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ABSTRACT

Most optimal routing problems focus on minimizing travel
time or distance traveled. Oftentimes, a more useful objec-
tive is to maximize the probability of on-time arrival, which
requires statistical distributions of travel times, rather than
just mean values. We propose a method to estimate travel
time distributions on large-scale road networks, using probe
vehicle data collected from GPS. We present a framework
that works with large input of data, and scales linearly with
the size of the network. Leveraging the planar topology of
the graph, the method computes efficiently the time correla-
tions between neighboring streets. First, raw probe vehicle
traces are compressed into pairs of travel times and num-
ber of stops for each traversed road segment using a ‘stop-
and-go’ algorithm developed for this work. The compressed
data is then used as input for training a path travel time
model, which couples a Markov model along with a Gaussian
Markov random field. Finally, scalable inference algorithms
are developed for obtaining path travel time distributions
from the composite MM-GMRF model. We illustrate the
accuracy and scalability of our model on a 505,000 road link
network spanning the San Francisco Bay Area.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures

General Terms

estimation, machine learning, inference

1. INTRODUCTION

A common problem in trip planning is to make a given
deadline, for example arriving at the airport within 45 min-
utes. Most routing services available today minimize the
expected travel time, but do not provide the most reliable
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route, which accounts for the variability in travel times.
Given a time budget, a routing service should provide the
route with highest probability of on-time arrival, as posed
in stochastic on-time arrival (SOTA) routing [14]. Such an
algorithm requires the estimation of the statistical distribu-
tions of travel times, or at least of their means and variances,
as done in [11]. Today, only few traffic information platforms
are available for the arterial network (the state of the art for
highway networks is more advanced) and they do not pro-
vide the statistical distributions of travel times. The main
contribution of the article is precisely to addresses this gap:
we present a scalable algorithm for learning path travel time
distributions on the entire road network using probe vehicle
data.

The increasing penetration rate of probe vehicles provides
a promising source of data to learn and estimate travel time
distributions in arterial networks. At present, there are two
general trends in estimation of travel times using this probe
data. One trend, from kinematic wave theory (see |18} [7]),
derives analytical probability distributions of travel times
and infer their parameters with probe vehicle data. These
approaches are computationally intensive, which limits their
applicability for large scale networks. The other trend, seen
in large-scale navigation systems such as Google Maps, pro-
vides coarser information, such as expected travel time, but
can scale to world-sized traffic networks.

We bridge the two trends by creating a travel time es-
timator that (i) provides full probability distributions for
arbitrary paths in real-time (sub-second), (ii) works on net-
works the size of large cities (and perhaps larger) (iii) and
accepts an arbitrary amount of input probe data. The model
uses a data-driven model which is able to leverage physical
insight from traffic flow research. Data-driven models, us-
ing dynamic Bayesian networks [6], nearest neighbors [16] or
Gaussian models [17] show the potential of such methods to
make accurate predictions when large amounts of data are
available.

The main physical insights modeled in the article are de-
scribed in the following paragraphs. First, arterial traffic is
characterized by important travel time variability amongst
users of the network (Figure [I). This variability is mainly
due to the presence of traffic lights and other impediments
such as pedestrian crossings and garbage trucks which cause
a fraction of the vehicles to stop while others do not. Arte-
rial traffic research [7] suggests that the detection of stops
explains most of the variability in the travel time distribu-
tion and underline the multi-modality of the distributions.
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Figure 1: Histogram of travel times collected on a
link fit (solid line) using a mixture of Gaussian dis-
tributions.

Second, the number of stops on a trajectory exhibits strong
spatial and temporal correlations. Traffic lights on major
streets may be synchronized to create “green waves”: a vehi-
cle which does not stop on a link is likely to not stop on the
subsequent link. A different vehicle arriving 10 seconds later
may hit the red light on the first link and have a high prob-
ability to stop on the subsequent link. This phenomenon
is analyzed in [13] using a Markov model with two modes
(“slow” and “fast”).

Third, besides the the number of stops, travel times may
be correlated for the following reasons: (i) the behavior of
individual drivers may be different: some car may travel no-
tably faster than some others, (ii) congestion propagates on
the network, making neighboring links likely to have similar
congestion levels. If a driver experiences a longer than usual
travel time on a link because of heavy traffic, he / she can
will likely experience heavy traffic on the subsequent links.

We leverage these insight to develop the traffic estimation
algorithm presented in this article: an end-to-end, scalable
model for inferring path travel time distributions, referred
to as a “pipeline” (see Figure [2). It consists of a learning
algorithm and an inference algorithm.

The learning algorithm consists in the following steps.

e Section 2} a Stop-&-Go filter algorithm detects the num-
ber of stops on a link and compresses the GPS traced!] into
values of travel times on traversed links and corresponding
number of stops.

e Section a Markov model (MM) captures the corre-
lations of stopping / not stopping for consecutive links. It
characterizes the probability to stop / not stop on a link
given that the vehicle stopped or did not stop on the previ-
ous link traversed. The Stop-6-Go filter produces a set of
labeled data to train the Markov model.

e Section a Gaussian Markov Random Field (GMRF)
captures the correlations in travel times between neighbor-
ing links, given the number of stops on the links. There is
a significant body of prior work in the field of learning with
graphical models |10} |9], especially for learning problems on
sparse GMRFs [5,|12]. Most of these algorithms do not scale
linearly with respect to the dimension of the data, and are
unsuitable for very large problems (hundreds of thousands
of variables). In particular, it becomes practically impossi-
ble to store the entire covariance matrix, so even classical
sub-gradient methods such as [3] would require careful en-
gineering.

We exploit the (near) planar structure of the underlying

! Before feeding raw GPS points to the Stop-&-Go filter, each
coordinate is mapped to a link and an offset distance from
the beginning of the link. We use an efficient path-matching
and path-inference algorithm developed in [8].
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Figure 2: Pipeline of the travel-time estimation
model. The learning runs offline and finds optimal
parameters for the Markov model and GMRF mod-
els. The inference runs online and uses the learned
parameters to produce travel time distributions on
input paths.

graphical model to more efficiently obtain (approximate) al-
gorithms that scale linearly with the size of the network.
Our algorithm leverages efficient algorithms to compute the
Cholesky decomposition of the adjacency matrix of planar
graphs [2]. Our results can be extended to other physical
systems with local correlations.

After the learning, we proceed to the inference algorithm:
we compute the travel time distributions for arbitrary paths
in the network (Section [4). While exact inference on this
model is intractable due to the number of possible states,
we exploit the underlying structure of the graphical model
and use a specialized sampling method to obtain an efficient
inference algorithm.

Section [5 illustrates the accuracy and scalability of our
model on a 505,000 road link network spanning the San
Francisco Bay Area.

Our code, as well as a showcase of the model running on
San Francisco, is available at http://traffic.berkeley.
edu/navigateSF.

2. STOP-&-GO MODEL FOR VEHICLES TRA-
JECTORIES

The stops due to traffic signals and other factors (double
parking, garbage trucks and so on) represent one of the main
source of variability in urban travel times. More generally,
consider that a link can have m different discrete states.
For a vehicle traveling on link I, the state s; € {0,m — 1}
of the trajectory is defined as the number of stops on the
link. The following algorithm estimates the number of stops
given a set of noisy GPS samples from the trajectory on link
l. We consider a generic trajectory on a generic link and
drop indices referring to the trajectory and link for notation
simplicity.

The trajectory of the vehicle is represented by an offset
function T : [0,7] — Ry, representing the distance from
the beginning of the link to the location of the vehicle at
time t. The noisy GPS observations are defined by the
times 0 = tp < --- <ty < 7, and the corresponding offsets
z; = T(t;) + ¢;, where €¢; ~ N(0,0?) are independent and
identically distributed zero mean Gaussian random variables
representing the GPS noise.
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We process the observations (t;,x;);=o,...,s to obtain stop
and go trajectories of the probe vehicles: the trajectory of
a vehicle alternates between phases of Stop during which
the velocity of the vehicle is zero and Go during which the
vehicle travels at positive speed. The number of Stop phases
represents the state of the trajectory. We assume that the
sampling frequency is high enough that the speed between
successive observations (t;,x;) and (¢j41,x;+1) iS constan
and denoted v;. Note that speeds are rarely provided by
GPS devices or are too noisy to be valuable for estimation.

Maximizing the log-likelihood of the observations is equiv-
alent to solving the following optimization problem

2
J—-1

J
minimize - E Tjy1 — To — E Uj’(tj’ﬂ - tj’)
(vj)jeqo,..., J-1} 2 S0 j'=0

This is a typical least-square optimization problem, which
we conveniently write in matrix form as:

1
minimizeiﬂAv — b||§7 (1)

with the notation v = (vj)eqo,...,7-1}, b = (T;—Z0) jeqa,...,.}
and A is the lower triangular matrix whose entry on line
1€{0,...,J —1} and column k € {0,...,7 — 1} is given by
tk+1 — Tk

To detect the Stop phases, we add a [; regularization term,
with parameter A to Problem . The resulting optimiza-
tion problem is known as the LASSO [15] and reads

1
minimize§||Av — b3 + Ao, 2

The solution of is typically sparse [15], which means that
there is a limited number of non-zero entries, corresponding
to the Go phases of the trajectory. The solution is used to
compute the number of Stops. Figure[3|illustrates the result
of the trajectory estimation and Stop detection algorithm.

REMARK 1 (DATA COMPRESSION). In our datasef)} the
average number of GPS points sent by a vehicle on a link is
9.6. The algorithm reduces the GPS trace to: entrance time
in the link, travel time, number of stops. The amount of
data to be processed by the subsequent algorithms is reduced
by a factor of almost 10, which is crucial for large scale
applications which process large amounts of historical data.

REMARK 2 (FIxiNg A). In (), X acts as a trade-off be-
tween the sparsity of the solution and the fit to the observa-
tions. Cross-validation is not appropriate in our setting to
fix this parameter as it would require one to decimate the
trajectory and use some observations for the learning and
others for the validation. Instead, A is chosen by comput-
ing the Bayesian Information Criterion (BIC), using [19] to
estimate the number of degrees of freedom. A LARS imple-
mentation [4)] allows efficient computation to choose A and
compute the corresponding solution.

2The assumption is further justified by traffic modeling [7]
which commonly assumes that each Go phase has constant
speed

3The number of GPS points per link depends on the level
of congestion (vehicles spend a longer amount of time on
each link), average length of the links of the network and
sampling frequency of the probe vehicles.
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Figure 3: Example of trajectory estimation

3. TRAVEL TIME MODEL

We develop a travel time model which exploits the com-
pressed data returned by the Stop-&-Go filter (number of
stops and travel time experienced per link). The model cap-
tures the state transition probabilities: the probability of
the number of stop on a link given the number of stops on
the previous link of the trajectory. It also models the corre-
lations of travel times for neighboring links given their state
(number of stops). The travel time model is a combination
of two models:

e A directed Markov model of discrete state random vari-
ables gives the joint probability distribution of the link states
Py({Si}).

e A Gaussian Markov random field gives the joint distribu-
tion of the travel times Po({Y,s},l € £,s € {0,...,m—1}).
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Figure 4: Graphical model of the dependency of link
travel time Z' on the state variable (e.g. number of
stops) S; and the conditional travel times Y; ;. Here
we consider the subgraph consisting of a link [/, up-
stream link v and downstream link d on a given path.

Figure[d] presents the graphical model that encodes the de-
pendencies between the link travel time Z!, the link states .S;
and the conditional travel times Y; ;. The total travel time
experienced by a vehicle on link [, is Z! = ;”:701 Y s1is,=s)-
The left portion of the figure shows a subset of the GMRF of
travel time variables, and the right portion shows a subset
of the Markov chain of states.

The graphical model shows that conditioning on the states
experienced along a path allows one to compute the path
travel time by summing over the corresponding variables in
the GMRF. Further, when one conditions on the link travel
times Z', then the two models become independent, which
allows one to learn the models parameters separately. The



rest of this section details the modeling and learning of the
two models.

3.1 Markov model for state transitions

We consider the state variables {S;}i,c.. Each variable S;
has support {0,...,m — 1}.

Given the path p = (lo, ..., lam) of a vehicle, the variables
{51, }ieqa,...,my have a Markov property, i.e. given the state
of the upstream link l;—1, the conditional state (Si,]Si,_,) is
independent of the state of other upstream links:

P(Sli‘{sli—l""’sl()}) :]P(Sli|Sl1i—l) (3)

We parametrize the model using an initial probability vec-
tor

7t = P(S; = s) (4)
and a transition probability matrix
T =P (S = s1|Su = su) (5)

here Ts”fu_,;ll is the probability that [ is in state s; given that
the upstream link « is in state s,,.

We learn the initial probability vector n' and the tran-
sition probability matrices 7% of the Markov Chain by
maximizing the likelihood of observing (s, 4(™). The log-
likelihood is given by

M

J(n) l
> log(m (,,)) + > log(T:ﬁ,Sl(n))
n=1 0 »(n)

u =1l

The parameters that maximize the log-likelihood are:
mloc 7 and T:uill o< Tfjsll

where 7} are the empirical counts of initial states and T2

are the empirical transition counts. This solution corre-
sponds to transitions and initial probabilities that are con-
sistent with the empirical counts of initial states and tran-
sitions.

3.2 GMRF model for travel time distributions

We now present the model that describes the correla-
tions between the travel time variables. We assume that
the random variables (Y1), ¢, are Gaussian’| and they
can be stacked into one multivariate Gaussian variable Y ~
N (p, X) of size m card(L), mean p and covariance . Recall
that Y s is the travel time on link [ conditioned on state s,
where s € {0,...,m — 1}. This travel time is a Gaussian
random variable with mean ;s and variance oy, .

From the factorization property given by the Hammersley-
Clifford Theorem, it is well known that the precision matrixz
S = 271 encodes the conditional dependencies between the
variables. Since a link is assumed to be conditionally cor-
related only with its neighbors, the precision matrix is very
sparse. Furthermore, this sparsity pattern is of particular
interest: its pattern is that of a graph which is nearly pla-
nar. We take advantage of this structure to devise efficient
algorithms that (1) estimate the precision matrix given some
observations, and (2), infer the covariance between any pair
of variables.

4While Gaussian travel times can theoretically predict nega-
tive travel time, in practice, these probabilities are virtually
zero, as validated in Section

As mentioned earlier, we have a set of N trajectories ob-
tained from GPS data. After map-matching and trajectory
reconstruction (Section , the set of observed trajectories

{Wp :p=1,---,N} are sequences of observed states and
variables (travel time):
W, = (l1,s1) (I2,s2) - (lagy, 51a,)
P p
Y - (yl,s)(z,s)ewp

In our notations, y” is an observation of the random vec-
tor Y, = (Yi)iewpv which is a M,-dimensional marginal (or
subset) of the full distribution Y. Hence Y, is also a mul-
tivariate Gaussian with mean H(w,) and covariance Y(yy,)
obtained by dropping the irrelevant variables (the variables
that one wants to marginalize out) from the mean vector
1 and the covariance matrix 3. Its likelihood is thus the
likelihood under the marginal distribution:

log p (¥7; (wy)s Bw,)) =
1 1(,p T -1 D
C = 3log S| = 5 (V" = bown)” S,y (0F = 1ow,) »
(6)
where C' is a constant which does not depend on the param-
eters of the model.
The problem of estimating the parameters of the model
0 = (i, 2) from the i.i.d. set of observations D = {W,,y" :
p=1,---,N} consists in finding the set of parameters 6*
that maximize the sum of the likelihoods of each of the ob-
servations :
N
L(0|D) = Zlogp(yp;/i(wp)vz(wp)) (7)

p=1

Unfortunately, the problem of maximizing @ is in gen-
eral not convex and may have multiple local minima since we
have only partially observed variables y”. A popular strat-
egy in this case is to complete the vector (by computing the
most likely completion given the observed variables). This
algorithm is called the Ezpectation-Mazimization (EM) pro-
cedure. In our case, the EM procedure is not a good fit for
two reasons:

e Since we observe only a small fraction of the values of each
vector, the vast majority of the values we would use for
learning would be sampled values, which would make the
convergence rate dramatically slow.

e The data completion step would create a complete n—size
sample for each of our observation, thus our complexity
for the data completion step would be O (Nn), which is
too large to be practical.

Instead, we solve a related problem by computing sufficient
statistics from all the observations. Consider the simpler
scenario in which all data has been observed, and denote
the empirical covariance matrix by 3. The maximum like-
lihood problem to find the most likely precision matrix is
then equivalent to:

minismize —log|S| + Tr (Si) (8)

under the structured sparsity constraints Sy, =0V (u,v) ¢
E. The objective is not defined when S is not positive defi-
nite, so the constraint that S is positive definite is implicit.
A key point to notice is that the objective only depends on
a restricted subset of terms of the covariance matrix:

’I‘I‘ (Si) = Z Suviuv

(u,v)EE



This observation motivates the following approach: in-
stead of considering the individual likelihoods of each obser-
vation individually, we consider the covariance that would
be produced if all the observations were aggregated into a
single covariance matrix. This approach discards some in-
formation, for example the fact that some variables are more
often seen than others. However, it lets us solve the full co-
variance Problem using partial observations. Indeed, all
we need to do is estimate the values of the coefficients im,
for (u,v) a non-zero in the precision matrix. We present one
way to estimate these coefficients.

Let N; be the number of observations of the variable Y;:
N; = card ({p:i € Wp}). Combining all the observations
that come across Y;, we can approximate the mean of any
function f (Y;) by some empirical mean, using the N; sam-
ples:

0= 3 70D )

B peW,

Similarly, defining the number of observations of both Y;
and Y;: Nin; =card({p : i € W), and j € W, }), we can ap-
proximate the mean of any function f (Y;,Y;) of Y, Y, using
the set of observations that span both variables Y; and Yj:

1
Ninj

Einj [f (Vi Y5)] = ST r@het) (10

p:i,jEW)

Using this notation, the empirical mean is g, = E; [Y;].
Call X the partial empirical covariance matriz (PECM):

s JBin VY] - B VI E; [Y3] if (5,5) €€
* 0 otherwise
Using this PECM as a proxy for the real covariance ma-
trix, one can then estimate the most likely GMRF by solving
the following problem:

minimize — log|S| + <S, Z> (11)

Note that this definition is asymptotically consistent: in
the limit, when an infinite number of observations are gath-
ered (N;; — 00), the PECM will converge towards the true
covariance: indeed 3;; — E[Y;Y;] — E[Y;]E[Y;] and for all
s, <SE> - <S,IE [Yy7] - E[Y]E[Y]T>.

Unfortunately, the problem is not convex because 3 is not
necessarily positive semi-definite (even if the limit is), since
the variables are only partially observed. For instance, if
we have a partially observed bivariate Gaussian variable X:
(10,10), (—10,—-10), (1,%), (—1,%), (%,1), (*,—1), the em-
pirical covariance matrix 3 has diagonal entries (51,51) and
off-diagonal entries (100,100). Its eigenvalues are —49,151
hence it is not definite positive.

There is a number of ways to correct this. The simplest
we found is to scale all the coefficients so that they have the
same variance:

ij =

$ @ijBEin; [YiY;] — Ei [Yi] E; [Y;] if Nij; >0
0 otherwise

E: V2] E; [Y7]
Q5 =
’ Einj (Y2 Einj [Y7]

This transformation has the advantage of being local and
easy to compute. This is why it is completed by an increase
of the diagonal coefficients by some factor of the identity
matrix.

Another problem is due to the relative imbalance between
the distributions of samples: cars travel much more on some
roads than others. This means that some edges may be much
better estimated than some others, but this confidence does
not appear in the PECM. In practice, we found that pruning
the edges with too few observations improved the results

4. INFERENCE

Given the model parameters, the inference task consists
in computing the probability distribution P(Z® < t) of the
total travel time along a fixed path (p) = (po,...,pr). The
path travel time (i.e. total travel time along the path) is
given by

— (p)
Z = ZH{S@FS}Z\SP
SES

where S = {1,...,m}" is the set of possible path states,
and Zl(f ) is the path travel time given the path state s, and

is given by Zfsp) = Diep Yis, = e(p, s)TY. Here, e(p,s)
is a binary vector that selects the appropriate entries in the
vector of travel times Y (corresponding to path p with states

s):

e(p, 3)(1,52) =lelecpands =

This vector e(p, s) is very sparse and has precisely I non-zero
entries. Using the law of total probability we have:

P (Z(P)) =S P(S=9P (Z‘(f’) (12)

The variable Zl(f) = ¢(p,s)TY is a linear combination of the
multivariate variable Y, and so is also normally distributed:

Zl(sp) ~N (e(p, s)Tu,e(p,s)TZe(p,s)) (13)

The marginal distribution of travel times along a path is a
mixture of univariate Gaussian distributions. There is how-
ever two problems for this algorithm to be practical. (i) The
mixture from Equation contains a term for each pos-
sible combination of states, and has size m!. Enumerating
all the terms is impossible for moderately large lengths of
paths. (i) In order to compute the variance of each distri-
bution of the mixture, one needs to estimate the covariance
matrix . However storing (or computing) the complete co-
variance matrix is prohibitively expensive with millions of
variables.

We find tractable solutions for (i) by using a sampling
method on the Markov model to choose a tractable number
of states, and (iz) by using a random projection method to
construct a low-rank approximation of the covariance ma-
trix 3. Note that the mean of the complete distribution can
be computed exactly in O(Im?) time, using a dynamic pro-
gramming algorithm. Thus, our model is also applicable to
situations that do not require the full distribution. We do
not present this algorithm further due to space limitations.

Gibbs sampling. The sequence of state variables {S;}; for
a given path form a Markov chain, with initial probability



70 and transition probability matrices T¢~17¢, which are
given by the trained Markov model in Section [3.I] We can
sample from the Markov chain by first sampling so from the
categorical distribution with parameter 7°, then sequentially
sample s; from the conditional distribution of S;|S;—1.

Using this procedure, we generate K samples §!,...,§%
from S, the set of possible states. The complete (exponen-
tial) distribution can be approximated with the empirical
distribution:

P (Z(P>) S (Zf:)) (14)

in which each weight P is the fraction of samples corre-
sponding to the state s:

Wp,s = %card{kﬁk =s} (15)

The sum contains at most K terms, since at most K
approximate weights are positive, and converges towards
the true distribution of states as the number of samples in-
creases. In practice, numerical experiments showed that it
was only necessary to sample a relatively small number of
states. Section [b| includes a numerical analysis and evalua-
tion of the sampling method.

Low rank covariance approximation. Compute the vari-
ances of each sequence of variables:

e(s)" Te(s)

with s being a valid sequence of variables in the graph of
variables.

Using the full covariance matrix 3 to estimate the covari-
ance of each path o (s)? = e (p,s)” Ze (p,s) is impractical
for two reasons: as mentioned before, we cannot expect to
compute and access the full covariance matrix, and also the
sum e (p, s)” Le (p, s) sums I? elements from the covariance
matrix. Since we do not need to know the variance terms
with full precision, an approximation strategy using random
projections is appropriate. More specifically, we use the fol-
lowing result from [1]:

Given some fixed vectors vi---v, € R? and ¢ > 0, let
R € R**? be a random matriz with random Bernoulli entries
:I:l/\/E and with k > 24e=?logn. Then with probability at
least 1 —1/n:

(L =) lloill* < NRval® < (1 +€) Jlus*

Call R such a matrix. Consider the Cholesky decomposi-
tion of the precision matrix, S = LLT. Then

o(s)> = e(p,s) Se(p,s)
= e(p, s)T L_TL_le(p7 s)
= Iz el

From the following lemma, we can approximate this norm:

Z Quy.s0)
i=1---T

with Q@ = L™'R and R defined as obtained from the lemma
above. Computing the approximate variance 62 requires the
addition of I vectors of size k. In practice, this summing
operation is vectorized and very fast.

2

()= @ e s)| = (16)

This method assumes we can efficiently compute the Cholesky

factorization, and that inversion operation L™ 'z is efficient
as well. In our case, the graph of the GMRF is nearly pla-
nar. Some very efficient algorithms exist that compute the
Cholesky factorization in near-linear time (|2] ). In practice,
computing the ) matrix is very fast.

5. EVALUATION

The article presents an algorithm to turn GPS traces from
a small fraction of the vehicles traveling on the road network
into valuable traffic information to develop large scale traf-
fic information platforms and optimal and robust routing
capabilities. The value of the model depends crucially on
the quality of the estimates of point to point travel time dis-
tribution. Another key feature of the algorithm is its com-
putational complexity and its ability to scale on large road
networks. The large number of road segments and intersec-
tions leads to high-dimensional problems for any network
of reasonable size. Moreover, the estimate for travel time
distributions between any two points on the network needs
to be computed in real-time. It would not be acceptable to
wait more than a few seconds to get the results. This section
first analyzes the quality of the learning and the estimation
of the model. Then, we study the computational complexity
of the algorithm and its ability to scale on large networks.
In particular, some aspects of the algorithm arise as trade-
offs between the computational complexity and the desired
precision in the learning and real-time inference.

The validation results are based on anonymized GPS traces
provided by a GPS data aggregator. We consider an arterial
network in the Bay Area of San Francisco, CA with 506,585
links. The algorithm processes 426 million GPS points, ag-
gregated from 2,640,319 individual trajectories. Each tra-
jectory is less than 20 minutes long for privacy reasons.

5.1 Travel time distribution

The full validation of the performance of the algorithm re-
quires the observation of the travel time of every vehicle on
every link of the network. This mode of validation is unfor-
tunately not available for any reasonably sized network. We
validate the learning capabilities of the algorithm using data
which was not used to train the Markov model GMRF. On
this validation dataset, we perform two types of validation:
(i) a path-level validation (a limited set of individual paths
are evaluated) and (ii) a network-level validation (metrics
taken over the entire validation dataset).

Comparison models

In this Section, the results of the model are compared to
simpler models which arise as special cases of the model
presented in the article. We introduce these models and de-
nominations, which we use throughout the evaluation.

e One mode independent: The travel time distribution on
each segment is Gaussian. The travel time on distinct seg-
ments are independent random variables.

e One mode: The travel time distribution on the network
is a multi-variate Gaussian (one dimension per link). In the
precision matrix, element (4, 7) may be non-zero if ¢ and j
map to neighboring links in the road network.

o Multi-modal independent: Same as the MM-GMRF, ex-
cepted that the covariance matrix of the multi-variate Gaus-
sian is diagonal, imposing that given the mode, the travel
times on different links of the network are independent.
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Figure 5: 50% and 90% confidence intervals com-
puted by the different models and compared to the
validation travel times on the selected paths.

The model developed in this article is referred to as the
MM-GMRF model.

Path validation

Most probe vehicles have different paths throughout the
road network. Among the trajectories of the vehicles in
the validation set, we select a set of paths for which a large
enough number of vehicles has traveled to perform statistical
validation of the distribution of travel times. We impose a
minimum length (set to 150 m in the numerical experiments)
on these paths to ensure that we validate the learning of the
spatial distributions of the modes (Section [3.1]) and the spa-
tial correlations between each mode (Section|3.2]). The paths
are selected for having the largest amount of validation data.

For each selected path, the box plots on Figure 5| com-
pare the 50% and 90% confidence intervals of the valida-
tion data collected on the path (top box) with the intervals
computed by the different models (Multi-modal independent,
MM-GMRF (our model), One mode and One mode inde-
pendent, from top to bottom). We also display the median
travel times as a vertical black line, both for the validation
data and the different models. Scatter crosses, representing
the validation travel times, are super-imposed to the results
of each model to improve visualization.

We notice a significant difference in the results between
the uni-modal models (One mode and One mode indepen-
dent) and the multi-modal models (Multi-modal indepen-

1.0 = 1.0 :

P *
— @ 7 (1) )
Vi $ ¥
= 0.5f 10.5F b
§ P
A n“““‘
5 A N g
0.0 : 1 (. == :
0 100 200 0 200 400
ot"
=¥ \\‘i
100 200
Travel time ¢ (s)
Vi
s
N * % Validation data
= = multi-modal indep
0.0 =+ MM-GMRF
. . L L one mode
0 10 20 30 === one mode indep

Travel time ¢ (s)

Figure 6: Cumulative distribution of travel times
computed by the different models and compared to
the validation travel times received on the selected
paths.

dent, MM-GMRF'). The uni-modal models tend to over-
estimate both the median and the variance of travel times.
These models cannot account for the difference of travel
times due to stops on trajectories, which is one of the main
features of arterial traffic [7]. The over-estimated variance
illustrates why it is important to incorporate the variability
of travel times due to stops in the structure of the model.
On the other side, the multi-modal models are able to cap-
ture the features of the distribution fairly accurately. The
differences in accuracy between the Multi-modal independent
model and the MM-GMRF model (which takes into account
correlations in the Gaussian distribution) are not significant,
even though the model with correlations estimates the vari-
ability slightly more accurately. It seems that capturing the
variability of travel times due to stop is the most important
feature of the model.

In Figure [B] we display the cumulative distribution of
the validation data and the cumulative distribution of each
model for the same paths as for Figure [5| (displayed in the
same order). The figure displays more precisely the differ-
ence in the estimation accuracy of the different models. As
seen in Figure [f] the multi-modal models are more accurate
than their uni-modal counterparts.

Network scale validation

Most points in the observation dataset represent different
paths for the probe vehicles. For this reason, the distribu-
tions cannot be compared directly. Instead, we compute the
log-likelihood of each validation path and analyze the qual-
ity of the travel time bounds provided by the distribution
for each path.
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Figure 7: a) Average log-likelihood of the validation
paths (by path length), for each model. b) Valida-
tion of the distribution percentiles for each model.

Figure [7| a) displays the average likelihood of the valida-
tion paths computed by the different models. The figure also
analyzes how the path length influences the results. There
are two motivations for doing so: (i) the length of the path
influences the support of the distribution (longer paths are
expected to have a larger support) which may affect the like-
lihood and (ii) the different models may perform differently
on different lengths as they do not take into account spatial
dependencies in a similar way.

As was expected from the analysis of Figures [5] and [6]
the multi-modal models perform better than their uni-modal
counterparts. Compared to the path validation results, the
figure shows more significantly the effect of correlations. The
figure shows slight improvements for the multi-modal model
which takes into account the correlations. Surprisingly, the
contrary is true for the uni-modal models. We also notice
that the likelihood decreases with the length of the path, as
we were expecting.

Figure [7| b) analyzes the quality of the travel time distri-
bution computed on the network. For that, we use a p-p
plot (or percentile-percentile plot) which assesses how much
each learned distribution matches the validation data. To
each path p in the validation dataset corresponds an inverse
cumulative distribution IP, ! (computed from the trained
model) and a travel time observation zP. A point («, )
on the curve corresponds to having 8 percent of the valida-
tion points such that z¥ < P, '(«). If the estimation was
perfect, there would be exactly a% of the data points in the
percentile a. To quantify how much each model deviates
from perfect estimation, we display two metrics denoted a
(above) and b (below). Let f correspond to the p-p curve of

a model, the corresponding metrics are computed as follows:

o= /Olmax(f(a) ~0,0)da, b= /Olmax(a ~ #(a),0) da

These values provide insight on the quality of the fit of
the model. For example, a model with a large a-value tends
to overestimate travel times. Similarly, a model with a large
b-value tends to underestimate travel times. Both uni-modal
models have large a-values. The large variance estimated by
the models (already noticed in Figure [5)) to account for the
variability of travel times leads to non-negligible probabil-
ity densities for small travel times which are not physically
possible. Compared to the likelihood validation of Figure
a), the p-p plot analyzes the quality of fit for different per-
centiles of the distribution. In particular, we notice that
the effect of capturing the correlations in the multi-variate
model mostly affects the estimation of the low and high per-
centiles in the distribution. We expect that this is due to
the fact that correlations accounts for the impacts of slow
vs. fast drivers or congested vs. lest congested conditions.

5.2 Sampling

In this section, we discuss numerical results regarding the
quality of approximate inference using the Gibbs sampling
method, on a fixed path on the network.

Path travel time distribution
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Figure 8: KL-divergence between the approximate
distribution and the exact mixture distribution, as
a function of the path length (left), and example
distributions for a path of length I = 17 (right).

Figure shows the Kullback-Leibler divergence of the ap-
proximate distributions, with respect to the exact distribu-
tion. We compare two runs of the sampling, with respective
sizes G = 100log(I) and G = 1000log(I) where I is the
length of the path in links. The divergence measures the
similarity between two distributions. As can be seen, even
a small number of samples (relative to the total size of the
mixture) leads to a very close approximation.

5.3 Scaling

In this section, we discuss the scalability aspects of the
learning algorithm (it is clear from the discussion in Sec-
tion[3:2)that the inference is independent from the size of the
network). We ran the learning for networks defined by dif-
ferent bounding boxes. The bounding boxes were adjusted
so that the number of links in each subnetworks had different
orders of magnitude. The longest step by far is the training
of the GMRF. We report in Figure [J] the training time for
different networks, all other parameters being equal. As one
can see, the training time increases linearly with the number
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Figure 9: Log-log plot of the training time, as a
function of the size of the GMRF.

of variables of the GMRF over a large range of network sizes.
The graphs associated to each GMRF are extremely sparse:
the average vertex degree of the largest graph is 9.46.

6. CONCLUSIONS

The state of the art for travel time estimation has fo-
cused on either precise and computationally intensive physi-
cal models, or large scale, data-driven approaches. We have
presented a novel algorithm for travel time estimation that
aims at combining the best of both worlds, by combining
physical insights with some scalable algorithms. We model
the variability of travel times due to stops at intersections
using a Stop-&-Go filter (to detect stops) and a Markov
model to learn the spatial dependencies between stop loca-
tions. We also take into account the spatio-temporal corre-
lations of travel times due to driving behavior or congestion,
using a Gaussian Markov Random Fields. In particular, we
present a highly scalable algorithm to train and perform in-
ference on Gaussian Markov Random Fields, when applied
on geographs.

We analyze the accuracy of the model using probe vehicle
data collected over the Bay Area of San Francisco, CA. The
results underline the importance to take into account the
multi-modality of travel times in arterial networks due to
the presence of traffic signals. The quality of the results
we obtain are competitive with the state of the state of the
art in traffic, and also highlight the good scalability of our
algorithm.
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