
performance [18].

To compare model out-
put against a dataset for
another time period than
the calibration time pe-
riod [18]. To make sure
that congestion is captured
and propagates correctly in
time and space.

Not included [21]. To chose model parame-
ters in such a way that
they match field observa-
tions [21].

Not included as such, al-
though model output was
compared to field observa-
tions for a separate day
[21].

Not included [26]. To identify model param-
eters and chose the value
of those parameters in such
a way that the model out-
put match field observa-
tions [26].

To compare calibrated
model against a dataset
for another time period
than the calibration’s [26].

Called stage 2 of quan-
titative model calibration
[27]. Application of a
model for which parame-
ters have been estimated as
to compare the model re-
sult against a dataset for
another time period than
the calibration.

Called stage 1 of quantita-
tive model validation [27].
Iterative process. It aims
at parameter value estima-
tion with an algorithm for
local parts of the study
area.

Mentioned but not pre-
sented [27].

Called stage 2 of quan-
titative model calibration
[28]. Application of a
model for which parame-
ters have been estimated so
as to compare the model
result against a dataset for
another time period than
the calibration’s.

Called stage 1 of quantita-
tive model validation [28].
Iterative process. It aims
at parameter value estima-
tion with an algorithm for
local parts of the study
area.

Called qualitative valida-
tion and aims to adopt
parameter values appre-
hended during the quanti-
tative validation for the en-
tire study area and manu-
ally tune parameters so as
to make the model result fit
field observations [28].

Not included [22]. A method that includes
certain steps such as the
definition of geometric
properties and split ratio
estimations [22].

Not included as such, al-
though they did compare
model output to field ob-
servations for a separate
day [22].

Not included [23]. Called the parameter esti-
mation problem [23]. Iter-
ative process. It aims at
parameter value estimation
with an algorithm.

To compare the calibrated
model against a dataset for
another time period than
the calibration time period
[23]. To perform sensitiv-
ity analysis of each individ-
ual parameter for this new
data set in order to ensure
transferability.
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Table 3.2: Summary of the literature review. Every row gives the identified
definition of the respective term. The table states the literature survey for
sources were microscopic models were considered, except for the top row
were the scale is undetermined.

Verification is Calibration is Validation is

The process of evaluating
if the model logic is a
fair representation of real-
ity [17].

The iterative process of
defining and supplying
model parameter values to
the model depending on
the properties of the model
subject [17].

The process of compar-
ing the proposed model
logic to the actual com-
puter code [17].

Not included [20]. An iterative process where
model parameters are ad-
justed by an algorithm in
such a way that it increases
model performance [20].

To compare calibrated
model against a dataset
for another time period
than the calibration time
period [20]. Make sure
that congestion is captured
and propagates correctly
in time and space.

The process of debugging,
unit testing and validate
code logic [19]. Also in-
cludes sensitivity analysis
of the output that corre-
sponds to a common input
range.

Ideally the process of se-
lecting input parameter
values based on field obser-
vations [19].

To determine if the model
rules will yield an outcome
that is consistent observa-
tions and the accepted the-
ory [19].

Not included [24]. An iterative process where
model parameters are ad-
justed by an algorithm in
such a way that increases
model performance [24].

To compare calibrated
model against a dataset
for another time period
than the calibration time
period [24].

A process where the
software developer works
together with researchers
in order to assure that the
software implementation
agrees with the current
traffic theory [25].

An iterative process [25].
The adjustment of param-
eters in such a way that
the model is better suited
to reproduce field observa-
tions.

Process where the model is
evaluated prior to use by
testing its ability to repli-
cate field observations [25].
Done for a dataset other
than the one used in the
calibration.

This concludes the more quantitative part of the calibration literature re-
view. The purpose was to answer what traffic model calibration is. The opening
citations certainly left the question open and hopefully it has been answered
through the quantitative literature review.

The next section then presents one of two methods presented in this thesis
as the answer to how.

3.2 Automatic empirical calibration method

In 2009 Dervisoglu et. al [21] presented a calibration method for calibrating pa-
rameters directly connected to the fundamental diagram, using data from PeMS.
PeMS stands for the Caltrans Performance Measurement System, a monitor of
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traffic data which is collected in real-time2. The data is collected from the In-
terstate 880 in the San Francisco Bay area. The procedure was developed for
cell transmission models which uses parameters directly connected to the fun-
damental diagram, for more information on fundamental diagrams, see 2.1.4.

This calibration method requires a triangular representation of the funda-
mental diagram (i.e. the Daganzo-Newell case) [21]. Another prerequisite is
the fundamental relationship Q = v ∗ ρ and that data from stationary sensors
are used, e.g. data from PeMS stations. The calibration algorithm is ordered
into three steps. In the first step is the free flow parameter vmax estimated.
The next step is to estimate the flow capacity. This gives all parameters for
the uncongested state of the diagram. The last step is for estimating the shock
wave speed wf and the density capacity ρmax. The algorithm is presented be-
low using an example with real data. Note that the definition of the maximum
(capacity) flow is adopted from [29].

Figure 3.1: This figure displays the scatter plot of the data (flow and
density measurements) from the PeMS station with ID 400309. The data
was collected during the dates 2012-01-01 to 2012-03-01.

The PeMS station supplying the data which was chosen as input to the
example, around which the algorithm will be explained, is a station on I-880
with PeMS station ID 400309. The station covers five lanes. The scatter plot in
Figure 3.1 shows the data collected from 2012-01-01 to 2012-03-01. Note that
all data points are represented by tuple of flow and density and that they have
been filtered.

3.2.1 Regression analysis: Equality constrained least squares

This section will present the regression analysis used for data fitting in steps I
in section 3.2.2 and step III in section 3.2.4 of the calibration method. The re-
gression analysis is derived from the constrained least squares method presented

2We simply refer to these detectors as PeMS, PeMS detectors, PeMS stations or alike in
this thesis. Visit the www-page pems.dot.ca.gov for more information.
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in [30]. Equality Constrained Least Squares is a common data fitting tool. It
is an optimization algorithm that minimizes the sum of squared residuals. The
difference between an observed value and a fitted value provided by a model is
the definition of a residual. The result from this algorithm provides a slope and
the intersections between the line and the x-axis.

The formulation of the equality constrained least squares problem for solving
the regression analysis in step I and step III of the calibration procedure, is
formulated by (3.1). The optimization method for the equality constrained
least squares is described in [30].

minimize: f(x) =
1

2
xTPx+ qTx+ r

subject to: Ax = b
(3.1)

where P ∈ Sn+ and A ∈ Rp×n. According to [30] the optimal condition for 3.1
can be written as (3.2).

Ax∗ = b, Px∗ + q +AT v∗ = 0 (3.2)

(3.2) rewritten is (3.3). [
P AT

A 0

] [
x∗

v∗

]
=

[
−q
b

]
(3.3)

where x∗ and v∗ are variables that help to form n + p sets of linear equations
with n+p variables. These in turn form the Karush-Khun-Tucker system (KKT
system) for this problem. The formulation (3.3) is the KKT system for the
constrained equality least squares problem (3.1) and the coefficient matrix is
the KKT matrix. The KKT matrix can be of two types, either singular or
non-singular.

For non-singular KKT matrices, there is a unique optimal primal-dual pair
(x∗, v∗). To solve non-singular KKT-matrix, invert the left hand side and the
optimal solution gives the optimal (x∗, v∗) and the Langrange multipliers. The
inverse is made via a Cholesky decomposition.

If the KKT matrix is singular but solvable, do a QR decomposition3. By
doing a QR decomposition it is possible to find the solution to 3.1.

If the problem is infeasible, do a block elimination of the KKT system, using
the following system: First reform the problem 3.3 to 3.4.[

H AT

A 0

] [
v
w

]
= −

[
g
h

]
(3.4)

The elimination algorithm presented by [30], for solving the KKT system is
block elimination algorithm. The algorithm consists of four steps.

1. Form H−1AT and H−1g. This is made using a Cholesky factorization of
H.

2. Form the Schur complement S = −AH−1AT .

3. Determine w by solving Sw = AH−1g−h. This is made using a Cholesky
factorization of −S.

3A QR composition is a decomposition of a matrix. Take the matrix A, let the orthogonal
matrix be defined as Q and the R be the upper triangle matrix. Then the decomposition of
A is defined as A = QR
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4. Determine v by solving Hv = −ATw − g.

Note that further explanation of the linear regression analysis is outside of
the scope of this thesis.

3.2.2 Step I

As mentioned earlier, step I is about estimating the free flow velocity. First sort
the data points into two sets. One data sets that represents the uncongested
regime and one data sets that represents the congested regime. All data points
with higher velocity than a certain limit are considered to be in the uncongested
regime, in [21] this limit is set to > 55 miles/hour. An equality constrained least
squares fit is used on all data points within the uncongested regime. This gives
the regression line. The result is an estimated free flow velocity, this value
corresponds to vmax. When using the Daganzo-Newell fundamental diagram
the relationship vmax = vcr is valid. See calibration result from step I in figure
3.2.

Figure 3.2: Shows the regression line for step I, where the aim is to estimate
the free flow velocity.

3.2.3 Step II

To estimate the maximum measured capacity, all measured data are considered.
Find the data point representing the highest flow among all data. Let this flow
represent qmax. Solve the trivial equation qmax = ρ ∗ vmax. This equation gives
ρcr, thus the critical density is estimated. qmax = ρcr ∗ vmax represents the
capacity of the highway, where the station is located. It is also necessary to
mention that this point is representing the equality constraint when doing the
constrained regression analysis on the data in step III.
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Figure 3.3: This figure displays the line for the maximum flow. It also
display the intersection between the regression line for free flow velocity and
the maximum flow.

3.2.4 Step III

Use all data points from the congested regime, the second set of data. Only data
from the second set is considered during step III. The data from the second set
is partitioned into bins of non overlapping data along the horizontal axis with
a certain amount of data in each bin. Each bin contains a defined amount of
data points, in [21] they choose a bin size of ten data points, for a graphical
explanation see Figure 3.5.

To determine how to estimate if a data point is an outlier or not, the authors
of [21] chooses to make use of quartiles in statistical theory. See figure 3.4 for
a graphical representation. Figure 3.4 also shows how the box plot relates to
a Gaussian distribution. The theory for finding data points that lie within
the box plot is used in the binning procedure. If the data point lie outside
a specified interval e.g. a value x > Q3 then it is considered as an outlier.
Note that the use of quartiles does not require a Gaussian distribution [31] and
that a Gaussian distribution is not assumed later in the automatic empirical
calibration procedure.
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Figure 3.4: This figure represents how the different quartiles relates to the
mass of probability.

Each bin is then summarized by BinDensity which is equal to the mean of
the density values in the bin. After each horizontal bin value (BinDensity) has
been determined, then each bins vertical value (flux) is determined via (3.5) and
(3.6). The result from (3.6) gives the largest non outlier with the highest flow
and density value.

Bin = {f1, f2, . . . , fi} (3.5)

BinFlow = max
fi

(fj |fjε Bin, fi < Q3 + 1.5IQR) (3.6)

where i is the index of data point i in each BinDensity, j is the j : th bin
computed by (3.6) and Q3 is the 75th percentile of the data points in the bin
and IQR is the interquartile range.

1

Figure 3.5: This figure displays an example bin. The bin size is ten data
points. The red point represents the mean density (it does not belong to the
actual set and can threfore be placed anywhere in the bin). Black points are
outliers, sorted out using (3.6). The purple point refers to the chosen flow.
The final value for the bin is the flow from the purple point and the density
from the red point.

The result from calculating (3.6) creates a BinDensity - BinFlow pair (Bin-
Pair). When all bins have been calculated, a constrained least-square regression
method is then applied to the BinPairs, thus obtaining the last relationship of
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the fundamental diagram representation. The constraint is given by the free
flow capacity. The result from the calibration is summarized in Table 3.3 and
in figure 3.6.

Table 3.3: This table presents the calibration results from the example.
Note that the parameters are estimated using aggregated data from PeMS
station ID 400309 from five lanes.

Parameter Value Unit
Free-flow velocity 27.65 meter/second
Backwave speed 11.44 meter/second
Maximum density 0.3172 vehicles/meter
Flow capacity 2.567 vehicles/second
Density capacity 0.0928 vehicles/meter

Figure 3.6: Shows the resulting fundamental diagram from the calibration
process.

3.2.5 Remarks

Note that this calibration procedure assumes that the Daganzo-Newell funda-
mental diagram is used. Due to this, the calibration method needs to be adapted
to a hyperbolic-linear fundamental diagram instead. The main reasoning behind
this is, when using the Daganzo-Newell fundamental digram it is assumed that
vcr = vmax, which is not the case when using a hyperbolic triangular diagram.
How the algorithm is adopted to fit this kind of diagram will be explained in
5.1.

3.3 Complex method

The Complex method, introduced by M.J. Box in 1965, is a non-gradient search
algorithm for finding the optimum value for non-linear functions depending on
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multiple decision variables [32]. The Complex method, or simply the algo-
rithm considering its nature, assumes that the decision variables are enclosed
within an admissible region or, in other words, that the target function is the
subject to at least one explicit constraint. All constraints are assumed to be
in-equality constraints. The fact that the Complex method is a non-derivative
search algorithm speaks in favour of many applications since the objective func-
tion derivative would never need to be calculated. This would allow the user to
choose any objective function during the evaluation of the model performance
without any changes to the implementation of the Complex method.

Several authors of different traffic modelling papers have used the Complex
algorithm for solving their parameter estimation problems in an orderly fashion,
see for instance [23,27,28].

This section gives an introduction to the Complex method as it is described
in [32–34]. The initial presentation is general and later explained with an ex-
ample of how to solve trivial optimization problem with the Complex method.
The later part of this section concerns the application of the Complex method
for parameter estimation in traffic models.

A disadvantage of the algorithm that should be noted is that a solution
cannot be proven to be a global optimum (the search effort might get stuck at
local minimum or maximum) [33,34]. This issue is usually handled by running
the algorithm several times with different initial conditions within the admissible
region. It should also be noted that the algorithm demands that the target
function is evaluated many times, which could be costly from a computational
perspective. The user should therefore be careful when choosing the dataset to
calibrate against, there is probably no need to run a calibration process over a
long time period that only encompasses a single traffic state for example.

3.3.1 Formal presentation

For explanation of the Complex method, consider the following problem:

min f(x1, . . . , xN )

subject to xLi ≤ xi ≤ xUi , i = 1, . . . , N

xLi ≤ xi ≤ xUi , i = (N + 1), . . . , (N +M)

where the N constraints are explicit, while the M constraints are implicit, xLi
is the lower limit and xUi is the upper limit for the variable xi.

The difference between explicit and implicit constraints is that explicit con-
straints define a range for the decision variables xi, i = 1, . . . , N while implicit
constraints are either linear or non-linear functions of the decision variables
xi, i = 1, . . . , N [33]. In other words, the variables xi, i = (N+1), . . . , (N+M)
are definitely functions of xi, i = 1, . . . , N while the lower bounds xLi and
the upper bounds xUi for i = (N + 1), . . . , (N + M) are either functions of
xi, i = 1, . . . , N or constants.

During the initialization of the Complex method is a so called complex gen-
erated from the admissible region that is expressed by the explicit constraints
while any violation of implicit constraints are handled retroactively [33]. The
complex is a collection of N -dimensional points and it is assumed that complex
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has at least K > (N + 1), N -dimensional feasible points once it has been gen-
erated. The point of choosing a complex with K > N + 1 points is to ensure
that the complex keeps its dimensionality when the points are moved around in
the N -dimensional space during the iterations of the Complex method. If the
complex has to few members, it could collapse, or rather, flatten itself against
the first constraint that is reached during the movement in the N -dimensional
space [32].

The initial complex {xij}, i = 1, . . . , N, j = 1, . . . , K, where the subscript
i indicates the variable and the subscript j indicates the complex member, is
generated as follows. Assume that one feasible point is known (one that does
not violate any of the implicit and explicit constraints). All other K − 1 points
j are generated randomly as

xij = xLi + rij(x
U
i − xLi ), i = 1, . . . , N, j = 2, . . . ,K (3.7)

where rij is an uniformly distributed random variable expressed as rij ∼ U(0, 1).
The reason for why a feasible point must be given is that (3.7) leaves no guar-
antee of non-violated implicit constraints and a feasible point is needed in order
for the Complex method to know in which direction an infeasible point should
be moved. Note however that there is no need for an initial point if no implicit
constraints are present, the entire initial complex can be generated with (3.7)
in that case.

If an implicit constraint is unsatisfied by a generated point k during the ini-
tialization of the complex method, that point is moved half the distance towards
the centroid of the points generated thus far. This reveals the importance of
having an initial feasible point since if the first randomly generated point vi-
olates an implicit constraint, it must be moved towards that point until it is
feasible. The centroid xiC along dimension i = 1, . . . , N is defined as

xiC =
1

k − 1

k∑
j=1

(xij), j 6= k (3.8)

where k is the index of the last point that was generated and thus the size of the
generated complex {xij} thus far along dimension j, including the point that
violated the constraint. A new complex point is generated according to

xNik =
xiC − xOik

2
, i = 1, . . . , N (3.9)

where the superscript N denotes a new point, O denotes the old point that
violated any constraint and xNik is the value of the ith coordinate of the new
complex point. This procedure leads to a feasible point, if the feasible region is
assumed to be convex, since it can be repeated until all constraints are satisfied.

The points of the complex are randomly scattered over the feasible region
once the complex of feasible points is generated. The value of the target function
is then evaluated for every single point and it is noted which of the complex
members that have the best and worst value. Those two points are used to
checked the imposed convergence criteria

fmax − fmin < β (3.10)

Reference [33] notes that (10−3 − 10−4)fmax is a common value of β.
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The worst point generated, called xW , is rejected if (3.10) is a false state-
ment. If the problem is a minimization problem, the worst point is of course the
one with the greatest function value. In this case, rejecting the point means that
it is moved towards the centroid of the remaining complex members, creating a
new point xNew according to (3.11).

xNewik = α(xiC − xWik ) + xiC , i = 1, . . . , N (3.11)

where the expression for the centroid xiC is similar to that expressed by (3.8).
As for the value of the reflection parameter, or step length, α in (3.11), [32]
found that an α = 1.3 should be a suitable choice.

The new point xNewik is evaluated to see if it satisfies the explicit constraints.
If it is not, it is moved a small distance δ within the limit of the constraint
that is violated (and then rechecked again). Reference [32] states that 10−6 has
proven to be a functional value of δ and also that the chance of the corrected
point to be within the subspace of the other points should be fairly small.

If any implicit constraint is unfulfilled after the reflection of the worst point,
the trial point should be moved halfway towards the centroid of the better points
just as during the generation of the initial complex and according to (3.9), but
then with K − 1 in the denominator.

In the original formulation of the complex method the progress stated by
(3.10) - (3.11) is repeated until the entire complex (the set of points) has moved
to the centroid. At that time the convergence criteria expressed by (3.10) should
be fulfilled. In other words, the algorithm stops when the complex (the points)
has collapsed to a singular location in the parameter space, in which case the
target values are nearly the same for each individual point of the complex.

It has been noted that the Complex method can get stuck around a local
optimum if that local optimum happened to be the centroid [34]. By repeat-
ing the movement for the worst member4 is a way to overcome this issue. A
trial point can be expressed by a gradual movement of the point towards the
minimum value as long as the trial point continues to be the worst one of the
complex. It is a risk though that this might result in that a trial member is
too near another point which could risk a collapse of the complex. This risk of
a collapse can be handled by the introduction of a new random value that is
added to the trial point. Also, this random search increases the search effort
in relation to the simple reflection. This modification (or extension since this
new movement is introduced only if a trial point is a repeater) of the Complex
method can be expressed by (3.12).

x
N(new)
ik =

x
N(old)
ik + εxiC + (1− ε)xBik

2
+ (xiC − xBik)(1− ε)(2R− 1) (3.12)

where xBik is the best point of the complex, R is a uniformly distributed random
number, R ∼ U(0, 1) and ε is defined by (3.13).

ε =
( nr
nr + kr − 1

)(nr+kr−1
nr

)
(3.13)

where kr is the number of times that xNik in (3.12) has been the worst point
(a repeater), nr is a constant. A nr = 4 could be an adequate choice for that

4The repeated point is called a trial point prior to that, if it is not longer the worst one.
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constant. Note that the previous worst point x
N(old)
ik in (3.12) is always updated

to be the previous trial point.
A flow chart for Complex method can be found in [33, p. 119]. That model

was followed when Figure 3.7 was created, this figure shows the overall process
of the Complex method if one chooses to utilize the half distance movement
towards the centroid and if there are implicit constraints present.
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Figure 3.7: Complex method (algorithm) presented ad a flow-chart for
solving in-equality constrained optimization problems.
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3.3.2 Example: Visualization of the complex movement

In this section, an example of the Complex algorithm application is presented.
The goal is to find optimum solution to the following minimization problem:

min f(x1, x2) = x21 + x22

subject to −5 ≤ xi ≤ 5, i = 1, 2

The target function f(x1, x2) is one with a global minima within the admissible
domain at (x1, x2) = (0, 0) for which f(x1, x2) = 0. In the figure below it is
possible to follow the movement of the complex members as they end up in the
complex centroid near the optima.

x1

x2

−5 0 5
−5

0

5

x1

x2

−5 0 5
−5

0

5

Figure 3.8: An example of how the complex moves towards the optima
with the first movement on the left and the complete movement on the
right. The red cross marks the current centroid. The leftmost figure depicts
a movement where the complex method tries to move a point outside the
boundaries.

3.3.3 Example: Calibration of a single edge highway model

This section should be seen as a bridge between a highway model and the
Complex model. The target of highway model calibration is to decrease the
difference between model output, predicted state and field observations. This
difference is expressed by a function that often returns a single scalar value. In
this section the traffic model will be described as dynamic state vector equations
so that the parameter estimation problem is well posed.

Recall the cell transmission model for velocity (CTM-v). The CTM-v ex-
pressed that the velocity field on the highway evolves in time according to certain
rules expressed by the transformed Godunov velocity flux functions. With the
ambition to calibrate by comparing model output define three vectors:

vT = [v0, v1, . . . , vimax
] (3.14)

uT = [v−1, vimax+1] (3.15)
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yT = [v,x] (3.16)

Where v state vector holding the velocity for each cell i ∈ {0 . . . imax}, u is
an input vector holding the conditions to be imposed at the boundaries and y
is an output vector holding the state at the measurement point as well as the
(current) parameter set x that led to that output.

The state vector v represents the velocity field over a single edge (for which
one fundamental diagram is used). The edge consist of imax + 1 cells.

The input vector u holds measurements from the boundaries that will sub-
stitute references to what was referred to as ghost points earlier, i.e. they do not
lie in the physical domain but provide the boundary conditions to be imposed
on the modelled highway.

The output vector y can in general be any traffic state variable. It is impor-
tant to note which kind of data source the model output should be compared
with. If the user wants to use stationary speed detectors then the velocity field
from the model output may have to be transformed from space mean speed to
time mean speed (since the detector only measures speed at a single point in
space).

The model is characterized by a vector of unknown parameters x = (ω, vmax,
ρmax) (e.g. the free flow speed). This vector is the estimation subject and is
treated as a variable during the parameter estimation procedure.

Assuming that the velocity field evolves according to the CTM-v, which now
is label with F (and not the standard update algorithm label M since only a
single edge is considered in this explanation), can a non-linear dynamic state
vector equation be expressed according to

v(n+ 1) = F [v(n),u(n),x] (3.17)

The output vector is defined by

y(n) = T [v(n),x] (3.18)

where T is an operator that transforms the values in the output vector v to
the domain in which the field measurements lie in (e.g. T represents a process
where a single cell is extrapolated). The objective is to find the parameter set x
that minimizes the deviation between model output and the field observations
ŷ. As a short proof of concept the Complex method is now to be used for
parameter estimation of a small CTM-v model.

Consider Figure 3.9, it depicts sensor arrays (detectors) on the highway E4
near Kista, Sweden. The test site stretches from detector 68,330 to detector
66,710 and traffic travels in that direction. In between these two detectors lies
detector 67,400. All of these detectors captures the velocity on the highway
over time. This stretch of highway spans over 1.7 km and is divided into 17 cells
i ∈ {0 . . . 16}, each being 100 meters long (∆x = 100m).
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Figure 3.9: Map over the example area. The dots show sensor arrays
placed along the highway. Tpl is a short form of ”trafikplats”, the Swedish
word for interchange.

Assume that detector 68,330 provides velocity measurements that can be
imposed as boundary conditions for cell i = 0, i.e. these measurements are the
ghost cell references where i = −1. Similarly, the measurements of detector
66,710 are imposed as boundary conditions for cell imax = 16. The boundary
conditions are given in Figure 3.10.

Now assume that detector 67,400 provides measurements that are considered
to be the target of the model output, i.e. this detector provides measurements
that are considered to be the best possible result that the model can produce.
The Complex method can be integrated with the CTM-v model that replicates
the highway stretch. The parameters of the CTM-v model (ω, vmax, ρmax) can
then be estimated by following the process of Figure 3.7 (without the burden of
any implicit constraints). The only thing missing is an objective function that
expresses the agreement between the measurements given by detector 67,400
and the model output. Introduce the mean absolute percentage error (MAPE)
for this purpose:

MAPE =
100 %

nmax

nmax∑
n=0

∣∣∣∣ ŷn − ynŷn

∣∣∣∣ (3.19)

The MAPE measures the mean absolute deviation and is therefore the accu-
racy of the model output yn at one cell i ∈ 0 . . . imax = 16 compared to the
observations ŷn at that same location.
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Figure 3.10: The boundary conditions that where imposed on the example
model. The graph show velocity vs. time for the upstream and downstream
detectors 68,300 and 66,710 respectively.

Figure 3.11 gives the final result from the calibration effort using the Com-
plex method. The time series labelled prediction is y = v9 i.e. the model output
from the 10th cell. The other time series in Figure 3.11 is the actual observation
ŷ done by detector 67,400. This shows that the Complex method can be used
to determine unknown parameter sets for the CTM-v model.

Since only three parameters were variable during the calibration is it possible
to plot the movement of the complex as it converges to the local minima. This
movement is depicted in Figure 3.12. The colour scale maps the values of the
maximum density ρmax, specifically, the colour black maps to near optimal
values of ρmax. The purpose of Figure 3.8 is to show the behaviour of the
Complex method.

57



4AM 6AM 8AM 10AM 12AM
5

10

15

20

25

30

35

Time

V
el

oc
ity

 (
m

/s
)

 

 
Prediction
Observation
MAPE = 4.8 %

Figure 3.11: Model output after calibration in dashed green versus ob-
served velocities. The mean absolute percent error was 4.8 % after calibra-
tion.

This concludes the presentation of the Complex method for parameter esti-
mation. The Complex method, a non-gradient search algorithm was presented.
That it is of the non-gradient type speaks in favour of its use since M, the
update algorithm of the CTM-v presented earlier, is not differentiable. On top
of that the ensemble Kalman filter is wrapped around the M for the purpose
of data assimilation. A black-box algorithm, such as the Complex method,
is therefore attractive. The actual implementation of the Complex method is
presented in a later chapter.
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Figure 3.12: The movement (all iterations) of the complex during the cali-
bration of the example model. Each complex point is given in the coordinates
(ω, vmax, ρmax).
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Chapter 4

System Description

This chapter is mainly an outcome from the system analysis that were conducted
and the purpose of introducing this chapter, is to provide an overview of the
relevant parts of the Mobile Millennium system for the reader. It also serves
the purpose of mapping the different parts of the system that are used in the
calibration framework that this report is presenting. It will also present a list
of all parameters that the framework will try to estimate and calibrate.

4.1 Overview

The system mainly consists of three parts; measurement loader, highway model
and the ensemble Kalman filter. All of these three parts have hard coded, ad-
hoc calibrated parameters. Figure 4.1 shows how the data flows throughout
the system. Data is loaded from a database where data sources can be of type
probe or stationary data. All data that is loaded is pre filtered. The user can
choose to use data from no data source, a specific data source, some specific
data sources or all data sources. The highway model utilize the CTM-v model
together with the velocity from the current time step to predict the velocity field
for the next time step. The default time step is six seconds. The third part is
the ensemble Kalman filter; it fuses the predicted data with the measured data.
All parameters found in the system when conducting the system analysis are
listed in the Appendix A. As mentioned earlier in this section, all parameters
listed in this section are all static and hard coded. This makes it impossible to
calibrate them in an automatic matter. Therefore system modifications were
necessary. The modifications made will be explained later in the thesis.
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Probe 1 feed Filter

Probe 2 feed Filter

EnKF (Filter)
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Measurement input

Highway model

1

Figure 4.1: This figure shows the data flow for the Mobile Millennium
system. The measurement loader loads data from the database with stored
data and feeds it to the highway model predicts and fuses the data using the
ensemble Kalman filter.

4.2 Measurement loader

The main purpose of the measurement loader is to enable the user to choose
and load any data from any source available in the database. There are hard
coded parameters with significance to the system in the measurement loader.
More about why it is significant is mentioned in after Table 4.1. Therefore this
part of the highway model is relevant for this thesis. The relevant parameters
for measurement loader is summarized in Table 4.1.

Table 4.1: This table displays all parameters connected to measurement
loader that is relevant for the thesis. Note that the parameters in this table
are for one lane.

Parameter Current Value Unit
Free-flow velocity 27.0 meter/second
Critical velocity 25.0 meter/second
Backwave speed 5.36 meter/second
Maximum density 0.124 vehicles/meter
Flow capacity 0.667 vehicles/second
Density capacity 0.0247 vehicles/meter

The data where v > vcr
1 is too noisy for the ensemble Kalman filter when

1These measurements are considered to exist in the uncongested regime

61



using stationary sensors. Therefore, a fit of the data in the uncongested region is
therefore made using the fundamental diagram. The flow gets mapped accord-
ing to the fundamental diagram and transformed to velocity2. Therefore the
fundamental diagram parameters for each link is connected to the measurement
loader.

4.3 Highway model

The highway model predicts the traffic state for the next time step. The input
into highway model is the current state for the current time step. Parameters
connected to highway model is displayed in Table 4.2.

Table 4.2: This table displays all parameters connected to the highway
model that is relevant for the thesis. All parameters connected to the fun-
damental diagram is based on lane.

Parameter Current Value Unit
Split ratio defined for each junction percentage
Sinks 5*max capacity vehicles
Sources 0.6*max capacity meter/second
Free-flow velocity 27.0 meter/second
Backwave speed 5.36 meter/second
Maximum density 0.124 vehicles/meter
Flow capacity 0.667 vehicles/hour
Density capacity 0.0247 vehicles/meter

Note that measurement loader and the highway model have common pa-
rameters. This is due to certain properties in the system. The system is made
for using the ensemble Kalman filter, which is not stable when having to noisy
measurements. This means when measurements are considered to be in uncon-
gested regime3 from stationary sensors is tampered with, since the ensemble
Kalman filter cannot cope with noisy data.

4.4 Ensemble Kalman filter revisited

The ensemble Kalman filter is responsible for fusing the predicted state with the
measured state. In Table 4.3 all relevant parameters for the ensemble Kalman
filter are summarized.

2This is only true if the measurement loaded lies within the density domain
3The measurements in uncongested regime are generally too noisy for the ensemble Kalman

filter.
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Table 4.3: This table displays all parameters connected to the ensemble
Kalman Filter that is relevant for the thesis.

Parameter Current Value Unit
Model mean error multiple values meter/second
Model covariance error multiple values meter/second
Observation mean error
probes

multiple values meter/second

Observation covariance er-
ror probes

multiple values meter/second

Observation mean error
stationary detector

multiple values meter/second

Observation covariance er-
ror stationary detector

multiple values meter/second
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Chapter 5

Implementation of
Calibration Procedures

This chapter will present how the authors implemented the calibration proce-
dures and the framework. The first section, section 5.1 will focus on the im-
plementation of the automatic empirical calibration method. The next section,
section 5.2, will focus on how to assign parameters connected to the fundamen-
tal diagram to links. The last section of this chapter, section 5.3, presents how
the complex method have been adapted, implemented and integrated into the
system.

5.1 Implementation of the automatic empirical
calibration method

As mentioned in 4.3, due to the fundamental diagram that is used in the system,
see (2.20), it is not possible to apply the calibration method without modifica-
tions. This section will present three adapted versions of the modified calibration
method. Note that later on, the unmodified calibration method is referred to
as the original, the modified calibration methods are referred to as versions.

The method is going to calibrate the parameters; ρmax, ρcr, vcr, vmax, wf ,
and qmax, the parameters for the Hyperbolic-Linear diagram for each stationary
sensor in the system. The example from the section 3.2, is used as an example
in this section as well.

5.1.1 Version I

This version utilize somewhat the same approach as the original method. How-
ever, the order in which the parameters are estimated as well as the methods for
estimating them are changed. Instead of finding vmax first, this version focus on
finding the capacity first, which is expressed by vcr ∗ρcr = qmax. After that, the
second step is to find the back wave propagating speed wf and the maximum
density ρmax. The last step is to estimate the free flow velocity vmax and to do
this, the continuity constraint (2.21) is used. A step by step description of the
method is as follows.
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Step I

Find the maximum capacity by searching through all data points. Search
through the measured data points, find the data point with highest flow mea-
sured. Let that data point with the highest measured flow and density represent
the capacity. Alas vcr, ρcr and ρmax estimated. The graphical result from step
I is presented in 5.1.

Figure 5.1: Shows the maximum capacity found.

Step II

The back wave propagating speed wf as well as the maximum density ρmax is
estimated through the same binning method as in the original, for the exact
method see 3.2.4. The graphical result from step II is presented in 5.2.
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Figure 5.2: Shows the result from the binning process and regression anal-
ysis in step II.

Step III

This step involves finding the last parameter vmax using the continuity con-
straint. Since ρc, rhomax, wf already have been estimated, the continuity con-
straint (2.21) from 2.1.4 can be used to estimate vmax. The graphical result can
be viewed in figure 5.3. All calibrated parameters for version I can be found in
5.1.

Figure 5.3: This figure shows the calibration result from step III version I.
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Table 5.1: Calibration results for the example in section 3.2. Note that the
parameters are estimated using aggregated data from five lanes.

Parameter Value Unit
Free-flow velocity 38.62 meter/second
Backwave speed 12.11 meter/second
Maximum density 0.3087 vehicles/meter
Flow capacity 2.567 vehicles/second
Density capacity 0.0968 vehicles/meter

5.1.2 Version II

This version is using the same approach as version I, the main difference is how
the capacity is estimated. Instead of using the intersection between the free flow
velocity and the data point with the highest flow measured, this version instead
applies the binning concept to the data points with the highest flow measured.
The result from this binning is used to find the capacity of the road. To estimate
the back wave propagating speed and density max, the same approach as the
original is used. The last step is to estimate the free flow velocity and to do
this, the continuity constraint is used in this version as well.

Step I

Just as version I, this step involves finding the maximum capacity. Instead of
using the data point with the highest flow, bin the data points with the highest
flows instead. The characteristics of data, where the flow is near its maximum,
makes it reasonable to bin the tip in the following way. Sort all data point by
flow. Choose a bin size N . Binning of the tip is motivated by the fact that the
data point, even though filtered, are not trust worthy. Note that the filtering is
more strict in this version of the binning method. The binning is made using
(5.1)-(5.3).

Bin = {f1, f2, . . . , fn} (5.1)

Start to estimate the density of the bin, by using (??) and (5.1).

BinDensity = max
fi

(fj |fjε Bin, fi < Q3) (5.2)

Start to estimate the density of the bin, by using the bin from (5.1) and
(5.3).

BinFlow = min
fi

(fj |fjε Bin, fi > Q1) (5.3)

The result from the binning method of the tip is an estimate of the maximum
capacity of the highway. Alas the ρc, vc and qmax.
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Figure 5.4: This figure depicts the results from step I, when trying to
calibrate the parameters for the fundamental diagram using version II.

Step II

The back wave propagating speed wf as well as the maximum density ρmax is
estimated through the same binning method as in the original, see 3.2.4.

Figure 5.5: This figure depicts the results from step II, when trying to
calibrate the parameters for the fundamental diagram using version II.

Step III

Use the continuity constraint to estimate vmax exactly in the same way as de-
scribed in Version I step III. The graphical solution is visualized in figure 5.6
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Figure 5.6: This figure shows the final results from using version II.

Table 5.2: This table presents the calibration results for the example in
section 3.2.

Parameter Value Unit
Free-flow velocity 35.33 meter/second
Backwave speed 8.469 meter/second
Maximum density 0.3778 vehicles/meter
Flow capacity 2.433 vehicles/second
Density capacity 0.09057 vehicles/meter

5.1.3 Version III

Step I, step II and step III is identical to the original automatic empirical cali-
bration method except that it have been extended with one step. The last step
in this version , the same method for estimating vmax as version I and version
II.

Step I

Just as the original method, see 3.2.2, find an initial value of vmax, using a linear
regression on all data points below a certain density to find vmax. For graphical
representation see figure 3.2. For more detailed information see section 3.2.2.

Step II

To find the maximum capacity (vc, ρc and qmax), find the largest flow. Just as
step I, step II is a direct copy of step II from the original method, see 3.2.3.
Use the intersection between this line and the regression line from vmax. For
graphical representation see figure 3.3.
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Step III

The back wave propagating speed wf as well as the maximum density ρmax,
is estimated through the same binning method and constrained least square
regression analysis as in the original method, see 3.2.4.

Step IV

This step involves finding the last parameter vmax using the continuity con-
straint, see 5.1.1. The graphical result is presented in 5.7 and the estimated
parameters is summarized in Table 5.3.

Figure 5.7: This figure depicts the results from step IV, when trying to
calibrate the parameters for the fundamental diagram using version IV

Table 5.3: This table presents the calibration results for the example in
section 3.2 using version III.

Parameter Value Unit
Free-flow velocity 39.08 meter/second
Backwave speed 11.44 meter/second
Maximum density 0.3172 vehicles/meter
Flow capacity 2.567 vehicles/second
Density capacity 0.0928 vehicles/meter

5.1.4 Implementation remarks

The fundamental diagram calibration procedures was implemented into the sys-
tem as an independent module. In general this means that the parameters can
be calibrated without any interaction with the highway model. The calibration
procedure loads filtered data from a PeMS with a certain time aggregation for
a defined time interval, the default setting for the aggregation period is 30 sec-
ond long. The outcome of the measurement during the aggregation is the mean
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traffic state for the aggregated time period on the point on the highway where
the PeMS station placed. The measured data point consists of three measure-
ments, the velocity, the flow and the density, where the velocity measured is
the mean velocity over the 30 second period; the flow is equal to the mean flow;
the density is the mean density. After all data have been loaded by project, the
fundamental diagram calibration procedure stars. When all parameters have
been estimated, they are inserted into the database and keyed by the sensors
ID. This enables the system to allocate a fundamental diagram to each link
specifically. Since the calibration method is automated and the data from the
PeMS stations are not trustworthy, even though the data is filtered, a quality
metric was introduced. This quality metric estimates the ratio of data points
between the congested regime and the uncongested regime, data availability and
if the parameters are within reasonable bounds.

5.2 Link assignment

It is a requirement that each link should have an individual fundamental di-
agram. To assign the fundamental diagrams to specific links, two different
methods were developed. This section will present the two methods for assign-
ing the fundamental diagrams. The two methods are similar to each other, the
main difference between them, is how the fundamental diagram assignment is
made relative to which direction the traffic is streaming. The methods consists
of three steps each. Figure 5.8 shows the three steps graphically. Step I and
step II is identical for both of the methods. A link is defined as kn,j where n is
the order, n = 1, ..., N and j is the assigned fundamental diagram. Note that
the notations for links are specific for this section only.

Step I

Define a list of links that is going to be assigned a flux function. The list needs
to be sorted according to position and traffic direction, {k1,j , ..., kn,j} = K.

Example: Consider a small stretch of road represented by five links k1,j ,
k2,j , k3,j , k4,j and k5,j . The links are positioned geographically in the following
order, first k1,j , second k2,j and third k3,j . The traffic travels from link k1,j to
k5,j . They can be considered sorted according to position and direction only
and only if, {k1,j , k2,j , k3,j , k4,j , k5,j} = K where K is the list of the ordered set
of links. See figure 5.8 I for graphical representation for step I.

Step II

Go through each link in the network. For each kn,j do: if there are no sensor
connected to the current link, do nothing. If there are one sensor connected
to the current link, assign the fundamental diagram j related to the sensor to
the link kn,j . Example: Go through each link, if there exist a sensor on the
link, assign the fundamental diagram from that sensor to the link. If there are
more than one sensor connected to the current link. Assign the fundamental
diagram with the highest capacity to the link. Since the placement of the
sensor on the link relative to the on and off ramps is not known, this is a way
for avoiding ghost bottlenecks introduced by low capacity. The result from step
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II is {k1,1, k2,1, k3,2, k4,2, k5,2} = K. See the graphical result for step II in figure
5.8 II.

The method requires that there is at least one sensor connected to a link in
the network. It is also required that there is an existing fundamental diagram
related to the sensor.

I. II. III.

1

Figure 5.8: This figure displays a graphical example for each step for the
link assignment. Circles is junctions, red squares is calibrated PeMS stations
yet to be assigned to a link, black lines are links. The arrow displays the
traffic direction. Links and PeMS stations with other colours are assigned a
fundamental diagram.
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5.2.1 Forward link assignment

The forward link assignment assumes that the capacity and other road proper-
ties propagates in the same direction as the traffic stream.

Step III

Find the first link km,1 with an assigned fundamental diagram in the network,
set j = jcurrent. Assign the fundamental diagram from km,1 where links with
n < m, this means to all upstream links. Then go through each link with n > m
(all downstream links from n). If there is a sensor on link n with a fundamental
diagram assigned then set jcurrent = j + 1. If there is no sensor on the link,
assign current fundamental diagram j to that link.

Example I: Since step I and step II already have been made, we have
{k1,j , k2,1, k3,j , k4,2, k5,j} = K. Find the first assigned link, that is k2,1,set
j = jcurrent. Then assign all upstream links. The result becomes k1,1. After
that, assign all downstream links. No sensor found on k3,j , alas k3,j = k3,1.
Go to next link. A fundamental diagram have been assigned to k4,2, update j,
j = 1 + 1. Go to next link. No fundamental diagram assigned to this link, alas
the last link is assigned according to k5,2. For graphical representation of step
III see 5.8 III.

5.2.2 Backward link assignment

The backward link assignment method assumes that the fundamental diagram
can be inherited upstream instead of downstream.

Step III

The same approach is used for backward link assignment method as for the
forward link assignment method. First reverse the sorted set of links, so that
the sorted list becomes the following {kn,j , ..., k1,j} = K. Since the methods
propagates upstream, update j according to j = j − 1 Then use the exact same
procedure as step III to assign the links.

Example: Step I and step II are finished, we have that {k1,j ,k2,1,k3,j ,k4,2,k5,j}
= K. Reverse the order {k5,j , k4,2, k3,j , k2,1, k1,j} = K, then find the first link
with an assigned fundamental diagram, set j = jcurrent, in this example j = 2.
After that, assign the fundamental diagram to all links downstream, the result
becomes k5,2 and k5,1. After that begin assign fundamental diagrams to links
upstream. The next link k3,j will be k3,2. Go to next link k4,1, which have a
fundamental diagram, therefore update according to j = j−1. Go through rest
of the links. The final result from step III is {k1,1, k2,1, k3,2, k4,2, k5,2} = K. For
the graphical representation see figure 5.8.

5.3 Complex method implementation

This part of the thesis describes the implementation of the complex method. The
purpose with the upcoming sections is to visualize exactly what is happening in
the calibration process, but with figures and words rather than formulas.
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The first section is a presentation of what is referred to as ground truth
followed by a section on the conceptual thought behind the implementation in
order to increase the reader’s awareness of the calibration process. Then the
major data flow is presented to show how the different system parts interact.
This system description is similar to the one initially made to the Mobile Mil-
lennium system, see figure 4.1. The major difference is the introduction of a
feedback loop and an increased system boundary where an extra data source is
introduced, which is used as the best possible estimate during the calibration.
This section also presents simplifications made to the complex method prior to
its implementation.

5.3.1 Ground truth

It has already been argued that a traffic model needs to be calibrated against
some sets of field data, a ground truth that is treated as something like an ideal
model result. The ground truth can be observations at single points in space,
such as traffic flow or time mean speeds, they can also be vehicle trajectories
given by traffic probes that are constantly recording their location over time
or space mean speeds computed from travel time estimates. For this thesis
Bluetooth readings from the highway were available. From such readings travel
times on the highway as well as space mean speeds can be computed. This
section touches on the subject of space mean speed estimation from Bluetooth
readings.

In the first quarter of 2012 a set of Bluetooth detectors was placed along two
different experimental sites (the highways that where modelled) during approx-
imately two weeks for each site. These sites are commonly referred to as I-880
and I-15 Ontario. Bluetooth detectors of this kind have the ability to scan the
Bluetooth frequency band for any transmissions and capture the MAC-address1

of the unit that is transmitting as well as the time for that transmission.
Simplified, the data collection procedure can be said to work as follows.

A Bluetooth detector is located at the beginning of a highway segment. It
detects a passing transmitting Bluetooth unit at time t1 = 0 by identifying and
storing2 that unit’s MAC-address, see Figure 5.9. If the same MAC-address
is detected later on by another detector downstream of the first detector, and
in a reasonable amount of time, say at t2 = 10 s the travel time between those
detectors is t2−t1 = 10 s. Since the exact locations are known for both detectors
the space mean speed of the Bluetooth device can be computed.

This detection process is repeated between each Bluetooth detector pair
along the highway and for many different unique transmitters (vehicles) that
are travelling on the highway. The travel time can then be computed as an
average over a time period since many different transmitters are detected. The
uncertainty in travel time can then be expressed as a variance computed around
the sample mean. For this deployment the Bluetooth readings were aggregated
over 1, 5 and 15-minute intervals.

The final outcome from this procedure (collecting, filtering, aggregating,
transforming) is the space mean speed for different time intervals along the

1A Media Access Control address (or MAC-address) is an unique label that identifies the
network interface of the unit in question.

2All Bluetooth reading are uploaded to a database for filtering and travel time computa-
tions.
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path between each Bluetooth detector pair, a path named Bluetooth route.
The transformation mentioned is to compute the space mean speeds from the
travel time estimations given by the sample means. This can be done given that
the fixed distance between the Bluetooth readers is known.

Figure 5.10 is an example of the outcome from a complete procedure (col-
lecting, filtering, aggregating, transforming). The figure shows the velocity field
in a space-time diagram where a higher speed corresponds to a darker shade of
green and a lower speed corresponds to a darker shade of red. Speeds greater
than 80 mph have been mapped to white while a speed equal to zero has been
mapped to black. This velocity field was estimated from Bluetooth detections.
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Figure 5.9: Example of the ground truth data collection deployment where
Bluetooth readers are located along the highway. The Bluetooth readers
detects and stores MAC-addresses of Bluetooth units that passes by along
with the time of that reading. The travel time and space mean speed between
two readers can be computed since the location of the Bluetooth detectors
are known.

Note the vertical band at 2:30AM in Figure 5.10. It is a common feature
of the current deployment and is correlated with the upload of Bluetooth data
to the database that stores those detections. This is bad from a calibration
viewpoint but can be avoided by limiting the time frame of the calibration.

75



time

 

 

02:15:00 04:45:00 07:15:00 09:45:00 12:15:00 14:45:00 17:15:00 19:45:00 22:15:00
1.09275

2.09275

3.09275

4.09275

5.09275

6.09275

7.09275

8.09275

9.09275

10.0927

11.0927

1.09275

0

10

20

30

40

50

60

70

80

Figure 5.10: Example of how the ground truth is visualized in the space-
time domain. The space-time diagram depicts the aggregated velocity (in
mph) for I-880 northbound with aggregation period of 15 minutes. The time
range for this estimation is between 2012-03-14 00:00 and 2012-03-15 00:00.

This concludes the presentation of what is regarded as ground truth. The
ground truth is named as if it was an absolute, which is not the case. The
exact location of the transmitter is not known upon detection of the Bluetooth
broadcast, data is filtered and then aggregated as sample means. To investigate
the quality of the ground truth is outside the scope of this report, it is simply
argued that the filtered data can be trusted to a degree that is high enough and
that any uncertainty is reflected in the variance that is computed during the
aggregation of the Bluetooth travel times.

5.3.2 Complex method: Implementation concept

This section presents how a single iteration of the calibration loop (process)
functions. The purpose of this section is also to visualize the iterative calibration
process in the same way that the system user would be able to view the different
steps of that process. This is done from a data processing perspective, from
filtered field observations to the comparison between the model result and the
ground truth.

Consider Figure 5.11, it depicts the increased level of data processing made
during a single iteration of the calibration loop. The single iteration is given
in the space-time perspective which is the most frequent view a user has of the
different steps. Starting from the top, the different layers in Figure 5.11 depicts:

1. Filtered observations given by probes and stationary detectors,

2. the model output as a space-time diagram in relatively high resolution
(e.g. ∆T = 30 s and cell lengths of a couple of hundred meters) and
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3. an aggregation of the velocity field (e.g. ∆T = 15 min and longer routes)
so as to bring it into the same domain as the ground truth.

Moving from measurements in the top layer to the velocity estimate given by
the highway model is done by the basic formulation of the Mobile Millennium
system. This is the domain where parameters have influence which makes these
layers (specifically the step from the top layer to the middle one) the calibration
subject. Note however that the aggregated layer of Figure 5.11 is the test subject
when the model output is evaluated against the ground truth.

There is more to the aggregation step than just averaging data. During
the field deployment the Bluetooth detectors were stationary with intermediate
distances that far surpassed those of any cells or links of the highway model.
In other words, the resolution of the data from Bluetooth detectors was lower
than that of the highway model. The aggregation procedure (the step between
the bottom two layers of Figure 5.11) was then to:

1. Estimate travel times for each link from the velocity field given by the
highway model.

2. Aggregate those travel times to encompass the routes between each Blue-
tooth detector pair

3. Aggregate the travel times in time.

77



Tim
eSpace

L
evel

o
f
p
ro
cessin

g

Ag
gre

gat
ion

Mode
l &

En
KF

Ob
ser

vat
ion

s

1

Figure 5.11: Depiction of the increased level of processing made during one
calibration step. Top layer: Observations are available at different space-
time coordinates. Middle layer: Observations are combined with model
results through the ensemble Kalman filter (EnKF) to predict the velocity
field. Bottom layer: The resulting velocity field is then aggregated through
a travel time estimation process from which the space mean speed is deter-
mined.

The increased level of processing depicted in Figure 5.11 is done for a single
parameter set suggested by the complex method. The next step of the complex
method is then to evaluate the performance of that parameter set. This is made
by comparing the ground truth and with the output. This is the reason for
the aggregation and transformation made from the second to the third layer of
Figure 5.11.

The evaluation of the current parameter set is depicted in Figure 5.12 where
the bottom layer of Figure 5.11 now is the top layer (the aggregated model result
for a certain parameter set). Available is also the ground truth which has the
same resolution and domain as the model result, the ground truth is given in
the middle layer of Figure 5.11. The difference between the two layers is then
given by the bottom layer of Figure 5.12 where some room for improvement is
noted (the layers did not match completely but should be better than for the
previously evaluated parameter set). A performance value can be computed
from this difference.
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Figure 5.12: The final step of a single iteration of the calibration loop
where the current parameter set is evaluated by comparing the aggregated
model velocity field (top layer) to the ground truth (middle layer). The
bottom layer symbolises the difference between the two top most layers. In
this case there was some room for improvement. A performance metric can
be computed that expresses this difference.

This concludes the presentation of the implementation concept. The con-
ceptual thought of the calibration procedure was presented visually for a single
calibration iteration where the model output is aggregated and brought into
the same grid as the ground truth. The two different fields are then compared
and from this comparison a performance metric can be computed. The less the
difference between the two fields that there is, the better the parameter set and
this should be reflected in the performance metric.

The evaluation of the model result against the ground truth does not have
to be visualized with space-time diagrams. In the final implementation of the
complex method it was time series for each Bluetooth route rather than space-
time diagrams that were compared and then averaged, but these are simply
different perspectives of the same data.
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5.3.3 Complex method: Implementation data flow

This section about the complex method implementation shows the data flow
between the different system parts. Recall the initial system presentation rep-
resented by figure 4.1. It described the system as it functions when the highway
model is executed. Field observations are combined with a model result through
an ensemble Kalman filter in order to increase model performance, assimilate
data and fill in the blanks that are not given by observations. The outcome can
be displayed as space-time diagrams showing the velocity field over the studied
highway section.

The outcome of the process depends on model parameter values, such as free-
flow speeds, measurement error covariances and so forth. All such parameters
were originally static, hard-coded parameters in the system code. One of the
changes made in order to make both the complex method and the automatic
empirical calibration procedure to function properly was then to enable the
highway model to take user specified parameters.

As stated in the previous section the ground truth and the velocity field did
not have the same resolution (∆T and ∆x). Another change that then had to
be made was to take velocity fields given by the highway model and transform
these into the same domain as ground truth.

The complex method finally had to be integrated with the new more dynamic
highway model. The complex method was implemented to be a separated from
any specific problem (in the current form it can solve any non-linear functions
that are subject to explicit constraints). This was done by adding a calibration
manager class to the calibration process, a sort of heartbeat and coordinator that
calls all the other programs (highway model, travel time estimator, aggregation
procedures, the complex method etc.) in the right order.

The data flow of the calibration process is shown in Figure 5.13, the primary
differences between this system and the one given for the basic highway model
is the feedback-loop (which is high-lighted by the thicker black borders and
arrows), the travel time estimate and velocity aggregation, the comparison to
ground truth and the existence of a new data source (Bluetooth). The original
system parts are de-emphasized to a lighter shade of grey in the figure.

The data flow in Figure 5.13 can be summarized as follows: (1) the highway
model is the centre of the system. A parameter set is fed to the model through
the feedback-loop for which the model is executed, this is a trigger signal for
the loop. The six-second loop is iterated five times at which point the ensemble
Kalman filter brings in field measurements. After this data assimilation is the
regular six-second loop invoked again. (2) when the highway model is finished
travel times are estimated from the velocity field. (3) the ground truth given
by Bluetooth readings are brought into the system and both of the travel time
estimates are transformed to time mean speeds and compared by the calculation
of a performance value. (4) a convergence criteria is evaluated, the loop is
stopped if the convergence criteria (or the maximum number of iterations) is
reached. (5) a new parameter set is found if the convergence criteria is not met,
this new parameter set is then fed into the highway model etc.
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Figure 5.13: The data flow of the calibration procedure. The figure in-
cludes the orignal system in a de-emphazised shade of gray as well as the new
parts in black. The new parts include the Bluetooth feed and travel time
estimation. The travel time estimation made from highway model results, a
block that transforms the model results to have the same resolution as the
ground truth and the complex method which is used to find new parameter
values. The feedback-loop is highlighted by thicker arrows and borders.

No system architecture has been mentioned in depth thus far. It can be
said that the highway model functions as in the initial version of the Mobile
Millennium system. Whenever the 30-second loop is executed data is written to
a database. Measurements are static and are read into the highway model from
a database in the same 30-second loop. Once the highway model is finished the
travel times are estimated with a process that loads the velocity field from the
database, estimate travel times and then save the results to the same database.
That data is then loaded and transformed to another domain and a performance
metric is computed. The performance metric is stored in a database together
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with the current parameter set. A new parameter set is chosen and written
to the database, that parameter set is brought into the highway model and
the process is repeated. A database is then always the communication media
between the different processes depicted in Figure 5.13.

5.3.4 Complex method: Simplification for problems with
explicit constraints

This section presents a flowchart of a modified complex method that was ulti-
mately implemented with the Mobile Millennium system. For the this thesis,
there was no need to implement a complete algorithm as it is depicted in Figure
3.7. The reason was circumstances associated with the models, which implied
that no implicit in-equality constraints were present during the calibration or
that such could be handled in the interface between the complex method and
CTM-v model.3 Also, (3.12) was chosen for expressing the movement of a re-
peating worst complex member. These two points change the nature of complex
algorithm as it was expressed in Figure 3.7. The alternative formulation, which
can be called the complex method for explicitly constrained optimization, is
expressed by Figure 5.14.

3No parameters of the CTM-v except for the turning proportions at intersections could be
the subject to implicit constraints. The special circumstances for the models used was that no
intersection had more than one off-ramp. I.e. there was only need to calibrate the proportion
of the vehicle stream that stayed on the highway, 0 ≤ λ1 ≤ 1 from which the proportion of
vehicles turning off the road, λ2 could be computed as λ2 = 1 − λ1.
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Start

Select one feasible
starting point.

Generate the
other K-1 points.

Evaluate the objective
function at each point.

Has the convergence
criteria been met?

Stop

Replace the worst
point by a reflection
through the centroid.

Are the explicit
constraints violated?

Move the point a
distance δ within the
violated constraint.

Evalualte the ob-
jective function

for the new point.

Is the new point still
the worst point?

Reflect the new point
according to (3.12).

yes

no

not ok

ok

yes

no

Figure 5.14: The modified complex method, or the complex method for
explicitly constrained optimization appearing as a flowchart representing
how it was implemented in the Mobile Millennium system code.
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Chapter 6

Experiments

This chapter shows the reader how the experiments are made. The first section
6.1 in this chapter introduce the test sites on which the experiments are made.
Section 6.2 sheds light on the subject on how the authors evaluates which de-
veloped fundamental calibration procedure that performs the best. The next
section, section 6.3 explains how the test sites are being calibrated by different
frameworks. Why different frameworks are being evaluated, is due to lack of
knowledge on how they perform. So to be able to present which of the framework
that performs the best, all relevant ones are tested.

6.1 Test site introduction

This section will introduce the two different test sites that will be the test cases
for the calibration frame work. The different test sites are chosen because of
data availability. The date ranges for data availability is different for each test
case as well. This depends on that Bluetooth data are available only during
certain time periods. The differences between the test sites will be presented in
detail in the sections 6.1.1 and 6.1.2.

6.1.1 Test site I: Interstate 880, CA

This site is on I-880, the part of the highway that runs from Hayward down
to Fremont in the Bay Area, near San Francisco. The data availability on
this highway are from the sources PeMS stations, probes and Bluetooth units.
Figure 6.1 shows the stretch of the highway that is modelled. A more detailed
map can be found in Appendix B. The date range for this network and test site
is from 2012-03-03 to 2012-03-15. This site has been a subject for research on
many occasions regarding the Mobile Millennium in the past [2].
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Figure 6.1: Shows the network representation of the test site I-880

6.1.2 Test site II: Interstate 15 Ontario

This site is placed on I-15 Ontario, north of Los Angeles, California. The data
availability for this stretch of road are from the sources PeMS station, Bluetooth
detectors and probes. Figure 6.1.2 shows the geographical area of the site on
I-15 Ontario. The relevant date ranges for this test site is from 2012-03-31
to 2012-04-12. For a more detailed map see Appendix B. I-15 Ontario is a
relatively new test site in the Mobile Millennium project, which makes it an
interesting site with respect to the thesis and testing the framework.
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Figure 6.2: Shows the network representation of the test site I-15 Ontario

6.2 Experiment layout: Fundamental diagram
estimation

This section explains which settings, see Table 6.1, and how the experiments
for estimating which fundamental diagram and link assignment procedure that
will be used for later experiments.

In order to evaluate which fundamental diagram calibration as well as link
assignment procedure that performs better, the experiments were conducted
with the settings presented in Table 6.1. The configure ID is the identifier for
the experiment setting and applies to both I-880 and I-15 Ontario. Note that
results from fundamental calibration version I, due to bad performance during
the development phase, is not included in the final experiments in the thesis.
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Table 6.1: Presents the global settings for the system when running the
different experiments with parameters set from the fundamental diagram
calibration procedure.

Configure ID Link assignment
procedure

Fundamental Diagram
Calibration Version

1 - Original
1001 Forward III
1005 Backward III
1009 Backward II
1013 Forward II

The experiments was conducted in the following order for all settings1, for
both test sites:

1. Choose a setting from Table 6.1.

2. Calibrate according to the version in Table 6.1. Assign a unique identifier
to keep track of the version and which sensor.

3. Assign the fundamental diagrams according to the link procedure for the
setting in Table 6.1. Assign a unique identifier for the setting on each
fundamental diagram assigned.

4. Run the system with the unique setting identifier.

To estimate the performance of a specific setting, a comparison was made
between the output from the system with the setting and the ground truth.
This was made using root mean squares error (RMSE) and normalized root
mean squares error (NRMSE). The Root Mean Square Error NRMSE describes
the difference between two different samples. RMSE is calculated using (6.1).

RMSE(θ1, θ2) =
√

MSE(θ1, θ2)

=
√

E((θ1 − θ2)2)

=

√∑n
i=1(x1,i − x2,i)2

n

(6.1)

where θ1 is a vector of samples and θ2 is the comparison vector (in this case
the ground truth). The Normalized Root Mean Square Error (NRMSE) instead
of describing the distance, it describes the percentage of error. The NRMSE is
calculated using (6.2).

NRMSE =
RMSE

mean(θ2)
(6.2)

For results see 7.1.

6.3 Experiment layout: Automated calibration

This section presents three different method layouts that were followed during
the calibration of the different test subjects, or frameworks for calibration of

1The configure ID is the unique identifier for each setting.
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traffic models. Common for all three of these methods are that calibration is
followed by validation, where the estimated parameters are evaluated for another
time period than the calibration time period.

6.3.1 Local and source alternating calibration framework
using standard fundamental diagrams

The first method, or framework, that was proposed is one where the model’s
output was observed (validated) when default settings were used and where
parameters associated with non-valid areas where adjusted with an automated
algorithm, i.e. the Complex method (calibrated).

An initial setting was also that only stationary detectors were used as input
to the model for the initial validation and calibration. The motivation for this
approach, was that since stationary detectors have a fixed coverage2, we wish
to find a reasonable operating point (parameter set) that enables the model to
capture the conditions using data sources are better guaranteed over time and
space. Note that all model parameters are static over time, which means that
the flow at on-ramps are consistent over time and that the proportion of vehicles
always leaves the highway at node x are consistent and so on. Static inflows
and turning proportions would imply that the model would be static if it would
be invoked without any sources at all. More specifically would this imply a
completely uncongested scenario with default settings. The supply flow of off-
ramps were left to have a big capacity. The hypothesis was that the adjustment
of the turning proportions could compensate for lack of capacity3.

Adding stationary detectors, such as the PeMS inductive loop system, as
a data source introduces congestion in the model’s output if low speeds are
detected. But sparse stationary detectors might not be able to induce a system-
wide congestion if the model is biased towards free-flow conditions. The initial
calibration effort was therefore made so that it enabled the possibility to see if
the model’s parameters could be tuned in a way that induced congestion were
there no stationary detectors were present.

The final steps of this calibration framework included the addition of probes
as a data source in order to make the final calibration of observation noise
parameters and validate the calibrated model during the best of circumstances.

This framework was followed when an I-880 model was calibrated and vali-
dated. The calibration was a special case given that some hands-on parameter
estimation had been done already [2], i.e. the first step of this process was
validation of the current parameter set. The outcome of the validation was
deemed unsatisfactory on some local parts. The default parameter set was set
as the initial point in the parameter space once the calibration commenced.
The calibration and validation of this model was made for two different but
very congested days, the 9th and 14th of March, 2012, between 12PM and 9PM
on both days.

To be more specific on the changes made with the default settings during
the calibration: In the default setting and using only stationary detectors the
congestion on Bluetooth route 3 was deemed to be to high, which was indicated

2In space, but not always in time, this due to unforeseen downtime.
3I.e. if the capacity on the off-ramp really is low then a low proportion should leave the

highway and this should only be noticeable during the hours of high demand.
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that the inflow was to high at the end of this route. The parameter stating the
static inflow from Decoto Road was set as variable during the calibration effort,
see figure B.2 in Appendix B. Focusing further on route 3, it was possible that
the overestimated congestion was due to an excess of vehicles driving on the
highway. The split ratio at the intersection between I-880 and Decoto Road was
therefore set as variable during the new calibration effort.

Too little congestion on route 8 indicated that too little inflow in the vicinity
of that route. The static parameter stating the inflow parameter from Jackson
Street was set as variable during the calibration effort. Too little congestion
on route 9 might indicate that the supply on the network border was to great.
The parameter indicating the capacity of the end of the mainline was not set to
be variable during the calibration, this to avoid a constant bottleneck at that
location. Physically speaking there is an on-ramp leading onto the modelled
highway just after the endpoint of the model. The inflow from this on-ramp is
not modelled since it lies outside the physical domain of the model.

The validation of the calibrated model revealed a persistent lack of conges-
tion for routes 7-9 and to much of it on route 3, even though some positive
changes were observable. Since the model did not pass the validation it could
be rolled back to calibration but since probe measurements are available for this
highway stretch were such measurements introduced instead so as to see if they
had any positive influence on the model’s result. The introduction of probes
invoked a second calibration phase were EnKF-related parameters were set as
variable4. To summarize, this method, or framework consisted of the following
steps:

1. Run the highway model on the validation date using the default parame-
ters using only stationary detectors.

2. Validate the results, check if the model is able to capture congestion and
if it does so to an acceptable degree.

3. Calibrate chosen parameters, more specifically such parameters that might
increase (decrease) (un)wanted congestion.

4. Validate the results again, check if the model is able to capture congestion
and if it does so to an acceptable degree.

5. Be able to state that the model is incapable of capturing all of the con-
gestion without probes. Include probes as a data source and calibrate
observation noise parameters.

6. Validate the calibrated model by running it for another congested day
and by comparing the aggregation field and travel time estimates on a
route-by-route basis against the ground truth.

The initial validation results, the initial calibration and validation results and
the final validation results are given in the next chapter.

4Not the observation noise mean or the model noise mean though, those were all set to be
equal to 0 while the standard deviations were subject to calibration.
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6.3.2 Global and type-differentiated calibration framework
using estimated fundamental diagrams

The second framework that was tested was done so together with estimated
fundamental diagrams. The parameter types were differentiated by type during
the calibration effort, which was done step-wise. I.e. source parameters were
calibrated before sink parameters. In addition, for this framework it was sug-
gested that source parameters were calibrated during free flow conditions only
so as to find a reasonable operating point. Just as in the previous framework
proposed, only stationary detectors were used in the initial calibration effort.

The motivation for this type of method was, that for sites were congestion
is common in time as well as space and were stationary detectors and probes
are abundant should such observers provide the input needed for the model
to capture the congestion. The underlying model can then be tuned so as to
function well in the non-congested states and provide a good operating point
from which the state moves into the congested one.

The introduction of new fundamental diagrams changes the model’s output.
Not only can new fundamental diagram impose changes in capacity from link
to link, which could indicate new bottlenecks or reduce the effect of others, it
also mean changed free flow speeds, shock wave speeds and changed maximum
densities.

This framework was tested for another run for the I-880 network where
estimated fundamental diagrams were used. The calibration and validation
dates were the same as for the other I-880 model. All source parameters5 were
calibrated during a short free flow period so as to get a reasonable estimate of
the travel time during these conditions. The standard deviations of the model
error noise and stationary detector observation noise were set as variable as well.
Only stationary detectors were used during this calibration step. All split ratios
took the values of the default settings6.

When the calibration of the sources was done were split ratios added to the
calibration list. Using only stationary detectors were the split ratios calibrated
for the 14th of March, 2012 between 12PM and 9PM. Then were probes added
as a data source and the observation noise for these probes was set to variable
during the calibration. To summarize, this method, or framework consisted of
the following steps:

1. Estimate fundamental diagrams from stationary detector data and assign
such values for each link.

2. Chose a short free-flow time period and calibrate source parameters and
EnKF-noise parameters for this time period.

3. Add split ratios to the calibration list and leave the now calibrated source
parameters and EnKF-noise parameters as static. Extended the calibra-
tion time period to encompass a congested state.

4. Introduce probes as a data source and add that observation noise standard
deviation as variable during the calibration. Leave the now calibrated split

5The inflows at the start of the modelled highway and at on-ramps are regarded as sources
parameters.

6Meaning that 100 % of all vehicles on the highway were assumed to stay on the highway
when they reached an intersection.
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ratios as static.

5. Validate the calibrated model by running it for another congested day
and by comparing the aggregation field and travel time estimates on a
route-by-route basis against the ground truth.

All in all this is a divide and conquer concept. Having a subset of parameters
variable during the calibration should make the effort more controllable and
the solution should converge quicker. Calibrating over a short time period also
decreases the calibration time since the time of a model run often decides the
calibration time. Stationary detectors were used first of the same reasons as
mention in the previous framework.

6.3.3 Global calibration framework using estimated fun-
damental diagrams

In some cases the model users might like to deploy a highway model similar
to the Mobile Millennium model for areas were stationary detectors are rare,
have low coverage, or low reliability and so on. For such circumstances is a
framework proposed were all model parameters are calibrated in one go and for
a time period that includes the transition from free-flow to the congested regime
and then back again. If data of congestion is available for many days separate
from the calibration date could the developer chose to validate the calibrated
model for several days worth of data.

The motivation is that a lack of stationary detector coverage leaves the
model operator with no choice than to base the model’s validity on the presence
of probes that can sense the state of the road. I.e. there is no reason to leave
these probes out of the initial calibration effort. This proposed framework is
also motivated by automation: Would one be able to produce a valid model by
simply setting all model parameters as variable during the calibration effort.

The calibration effort of I-15 near Ontario, CA followed this framework.
The modelled highway stretches around 11 miles (almost 18 km), it intersects
with three other major roads (M. Baker Memorial Fwy, San Bernardino Fwy,
Foothill Fwy) and several other roads. The ground truth was unfortunately only
available from seven (and not nine) Bluetooth routes, the comparison between
the model output and the ground truth was then done for a subset of the model’s
edges.

Every turning proportion parameter were set as variable during the calibra-
tion if an off-ramp was connected to that node. Similarly, every source (on-ramp
flow) parameters at the intersections were also set as variable.

The calibration of the I-15 model was done for April 4, 2012 between 10AM
and 8PM since congestion was noted during this time period. Given all sources
and split ratios as well as observation noise parameters that were subject to the
calibration, were a total of 38 parameters subjects to this effort. This approach
is different to the ones that were done for I-880 and demanded a larger number
of model iterations.

For validation of these results the model was run for another time period
than the one used during the calibration. The 3rd and 5th of April showed signs
of congestion and were chosen for validation purposes.

This calibration framework can be summarized to the following steps:
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1. Estimate fundamental diagrams from stationary detector measurements
and assign the estimated values to the model’s links.

2. Introduce both probes and stationary detectors as model inputs, set all
noise parameters as variable during the calibration and add all source and
split ratio parameters to this calibration list. Calibrate the model for a
day of significant congestion.

3. Check results to see if any parameters were pushed against their bound-
aries (a valid point for all calibration efforts).

4. Recalibrate such parameters that were deemed close to their boundaries.

5. Validate the calibrated model by running it for two other congested days
and comparing the aggregation field and travel time estimates on a route-
by-route basis against the ground truth.

The map outlying the Bluetooth detector locations for I-15 in Appendix B
will indicate the presence of ten detectors and therefore nine Bluetooth routes.
Unfortunately were only seven Bluetooth routes available during the calibration
of the I-15 model, meaning that the model’s performance was not evaluated over
the first and last Bluetooth route.
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Chapter 7

Results

This chapter presents the results from all relevant experiments for this thesis.
The outline for this chapter is first the results from the fundamental diagram
calibration and link assignment procedures. In the next section, the results from
running the system with the calibration frameworks are presented.

7.1 Fundamental Diagram Calibration Results

This section presents all the results from the fundamental calibration and link
assignment procedure evaluation. These results are the foundation on which
fundamental calibration version that will be chosen for the next step in the
calibration framework.

Table 7.1: This table shows the RMSE for I-880 when comparing the mod-
elled output with the ground truth. The unit in the table is in meter/second.

Day CID
1

CID
1001

CID
1005

CID
1009

CID
1013

2012-03-03 07:00-23:00 2.01 3.06 3.16 2.79 3.79
2012-03-04 07:00-23:00 2.29 3.43 3.48 3.07 3.99
2012-03-05 07:00-23:00 2.80 3.32 3.31 3.17 4.30
2012-03-06 07:00-23:00 3.29 3.51 3.50 3.66 4.41
2012-03-07 07:00-23:00 3.61 4.08 3.86 3.82 4.71
2012-03-08 07:00-23:00 3.48 3.69 3.63 3.54 4.67
2012-03-09 07:00-23:00 3.90 4.20 4.09 4.07 4.96
2012-03-10 07:00-23:00 2.39 2.67 2.96 3.07 3.93
2012-03-11 07:00-23:00 2.68 2.94 3.40 3.33 4.11
2012-03-12 07:00-23:00 2.92 3.28 3.51 3.44 4.50
2012-03-13 07:00-23:00 3.59 4.11 3.89 3.81 4.88
2012-03-14 07:00-23:00 3.84 6.75 4.24 4.27 5.21
2012-03-15 07:00-23:00 3.15 3.36 3.49 3.45 4.43
MAX 3.90 6.75 4.24 4.27 5.21
MIN 2.01 2.67 2.96 2.79 3.79
MEAN 3.07 3.72 3.57 3.50 4.45
STDEV 0.61 1.02 0.36 0.43 0.43
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Table 7.2: This table shows the NRMSE for I-880 when comparing the
modelled output with the ground truth.

Day CID
1

CID
1001

CID
1005

CID
1009

CID
1013

2012-03-03 07:00-23:00 0.07 0.11 0.11 0.10 0.13
2012-03-04 07:00-23:00 0.08 0.12 0.12 0.10 0.14
2012-03-05 07:00-23:00 0.11 0.13 0.13 0.12 0.16
2012-03-06 07:00-23:00 0.13 0.14 0.14 0.15 0.18
2012-03-07 07:00-23:00 0.15 0.17 0.16 0.16 0.20
2012-03-08 07:00-23:00 0.14 0.14 0.14 0.14 0.18
2012-03-09 07:00-23:00 0.17 0.18 0.18 0.18 0.22
2012-03-10 07:00-23:00 0.08 0.09 0.10 0.11 0.14
2012-03-11 07:00-23:00 0.09 0.10 0.11 0.11 0.14
2012-03-12 07:00-23:00 0.11 0.12 0.13 0.13 0.17
2012-03-13 07:00-23:00 0.15 0.17 0.16 0.16 0.20
2012-03-14 07:00-23:00 0.17 0.30 0.19 0.19 0.23
2012-03-15 07:00-23:00 0.12 0.13 0.13 0.13 0.17
MAX 0.17 0.30 0.19 0.19 0.23
MIN 0.07 0.09 0.10 0.10 0.13
MEAN 0.12 0.15 0.14 0.13 0.17
STDEV 0.03 0.05 0.03 0.03 0.03

Table 7.3: This table shows the RMSE for I-15 Ontario when comparing
the modelled output with the ground truth. The unit in the table is in
meter/second.

Day CID
1

CID
1001

CID
1005

CID
1009

CID
1013

2012-03-31 07:00-23:00 3.14 2.52 2.81 4.04 4.75
2012-04-01 07:00-23:00 3.65 2.90 3.14 4.67 5.37
2012-04-02 07:00-23:00 4.66 4.77 4.69 4.89 4.87
2012-04-03 07:00-23:00 5.00 5.32 5.11 5.03 5.10
2012-04-04 07:00-23:00 5.72 5.96 5.92 5.57 5.45
2012-04-05 07:00-23:00 5.30 5.68 5.29 5.32 5.33
2012-04-06 07:00-23:00 5.68 6.03 5.67 5.66 5.53
2012-04-07 07:00-23:00 3.47 2.74 3.21 4.17 5.02
2012-04-08 07:00-23:00 3.47 2.15 3.03 4.39 5.37
2012-04-09 07:00-23:00 4.92 5.09 5.09 4.74 4.98
2012-04-10 07:00-23:00 4.66 4.85 4.75 4.61 4.85
2012-04-11 07:00-23:00 3.58 3.85 3.72 3.97 4.35
2012-04-12 07:00-23:00 4.11 4.13 4.19 4.11 4.64
MAX 5.72 6.03 5.92 5.66 5.53
MIN 3.14 2.15 2.81 3.97 4.35
MEAN 4.41 4.32 4.36 4.71 5.05
STDEV 0.89 1.36 1.07 0.57 0.35
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Table 7.4: This table shows the RMSE for I-15 Ontario when comparing
the modelled output with the ground truth.

Day CID
1

CID
1001

CID
1005

CID
1009

CID
1013

2012-03-31 07:00-23:00 0.10 0.08 0.09 0.13 0.16
2012-04-01 07:00-23:00 0.12 0.09 0.10 0.15 0.17
2012-04-02 07:00-23:00 0.17 0.17 0.17 0.18 0.17
2012-04-03 07:00-23:00 0.18 0.19 0.19 0.18 0.19
2012-04-04 07:00-23:00 0.22 0.22 0.22 0.21 0.21
2012-04-05 07:00-23:00 0.20 0.21 0.20 0.20 0.20
2012-04-06 07:00-23:00 0.21 0.23 0.21 0.21 0.21
2012-04-07 07:00-23:00 0.11 0.09 0.11 0.14 0.17
2012-04-08 07:00-23:00 0.11 0.07 0.10 0.14 0.17
2012-04-09 07:00-23:00 0.18 0.19 0.19 0.17 0.18
2012-04-10 07:00-23:00 0.17 0.17 0.17 0.17 0.18
2012-04-11 07:00-23:00 0.13 0.13 0.13 0.14 0.15
2012-04-12 07:00-23:00 0.15 0.15 0.15 0.15 0.17
MAX 0.22 0.23 0.22 0.21 0.21
MIN 0.10 0.07 0.09 0.13 0.15
MEAN 0.16 0.15 0.15 0.17 0.18
STDEV 0.04 0.06 0.05 0.03 0.02

7.2 Complex method calibration results

This section presents the calibration and validation results for the three frame-
work implementations. The first section presents the results for the local and
source alternating calibration framework for the I-880 model, where standard
fundamental diagrams were used. This section is followed by the results of the I-
880 calibration, where the global and type-differentiated calibration framework
with estimated fundamental diagrams were used. Finally are the results for the
I-15 model presented.

7.2.1 Local and source alternating calibration framework
using standard fundamental diagrams: Interstate
880, CA

This section provides the calibration results for the I-880 northbound model, a
model capturing an 11 mile (approx. 17.7 km) highway stretch near Union City,
CA, with eleven highway intersections.

Figure 7.1 shows the initial assessment of the model’s performance, i.e. this
perspective is part of the initial validation. The left hand side of Figure 7.1 is
the ground truth space mean speed deduced from Bluetooth travel time mea-
surements while the right hand side is the aggregated model output. Again,
only stationary detectors were used as input to the model in this initial step.
The space mean speeds that are depicted in the figure were given by dividing
route lengths by the measured/estimated travel time.
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Figure 7.1: Ground truth (left) and the initial model prediction (right) as
aggregated velocity fields in miles per hour (as a reference, 80 mph ≈ 129
km/h, 40 mph ≈ 64 km/h) for I-880 northbound on March 9, 2012. Only
stationary detectors were used during the model run. The Bluetooth routes
are clearly visible as horizontal stripes in both of the plots.

Nine horizontal bands are apparent in Figure 7.1 which stretches a fixed
distance. These are the Bluetooth routes, and are colour-coded so as to give the
average space mean speed between each Bluetooth detector during 15-minute
periods, either deduced form travel time measurements (ground truth) or from
the model output (the right hand figure).

The data in Figure 7.1 can be viewed in another perspective. Consider Figure
7.3, it depicts the travel times for I-800 NB routes 2-91. The blue lines indicate
the ground truth travel time and the dashed red line is the model prediction
of the travel time for that route. The x-axis (time of day) has the same scale
in all figures, note however that the scale of the y-axis (travel time in seconds)
alternates between the figures.

As was indicated in section 6.3.1 there were three parameters in total in the
calibration effort: The source flow from Jackson Street and Decoto Road as
well as the proportion of vehicles leaving for Decoto Road. The complex had
not converged after 30 iterations. The calibrated model was then validated for
another time period than the calibration time period. Again, March 9 was used
for this purpose. The aggregated model output is depicted by Figure 7.2. The
travel time estimates are given on a route by route basis in Figure 7.4.

1Route 1 never showed any sign of major congestion and it was therefore effortless to
predict the travel time for that route.
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Figure 7.2: Validation of calibration effort. Ground truth (left) is com-
pared to the aggregated model output (right) for I-880 northbound on March
9, 2012. Only stationary detectors were used during the model run. The
model output does not agree with the ground truth on some routes.
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Figure 7.3: Model predictions of the travel time in dashed red and ground
truth (Bluetooth) in solid blue for each I-880 route 2 to 9 (a-h). These
predictions were done for I-880 on March 9, 2012 between 12PM and 9PM.
Only stationary detectors were used during the model run. No calibrated
parameters were used, only standard values.
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Figure 7.4: Validation of model predictions of the travel time in dashed
red and ground truth (Bluetooth) in solid blue for each I-880 route 3 (a) and
routes 7-9 (b-d). These predictions were done for I-880 on March 9, 2012
between 12PM and 9PM. Only stationary detectors were used during the
model run. Only a subset of the modelled routes are shown in the figure.

As a final step, probes were included as a data source and the observation
noise standard deviation of this data source was set as variable during the final
calibration which was made during March 14, 2012 between 12PM and 9PM.

Figure 7.5 depicts the aggregated velocity field for March 9, 2012, i.e. the
validation results for the calibrated model. Table 7.5 gives a quantitative mea-
sure2 of the calibration result on a route basis and for the entire model for both
the validation date and calibration date. Figure 7.6 depicts the travel times for
I-800 NB routes 2-9 (a-h) for March 9, 2012.

2The mean absolute percent error (MAPE) that was introduced earlier.
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Figure 7.5: Validation of the final calibration effort. Ground truth (left)
is compared to the aggregated model output (right) for I-880 northbound
on March 9, 2012. Stationary detectors and probes were used during this
model run.

Table 7.5: The calibrated model’s performance in relation to Bluetooth
ground truth on a route-by-route basis for the validation date March 9,
2012 and the calibration date March 14, 2012. Both stationary detectors
and probes of type B were used during these model runs. A value within
parenthesis gives the performance prior to the calibration effort.

Route MAPE (%) 9th of March MAPE (%) 14th of March
1 (-) 4.1 5.3
2 (a) 9.7 8.6
3 (b) 20.0 13.0
4 (c) 4.7 6.5
5 (d) 12.0 10.0
6 (e) 6.3 8.3
7 (f) 15.0 17.0
8 (g) 10.0 11.0
9 (h) 11.0 14.0
Model 9.5 (9.7) 10.1 (11.9)
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Figure 7.6: Validation the final model’s travel time predictions in dashed
red and ground truth (Bluetooth) in solid blue for each I-880 route 2-9 (a-h).
These predictions were done for I-880 on March 9, 2012 between 12PM and
9PM. Both stationary detectors and probes were used during the model run.
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As a final validation perspective of the model is the velocity field (given in
miles per hour) in Figure 7.7 considered. Note that this is the actual model
output for the 9th of March prior to aggregation.
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Figure 7.7: Qualitative validation of the actual (non-aggregated) I-880
model output, a velocity field given in miles per hour on March 9, 2012
between 12PM and 9PM. Both stationary detectors and probes were used
during the model run. Standard fundamental diagrams were used with the
calibrated parameters.

7.2.2 Global and type-differentiated calibration framework
using estimated fundamental diagrams: Interstate
880, CA

The final calibration result for the actual calibration date is depicted in Figure
7.8 as the aggregated model output on the right hand side versus the ground
truth on the left hand side.

Figure 7.9 shows the validation results, i.e. the aggregated model output
for March 9, 2012 using the calibrated parameter set. This is the outcome of
the process that was proposed in Section 6.3.2. Travel time graphs are given in
Figure 7.10 for the same date, time and aggregation period. Table 7.6 shows the
mean absolute percentage errors for each route on both of the calibration and
validation dates. The values within parenthesis in the same table are the MAPE-
metrics for the I-880 model that was calibrated using standard fundamental
diagrams and that was presented in the previous section.

Finally there is the actual model output for the validation date, i.e. the
velocity field for I-880 northbound as predicted by the calibrated model using
estimated fundamental diagrams and calibrated parameters. This actual model
output, the velocity field is given in Figure 7.11.
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Figure 7.8: Outcome of the calibration effort. Ground truth (left) is com-
pared to the aggregated model output (right) for I-880 northbound on March
14, 2012. Stationary detectors and probes were used during this calibration
run together with estimated fundamental diagrams.
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Figure 7.9: Validation results for the I-880 model. Ground truth (left)
is compared to the aggregated model output (right) for I-880 northbound
on March 9, 2012. Stationary detectors and probes were used during this
calibration run together with estimated fundamental diagrams.
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Table 7.6: Calibrated model performance in relation to Bluetooth ground
truth on a route-by-route basis for the validation date March 9, 2012 and
the calibration date March 14, 2012. Both stationary detectors and probes
of type B were used during these model runs. The corresponding metrics for
the previous I-880 model, where standard fundamental diagrams were used
are included in parenthesis.

Route MAPE (%) March 9 MAPE (%) March 14
1 (-) 5.3 (4.1) 10.0 (5.3)
2 (a) 14.0 (9.7) 11.0 (8.6)
3 (b) 16.0 (20.0) 15.0 (13.0)
4 (c) 9.4 (4.7) 7.4 (6.5)
5 (d) 11.0 (12.0) 11.0 (10.0)
6 (e) 12.0 (6.3) 15.0 (8.3)
7 (f) 18.0 (15.0) 19.0 (17.0)
8 (g) 13.0 (10.0) 12.0 (11.0)
9 (h) 14.0 (11.0) 21.0 (14.0)
Model 11.6 (9.5) 13.4 (10.1)
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Figure 7.10: Validation result, the model’s travel time prediction in dashed
red and ground truth (Bluetooth) in solid blue for each I-880 route 2-9 (a-h).
These predictions were done for I-880 on March 9, 2012 between 12PM and
9PM. Both stationary detectors and probes were used during the model run.
Estimated fundamental diagrams were used.
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Figure 7.11: Qualitative validation of the actual (non-aggregated) I-880
model output, a velocity field given in miles per hour on March 9, 2012
between 12PM and 9PM. Both stationary detectors and probes were used
during the model run. Estimated fundamental diagrams were used with the
calibrated parameters.

7.2.3 Global calibration framework using estimated fun-
damental diagrams: Interstate 15, Ontario, CA

This section presents the results that were acquired following the framework
presented in . The complex had not converged after 500 + 30 iterations3, the
best parameter set had a MAPE equal to 7.4 % on the calibration date range
10AM-8PM on April 4, 2012.

The aggregated outputs for the validation dates April 3 and 5 are shown in
figures 7.13 and 7.15 together with the ground truth for each of these two days.
For the sake of comparison is the model output prior to calibration included in
figures 7.12 and 7.14.

The performance metric is given on a route-by-route basis in Table 7.7 and
for the model as a whole. The validation dates (April 3 and 5) as well as
the calibration date (Aril 4). Within parenthesis in Table 7.7 is the model’s
performance for each of these three days prior to calibration.

The travel times for each route and validation day are given in Figures 7.16
and 7.17. These are the results of the highway model after calibration. Note
that the seventh route was omitted from these figures since that section seldom
shows any sign of congestion. All values are given in seconds.

3Some parameters had approach the bounds and were therefore recalibrated, thus the extra
30 iterations.

106



time

po
si

tio
n 

(m
ile

)
Aggregated Velocity (mph) for nid 247 with agg. period 15 time between 2012−04−03 10:00 and 2012−04−03 20:00

 

 

11:00:00 12:15:00 13:30:00 14:45:00 16:00:00 17:15:00 18:30:00 19:45:00

1.05789

2.05789

3.05789

4.05789

5.05789

6.05789

7.05789

8.05789

0

10

20

30

40

50

60

70

80

time

po
si

tio
n 

(m
ile

)

Aggregated Velocity (mph) for nid 247 with cid 1 with agg. period 15 time between 2012−04−03 10:00 and 2012−04−03 20:00

 

 

11:00:00 12:15:00 13:30:00 14:45:00 16:00:00 17:15:00 18:30:00 19:45:00

1.05789

2.05789

3.05789

4.05789

5.05789

6.05789

7.05789

8.05789

0

10

20

30

40

50

60

70

80

1

Figure 7.12: Ground truth (left) and the aggregated model output prior
to calibration (right) for I-15 northbound on April 3, 2012 between 10AM
and 8PM. Induction loop detectors and probes type B were used during
the model run. The seven Bluetooth routes are clearly visible as horizontal
stripes in both of the plots.
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Figure 7.13: Ground truth (left) and the aggregated model output after
calibration (right) for I-15 northbound on April 3, 2012 between 10AM and
8PM. Induction loop detectors and probes type B were used during the model
run. The seven Bluetooth routes are clearly visible as horizontal stripes in
both of the plots.
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Figure 7.14: Ground truth (left) and the aggregated model output prior
to calibration (right) for I-15 northbound on April 5, 2012 between 10AM
and 8PM. Induction loop detectors and probes type B were used during
the model run. The seven Bluetooth routes are clearly visible as horizontal
stripes in both of the plots.
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Figure 7.15: Ground truth (left) and the aggregated model output after
calibration (right) for I-15 northbound on April 5, 2012 between 10AM and
8PM. Induction loop detectors and probes type B were used during the model
run. The seven Bluetooth routes are clearly visible as horizontal stripes in
both of the plots.
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Table 7.7: Calibrated model performance in relation to Bluetooth ground
truth on a route-by-route basis for the validation dates April 3 and 5, 2012
and the calibration date April 4, 2012. A value within parenthesis gives the
performance prior to the calibration effort.

Route MAPE (%) April 3 MAPE (%) April 5 MAPE (%) April 4
1 (a) 14.0 12.0 12.0
2 (b) 6.7 9.6 5.8
3 (c) 8.4 9.0 7.0
4 (d) 10.0 12.0 10.0
5 (e) 5.5 7.9 8.7
6 (f) 4.5 3.8 3.4
7 (-) 2.0 2.4 2.4
Model 7.4 (8.2) 8.5 (9.7) 7.4 (9.3)
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Figure 7.16: Validation of model predictions of the travel time in red and
ground truth (Bluetooth) in blue for each I-15 route 1-6 (a-f). These predic-
tions were done for April 3, 2012 between 10AM and 8PM. Both stationary
detectors and probes type B were used during the model run.
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Figure 7.17: Validation of model predictions of the travel time in red and
ground truth (Bluetooth) in blue for each I-15 route 1-6 (a-f). These predic-
tions were done for April 5, 2012 between 10AM and 8PM. Both stationary
detectors and probes type B were used during the model run.

Finally, and as means to enable a more qualitative validation of the model’s
output after calibration is the highway model’s actual output included in figures
7.18 and 7.19. These are the velocity fields were the speed is given in miles per
hour in space and time.
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Figure 7.18: Qualitative validation of the actual (non-aggregated) I-15
model output, a velocity field given in miles per hour on April 3, 2012
between 10AM and 8PM. Both stationary detectors and probes were used
during the model run. Estimated fundamental diagrams were used with the
calibrated parameters.
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Figure 7.19: Qualitative validation of the actual (non-aggregated) I-15
model output, a velocity field given in miles per hour on April 5, 2012
between 10AM and 8PM. Both stationary detectors and probes were used
during the model run. Estimated fundamental diagrams were used with the
calibrated parameters.
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Chapter 8

Analysis and Discussion

The purpose of this chapter is to present an analysis made from all of the work
in the thesis. The main focus will lie on the performance of the calibration
frameworks, this includes all the procedures as well. The main focus also lie
on the results from using them. In this thesis there is no separate sections for
discussion or analysis, they are instead interwoven with each other throughout
the chapter.

8.1 Fundamental diagram estimation and link
assignment procedure

If a comparison of the results from tables 7.1 and 7.2 is made for I-880, it is
possible to proclaim that the performance of the standard fundamental dia-
gram is not bad. At least when relating to the result from the system using the
calibrated fundamental diagrams. The best performance when discussing the
results from I-880 is using the standard fundamental diagram, but the difference
is not that great when using calibrated fundamental diagram1 with backward
link assignment. This is somewhat vexing, since the expectation was that the
system would perform better in general after calibrating the fundamental dia-
gram2. If instead the comparison is made visually from the graphical outputs
for I-880 and I-15 Ontario in Appendix C, the calibration procedures looks more
promising than just using the standard fundamental diagram.

When considering the results from I-15 Ontario as well it is also possible to
conclude that the standard fundamental diagram performs good relative to the
calibrated fundamental diagrams overall. However, for I-15 Ontario using the
standard fundamental diagrams, the system does not perform as good as for
CID 1009.

Another interesting observation is that the performance of the system really
differs when using different link assignment procedures. This points out that the
link assignment procedure is vital for the system performance. Since only two
different approaches of fundamental diagram link assignments are discussed in
this thesis, one cannot rule out that there is another link assignment procedure

1This is true for both fundamental calibration procedure version II and version III.
2We did not consider redefining a global fundamental diagram by calibration, since litera-

ture states that road capacity varies over time and space [35].
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that make the system perform better for I-880 when using either version II or
version III of the fundamental diagram calibration procedure.

8.1.1 Calibration framework

The model MAPE for I-880 with the first framework3 and with the standard
fundamental diagrams, for the calibration date 9:th of March 2012 is 9.5 %
respectively for the validation date 14:th of March is 10.1 %. Whilst with
the second framework4 the model MAPE is for the calibration date 11.6 %
respectively 13.4 % for the validation date.

Why the model run with the second framework5 performs worse for I-880,
is probably due to the fact that the system in general performs worse with
estimated fundamental diagrams, see the results from Table 7.1 and 7.2. It can
also depend on where the stationary sensors are located. The sensors act as
a good boundary condition, since the state at these locations almost always is
known. It would therefore probably be better for the system performance to
halt the estimation where the last sensor is placed. We have no suggestions for
networks without stationary sensors though.

The model MAPE for I-15 Ontario is 8.5 % for the calibration date 4:th of
April, 7.4 % for the validation dates 3:rd and 5:th of April. Why the model
performance is better than for I-880 is probably due to less congestion, see
figure C.17(a), C.18(a) and C.19(a). Less congestion practically means that the
system does not need to estimate the changes in the traffic state. So therefore,
as long as the free flow conditions are calibrated right, the model performance
will be more accurate for a network where the system have less congestion in
general, at least when comparing to a more congested network.

It is also very noteworthy, that the complex method does not converge when
calibrating I-15 Ontario. This means that the model result is probably going to
improve, when run over more iterations. Since the time for calibrating the model
was limited and system limitations this was the best that we could do. But, it
would have been very interesting to see how well the model performance would
been when the complex method converges. Why the complex method does not
converge could depend on several different things. One is that the convergence
criteria can be set to be too exact. Another can be that the amount of iterations
is too few.

Even though the second framework performs less well than the first, esti-
mating the fundamental diagrams has its advantages. The advantage is in the
ability to adapt the capacity with respect to actual measurements, rather than
trust that the standard fundamental diagram is accurate. When calibrating an
unfamiliar road and the conditions regarding that unfamiliar road (test site I-15
Ontario); assuming that the same conditions can be applied from those on I-880
can be a false statement and a problem. Therefore adapting the fundamental
diagrams with respect to local road conditions is a good approach for coping
with this.

3Local and source alternating calibration framework.
4Global calibration and type-differentiated calibration framework using estimated funda-

mental diagrams
5Global and type-differentiated calibration framework using estimated fundamental dia-

grams.
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Chapter 9

Conclusion and Future
Work

This chapter will present the conclusion of all the work done in the thesis. In this
chapter we will provide suggestions and recommendations of how to calibrate a
traffic state space model. Suggested future work will also be presented in this
chapter.

It is possible to conclude that this thesis is able to present a framework for
calibrating a state space model. The performance of the calibration framework
and the results are not as exhaustive as we would have preferred. But all of the
results for the framework points in one direction and that is, with calibration
we get a higher model accuracy than with the default parameters. Since the
complex method did not converge, we cannot state that the model is calibrated,
but it is possible to state that improvement of the accuracy of the model have
increased.

The preferable and suggested framework for further use, according to the
authors, is the global and type-differentiated calibration framework using es-
timated fundamental diagram. The main reason for this is that the approach
when calibrating parameters is more general and adaptive than with the other
framework. Even considering it does not perform as good when compared to
the other framework, but the differences between the output is not substantially
large. There is still an improvement when using this framework when compared
to the default parameters in the system.

It is also possible to conclude that there is still much work left to do, es-
pecially regarding testing and further development of the framework. Not only
testing more calibration procedures, but also testing the framework with other
similar state space models as well e.g. the density based cell transmission model.
The suggested main area for further research is certainly testing the framework.
Another relevant subjects of research would be to test other procedures for
assigning fundamental diagrams.

Another interesting area for further research, is to explore the impact of
different modifications to the Mobile Millennium. One of this would be testing
other version than the Hyperbolic Linear fundamental diagram.
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Appendix A

Identified Parameters

This appendix present the parameters found during the system analysis. All
parameters are divided sections depending on which class they belong to in
the system structure. Thereafter the parameters are sorted into classes. All
parameters found are presented below. The parameters which are not directly
correlated (or have not found the correlating interpretation) to the literature
are denoted as ϕi where i denotes the ith parameter found.

Measurement loader

Timers

ϕ1 = swedish lag.
This timer makes sure that there is time enough for the system to fill the
database with filtered data. Current value is set to 300f (seconds).
Code:

if (Monitor.get db env().equalsIgnoreCase(”kth01”)) {
float swedishLag = 300f;//FIXME: hard coded value

...
}

ϕ2 = Seconds Since Last Fixed Measure.
This timer sets how long time it is required for resetting the confidences. Current
value set to 180f (seconds).
Code:

if (secondsSinceLastFixedMeas > 180f) {//FIXME: hard coded value
resetConfidences = true;

}

ϕ3 = interval + 240f
The timer is used when getting Probe A speeds. The purpose of timer is prob-
ably used because of the same reasons as the Swedish lag timer, which is imple-
mented due to some system lag.
Code:

if (loadProbes) {
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...
Probe A Speed = DataType.Probes A Feed.getSpeeds(net, time, interval +
240f); //pre filter for probe B speeds and adding the std

...
}

Confidence parameters

ϕ4 = Link Confidence
This parameter is for setting the default confidence on a link when creating the
Hashmap. Default value is set to 0.025.
Code:

//Create Hashmap for link confidences
HashMap< Integer, Float> linkConfidenceMap = new HashMap< Integer,
Float> ();
for (Integer linkId : this.id) {

linkConfidenceMap.put(linkId, 0.025f);//FIXME: hard coded value
}

ϕ5 = PeMS Confidence.
If there is a PeMS on the link, then set the confidence in the Hashmap to ϕ5.
Current value of 0.5.
Code:

//change confidence to 0.5 if pems data is in the link
for (Datum.Speed pemsSpeedMeas : pemsSpeed) {

linkConfidenceMap.put(pemsSpeedMeas.spot.link.id, 0.5f);
//FIXME: hard coded value

}

ϕ6 = Radar Confidence.
Sets the confidence if radar data is available on the link. The current default
value is 0.5.
Code:

//change confidence to 0.5 if radar data is in the link
for (Datum.Speed radarSpeedMeas : radarSpeed) {

linkConfidenceMap.put(radarSpeedMeas.spot.link.id, 0.5f);
//FIXME: hard coded value

}

ϕ7 = info24radar(Note: The same type as radar confidence).
This parameter is mainly for the Swedish system. Set the confidence on the link
if not a radar is present. Current set value is 0.0.
Code:

//change confidence to 0.5 if radar data is in the link
for (Datum.Speed info24SpeedMeas : info24Speed) {

linkConfidenceMap.put(info24SpeedMeas.spot.link.id, 0f);
//FIXME: hard coded value

}
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ϕ8 = Probe B Speed Confidence (is it deviation?).
Sets the confidence if a Probe B is on a link at a current spot with a current
speed during a certain time. Current value 4.0.
Code:

if (ds.speed > 1f) {
dsArrayList.add(new Datum.Speed(ds.time, ds.spot, ds.speed, 4F));
//FIXME: hard coded value

...
}
ϕ9 = confidence checker for B Probes.
Checks whether the confidence is below a certain level. If it is then increase the
confidence with a certain amount. Current value 0.05.
Code:

if (prevConfidence < (1f - 0.05f)) {//FIXME: hard coded value
linkConfidenceMap.put(linkId, prevConfidence + 0.05f);
//FIXME: hard coded value

}
ϕ10 = Add confidence.
Adds to current confidence if probe B is on the link. Current value is 0.05.
Code:

if (prevConfidence < (1f - 0.05f)) {//FIXME: hard coded value
linkConfidenceMap.put(linkId, prevConfidence + 0.05f);
//FIXME: hard coded value

}
ϕ11 = Probe A Speed Confidence (standard deviation?).
Sets the confidence if a Probe A is on a link at a current spot with a current
speed during a certain time. Current value 4.0.
Code:

if (ds.speed > 1f) {//FIXME: hard coded value
dsArrayList.add(new Datum.Speed(ds.time, ds.spot, ds.speed, 4F));
//FIXME: hard coded value

...
}
ϕ12 = confidence checker (Probe A).
Checks whether the confidence is below a certain level. If it is then increase the
confidence with a certain step. Current value 0.05.
Code:

if (prevConfidence < (1f - 0.05f)) {//FIXME: hard coded value
linkConfidenceMap.put(linkId, prevConfidence + 0.05f);
//FIXME: hard coded value

}
ϕ13 = add confidence (Probe A).
adds to the confidence a certain amount. Current value 0.05.
Code:
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if (prevConfidence < (1f - 0.05f)) {//FIXME: hard coded value
linkConfidenceMap.put(linkId, prevConfidence + 0.05f);
//FIXME: hard coded value

}

ϕ14 = confidence reset value.
If no data can be found for a certain time interval, then reset according to ϕ14.
Current value is set to 0.0.
Code:

//if no fixed sensor data for the last 3 minutes:
if (resetConfidences) {

for (Integer linkId : this.id) {
linkConfidenceMap.put(linkId, 0f);

}
}

ϕ15 = measurementNoiseCov[ii][ii] = stdev != null ? Math.pow(stdev, 2) : 16.0;
Set the diagonal in the covariance matrix. Either Math.pow(stdev, 2) or to 16.0.
Code:

for (int ii = 0; ii < numberOfSpeedMeasurements; ii++) {
measurements[ii] = speedData.get(ii).speed;
Float stdev = speedData.get(ii).stdDev;
measurementNoiseCov[ii][ii] = stdev != null ? Math.pow(stdev, 2) : 16.0;
//FIXME: hard coded value

}

Other parameters

ϕ16 = Localization distance.
Sets how far the localization operator should check for neighbouring edges. Cur-
rent value 100.0.
Code:

this.localizationDistance = 100f;//FIXME: hard coded value

Estimate Manager

Timers

ϕ17 = Get data interval timer.
This timer is for setting the get data interval timer to a default value. This
value should probably depend on how much lag the system needs to filter and
store measurements. Current value set to 180.0.
Code:

if (tempgetdatainterval != null) {
this.get data interval = tempgetdatainterval;

}
else {

this.get data interval = 180.0f;
//FIXME: hard coded value
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...
}

Statistic Based Parameters

ϕ18 = Model Error Mean.
If not the model error mean can be found in the data base then set it to a
default value. Current default value is 0.0.
Code:

try {
modelErrorMean = this.network.attributes.getDouble(
”highway modelErrorMean”);
if (null == modelErrorMean) throw new NetconfigException(null, null);

}
catch (NetconfigException ex) {

modelErrorMean = 0d;
}

ϕ19 = Model Error Covariance.
If not the model error covariance can be found in the data base, then set it to
a default value. Current is 0.1.
Code:

try {
modelErrorCov = this.network.attributes.getDouble(
”highway modelErrorCov”);
if (null == modelErrorCov) throw new NetconfigException(null, null);

}
catch (NetconfigException ex) {

modelErrorCov = 0.1d;
}

Velocity Flux Function Experimental

CTM-v model parameters

ϕ20 = Speed tolerance.
The purpose of this speed tolerance parameter is to set the difference between
the free flow speed and the critical speed vc. Current value is set to 2 m/s.
Code:

double vtolerance = 2f; //FIXME: hard coded value

ϕ21 = Critical speed.
This parameters purpose is to indicate at which speed the critical flow and
density occurs. Current default value is 26 m/s.
Code:

double vcritical = 26f; //FIXME: hard coded value
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Gudnov Link

CTM-v model parameters

ϕ22 = Parameter for increasing the free flow speed.
In the Gudnov Link class there is a procedure called getFreeFlowSpeed. This
procedure fetches the free flow speed and adds speed for some apparent reason.
Current value added = (3 / 2.23693629).
Code:

public double getFreeFlowSpeed() {
return this.freeFlowSpeed + (3 / 2.23693629);
//FIXME: hard coded value

}

Flow Model Network

CTM-v model parameters

ϕ23 = Shock wave speed.
The speed for how fast the shock wave travels are set in the flow model network
class. Current value is -5.36448 m/s.
Code:

public static final double shockWaveSpeed = -5.36448;
//FIXME: hard coded value.

ϕ24 = Maximum density.
Sets the maximum density per lane. Current value is 0.12430080 cars/m.
Code:

public static final double rhoMax = 0.124300808; //0.108763207;
//FIXME: hard coded value.

Flow Model Runner

CTM-v model parameters

ϕ25 = initialVelocitySigma.
This parameter provides an interface of propagating the velocity field forward.
Code:

private final double initialVelocitySigma = 1;
//FIXME: hard coded value.

ϕ26 = Free Flow Speed Correction.
This parameter changes the Free Flow Speed for the initial states. Current value
is set to - 0.1 m/s.
Code:

initState[ii] =entry.getValue().getFreeFlowSpeed() - 0.1

Parameter Store

The split ratios, number of lanes and free flow speed can be hard coded in this
class.
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Network (Database)

EnKF Parameters

ϕ27 = Highway model error mean.
Sets the default model error mean. Current value 0.5.

ϕ28 = Highway error covariance.
Sets the default model error covariance. Current value is set to 2.

125



Appendix B

Bluetooth Deployment

This appendix shows detailed maps as well as maps with overview over the
Bluetooth deployments.

Figure B.1: A map presenting an overview of the Bluetooth deployment
on Interstate 880, CA and the surroundings areas. Retrieved on September
22, 2012 from the webpage maps.google.com
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Figure B.2: A more detailed map of the Bluetooth deployment on In-
terstate 880, CA. Retrieved on September 22, 2012 from the webpage
maps.google.com
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Figure B.3: The map show an overview of the Bluetooth deployment on
I-15 Ontario, CA and the surroundings areas. Retrieved on September 22,
2012 from the web page maps.google.com
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Figure B.4: A detailed map over the Bluetooth deployment on I-
15 Ontario, CA. Retrieved on September 22, 2012 from the web page
maps.google.com
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Appendix C

Fundamental Diagram
Calibration Results

This appendix contains a all of the space mean speed diagrams from running the
systems with all of the configurations for the fundamental calibration procedure.
This as well as all of the reference space mean speed diagrams from the Bluetooth
and running the highway model with default parameters.

I-880 Northbound

(a) (b) (c)

(d) (e) (f)

Figure C.1: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-03 00:00-
24:00. C.1(a) shows the ground truth. C.1(b) use the ad-hoc calibration.
C.1(c) and C.1(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.1(d) and C.1(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.



(a) (b) (c)

(d) (e) (f)

Figure C.2: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-04 00:00-
24:00. C.2(a) shows the ground truth. C.2(b) use the ad-hoc calibration.
C.2(c) and C.2(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.2(d) and C.2(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.3: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-05 00:00-
24:00. C.3(a) shows the ground truth. C.3(b) use the ad-hoc calibration.
C.3(c) and C.3(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.3(d) and C.3(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.
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Figure C.4: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-06 00:00-
24:00. C.4(a) shows the ground truth. C.4(b) use the ad-hoc calibration.
C.4(c) and C.4(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.4(d) and C.4(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.5: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-07 00:00-
24:00. C.5(a) shows the ground truth. C.5(b) use the ad-hoc calibration.
C.5(c) and C.5(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.5(d) and C.5(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.
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Figure C.6: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-08 00:00-
24:00. C.6(a) shows the ground truth. C.6(b) use the ad-hoc calibration.
C.6(c) and C.6(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.6(d) and C.6(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.7: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-09 00:00-
24:00. C.7(a) shows the ground truth. C.5(b) use the ad-hoc calibration.
C.7(c) and C.7(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.7(d) and C.7(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.
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Figure C.8: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-10 00:00-
24:00. C.8(a) shows the ground truth. C.8(b) use the ad-hoc calibration.
C.8(c) and C.8(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.8(d) and C.8(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.9: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-11 00:00-
24:00. C.9(a) shows the ground truth. C.9(b) use the ad-hoc calibration.
C.9(c) and C.9(e) use the fundamental diagrams from version III with the
forward respectively backward link assignment. C.9(d) and C.9(f) use the
fundamental diagrams from version II with the forward respectively back-
ward link assignment.
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Figure C.10: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-12 00:00-
24:00. C.10(a) shows the ground truth. C.10(b) use the ad-hoc calibration.
C.10(c) and C.10(e) use the fundamental diagrams from version III with
the forward respectively backward link assignment. C.10(d) and C.10(f)
use the fundamental diagrams from version II with the forward respectively
backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.11: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-13 00:00-
24:00. C.11(a) shows the ground truth. C.11(b) use the ad-hoc calibration.
C.11(c) and C.11(e) use the fundamental diagrams from version III with
the forward respectively backward link assignment. C.11(d) and C.11(f)
use the fundamental diagrams from version II with the forward respectively
backward link assignment.
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Figure C.12: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-14 00:00-
24:00. C.12(a) shows the ground truth. C.12(b) use the ad-hoc calibration.
C.12(c) and C.12(e) use the fundamental diagrams from version III with
the forward respectively backward link assignment. C.12(d) and C.12(f)
use the fundamental diagrams from version II with the forward respectively
backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.13: Shows the space mean speed for the calibration methods and
the ground truth from running the highway model on test site I-880. The
aggregation period is 15 minutes over the time period from 2012-03-15 00:00-
24:00. C.13(a) shows the ground truth. C.13(b) use the ad-hoc calibration.
C.13(c) and C.13(e) use the fundamental diagrams from version III with
the forward respectively backward link assignment. C.13(d) and C.13(f)
use the fundamental diagrams from version II with the forward respectively
backward link assignment.
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I-15 Ontario Northbound
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Figure C.14: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-03-31 00:00-24:00. C.14(a) shows the ground truth. C.14(b) use the
ad-hoc calibration. C.14(c) and C.14(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.14(d)
and C.14(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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Figure C.15: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-01 00:00-24:00. C.15(a) shows the ground truth. C.15(b) use the
ad-hoc calibration. C.15(c) and C.15(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.15(d)
and C.15(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.16: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-02 00:00-24:00. C.16(a) shows the ground truth. C.16(b) use the
ad-hoc calibration. C.16(c) and C.16(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.16(d)
and C.16(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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Figure C.17: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-03 00:00-24:00. C.17(a) shows the ground truth. C.17(b) use the
ad-hoc calibration. C.17(c) and C.17(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.17(d)
and C.17(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.18: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-04 00:00-24:00. C.18(a) shows the ground truth. C.18(b) use the
ad-hoc calibration. C.18(c) and C.18(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.18(d)
and C.18(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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Figure C.19: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-05 00:00-24:00. C.19(a) shows the ground truth. C.19(b) use the
ad-hoc calibration. C.19(c) and C.19(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.19(d)
and C.19(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.20: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-06 00:00-24:00. C.20(a) shows the ground truth. C.20(b) use the
ad-hoc calibration. C.20(c) and C.20(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.20(d)
and C.20(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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Figure C.21: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-07 00:00-24:00. C.21(a) shows the ground truth. C.21(b) use the
ad-hoc calibration. C.21(c) and C.21(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.21(d)
and C.21(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.22: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-08 00:00-24:00. C.22(a) shows the ground truth. C.22(b) use the
ad-hoc calibration. C.22(c) and C.22(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.22(d)
and C.22(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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Figure C.23: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-09 00:00-24:00. C.23(a) shows the ground truth. C.23(b) use the
ad-hoc calibration. C.23(c) and C.23(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.23(d)
and C.23(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.

(a) (b) (c)

(d) (e) (f)

Figure C.24: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-10 00:00-24:00. C.24(a) shows the ground truth. C.24(b) use the
ad-hoc calibration. C.24(c) and C.24(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.24(d)
and C.24(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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Figure C.25: Shows the space mean speed for the calibration methods
and the ground truth from running the highway model on test site I-15
Ontario. The aggregation period is 15 minutes over the time period from
2012-04-11 00:00-24:00. C.25(a) shows the ground truth. C.25(b) use the
ad-hoc calibration. C.25(c) and C.25(e) use the fundamental diagrams from
version III with the forward respectively backward link assignment. C.25(d)
and C.25(f) use the fundamental diagrams from version II with the forward
respectively backward link assignment.
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