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Abstract—Two versions of an arterial travel time estima-
tion method based on vehicle re-identification using wireless
magnetic sensors were studied across an arterial segment with
multiple intersections. Both methods are based on the same
travel time estimation system, but one of them uses the so
called original signal processing algorithm while the other one
uses a recently modified version of it. Both methods were tested
on a 0.51 km (0.32 mile)-long segment of West 34th Street
in New York, NY, under harsh driving conditions (i.e. right
after a winter storm). The original and modified system results
were compared against ground truth data obtained from video.
Based on the ground truth data it was possible to determine
the travel time distribution and the percentage of vehicles that
each of the different methods was able to re-identify. During
an analysis period of 45 minutes, 318 vehicles were registered
to go across the arterial segment. The original method has
a 62% re-identification rate, while the modified method has
a 69% rate. Based on comparisons of travel time distribution
and empirical cumulative distribution functions, it was observed
that the modified method travel time distribution is closely
related to the ground truth distribution, while the original
method significantly diverges from the ground truth at long
travel times.
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I. INTRODUCTION

The work presented in this paper is a continuation of the

work in [1], where the vehicle re-identification algorithm

used in the arterial travel time estimation system, discussed

in [2] and considered for this analysis, was revised, improved

and validated at a single lane loop on-ramp. The modi-

fied vehicle re-identification algorithm that resulted from

[1] showed an improved vehicle re-identification rate and

accuracy at the test site.

In heavily used arterial streets, where stop-and-go traffic

is similar to the one observed in on-ramps under congested

conditions, the modified vehicle re-identification algorithm

explained in [1] has the potential to improve travel time

estimation. In order to determine the effect of the modified

method on arterial travel time estimation, a field test was

performed in a segment of West 34th Street in New York City

(Figure 1). The performance of the original system and the

system with the modified vehicle re-identification algorithm

is studied using ground truth data obtained from video.

The paper is organized as follows: the arterial travel time

estimation system is summarized in Section II. The test site

and vehicle detection installation are described in Section III.

The ground truth (GT) and the magnetic sensor array data

are explained in Section IV. An analysis of the ground truth

and the vehicle detection system data is presented in Section

V. Section VI contains the results of the arterial travel time

estimation methods and the performance analysis of both

methods based on ground truth. Conclusions are presented

in Section VII.

II. ARTERIAL TRAVEL TIME ESTIMATION SYSTEM

The system relies on matching vehicle signatures from

wireless sensors. The sensors provide a magnetic signature

of a vehicle and the time when the magnetic signature

is measured. A re-identification of signatures between two

locations gives the corresponding travel time of the vehicle.

The travel times for all matched vehicles yield the travel time

distribution. The travel time estimation method summarized

in this section is described in [2].

A. Vehicle Magnetic Signature

The magnetic vehicle signature consists of a collection of

peak value sequences (local maxima and minima) extracted

from the ’raw’ magnetic signals measured by an array of

sensors. Each sensor has a three-axis magnetometer that

measures the x, y and z directions of the earth’s magnetic

field as a vehicle goes over it. Each sensor generates three

peak sequences extracted from the x, y and z component

signals, which constitute a signature slice X i = (X i
x,X

i
y,X

i
z).

For this analysis, five slices constitute a vehicle’s signature,

since there are five sensors in each array.

B. Vehicle Re-Identification Algorithm Summary

The vehicle re-identification is done in two steps:

1) Signal Processing Step: In this step, each pair (Xi,Yj)
of start and end vehicle signatures is compared to produce

a distance d(i, j) = δ (Xi,Yj)≥ 0 between them. The smaller

δ (Xi,Yj) the more likely it is that Xi,Yj are signatures of the

same vehicle. This step reduces the two signature arrays X =



{Xi, i = 1, · · · ,N} and Y = {Yj, j = 1, · · · ,M} to the N ×M

distance matrix D = {d(i, j) | 1 ≤ i ≤ N,1 ≤ j ≤ M}.

This step of the vehicle re-identification method was

modified in [1] in order to enhance the matching rate and

accuracy during congested conditions, when vehicles travel

slowly or stop while going over the array of sensors. For

this analysis, original method refers to the arterial travel

time estimation system as described in [2], while modified

method refers to the same system with the enhanced signal

processing step described in [1].

2) Matching Step: In the second step a matching func-

tion assigns to each distance matrix D a matching µ :

{1, . . . ,N}→{1, . . . ,M,τ}, with the following interpretation:

µ(i) = j means that the start (upstream) vehicle i is declared

to match (be the same as) end (downstream) vehicle j;

µ(i) = τ means i is declared not to match any downstream

vehicle.

In this step, a constrained matching function is used,

which does not permit vehicle overtaking. The algorithm

matches the largest number of vehicles that satisfy the First

In, First Out (FIFO) condition. Note that this constraint

slightly affects the matching rate (e.g. less potential vehicles

available to re-identify) but greatly improves accuracy if

vehicle overtaking is not significant [2].

C. Travel Time Estimation

Every time a vehicle signature is measured, a correspond-

ing time stamp is paired to the signature. The start and

end sensor array data correspond to a collection of data

pairs of the form (si,Xi) and (t j ,Yj), respectively. When

two signatures (Xi,Yj) are determined to be a match by the

vehicle re-identification algorithm, the travel time across the

segment is determined to be t j − si.

In a deployment like the one shown in Figure 1, where the

arterial segment is composed of multiple lanes, the vehicle

re-identification algorithm is traditionally used with upstream

and downstream array data coming from the same lane. For

the NY test site, the traditional way to run the algorithm

would involve using data from the fast lane start and end

arrays, represented by f ast → f ast, independently of the data

coming from the slow lane start and end arrays, depicted by

slow → slow. This practice is based on the assumption that

for the most part, vehicles tend to stay in their same lane as

they go through the segment.

III. TEST SITE

The New York City arterial test site is a 0.51 km (0.32

mile)-long segment of West 34th Street that intersects the

7th and 8th avenue (see Figure 1). The segment is formed by

three lanes, however, this analysis focuses on the travel time

estimation of vehicles in the fast and slow lanes. The third

one, a bus only lane, was not transited during the analysis

period because it was blocked at different locations along the

segment as shown in Figure 2 (b).

This test site is a suitable location to study the performance

of arterial travel time estimation systems, since it has a

Fig. 1. 0.32-mile segment of 34th Street in New York City

configuration and driving dynamics that encompasses what

can be encountered in arterial streets in many big cities:

drivers are aggressive, lane changing is significant, taxis and

buses stop as they go across the segment, people double

park, and there is vehicle queueing at the detector locations.

Furthermore, vehicles get in and out of the segment not only

at the start and end locations, but also at the intersections in

between. If a travel time estimation system yields accurate

results under these traffic conditions, then it can be expected

to have a comparable or better performance in arterial streets

where traffic conditions are more ordered and less congested.

The locations of the sensor arrays at this test site do

not follow the manufacturers guidelines. The sensors were

installed at the locations where tag readers had been installed

in order to be able to make a comparative analysis between

different arterial travel time estimation systems. This resulted

in vehicles going over the detector at fast and slow speeds,

and even resting on top of them while waiting for the vehicles

on the queue to move. Normally sensor arrays are installed

just after the intersection to maximize free flow.

There was a winter storm with heavy snowfall that ended

one day before the analysis period. This resulted in difficult

driving conditions that are not typically encountered at many

installation sites. The snow on the street blocked part of

the bus lane along the segment due to snow being plowed

to the side of the street, which resulted in vehicles (e.g.

taxis) stopping or double parking in the slow lane. This

led to considerable lane changing from the slow to the fast

lane and to vehicles traveling off the center of the lane.

These conditions are similar to the conditions described in

[1] for on-ramps, for which the modified method improved

performance.

A. Vehicle Detection System

The vehicle detection system deployed at the New York

test site and used for this study was developed by Sensys

Networks, Inc. This system consists of two access points

and 20 wireless magnetic sensors installed in a five sensor

array configuration in the middle of the fast and slow lanes

at the start and end location, as shown in Figure 2. See [3]

for details on this vehicle detection system.



Fig. 2. (a) Segment Start Location (b) Segment End Location

Fig. 3. (a) Camera recording vehicles at the START Location. (b) Camera
recording vehicles at the END location.

IV. DATA

A. Ground Truth Data

Ground Truth (GT) data was obtained from videos

recorded on January 28, 2011 from 10:54 am to 11:41 am.

A time stamp, transited lane, vehicle type, and the vehicle

position with respect to the middle of the lane were recorded

for each vehicle entering or leaving the arterial segment at

the start and end locations.

Two independent cameras were used to obtain the ground

truth data. From the first camera (Figure 3 (a)) it was possible

to obtain the time slane
GTk

when vehicle k entered the arterial

segment at the start location and went across the sensor array

located on either the f ast or the slow lane, where slane
GT1

≤

slane
GT2

≤ ·· · slane
GTNGT

. From the second camera (Figure 3 (b))

it was possible to get the time t lane
GTl

when vehicle l exited

the arterial segment and went through the downstream array

located on either the f ast or the slow lane, where t lane
GT1

≤

t lane
GT2

≤ ·· · t lane
GTMGT

. The data used to obtain a GT travel time

distribution consists of two vectors {slane
GTk

,k = 1, · · · ,NGT =

495} and {t lane
GTl

, l = 1, · · · ,MGT = 434}.

The GT matching of upstream to downstream vehicles k→
l was done visually and resulted in 318 matches. 177 entering

vehicles k did not have a matching exiting vehicle l (e.g.

vehicles turned or parked before reaching the end location)

while 117 exiting vehicles l were not matched to any entering

vehicle k (e.g. vehicles got into the segment at an intersection

or were originally parked inside of it).

TABLE I
VEHICLE COUNT BASED ON GROUND TRUTH AND SENSOR ARRAYS

DATA

START location END location

GT Array GT Array

N f ast 205 214 M f ast 334 324

Nslow 290 292 Mslow 100 220

N 495 506 M 434 544

TABLE II
CHOSEN VEHICLES

k l Veh. Type Lane : Start → End Travel Time [sec]

11 τ Taxi, car – –
12 τ SUV – –
13 11 Taxi, car f ast → f ast 49
14 12 SUV f ast → slow 50
15 18 Car f ast → f ast 107
16 τ Taxi, prius – –
17 τ Car – –
18 19 Bus slow → f ast 116
19 τ Car – –
20 20 Taxi, car slow → f ast 116
21 21 SUV f ast → slow 116
22 22 Taxi, minivan f ast → f ast 115
23 24 Bus slow → f ast 121
24 26 Car slow → f ast 120
25 τ Minivan – –

B. Vehicle Detection System Data

Consider a link formed by one of the start arrays, laneS,

and one of the end arrays, laneE . During the video recording

time interval, detection events indexed i = 1, · · · ,NlaneS were

registered by laneS at times slaneS
1 < slaneS

2 < · · · slaneS
NlaneS . This

array measured a signature X laneS
i each time there was

a vehicle detection event i together with the time slaneS
i .

Detection events indexed j = 1, · · · ,MlaneE were registered

by laneE at times t laneE
1 < t laneE

2 < · · · t laneE
MlaneE . This array

measured a signature Y laneE
j each time there was a detec-

tion event j together with the time t laneE
j . For this study,

the vehicle detection system data consists of four arrays:

(sslow
i ,X slow

i ) , (s f ast
i ,X

f ast
i ), (tslow

j ,Y slow
j ) and (t f ast

j ,Y
f ast
j ).

Table I summarizes the vehicle detection system counts and

compares them against the ground truth. Note that detection

errors cannot be avoided and may create multiple signatures

of the same vehicle at one location or may result on missing

signatures due to undetected vehicles, as discussed in [4].

The vehicle re-identification algorithm summarized in

Section II can be independently applied to the following

combinations of data arrays: f ast → f ast, f ast → slow,

slow → f ast, and slow → slow, even though traditionally

only the first and the fourth combinations are used.

1) Subset of Vehicles: In order to be able to analyze the

system performance in detail, a platoon of 15 continuous

vehicles were chosen from the 495 vehicles that entered

the arterial segment at the start location. These vehicles are

shown in Table II. From this subset, a few vehicles were

chosen to analyze their vehicle signatures.



V. GROUND TRUTH AND VEHICLE DETECTION SYSTEM

DATA ANALYSIS

A. Lane Changing

Lane changing can have a significant degrading effect on

the travel time estimation system performance if it continu-

ously occurs as vehicles are going over the sensor arrays.

If vehicles are traveling evenly in between lanes as they

are going through the start or end location, the signature

is split between both arrays at that location, and the middle

part of the signature, which is generally the most useful, is

not correctly measured by any of them. When this happens

vehicles are very likely to be unmatched by the algorithm,

reducing the vehicle re-identification rate.

Lane changing was very common during the analysis

period. The main reason why people where changing lanes

at the arterial segment was to overtake vehicles obstructing

the slow lane. A large portion of the vehicles that changed

lanes close to the end location triggered a detection event

at both the fast and slow sensor arrays. This is reflected in

the data from Table IV, that shows that 122 vehicles that

entered the segment through the slow lane, exited it through

the fast lane, while only 22 vehicles entered in the fast lane

and exited in the slow one. Furthermore, Table I shows an

overall 25% vehicle counting error by the vehicle detection

system at the end location, while counting error in the start

location was only 2.3% .

The large discrepancy in vehicle counting and the continu-

ous lane changing were the result of vehicles double parked

for extended periods of time in the slow lane downstream

of the end location. This forced vehicles on the slow lane

to change to the fast lane as they were exiting the segment.

Many of these vehicles were almost completely changed to

the fast lane as they were going over the end location, but

some of the sensors from the slow array were also triggered

by them. The exiting signatures of vehicles k = 15, 18 and

23 listed in Table II were some of the signatures studied

because they were detected by both arrays as they were

exiting the segment. Signatures from the slow lane array

under this condition contained no useful data; most of the

vehicle signature information was captured in the signature

data measured by the fast lane array. After this analysis it

was observed that when a vehicle triggers detection events

at multiple arrays at the same location while going mostly

in one lane, significant vehicle counting error in one of the

lanes may result. However, this would barely affect the travel

time estimation results because signatures coming from the

unused lane array would yield large distances in the signal

processing step of the vehicle re-identification algorithm (see

Section II) which would make them unmatched.

B. First In, First Out Condition

As it was mentioned in Section II, the matching algo-

rithm is constrained and does not allow overtaking. In other

words, when the matching step is performed, the sequence

of matched vehicles satisfies the FIFO condition. With the
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Fig. 4. Synthetic Distance Matrix (left) Complete Data Set (right) Largest
Vehicle Sequence Satisfying the FIFO condition

ground truth data collected from video it is possible to

determine the effect of the FIFO constraint on the matching

rate upper bound. Note that since the vehicle re-identification

algorithm is run independently for different array combina-

tions, the FIFO constraint is only imposed among vehicles

going on the same link.

Figure 4 (left) is the gray scale coding of a matrix that

relates the start signatures measured by the slow lane array

to the end signatures measured by the fast lane array (i.e. link

slow→ f ast) based on GT data. If the kth signature (row) and

the lth signature (column) correspond to the same vehicle,

the pixel is black, otherwise it is white. A perfect matching

algorithm would re-identify 122 vehicles across this link.

However, if a FIFO constrained vehicle re-identification

algorithm is used instead, it would be possible to match only

95 vehicles, which corresponds to the number of elements

in the largest vehicle sequence, out of the 122 vehicles, that

satisfy the FIFO constraint. Figure 4 (right) shows the gray

scale coding of the matrix with this vehicle sequence. For this

particular link, 72 % is the upper bound on the matching rate

that could be expected from the re-identification algorithm

summarized in Section II assuming perfect accuracy.

Table IV lists, in the second and third column, the number

of vehicles that went across each of the links in the arterial

segment. In the fourth and fifth column this table lists the

maximum number of vehicles that satisfy the FIFO constraint

in each of the links, which correspond to the upper bound on

the number of re-identified vehicles for a FIFO constrained

matching algorithm. From this table it can be seen that out of

the 318 vehicles that crossed the segment, only 270 could be

matched by the vehicle re-identification algorithm if perfect

performance is assumed, which accounts for 85 % of the

vehicles.

The FIFO constraint improves accuracy of the system, as

mentioned in [2], without significantly reducing the maxi-

mum possible number of matches.

C. Travel Time by Vehicle Category

The travel time distribution estimates are affected by

the FIFO constraint. If there is a particular vehicle group

with significant presence along the arterial segment under

consideration, and a large percentage of the vehicles in the



group violates the FIFO condition as they go across, then

discrepancies between the ground truth and the estimated

travel time distributions should be expected.

The algorithm would be able to predict accurately the

travel time information of vehicles that want to go across

the segment without stoping, since it is assumed that these

are the majority of the vehicles and for the most part follow

the FIFO condition. Taxis or buses are vehicle groups that

have a tendency to stop and end up violating the FIFO

constraint. If the percentage of vehicles in these groups is

large with respect to the total number of vehicles going across

the segment, and if there are considerable bus routes with

multiple stops and common locations for taxis to drop off and

pick up passengers, then the travel time distribution based on

the ground truth data will be significantly different from the

estimated one. Nevertheless, as far as a traffic agency and

drivers that rely on travel time estimation are concerned, this

should not represent a problem, since the information that

can be extracted from the estimated travel time distribution

would be useful and representative of the traffic conditions

at the arterial segment under consideration.

Table III lists the different types of vehicles and the

number of them that entered the segment at the start location,

exited through the end location and went across it. The

Table also lists information about the travel time distribution

divided by vehicle type. For the most part, all the vehicles

have similar travel time characteristics. For the test site

in New York City, taxi presence is significant, accounting

for 30.5 % of the vehicles that went across the segment.

Note that their travel time distribution’s 25th percentile,

median and 75th percentile are very close to those of the

total distribution. The buses’ travel time distribution has the

larger 25th percentile, median and 75th percentile, which is

expected, since there are several bus stops along the segment.

Since buses only represent 5.3 % of the total number of

vehicles that crossed the segment, their influence is not

significant. Figure 5 (top) shows the travel time distributions

based on GT data for taxis and buses while Figure 5 (bottom)

shows the travel time distribution of all the vehicles except

taxis and buses. Note that both distributions look similar

with almost the same median, but a larger difference at

the 90th percentile, which is the result of long travel times

corresponding mainly to buses. The travel time distribution

of taxis and buses, across the test site and during the analysis

period, seems to reflect street traffic conditions.

Based on the results from this section, an accurate travel

time distribution based on the matching algorithm described

in Section II should be similar to the one obtained based on

the ground truth data. Slightly lower percentiles in compar-

ison to the GT distribution are expected due to outliers and

travel times from vehicles not satisfying the FIFO condition

with travel times in between the 50 and 100 seconds (e.g.

taxis making short stops but not stopping at any red light).

TABLE III
GROUND TRUTH DATA BY VEHICLE TYPE

Vehicle Start End GT 25th Median 75th
Type Counts Counts Matched Perc TT [sec] Perc

bicycle 2 4 1 126 126 126
bus 30 22 17 60 106 142
car 111 101 75 51 100 116

minivan 23 20 14 52 87 115
pick up 13 7 6 64 87 107

SUV 93 86 60 50 80 109
taxi 160 123 97 50 94 115

truck 32 36 25 58 103 117
van 21 35 23 50 66 110

TOTAL 495 434 318 51 98 115
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Fig. 5. Travel Time Frequency Distribution by Vehicle Type (top) Taxis
and Buses. (bottom) All Vehicles except Taxis and Buses.

VI. TRAVEL TIME RESULTS

In this section the GT travel time distribution is compared

to the travel time distributions computed with the original

method and the modified method.

Table IV shows the results obtained from the vehicle

re-identification algorithm for the original method and the

modified method. The total number of matched vehicles for

each method is listed as well as the number of re-identified

vehicles per link (e.g. f ast → f ast, f ast → slow, slow →
f ast and slow → slow). Traditionally only f ast → f ast and

slow → slow links are used, since it is assumed that most

vehicles stay in the same lane as they go through an arterial

street. However, the GT data shows that 122 vehicles that

entered the segment through the slow lane exited through

the fast lane, which accounts for 38% of the vehicles that

crossed the arterial segment. For this reason it was decided

to use the four links to estimate vehicle travel times. As it

can be seen from Table IV, for both of the methods, the

TABLE IV
MATCHING RESULTS COMPARISON

Ground GT Original Modified
Truth (FIFO) Method Method

Start\End Fast Slow Fast Slow Fast Slow Fast Slow

Fast 129 22 119 19 62 19 77 17
Slow 122 45 95 37 66 51 78 49

Total 318 270 198 221



number of matched vehicles obtained using the slow → f ast

link accounts for a large percentage of the number of re-

identified vehicles. The f ast → slow link is not as important,

but it increases the matching rate for both methods.

The vehicle re-identification rate for the original method

is 62%, while for the modified method it is 69%. Table

IV (columns 4 and 5) shows the vehicle re-identification

upper bound for each of the links. Note that a considerable

percentage of the matched vehicles in the slow → slow link

is expected to be inaccurate for both estimation methods,

since the number of matched vehicles exceeds the upper

bound based on the FIFO constraint. The original method

overestimates the number of matched vehicles by at least 14,

while the modified method does it by 12. At least 7% of total

travel time estimates calculated with the original method are

inaccurate while at least 5 % are inaccurate for the modified

method results.

Figure 6 compares the original method travel time dis-

tributions against the GT. The original method estimated

distribution seems to capture the GT distribution at short

travel time values. However, the number of estimated travel

times above 150 seconds exceeds the ones observed in

the GT data. This suggests that some of these long travel

times were calculated from Xi,Yj vehicle signature pairs that

were incorrectly matched. Figure 7 shows that the GT and

the original method cumulative distribution functions (CDF)

correlate well at short travel times, but start diverging right

after the median, reaching an error of 17% at the 75th

percentile and 52% at the 90th percentile.

Figure 6 compares the modified method travel time dis-

tributions against the GT. The modified method travel time

distribution correlates well with the GT data. Figure 7 shows

that the GT and the modified method cumulative distribution

functions (CDF) have a similar shape. The estimated CDF is

shifted to the left of the GT CDF, with a maximum error of

17% close to the median. The error between both CDFs is

very small right after the 65th percentile, with a 3.5% error

at the 75th percentile and 2.3% error at the 90th percentile.

The differences observed between the GT and the estimated

travel time distributions with the modified method correspond

to the differences expected in Section V for an accurate FIFO

constrained matching algorithm at the test site.

VII. CONCLUSION

A vehicle travel time estimation system was studied on an

arterial segment in New York City using ground truth data

collected from video. The ground truth data was valuable to

understand the traffic phenomena that occur at arterial streets

like lane changing, vehicle overtaking, vehicles traveling

in between lanes, among others, which directly relate to

the performance of the travel time estimation system. It

was possible to apply the vehicle re-identification algorithm

using sensor array data from different lanes, f ast → slow

and slow → f ast, something that has not been tried before

with this system and that led to an increase on the vehicle

re-identification rate. Furthermore, it was shown that the
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Fig. 6. Travel Time frequency distribution for the ground truth, the original
method and the modified method
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FIFO assumption that constrains the matching algorithm is

adequate at arterial implementations. The matching rate for

the original method was 62% while that of the modified

method was 69%. Even though there is not a big difference in

the matching rate, it seems that the modified method is more

accurate, since its travel time distribution and cumulative

distribution function are closely related to the ground truth

ones. The original method travel time CDF does not match

the GT, especially at long travel times, while the modified

method has an improved performance in this aspect. At the

75th percentile, the original method error is around 17%,

while the modified method error is less than 3.5%.
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