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ABSTRACT
Traffic Management Centers (TMC) want to improve the performance of road networks and reduce
congestion by actively managing the infrastructure of a freeway corridor. A promising avenue for
proactive traffic management is the prediction of the near-future traffic conditions in real-time by
employing a traffic flow model. An important set of calibration parameters of such a model are
the boundary flows, i.e., the amount of traffic that is expected to enter the network during the
prediction horizon. In this paper, we propose a boundary flow prediction method that combines
the most recent traffic data with historical traffic data. An autoregressive moving average with
exogenous input (ARMAX) is estimated on-line based on the most recent vehicle detector station
(VDS) data. An optimal multiple step ahead traffic demand predictor is obtained based on the
estimated ARMAX model by solving a corresponding Bezout equation for each predictor. Results
obtained using empirical freeway mainline and on-ramp data show that this method outperforms
methods that rely only on the historical average of the data to perform a prediction, especially
during days with unusual traffic flow demands, such as a Super Bowl Sunday. Due to its simplicity
and robustness, this method is useful in practical applications.
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FIGURE 1 Components for on-line traffic flow prediction

INTRODUCTION
Reducing congestion both under recurrent and non-recurrent conditions is a challenge for freeway
traffic management centers (TMC). The Connected Corridors program at the University of Cal-
ifornia PATH program is currently developing Decision Support Systems (DSS) that are able to
forecast future short-term traffic conditions and evaluate potential traffic management strategies to
improve mobility and safety in freeway corridors. A schematic block diagram of the traffic flow
prediction module of a DSS is depicted in Figure 1. Many traffic predictors, like [1], use a traffic
flow model based on the Cell Transmission Model [2] to predict near-future traffic conditions in
real-time, usually with a prediction horizon of approximately one hour. In order to accurately esti-
mate the potential benefits of traffic management strategies such as ramp metering, traffic routing
and detouring, and lane management, the traffic flow model has to be calibrated well so that its
predictions closely match actual future traffic conditions. Accurate calibration of traffic flow mod-
els is still a major challenge and usually requires careful estimation of its parameter values. As
Figure 1 shows, there are many parameters that affect the prediction, such as network modeling,
the fundamental diagrams, estimation of the current traffic state, and the prediction of boundary
flows and split ratios. This paper focuses on one set of these parameters, namely the prediction of
the incoming flows at the boundaries of the road network.

Much research has been devoted to the prediction of traffic flow. The area of traffic in-
vestigation known as OD prediction aims at calculating the amount of traffic that is expected to
travel between each origin (O) and each destination (D) of the road network. Examples include
[3], [4] and [5]. An advantage of OD prediction is that the resulting flow information is detailed
and permits the search for true optimal traffic management strategies. However, OD estimation
is a difficult problem, which is due to the fact that the available loop detector data is generally
insufficient to determine the OD flow uniquely. As a consequence, the implementation of optimal
traffic management strategies based on OD predictions may not yield the expected performance
gains if the true OD patterns cannot be determined. Employing Lagrangian mobile data may pro-
vide partial flow information for each OD pair, which may significantly improve the quality of OD
prediction in the future.

An alternative and somewhat coarser form of boundary flow prediction is to disregard the
destination and to only estimate the total flow at each origin. (To complete the traffic assignment,
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FIGURE 2 Flow measurements over the course of multiple weeks. A daily and a weekly
period is clearly visible. (Data from mainline detector station 1108595 between 4 January
and 21 January 2013, data source: [8])

one must also predict split fractions at each bifurcation of the network, which determine how
much traffic is leaving the network at each off-ramp. Although similar in nature to boundary flow
prediction, split ratio prediction is out of the scope of this paper.) As shown in [6] and [7], this
information can be determined uniquely in freeways, using only historical mainline data flows. In
this paper we will assume that historical freeway mainline and ramp traffic flow data is available
through data collection and repository sites such as the Performance Measurement System (PeMS)
[8]. In the following, we briefly discuss existing boundary flows forecasting methods.

One naive forecasting methodology is the zero-order-hold predictor, which applies the lat-
est flow measurement over the prediction horizon. Another simple method is to directly apply a
historical average, such as the mean flow of the previous weeks for the same day and time of day.

A more sophisticated forecasting technique is based on autoregressive moving average
(ARMA) models, which treat data as a time series and linearly combine previous flow measure-
ments to predict the future flow. The forecasting technique proposed in [9] employs an ARMA
model with an integral action (so-called ARIMA) to forecast flow. Other ARMA-like models in-
clude a seasonal term (called seasonal ARIMA, or SARIMA), which exploit the periodicity of
traffic flow. Figure 2 shows the flow profile of a detector over three weeks. One can clearly iden-
tify two periods of repeating traffic patterns. Firstly, traffic is following a daily pattern, with high
traffic during the day and low traffic during the night. Working days thereby tend to have more
traffic and show two peak periods, whereby weekend days exhibit a lower flow with only one peak
period. Secondly, a weekly pattern is visible repeating the pattern of five working days and two
weekend days.

In many works, the flow of the previous week is combined with recent measurements, for
example [10], [11] and [12]. These approaches assume that data from different locations are uncor-
related. To model spatio-temporal correlations between nearby locations, [13] and [14] proposed a
spatio-temporal seasonal ARIMA model. Another forecasting technique originates from machine
learning. Artificial neural networks were used to forecast boundary flows to capture nonlinear
traffic flow phenomena in [15] and [16]. Support vector machines (SVM) are another machine
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learning technique employed to forecast boundary flows, such as by [17].
Since the literature of traffic flow forecasting is large, several authors have compared dif-

ferent approaches. The research in [18] compared statistical approaches such as ARMA-like mod-
els with machine learning approaches and provided many references in transportation beyond the
forecast of flow. Recently, [19] compared many approaches experimentally, including simple fore-
casting methodologies, ARMA-like models, and machine learning models. They confirmed that
models that combine historical data with recent data clearly outperform approaches that use only
one or the other. For a model to be suitable for on-line traffic prediction applications, it must be
both computationally efficient and accurate in its prediction. Simple non-model based prediction
approaches are fast, but usually lack the accuracy of more sophisticated model-based or machine
learning-based models. On the other hand, machine learning techniques can be slow and hard to
calibrate. A special case is the seasonal ARIMA model: some authors use data only from one
previous period (commonly the previous week), which leads to fast computation and good accu-
racy. The drawback is that if the previous week contained irregular data, for example caused by an
extraordinary event such as an accident, the accuracy of the forecast can diminish significantly.

In this paper, we propose a technique that combines the strengths of a model that uses a
large amount of historical data with an autoregressive moving average with exogenous input (AR-
MAX) model that is fast in computation. We choose an ARMAX model as the foundation of our
method because it is a well-known time-series technique that is supported by well-established sys-
tem identification theory [20]. Moreover, under relatively mild assumptions, optimal multi-step
ahead output predictors can be determined in a computationally efficient manner based on AR-
MAX models [21]. In our proposed traffic flow prediction method, historical data are aggregated
to flow profiles, which represent a meaningful average for each weekday. To reduce the effect of
noise and obtain an accurate historical average, multiple months of data are aggregated to seven
typical daily profiles for each detector. As shown in Figure 2 and mentioned above, traffic ex-
hibits a daily and a weekly period. We therefore calculate flow profiles that represent a typical
day, one for each day of the week. Since this computation involves a large amount of data, it can
be computationally demanding. This, however is not a problem in practice, since these nominal
historical profiles can be computed in an off-line fashion, so that no running time constraints ap-
ply. Using the nominal historical profile as a deterministic input and the actual traffic flow as the
noise-contaminated measured output, we identify in a real-time recursive fashion the parameters of
an autoregressive moving average with exogenous input (ARMAX) model that best describes this
input/output relation. Using the results of the ARMAX identification process, we determine the
optimal multi-step ahead predictor model of the traffic flow, which utilizes the flow measurements
up to the current time and the nominal historical profile by solving a Bezout equation [21]. Due to
its relatively low on-line computation time, this system can be applied in practice to predict traffic
flow in real-time.

The remainder of this paper is organized as follows. The next section explains the method-
ology of the proposed algorithm. It consists of the aggregation of the historical data, the ARMAX
model description, the estimation of its parameter values, and the actual forecast of the boundary
flows. Then, the results from experiments are presented based on empirical mainline and on-ramp
inductive-loop data from the I-15 freeway in California, where a one-hour flow forecast is com-
pared against measured flow data. The paper concludes with a summary and a brief discussion
concerning practical applications and further research.
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FIGURE 3 Concept of traffic flow prediction at time step L; dashed line: predicted traffic
flow with horizon Np; dash-dotted line: recent traffic flow measurements; solid line: nominal
historical profile

METHODOLOGY
In this section, we present how to determine the multi-step ahead optimal predictor of traffic flow,
based on both historical and the most recent traffic data. The concept of flow prediction is illus-
trated in Figure 3 for a vehicle detector station (VDS). In this figure, profile u(k) is the nominal his-
torical flow data for one day, sampled with sampling rate ∆t so that the profile consists of N = 24h

∆t
data points. Profile y(k) is the recent flow data of the prediction day from midnight to the current
time step L. Given u(k) and y(k), the proposed prediction algorithm computes the multi-step traffic
flow prediction yp(k+D|k) for a given prediction horizon Np, where D = 1, . . . ,Np.

A brief description of the proposed prediction algorithm is as follows. First, the historical
traffic flow data is categorized by the day of the week, so that a nominal flow profile u(k), for
k = 1, . . . ,N is obtained for each day of the week. Using the representative nominal flow profile
u(k) as the deterministic input, and the recent traffic flow y(k) as the noise-contaminated output,
the parameters of an ARMAX model are recursively estimated at each time step k. Based on the
estimated ARMAX parameters, the Bezout equation is solved at every time step, which produces
the parameters of the optimal D-step ahead output predictor yp(k+D|k), given only output data up
to time step L and the sequence of historical data u(k). In the following, we present each step in
detail.

Nominal Flow Profile for each Day of the Week
In the first step, nominal historical flow profiles are determined for each day of the week. The
nominal profile is robust with respect to outliers, which are caused by, for example, traffic accidents
or detector failures.

Let a VDS measure the flow over the course of S full days. These data are represented as a
set

M = {x1,x2, · · · ,xS} (1)

of historical traffic flow data, where each element

xi =
[
xi(1),xi(2), · · · ,xi(N)

]T ∈ RN
+ (2)
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is a traffic flow profile over day i, for i = 1, . . . ,S, with xi(k) as the flow measured at time step k.
The data are then categorized by the day of the week. Define the nominal flow profile

of a given day of week as ud(k), where d ∈ {Mon, Tue, Wed, Thu, Fri, Sat, Sun}. The nominal
flow profile of each day of the week is calculated as the median of each sampling time step. For
example, the typical profile of Monday is calculated as

uMon(k) = median{xi(k) : day i is a Monday} . (3)

Aggregating many profiles to few typical profiles filters out some of the noise of the data, which
leads to a robust estimation of typical profiles. Furthermore, by using the median, the effect of
outliers is eliminated.

In this aggregation step, potentially a large amount of data are aggregated, which might
require significant computational resources. However, this is not an issue for the on-line operation
of the system, because the typical profile can be computed off-line.

For the on-line forecast procedure that will be described in the next section, the nominal
profile of the respective day of the week is used, i.e. if the forecast day is a Monday, then u(k) =
uMon(k) will be used.

ARMAX Model Definition and Parameter Estimation
In order to model the correlations of flow measurements in time, an autoregressive moving average
model with exogenous inputs (ARMAX) model is employed in this research. Consider a recur-
sive ARMAX model in every time step k described by the following linear stochastic difference
equation

A(q−1)y(k) = B(q−1)u(k)+C(q−1)w(k) , (4)

where y(k) is the measured flow of the VDS at time step k, u(k) is the nominal historical flow data
at time step k, and w(k) is assumed to be a zero-mean innovation sequence, i.e. E{w(k)}= 0 and
E{w(k)w(k− j)} = 0 for 0 < j ≤ k. A(q−1), B(q−1) and C(q−1) are scalar polynomials in the
backward shift operator q−1 [q−1y(k), y(k−1)] of orders na, nb and nc, respectively, defined by

A(q−1) = 1+a1q−1 + ...+anaq−na

B(q−1) = b0 +b1q−1 + ...+bnbq−nb

C(q−1) = 1+ c1q−1 + ...+ cncq
−nc . (5)

The order of the polynomials na, nb and nc are design parameters.
As described above, the exogenous known input u(k) in Eq. (4) is calculated as the median

of a large number of historical flows for a unique day of the week (e.g. all Monday flows in a
given month). Therefore it can be considered as a deterministic input in this model. Day to day
variability in the flow y(k) from the median u(k) can be due to both deterministic factors (e.g. the
flow on a particular day could be consistently 5 % higher than the median) or stochastic effects,
such as random colored noise. A fairly general model that includes many of these effects is a state
space model with input and measurement white noises

x(k+1) = Ax(k)+Bu(k)+Bwm(k) (6)
y(k) = Cx(k)+Du(k)+ v(k)
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where the input noise m(k) and the measurement noise v(k) are both zero mean white noises,
x(k) ∈ Rn is the state and A, B, Bw, and C are matrices of the appropriate dimensions, and D is a
scalar. A well-known result in stochastic systems [21] is that, under fairly mild assumptions and
stationarity, the system in Eq.(6) can also be described by the ARMAX model in Eq. (4), where in
this case the zero mean innovation signal w(k) is equal to the Kalman filter residual for the system
in Eq. (6) and the roots of the polynomial C̄(z) = zncC(z−1) are the closed loop poles of the Kalman
filter. Similar results exist for time-varying matrices A(k), B(k), Bw(k), C(k) and gain D(k) and/or
non-stationarity conditions. However in these cases, the coefficients of the polynomials A(q−1),
B(q−1) and C(q−1) in Eq. (5) are time-varying.

We now assume that the flow y(k) can be adequately described in terms of the ARMAX
model (4), using the known exogenous input u(k), but will not assume that the (possibly time-
varying) coefficient of the polynomials A(q−1), B(q−1) and C(q−1) in Eq. (5) are known, nor the
innovations signal w(k) is measurable. The coefficients of the polynomials in (5) are estimated us-
ing a Recursive Least Squares (RLS) Parameter Adaptation Algorithm (PAA) [21] with forgetting
factor and covariance resetting [22]:

Â(q−1) = 1+ â1(k)q−1 + ...+ âna(k)q
−na

B̂(q−1) = b̂0(k)+ b̂1(k)q−1 + ...+ b̂nb(k)q
−nb

Ĉ(q−1) = 1+ ĉ1(k)q−1 + ...+ ĉnc(k)q
−nc (7)

The a-posteriori estimation output ŷ(k) is given by

ŷ(k) =−Â∗(q−1)y(k)+ B̂(q−1)u(k)+Ĉ∗(q−1)e(k) (8)
e(k) = y(k)− ŷ(k) , (9)

with Â∗(q−1) = Â(q−1)− 1 and Ĉ∗(q−1) = Ĉ(q−1)− 1. The parameters are updated in order to
make the residual e(k) in (9) converge to an innovation sequence. Details regarding the imple-
mentation and convergence properties of the recursive parameter estimation algorithm used in this
paper can be found in many adaptive signal processing and control texts, such as [20, 21]. In
essence, under stationary assumption and constant coefficients, it can be shown that the output
estimation error e(k) = y(k)− ŷ(k) converges to an innovation sequence and, under further as-
sumptions regarding C(q−1), the coefficient estimates converge to the true coefficients in (5).

The algorithm in [22] uses two design parameters, the forgetting factor and the regulariza-
tion factor, to improve the parameter estimation performance and allow tracking of slowly time-
varying coefficients. The forgetting factor is a real number greater than zero and less than one
(typically very close to one), which enhances the ability of the PAA to track parameter variations.
The smaller the forgetting factor is, the smaller the contribution of older data is to the RLS PAA.
The regularization factor is another RLS PAA design parameter. As detailed in [22], the regulariza-
tion procedure prevents the RLS gain matrix (also known as the covariance matrix) from becoming
unbounded under lack of persistence of excitation and prevents the estimated parameter-bursting
phenomenon. Estimated parameter bursting (i.e. parameters suddenly become large in magnitude)
may lead to large overshoots in the optimal predictor.

Optimal Traffic Flow Predictor
In this section, we describe the optimal prediction method that is employed in this paper. Assume
that the RLS ARMAX parameter estimates in (7) converge such that e(k) = y(k)− ŷ(k) converges
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FIGURE 4 The optimal traffic flow predictor

to an innovation sequence and, in particular, the estimated noise polynomial Ĉ(q−1) is asymptot-
ically stable (i.e. all roots of the polynomial Ĉ(z) lie outside the unit circle). Given the median
historical flow data u(k) for k = 1, · · · , N and recent flow data [y(1), · · · ,y(L)], the optimal (mini-
mum variance) D-step ahead predictor of y(L+D), denoted as yp(L+D|L), satisfies the following
difference equation [21],

Ĉ(q−1)yp(k+D|k) = Ĝ(q−1)y(k)+ F̂(q−1)B̂(q−1)u(k+D) . (10)

The polynomials Ĝ(q−1) and F̂(q−1)

F̂(q−1) = 1+ f̂1q−1 + ...+ f̂D−1q−(D−1) (11)

Ĝ(q−1) = ĝ0 + ĝ1q−1 + ...+ ĝna−1q−ng (12)

with ng = max(nc−D,na−1), are the unique solution of the Bezout equation,

Ĉ(q−1) = F̂(q−1)Â(q−1)+q−DĜ(q−1) . (13)

Note that F̂(q−1) and Ĝ(q−1) depend on k and D. We omitted the indexes for legibility.
Let Ĥ(q−1) be the product of the two polynomial F̂(q−1) and B̂(q−1):

Ĥ(q−1) = F̂(q−1)B̂(q−1) = b̂0q−1 +(b̂1 + f̂1b̂0)q−2 + · · ·+ f̂D−1b̂nbq−(D−1+nb) . (14)

Then, the optimal predictor in (10) can be written in transfer function form as

yp(k+D|k) = Ĝ(q−1)

Ĉ(q−1)
y(k)+

Ĥ(q−1)

Ĉ(q−1)
u(k+D) . (15)

The block diagram of the optimal predictor in (15) is shown in Figure 4. The predictor is a two
input one output system. Given the current data y(k) and nominal historical flow data u(k+D) as
inputs, the system generates the D-step ahead prediction of y(k), which is the output yp(k+D|k).
The polynomials in the transfer functions of the predictor are updated at each time step, allowing
it to track time-varying changes in the parameters in Eq. (5) using both current flow and historical
flow data. This adaptive property means that the proposed predictor is potentially able to predict
traffic flow under irregular and incidental traffic conditions, as the following experiments will show.
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EXPERIMENTAL SETUP
In this section, we describe the experimental environment used to validate the proposed traffic flow
prediction algorithm based on empirical data from a Californian freeway.

Data
Traffic flow data for six vehicle detector stations (VDS) along the freeway corridor I-15 North,
near San Diego, California, were obtained through the Performance Measurement System (PeMS)
[8]. Three of the six VDS are located on the mainline with identification numbers and post mileage
(PM) 1108595 (at PM 24.065), 1108562 (at PM 26.249), and 1108767 (at PM 27.138). The three
other VDS are located on on-ramps with identification numbers 1108596 (at PM 24.065), 1108563
(at PM 26.249), and 1108768 (at PM 27.138). Five-minute historical flow data were collected
from August 1, 2012 to December 31, 2012. The collected flow data (288 observations per day)
were aggregated to ∆t = 15 min, which results in N = 96 observations per day. The five-minute
historical flow data is aggregated into 15-min data to reduce the historical flow data points per
day and for filtering the noise in five-minute historical data. Therefore, 15-min data were used to
compute the nominal typical flow profiles ud(k) per day of the week. In order to study the influence
of a special event on the traffic flow prediction method proposed in this paper, we used traffic data
collected during the week when the Super Bowl XLVII game took place, which is a large event in
the United States. The unusual traffic flow pattern due to the Super Bowl event is shown in Figure 6
(solid line, y(k)). On Super Bowl day, people tended to stay at home or to visit friends to watch the
game which began at 15:30. As a consequence, the traffic flow pattern in the period from 15:30 to
18:30 is significantly lower than the historical flow. An increase in flow that can be observed after
20:00 by the end of the game, which is probably caused by people returning to their home after
watching the game. The proposed method is used to predict the flow in a rolling-horizon fashion
from Monday January 28 to Sunday February 3, 2013 between 06:00 and 22:00.

ARMAX Estimation and Prediction Parameter Values
The ARMAX parameters used for the experiment are as follows. The order of ARMAX model
was selected to be (na,nb,nc) = (2,1,2). The selection of the order of the ARMAX model was
based on the following three reasons. First, increasing the order of these polynomials in ARMAX
model leads to overfitting and reduces the computation efficiency. Second, we chose the order of
the polynomial A(q−1) and C(q−1) to be the same. Third, we noticed that making the orders of
A(q−1) and C(q−1) larger than two, resulted in little or no prediction improvement. The forgetting
factor was selected as 0.97, and the regularization factor was selected as 0.01 after a brief trial an
error period. Both of these factors are design parameters for the RLS PAA algorithm in [22]. Since
the sampling rate ∆t is 15 min and the prediction horizon is one hour (Np = 4), the prediction step
D is varied from 1 to 4, in order to make 15 min, 30 min, 45 min and 60 min ahead predictions.

Prediction Accuracy Performance
Given the real flow data y(k) and the predicted flow data yp(k|k−D) at time step k and predic-
tion step D, the performance was evaluated based on mean absolute percentage error (MAPE) of
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prediction step D for a VDS as follows

MAPE(D) =
1
n

k1

∑
k=k0

|y(k)− yp(k|k−D)|
y(k)

. (16)

The starting and end time steps are k0 = 06:00
∆t and k1 = 22:00

∆t , respectively, which leads to n =
k1− k0 + 1 = 65 time steps for each day where a prediction is started. This error (16) is further
averaged over the detector type (mainline/on-ramp).

RESULTS AND DISCUSSION
In this section, the traffic flow prediction results of the method proposed are presented and com-
pared against a simple predictor based only on the nominal historical profile. We first show the
prediction of a regular day, and then of the Super Bowl day, where irregular traffic flows occurred.

Flow Prediction on a Regular Day
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FIGURE 5 Flow prediction in weekday; top: mainline; bottom: on-ramp

The flow prediction result of a mainline VDS (1108595, 5 lanes) of a weekday (Thursday
31 January 2013) is shown in the top part of Figure 5. The flow measurements y(k) are indicated
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by the solid line. The nominal historical profile u(k) is shown by the dashed line. The prediction,
indicated by the remaining four lines, is close to the actual measurements so that only very small
prediction error occurs. Because the regular is close to the nominal historical profile, the prediction
is very close to the actual data.

The flow prediction result of an on-ramp VDS (1108563) on a weekday (Wednesday 30
January 2013) is shown in the bottom part of Figure 5. The difference between the predicted and
the actual flows is small.

Flow Prediction on Super Bowl Sunday
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FIGURE 6 Flow prediction of Super Bowl Sunday; top: mainline; bottom: on-ramp

The flow prediction of a mainline VDS (1108595) for the Super Bowl day (Sunday 3 Febru-
ary 2013) is shown in the top part of Figure 6. Notice that flow leading up to the beginning of the
game at 15:30 is drastically lower than the nominal flow u(k). Also, the top part of Figure 6 shows
that the prediction result yp(k+D|k) for D = 1, . . . ,4 more closely follows the measured flow y(k)
than the historical flow u(k).

Using only the nominal historical profile as forecast leads to very large errors, since the
drop of the traffic flow at 15:30 is completely ignored. The proposed prediction algorithm therefore
outperforms the historical predictor. Moreover, the result shows that the one step prediction yp(k+
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Mainline MAPE [%]
Predictor Mon Tue Wed Thu Fri Sat Sun*

yp(k+1|k) 6.4 5.9 6.2 5.1 6.7 6.3 10.3
yp(k+2|k) 7.4 5.9 6.4 5.3 7.0 7.1 12.4
yp(k+3|k) 7.8 5.9 6.7 5.5 7.0 7.2 14.5
yp(k+4|k) 7.8 6.1 7.0 5.5 7.0 7.6 16.6
u(k) 8.0 7.0 7.6 5.9 7.4 7.9 21.5
*Super Bowl day

TABLE 1 Comparison of Proposed Predictor and Historical Predictor for Mainline VDS

1|k) has better performance than larger steps. As the prediction step increases, the prediction
deviates from the measurement flow, especially in the case of special event. The prediction error
increases when the prediction step D increases.

The traffic flow prediction of an on-ramp VDS (1108563) on the Super Bowl day is shown
in the bottom part of Figure 6. The influence of the Super Bowl game is visible at this location as
well. The measured traffic flow y(k) behaves normally until 15:30, then the flow decreases between
15:30 and 18:30. Before 15:30, the proposed prediction result yp(k+D|k) for D = 1, . . . ,4 and the
historical flow u(k) matches the measured traffic flow data y(k). However, the prediction starts to
deviate from the measured flow at 15:30. After 15:30, the prediction overestimates the traffic flow
until 18:30, because the measured flow data has a significant difference with historical flow data.

Evaluation of Prediction Performance using the MAPE Criterion
The MAPE criterion defined in (16) are averaged for three mainline and three on-ramp VDS, which
is shown in Tables 1 and 2, respectively. In addition, the MAPE criterion evaluates the prediction
performance for the entire day rather than a specific time period of a day because the predictor is
using the historical pattern of a whole day to make prediction.

In the mainline case, both of the MAPE values for the proposed method and the historical
predictor are approximately 7% for the normal days (Monday to Saturday), which indicates that
the MAPE error does not change significantly across normal days. However, due to the influence of
the special event on Sunday, the MAPE values are higher than other days in the week. On Sunday
(Super Bowl day), the error of the proposed method is 10.3% for the D = 1 step prediction. The
error increases with the length of the prediction horizon. At D = 4, the prediction error is 16.6%,
while the MAPE error using historical data for prediction is 21.5%. The proposed method based
on the ARMAX model therefore outperforms using only historical data to predict the traffic flow.

In the on-ramp case, the MAPE value for both the proposed method and the historical
predictor are distributed from 20% to 29% for the normal days (Monday to Saturday), which is
higher than normal days in the mainline case. On Sunday (Super Bowl day), the error of the
proposed method is 31.3% for the D = 1 step prediction. At D = 4, the prediction error is 34.3%,
while the MAPE error using historical data for prediction is 38.7%. The proposed method based
on the ARMAX model still outperforms using only historical data to predict the traffic flow in the
on-ramp case.

The predictions at mainline show a systematically lower error than those at on-ramps. The
MAPE values in Tables 1 and 2 show an error for mainline flow prediction between 6% and 8%,
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On-ramp MAPE [%]
Predictor Mon Tue Wed Thu Fri Sat Sun*

yp(k+1|k) 22.1 21.9 23.1 21.9 28.1 31.7 31.3
yp(k+2|k) 21.9 21.6 23.1 21.4 27.9 32.1 32.9
yp(k+3|k) 21.8 22.3 22.7 21.6 27.0 31.6 33.6
yp(k+4|k) 20.6 20.6 22.8 21.1 26.4 31.8 34.3
u(k) 22.8 21.9 24.0 21.9 28.8 32.3 38.7
*Super Bowl day

TABLE 2 Comparison of Proposed Predictor and Historical Predictor for On-ramp VDS

while the on-ramp flow prediction error ranges from 20% to 33%, for a regular day. The reason is
that mainline traffic is significantly higher than that of on-ramps and is, in fact, the aggregation of
many single on-ramps flows, namely those that are located upstream. This aggregation leads to a
systematic reduction of signal noise. Since the signal is less corrupted by noise, the estimation of
the ARMAX parameters is more precise and consequently the prediction is more precise, i.e. its
errors are lower.

CONCLUSIONS
We have developed a simple and fast, yet accurate, method to forecast traffic flow based on data
from vehicle detector stations. An optimal multi-step ahead predictor combines the most recent
measured flow data with a nominal historical flow profile. The parameters of this predictor are esti-
mated by an autoregressive moving average model with exogenous input (ARMAX). This method
predicts traffic flow under irregular conditions significantly better than a simple predictor based
on the nominal historical profile alone. We showed by the example of the Super Bowl day, where
traffic patterns differ drastically from regular Sundays, that the prediction error is reduced by up to
ten percentage points.

The nominal historical profile is computed as the median over months of historical data,
stratified by the day of the week. Using the median ensures that outliers caused by failing detectors
or irregular days do not affect the nominal profile. The nominal profiles are computed off-line so
that the on-line forecast only consists of the ARMAX estimation and prediction method, which is
computationally very fast. This combination of a robust estimation of the nominal profile, the ac-
curate prediction of the near-future traffic flow, and the fast computation make this method suitable
for practical applications of boundary flow forecasting and its use in traffic management systems.

Further research will focus on the prediction of an error bound and the minimization of the
prediction error, which provides information to the traffic flow forecast engine about the reliability
of the boundary forecast. This in turn can be used to make the control decisions of the traffic
manager more robust. Also, to incorporate route choice of travelers before they enter the network,
we will investigate spatial correlations of neighboring on-ramp detectors, which is expected to
increase the overall accuracy and decrease the uncertainty of the prediction. In addition, to pre-
dict boundary demand rather than flow, the inclusion of information about the traffic regime (free
flow vs. congestion), measurements like density or occupancy will be necessary. Finally, since the
literature already provides a large amount of flow forecasting algorithms, a comparison of differ-
ent methods both in terms of prediction accuracy and running time would support scientists and
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practitioners in their choice of an appropriate boundary flow prediction model.
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