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Abstract

Tools for modeling and control of freeway networks
by
Ajith Muralidharan
Doctor of Philosophy in Engineering - Mechanical Enginegri
University of California, Berkeley

Professor Roberto Horowitz, Chair

This dissertation presents algorithmic tools that areulgeftransportation engineers for freeway
traffic modeling and control. A modeling framework that izgis the link-node cell transmission
model (LN-CTM) to simulate traffic dynamics on a chosen fragwmetwork is presented here.
A data driven approach, which utilizes available detecteasurements on the freeway network
to calibrate and specify the model is also illustrated. Flo@asurements in ramps, which are
needed to specify demands and routing characteristichéfréeway, are usually not available.
Two novel imputation algorithms which estimate the misgiaigp flows in the freeway network
are presented. These algorithms employ a model based &stinpaocedure, that calculates the
unknown on-ramp flows and off-ramp split ratios which can é& into the model to match the
observed mainline density and flow measurements. A detarlatysis of the convergence of these
algorithms is presented, along with the advantages of ihdsedual approaches. The final model,
specified with the imputed ramp flows is able to replicate tafit dynamics with good accuracy,
as seen by error rates around 5-8% for density/flows contansthe accurate replication of the
bottleneck locations. These imputation algorithms, usedimvour modeling framework, enables
a user to build a freeway model simulating multiple days eéfay behavior, within a week.

A model based optimal predictive controller for freeway gestion control, which utilizes the
LN-CTM as its underlying model is also presented. The apgraearches for solutions repre-
sented by a combination of ramp metering and variable speets| The optimization problem
corresponding to the optimal control problem based on thedIW is non-convex and non-linear.
A relaxation method is presented to solve this problem effity using an equivalent linear pro-
gram, before generating the solution to the original pnoblesing a new mapping algorithm. The
predictive controller is also extended to cover situatiwhen ramp weaving and/or capacity drop
exists in the freeway network. In this case, a set of heagstie presented and the optimal control
problem is solved using a sequence of linear programs, éefapping the solutions back to the
original problem.
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Chapter 1

Introduction

Traffic congestion can be encountered in metropolitan agde@sg various time periods across
the day or sometimes during the night. Congestion levels laéso been increasing over the last
decade, due to ever increasing demand. An average comnxpiEiences recurrent congestion
during his commute due to presence of system bottlenecksaddition, non-recurrent events,
both planned (road work, public events) and unplanned daots) contribute increasingly to the
unreliability in commute times. The 2011 annual urban mtbieport [15] compiled by the
Texas Transportation institute calculated that the awecaghmuter experienced 34 hours of delay
in 2010, up from 14 hours in 1982. In 2010, congestion costsraalate over $100 billion dollars,
which is more than $750 per commuter.

The easiest way to combat congestion is through infrastre@xpansions. Adding additional
lanes and new freeways are not always feasible due to ecoramrienvironmental concerns. In
many cases, freeway and roadway expansions might be infedsie to lack of construction space.
As a result, transportation engineers increasingly relynbelligent operational management of
the existing infrastructure to improve system efficiencyeOthe years, different measures have
been implemented, ranging from tolls, congestion pricinggpduction of HOV lanes and freeway
control techniques like ramp metering. Simultaneousingportation authorities also rely on less
direct measures like improving transit, providing bettdormation etc to combat congestion.

Transportation authorities can plan and execute strateyier various time scales: long term,
medium/short term and real-time. In the long term, trangimn systems planning is intertwined
with urban planning, policies etc.. Transportation plasn@oject future population patterns and
transportation demands to plan for long term capacity esipas. In the medium/short term,
planners and engineers evaluate and design operationalge@ent strategies to combat current
as well as short term projected congestion. For exampl&sysperators might install and enable
ramp meters to control freeway traffic, decide on tolls/@stmpn pricing. Finally, in real-time
operations, traffic engineers are expected to take shart teeasures and counter measures to



combat congestion, traffic incidents, as well as plannedtsveFor example, traffic engineers
might warn users using variable message signs regardirdgims on their commute route, as well
as possible reroute options. They might also deploy inc¢igdeecific countermeasures to decrease
their impact.

Transportation planners, system operators as well ascteftjineers are increasingly relying
on traffic flow simulators to aid in the planning and operagiomanagement. Traffic simulators
provide a cheap and non-intrusive method to plan and studyatipnal strategies before their
implementation in the field. Transportation planners fexgly use traffic simulators to perform
cost-benefit analysis among these various options avaitalplistify short/medium term strategies.
Traffic simulation based planning/decision support tooésdso seen as essential for improved real
time management of transportation systems.

Tools for operations planning (TOPL) [67] is a Caltrans/NBRded project started at PATH
and UC Berkeley on April 2006, to provide simulation basepjguit for operational planning and
real time management of freeway traffic corridors. Freewmyidors usually include freeways and
nearby arterials, providing a self contained road systexhdan be consistently analyzed when the
chosen operational strategies are implemented. TOPL gee\a quantitative assessment of the
effects of operational strategies designed to improvéicrabngestion in freeway corridors. The
main elements of such strategies can be classified into

Traffic control - Employ congestion control through the use of ramp meteand possibly vari-
able speed limits.

Demand Management- Reduce or redistribute current road network demand inespad time.

Incident Management - Alleviate congestion related to planned and unplannetiémts (road
work, accidents etc).

Traveler Information - Provide up to date current and predictive information affic conditions
for trip planning and routing.

At the centerpiece of TOPL is a fast and trusted simulatorpfau This software executes simula-
tions magnitudes faster than real-time, providing the afpeithe ability to simultaneously execute
multiple operational management strategies and prediatéffect in real time. Geometric models
of corridors are built using Network editar [68], which haseln built to leverage maps provided
by Google Maps

This dissertation is motivated, and at many times, guidethbydevelopment of TOPL. All of
the theory and algorithms developed in this dissertati@idgen implemented as a part of various
tools which are a part of TOPL. The first part of this dissértats related to building calibrated
models of freeways using measured data from the freewayibr@sd models of the managed
freeway sections are essential to ensure that realism sfrtndations used as a part of TOPL. We
will describe algorithms that aid in building these modetsf measured data, under conditions
that some of the data is usually missing.



The second part of this dissertation presents the desigmdéhibased optimal control of free-
way network, used as an operational strategy for congestammagement. Freeway control, using
ramp metering and variable speed limits are being incrggsadopted as the first step to com-
bat congestion in freeway networks. Optimal controllevpie the “best” achievable congestion
reduction, and we present solution techniques that be wsedlte the optimal control problem
efficiently. As we will explain later, this optimal contrell is a useful tool for simulation based
operational management, and also for implementation ifi¢le

Dissertation Outline

This dissertation is organized as follows. In Chapier 2, evéewv different concepts and previous
research related to the material presented in this dissertdirst, we review the vehicle detection
technologies and the traffic measurements available fran€muanly deployed vehicle detectors.
We also review the Performance Measurement System (PeMfeyebhighlighting the quality of
data available and data imputation schemes used to fill isingsvalues. We also review traf-
fic flow models including the Cell Transmission Model. Figale describe the commonly used
freeway control mechanisms: ramp metering and variabledspmits before describing goals of
freeway control as well as the metrics for evaluation.

In Chaptei B we introduce the Link Node Cell Transmission BIdiLN-CTM), along with
the dynamic equations that can be used to model traffic dyssamifreeway networks. We also
describe the methodology used to build a model of a chosew#yg including geometry spec-
ification and parameter calibration. In this chapter, weivaté the necessity and importance
of developing imputation algorithms for estimation of amp flows and off-ramp splits in the
freeway. We present simulation results obtained using iareé¢d model of the 1-80E freeway,
constructed using the procedure explained in this chapter.

In Chaptel 4, we describe an imputation algorithm based@Agfymmetric Cell Transmission
Model (ACTM). The ACTM is a simplified model based on the CTMsdribed by piecewise
affine dynamic equations. This simplified dynamics allowezldevelopment of the first provably
convergent imputation algorithm that can be used to estimatramp flows and off-ramps split
ratios which are not measured.

In Chaptel.5, we present an imputation algorithm based o lv€TM, which is a more
accurate representation of freeway dynamics when mergiag firom on-ramps are appreciable.
The LN-CTM contains state as well as input non-linearity] dmese present new challenges as
compared to the imputation algorithm based on the ACTM. Téae imputation algorithm esti-
mates the unknown ramp flows in two steps: first matching tmsites along the freeway, and
then matching the available flow measurements. We presedétail, the convergence properties
of the algorithm, and also demonstrate the application@&igorithm.

We present model based predictive controllers for traffigastion control in Chapters 6 dnd 7.
These controllers regulate traffic flow in the freeway thitotlge use of ramp metering and variable
speed limits. In Chaptél 6, we present the optimal contrablem, utilizing the LN-CTM model



presented in Chaptéf 3. The solution of the original optiomadtrol problem involves nonlinear
optimization, due to the presence of nonlinear, non-coneestraints. We present a relaxed linear
program, whose solution can be mapped to a feasible solofidhe original optimal control
problem. We prove that this solution is the globally optirsalution of the original optimization
problem.

We extend the optimal controller in Chaptér 7 when the frgemetwork experiences weaving
and/or capacity drop. We supplement the LN-CTM by integath node based weaving model
and a discontinuous capacity drop model. The solution tegcienpresented in Chapter 6 cannot
be directly applied due to the presence of capacity dropswanpresent a set of heuristics that
allow us to solve the optimal control problem using a seqaesfdinear programs. We demon-
strate the application of the model predictive controlleraosimulated example, and discuss the
characteristics of the controller.

A preliminary version of the results in Chapiér 4 have beas@nted in[[41].[[40] describes
our first imputation algorithm utilizing the LN-CTM. The algthm presented in Chaptel 5 has
been modified in view of obtaining favorable convergencepprties. Preliminary analysis of a
part of this algorithm is published in [42]. We have also préed some of the results described in
Chapter$ 6,17 in [43, 44].



Chapter 2

Review of Related Work

In this chapter, we review concepts and literature relaielde material covered in this dissertation.
Additional references are also provided for readers isterkin exploring the material in detail.

2.1 Traffic detection and data archival

Traffic state measurement and data archival are crucial coers of any intelligent transportation
infrastructure designed for operational management &fdanaetworks. Transportation planners
frequently require a rich source of historical data to planlbng term as well as medium term
projects. A good quality data set will allow these plannetsudget and invest resources in projects
that have high benefit to cost ratio. Traffic engineers alsoraal time data in the day to day
operations of the traffic network. For example, traffic elegirs informed of unforseen congested
traffic conditions can plan countermeasures in real timesttebmanage the traffic system.

Vehicle Detection

A broad range of vehicle detection technologies exist togueathe traffic properties in road
networks. These may be classified as intrusive or non-ingudepending on whether they need
to be embedded or installed in the road pavements. We listvacanmonly found detection
technologies below.

Inductive loops Inductive loops use induced eddy currents to determineriésepce of vehicles
on top of the detectors. These are the most commonly dephsfeidle detection system.



While their detection accuracy is high, their deploymentses significant traffic disruption
and they are highly susceptible to malfunction.

Magnetometers Magnetometers detect vehicles using the changes in madiedtis caused by
their presence on top of the detector. Increasingly, thesseeing deployed to replace loop
detectors. They offer advantages in reducing deploymerggj and also provide built in
failure detection features.

Pneumatic Tubes Pneumatic tubes, deployed perpendicular to the road, tdetbicle axles when
tires run over the tubes. These are non-intrusive, quickgtall and mostly deployed for
short term studies. Tube wear prevents their successfubylepnt for long term traffic
monitoring.

Video Detection Video cameras can be used to detect vehicles by analyzimgssige images to
detect vehicle presence and movement. These can be usezhfoleypresence detection or
vehicle tracking. Their main advantage is that a single caman mimic the operation of
multiple loops. However, they are susceptible to bad weat@dows, vehicle occlusion
and also require routine cleaning and maintenance.

Microwave Radars Microwave radars transmit energy towards an area of thevagdnd mea-
sure reflected energy to detect vehicle presence and trackntbvement. They have better
performance over video cameras as they are not suscetiviegther or light conditions.

Some of the other specialized detectors deployed are bcplate readers, toll tag readers,
weigh-in motion detectors. The traffic detector handbod} [8 a extensive reference for various
detection technologies commonly deployed in the field.

Traffic state measurement

The detectors mentioned previously provide a rich sour¢eaéifc measurements. The most com-
monly obtained traffic measurements are

Occupancy Occupancy is the fraction of time when the detection zon&efsensor is occupied
by a vehicle. Inductive loops, magnetometers, microwadansaand video detection sys-
tems provide this measurement. In case case of radars ag, Mids possible to configure
multiple detection zones (of variable sizes) and measaficioccupancies simultaneously.

Volume Volume is defined as the total number of vehicles that passtbealetection zone of the
sensor during a chosen interval of time. Inductive loopgymetometers, microwave radars
and video detection systems provide direct measurementwie counts. Pneumatic tubes,
on the other hand, can only be used to estimate volume cautitectly, since they provide
axle counts.



Speed Detectors are also deployed to measure point speeds ofeghE they pass the detection
zone of the sensors. Dual inductive loops/magentometepsrated by a known distance,
are commonly deployed to measure speeds indirectly by gnttie activation times of each
detectors. Video detection systems also employ loop emual&d measure speeds, but new
systems are also capable of tracking vehicles. Microwadarsa based on doppler principle,
can directly measure vehicle speeds.

Some detectors also provide specialized traffic infornmatiblicrowave and video detection
equipment can be deployed in intersections to obtain quength estimates of vehicles waiting
at the signals. Toll tag readers, bluetooth readers andde@late readers are commonly used
to re-identify vehicles from one point to another, and th@sasurements are commonly used to
derive origin destination demand samples as well as trawel samples. Vehicle re-identification
has also been successfully demonstrated for short disahoagh the use of magnetometers, to
measure travel time in arterials |34]. A recent rich sourtealfic data has been GPS measure-
ments from mobile smartphones and dedicated GPS deviceseTevices can be used to obtain
measurements of vehicle speeds and travel times. Detafisafent academic effort in this area
can be found in1].

Traffic data is collected from these detectors by local adlietrs which usually process and use
this data for local control actions. For example, an actliatiersection may use detection events to
trigger traffic signal light changes. If the controller isvoected by a network (wireless or wired),
then the data is transmitted to the Traffic management céaiy known as a traffic operations
center in some states in the U.S), where it can be processkedsaa for daily operations. This
data may also be aggregated in a database for archival.

The Performance Measurement System

The Performance Measurement System (PeMS) is a traffic ddtaval system used in the state of
California [4,[57]. This system collects real time data fromer 25000 detectors in California (as
of 2012), spanning over multiple freeways located in theamajetropolitan areas of California.
Data from other sources like weigh-in motion stations, tapers and CHP (California Highway
patrol) incident feeds are also aggregated in this systdm.cbllected data is filtered, processed
and stored in databases, and users can access data soumgelsagi to 1998. This data is used
to calculate performance measures of the freeways as welt@sss the traffic conditions both
historically as well as in real-time. PeMS has been extehgivsed by traffic engineers, planners,
traveler information services as well as academics oveeiss of operation.

In the case of loop detectors, PeMS receives 30s occupancfioanvalues from the vehicle
detector stations (vds) which house these loop detectorshel case of dual loops, PeMS also
receives velocities. PeMS aggregates the data into 5-mintgrvals, and also estimates vehicle
speeds for single loops through the use of g-factors [2 1 $kas detailed diagnostic measures to
ascertain the operation of the detector and the qualityefitta. PeMS also has an imputation al-



gorithm, which fills in the missing data with plausible vadu&inally, this data is used to compute
aggregate performance measures, including Vehicle Mitageled (VMT), Vehicle Hours Trav-
eled (VHT), Congestion Delay, and the productivity ratid (@tio of VMT over VHT) interpreted
as the average speed in the region of analysis.

Detector health and data quality

Good detector health and data quality are important to enthat the acquired data can be used
for modeling and performance analysis. PeMS has a bank efsfitb evaluate the quality of
data and flag failed detectors. PeMS expects loop detect@alifornia to report occupancy and
volume counts every 30 seconds. Additionally, PeMS scrdendgata for sample quality metrics
and decides whether the detector is functioning or malfanetg. Particulary PeMS screens and
identifies the following common issues .

Data never received Many of the detectors never report data, possibly due to camication line,
power or detector failure.

Too few samplesVery limited number of samples were received, which indi¢ae the data feed
is active, but the detector is functioning intermittently.

High Values and/or constant occupancyThreshold detectors are used to indicate whether the
detector reports unrealistic flows and occupancies. Cothstaxupancies indicate that the
detector is stuck on high.

Zero flow/occupancy and/or flow-occupancy mismatchData tests in 5 min aggregated data can
be used to indicate too many samples with zero occ/flow.

Based on these simple data quality filters, it is not uncomtadimd that 40% of the detectors
which report data are flagged by PeMS as failed detectoris [Mreover, there are a lot of
sensors which are active, but unlisted in PeMS. Partigylddtectors at on-ramps and off-ramps
are usually found missing in the PeMS system for many freeway

Imputation of missing/bad data

Imputation is the process of filling in missing data with déole values. The problem of esti-
mation of missing detector counts is commonly addressedligws data imputation techniques,
which allows the use of partially complete data for perfonceanalysis and modeling. For de-
tectors along the freeway mainline, simple imputation seb®typically replace missing data by
spatial averages (of nearby detectors) or historical ges@f the detector data. Modern tech-
niques place higher emphasis on developing a good statistiedel for estimating missing data.
Dailey [14] introduced an Kalman filtering based data smimgtherror detection and imputation.



Many commonly used imputation techniques employ the stah@ghniques for imputation pro-
posed in statistics [63]. Some of these include algorithiaesed on Expectataion-Maximation
[16], Multiple imputation [45] or Principle component agsis[58]. PeMS uses the imputation
algorithm developed by Chen et al.| [9] to replace missing daunts. Given large databases of
historical data, linear regression models are built to jgtedissing data in freeway mainline loop
detector stations using data from detectors upstream/stogam or in nearby lanes. Most of these
techniques perform best when data is missing for short titegvals and also when sufficient his-
torical data is available. Apart from these statistical moels, model based imputation has been
explored in[[23]. The authors use traffic flow theory by appdythe Lighthill-Whittam Richards
(LWR) first-order model. This model is used to generate mggieasurements in locations along
the freeway mainline using detector data available at atregrm and downstream locations.

All of the techniques presented in literature address thpaitation of missing measurements in
detectors present on the mainline. However, it is very feadly observed that on-ramp/off-ramp
data is missing. In some cases, detectors are not avaitabheasure these flows while in some
cases, the data feeds have not been set up. These meassrimmardn important input without
which freeway modeling studies cannot be undertaken. Tdtetques presented for freeway loop
data imputation is not suitable for ramp flow imputation.sltifficult to build accurate statistical
models for ramp flow imputation, since one cannot guarantaiglacorrelation of data between
neighboring ramp loop detector stations (or a nearby frgesedector). In addition, for many
ramps, archived data may not be available to build models. wit this dissertation, we provide
a model-based method to impute flow data for ramps, usinguagahle measurements in the
freeways.

2.2 Traffic Models

There are two different approaches to traffic flow modelingcroscopic models and macroscopic
models. In microscopic models, individual vehicles are eted along with their interaction with
other vehicles and the road network. These individual Vekiadjust their speeds and lanes and the
interaction of all vehicles models the resulting traffic e thetwork. Macroscopic models ignore
these individual vehicle interactions and represent trgreagate dynamic properties of a group
of vehicles, usually represented as a continuum. Most nsaopic models represent traffic as a
compressible fluid, and describe the density, flow and speadteon using dynamic equations.

Macroscopic models offer various benefits in comparisonitwascopic models. These mod-
els run significantly faster than microscopic models, stheg do not simulate individual vehicles
in the network. This is particularly beneficial when the slation platform is used in real-time to
assist the traffic operators. The process of calibrati@n ¢(he specification of the parameters in
the models) is usually simpler in macroscopic models, stheemodel variables can be directly
observed from measurements (i.e. flow, speeds and occupalmcgomparison, calibration of
microscopic models require the user to infer individual/éricharacteristics from macroscopic
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measured variables like flow, speeds and occupancy.

In the definitions that follow, the space coordinate is repnted by, which denotes the dis-
tance along the traffic flow direction. At any cross-sectiwaffic properties are assumed to be
uniform, and the models we will present will not capture lahange behaviorg.corresponds to
the time coordinate. We will use the following definitionsiopted from the Highway Capacity
Manual [69] in the materials that follow.

Speed ((x,t)): Rate of motion defined as distance per unit time. Space mezeddp defined
as the average speed in an infinitesimal segment ano(ad dx/2,x+ dx/2) at timet. The speed
referenced in this section will correspond to this defimition comparison, time mean speed is the
average speed of vehicles observed passing a given poiich) vgrusually reported by detectors.

Flow (f(x,t)): Total number of vehicles that pass the poimturing an infinitesimal time interval
(t — ot,t), divided by the length of the time intervéat. It is obtained from volume measurements
and usually expressed as an hourly rate.

Density (o(x,t)): Number of vehicles occupying a length of freeway about priat instantt.
Its measurement is difficult because it requires the obsiervaf a stretch of road. Instead, it is
often approximated from measurements of flow and spegu{hy) = f(x,t)/v(x,t).

Demand: Number of vehicles (or number of vehicle occupants) whordetsi use the facility
during the specified period of time.

Capacity: Maximum hourly rate at which vehicles can be reasonably eegeto traverse a point
or a uniform section of a lane or roadway during a given timegoeunder prevailing roadway,
traffic, and control conditions.

Bottleneck: Any road element where demand exceeds capacity. Freewtgrsmks sometimes
appear near heavy on-ramps, where a localized increasenargkeis combined with a decrease in
capacity due to lane changing.

Macroscopic models define the evolution of density, speddlaw over space and time using
a set of partial differential equations (PDES), togethehwither constituent relationships. Each
continuous model has a basic vehicle conservation equ@tioich captures the fact that vehicles
cannot be created or destroyed), along with other PDEs dié@pgion the order of the model. We
review a few important models in this section.
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Lighthill Whitham Richards (LWR) Model

The Lighthill Whitham Richards model, commonly known as IR model [36/60], is a first
order model described by the vehicle conservation equation

ap(xt) N df(xt)

ot o 0 (2.1)
and the static flow-density relationship
F(xt) = p(x HV(x.t) = D(p(x,1)) (2.2)

where the functiorp(p) is the fundamental diagram of traffic flow. Whé{p) is differentiable,
the conservation equation can also be represented as
Ip(x.t) Ip(x.t)

— ¥ (p(x ) =5 = =0 (2.3)

The main assumption in the first order models is the existehaestatic density flow relation-
ship, which also implies a static speed-density relatignsBreenshields was the first to propose a
parabolic fundamental diagram from observations of trafioamg a two lane highway [22]. Figure
2.1 shows some of the common fundamental diagrams usedatigeraln general, the fundamen-
tal diagram has the following characteristics.

1. ®(0) = ®(p’) = 0, wherep’ is the maximum density in the freeway which is known as the
jam density.

2. ®(p) > 0 is a concave continuous function.

3. ®(p) attains a maximumi) at p¢, which is known as a critical density. The maximal flow
F is known as the capacity.

The critical density separates the fundamental diagramtimb sections - the free flow regime
whenp < p® and the congested reginpe> p®. Empirical measurements are well represented
by a straight line during free-flow, while measurements aygally scattered in the congestion
region. Some researchers have observed that there is eeddtein the maximal flow (capacity)
in a few sections depending on whether the freeway sectionfiee-flow or congestiori [24, 6].
This change in flows is known as the capacity drop, and resees@stimate that it is usually in
the region of 5-10% when present.

The solution to the LWR model can be given in terms of charattes [36], which are tra-
jectories in the space time plot whose evolution is definedgusrdinary differential equations
(ODEs). Flows and densities are constant along these dhastics, whose slope is given by
Q'(p). It can be seen that the characteristics have a positive slopng free-flow and a negative
slope during congestion. Thus, when well-posed initial Bodndary conditions are given, the
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Figure 2.1: Commonly used fundamental diagrams

value of the density or flow at any point is equal to a boundaryitial condition to which the
point is connected by a characteristic. The boundary vatablem is well-posed if the family
of characteristics emanating from the initial and boundamyditions spans the entire time/space
plane. The main complication arises, when characterigtiessect in location known as shocks
(discontinuities), leading to multiple values at the paihintersection. In this situation, the PDE
admits only weak solutions, which satisfy a integral fornEof (2.3). The speed of the shock is
given by
-1
pP2—p1
where subscripts/A denote the state of traffic infinitesimally upstream/dawem of the shock.

(2.4)

Vs

Cell Transmission Models

The Cell Transmission Model (CTM) was developed by Dagaid#j fs a first order discrete
dynamic model which is consistent with the hydrodynamiotief the LWR model. The CTM
can be interpreted as the discretization of the LWR modéh witime step ofls and uniform
sections with length., according toL = Tgvs, wherevs is the free-flow speed. The uniform
sections are known as cells, and they are increasingly nigdbdeom upstream to downstream.
Figure 2.2 shows a uniform stretch of roadway divided inttsc&he density of celi (represented
by n;(k)) can be represented by the conservation equation

ni(k+1) = i (K) + fi_a (k) — fi(K) (2.5)

where fj(k) is the flow moving from celi to cell i + 1 during the time stefx (each time step
corresponds tds seconds). In the CTM, this flow is obtained by comparing thedsey and
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receiving flows, also known as the demand and supply, as

fi(k) = min(Di(k),S11(k))
Di (k) = min(F, nj(K)V;)
S(k) = min (F,W(n! - ni(k))) (2.6)

In the equations above, we have assumed a trapezoidal femdandiagram. The fundamental
diagrams can be different for each cell, and the parametermdexed by the cell numbér The
trapezoidal fundamental diagram is characterized by g flow speed\{, the slope of the free-
flow part of the diagram), the capacitl; (the maximum flow), the congestion wave spedé# (
the slope of the congested region) and the jam dene;'ll;ytbe maximal density). The demand
functionD; (k) captures the flow that can be sent from the upstream cellgwi supply function
S(k+ 1) specifies the maximum flow that can be received by the dowarstisection. The flow
can be obtained by taking the minimum of the demand and tha\sugrom the flow equation, we
say that the flow conditions in the boundary of ¢elhd celli + 1 are congested, when the demand
function exceeds the supply, and otherwise the boundarnyfiee-flow.

I T T T 1
| I I I I
i i Cell i-1 i Cell i Cell i+1 i :
| 1 1 | :
| ] ] 1 I
1 |

< > 1 |

Length L l -

Figure 2.2: A road segment divided into cells of equal length

The CTM was extended to simulate traffic dynamics in a netwatk a more general topol-
ogy, by introducing models for merging and diverging flow&][1 This model was also further
adapted to accommodate nonuniform cell lengths and otheimemus, piecewise differentiable
fundamental diagram [12]. This resulted in a density-basedel for the conservation equations.
Despite the relative simplicity, it still captures the shdehavior predicted by the LWR.

Higher order models

In first order models, fundamental diagrams specify thécsanction that exists between the den-
sity and the realized flow, which results in a static speatkity relationship. As a result, the re-

sulting density dynamics might result in large speed vianmatas drivers travel along the freeway,
especially in the locations with shocks. Higher order medwpture the fact that drivers can-
not respond to speed changes instantaneously. These naodetent the conservation equations
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with the dynamics of the space-mean speeds to provide loetseriptions of the traffic dynamics.
These additional PDEs, which represent the speed dynaneicdtan referred to as the momentum
equations.

Payne[[55] was the first to propose a second order traffic flodahovhich he implemented
in FREFLO [56], a macroscopic simulator. Paynes originadelovas demonstrated to allow
negative speeds (wrong way travel) and to allow vehiclegtmftuenced by traffic upstream [13].
This model was modified and improved by various researcldrang [75], Liu et al.[[3[7], among
others ), to improve its traffic realism. Papageorgieu ef&dl, [30,/52] extended Payne’s model to
develop the METANET model for network traffic simulation. i$hs a one of the popular second
order models reported in literature.

While second-order traffic models are claimed to be more rateuor representing traffic
dynamics, they suffer from additionally complexity whicrakes model calibration difficult. In
contrast, as shown in the next chapter, the calibration afetsowith the Cell Transmission Mod-
els are relatively simple. The LWR and the CTM model are gaheaccurate for reproducing
congestion phenomena and the propagation of jams. Thesedyatimple traffic dynamics allows
us to perform theoretical analysis and also design conuéggtimation and control algorithms. In
this dissertation, we use the first order models, partigutsome extensions of the CTM.

2.3 Freeway traffic control

Traffic congestion in metropolitan areas has been incrgasiar the last decade, leading to large
losses in productivity due to increased commute times. Duggnificant investments involved,
infrastructure expansions are not always feasible evargththey provide the best means to tackle
traffic congestion. As a result, transportation engineggsaon intelligent operational management
of the existing infrastructure to increase system effigfeddie most commonly used operational
management strategy is traffic control.

Goals and Metrics of evaluation

Before going into the control strategies, it is beneficialeeiew the goals of freeway control and
also the metrics of evaluation. The main goals of ramp magds to reduce freeway congestion
and increase the efficiency of the freeway. One natural wagpdure this is to consider the Total
Travel Time (TTT), which is the sum of travel times of all theeus of the freeway system. Given
constant demands, any controllers performance can beredgy the magnitude of decrease of
the TTT experienced by all the freeway users. The conditiacbastant demand can be roughly
captured using the Total Travel Distance (TTD), which is $uen of distances traveled by all

the users in the freeway. For reasons explained later, ghiecapon of ramp metering or control

actions might change the demand patterns and the TTD ofeke/étys, and in this case a combi-
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nation of TTT and TTD is used to evaluate the adopted contedsures. Another useful metric
for evaluation is the Total Congestion Delay (TCD), whiclhie additional time spent by all users
under congested conditions as compared to conditions wvideh the traffic is in free-flow.

Given the density and flow along the freeway, TTT, TTD and T@ID be measured as

t2 X2
TTT= p(X,t)

1 Jxg

t2 X
TTD:/ / F(x 1)

1 Jxg
TCD=TTT - —T\-/rD (2.7)

f

In the above formula for delay calculation, we have assunwahatant free flow spead through

the freeway. The formulaes can also be extended to captergelay, and time spent by users in
the ramps, as the wait to enter the freeway. It can be seeii ihahasy to measure these quantities
using detectors along the freeways. In this dissertati@calculate all system utility/performance
measures as the sum of individual vehicle utility/perfoncemeasures, as opposed to consid-
ering individual passengers. One advantage of this cheitieat we can directly measure these
performance measures using the detection systems comermplpyed in the freeway.

Care must be taken to define the boundaries of the networlenlfoscomputing these perfor-
mance measures so that we can correctly evaluate the denpretformance. ldeally, the network
should be chosen such that the application of the contrdidess not change the boundary con-
ditions (for eg. density and flows at the boundaries) as coegpto the case against which it is
compared. This is difficult to achieve in reality and it is geally acceptable that the boundaries
of the chosen system are in free-flow.

To understand the working principle of the controllers, wenite TTT from Eq. [(2.[7) along
the lines explained in [46].

X2 t2 t2

TTT=(ta—t1) | p(Xt1)+ (tz—t)fin(t)—/ (to—t) FOU(t) (2.8)

X1 1 t1

Here, f"(t) (f°U(t)) is the sum of all flows entering (exiting) the system. In thexa equation,
the first term corresponds to the initial conditions, whieimmot be affected by freeway control.
Likewise, the second term corresponds to the demands regtibie system, which we assume are
not affected by the controller, since the controllers wagtedo not change demand profiles. Thus
the controllers affect the performance of the system thinabe third term, which is a weighted
integral of the flows exiting the system. To decrease the Thd,controller must operate the
system such that vehicles exit the system as soon as posHitdéeast TTT can be realized when
vehicles entering the system travel at free-flow speedshadédxit the system.
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Ramp Metering

Ramp metering is a control method in which vehicles entettiegreeways through the on-ramps
are controlled. A traffic light, present at the ramp entramecgilates the traffic entering the freeway
when the controller is active. Most traffic lights in rampkal 1 or 2 cars per green. Therefore,
regulating the frequency of green lights leads to the imdicentrol of the rate at which vehicles

enter the freeway.

Ramp metering algorithms can be classified depending onctiy@esof their action as either
local or co-ordinated. As the name suggests, local rampringtalgorithms adjust the metering
rates independent of other controllers which are activene@aly, their scope and objective is
limited to relieving congestion present locally around tbgion of the ramp where the meter is
installed. In coordinated controllers, several ramp nsateordinate their actions to regulate traffic
simultaneously. Ramp meters can also be classified as tradfionsive, or fixed time, depending
on whether the metering actions are dependent on the trafiidittons or not.

‘/ ‘/ ‘/ ‘/ ‘/ ‘/ ‘/ 4 ’ ‘/ ‘/
4
. / / ,‘ — ,‘ Congestlon .

s . R . . ,’

Bottleneck

Figure 2.3: Effects of ramp metering in action.
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Ramp metering can lead to earlier exit flows (thereby imprgviTT) in the freeways through
two main mechanismdl) Avoiding off-ramp (exit) blockagé2) Preventing capacity drop. Figure
2.3 depicts an example of the first scenario, where there wtiebeck just downstream of the
on-ramp. To understand off-ramp blockage, we consider ¢teaagio when ramp metering is
not used (Figuré 213 top), and demand exceeds the capadite &ottleneck. The congestion
propagating from this bottleneck leads to vehicle queuesgathe mainline that extend quickly
past the off-ramps located upstream of the on-ramp. Thesydeéhe vehicles exiting through this
off-ramp, even though they do not pass through the bottleresgion. Furthermore, these vehicles
which cannot exit through the off-ramp also add to the quamelscontribute to further congestion
upstream. In comparison, when the ramp is metered, theegpstoff-ramp blockage can either
be delayed or avoided leading to increased earlier exit fioars the system. This leads to a
decrease inthe TTT of all users of the system, as shown iriZE8). Ramp metering can also help
avoid capacity drop, thereby increasing the exit flows fréve $ystem. Figure 2.4 (Top) shows
the application of ramp metering to avoid capacity drop. Asalibed before, under congested
conditions the queue discharge rate might be below capaeityje flows equal to the capacity
can be sustained when the bottleneck section is in free-RRamp metering, in this case, aims to
maintain free-flow conditions at this section, leading toaghbr throughput while also prevent exit
blockage. In comparison, the ramp metering controller camtain controlled congestion when
only mechanisnil) is present, as long as the congestion tail does not reaclpgtieeam off-ramp.

Ramp metering may also have an indirect effect on freewagestion by inducing changes in
routing choices or leading to a temporal shift in demands.advidg’s first principle([71] states that
users with multiple route choices choose the route thatmiags their travel time. This principle
is also relevant in describing the temporal model of velsicdemands on the ramps. In order to
accurately model these phenomenon we need demand dategategr by intended destination,
along with a description of preferred route choices for easérs. Accurate data in this format
is not usually available. Also, it is generally expectedt tteamp metering does not change the
choices of users, when the metering leads to bounded queddsoainded increases in waiting
delays. The users who are expected to be directly affecteddwae users who use the freeway
for a short commute. In this dissertation, we will not moded éake advantage of traffic diversion
as a methodology to improve travel times. Thus we generalbheet that the performance gains
reported by using the model with the controllers may be a fdveeind of the performance gains
that can be expected in a field implementation.

Ramp metering is often used in conjunction with queue lewgthtrollers. The objective of
these queue controllers is to prevent excessive queueupsiid the ramps. This is necessary for
two reasons (1) Excessive queues might lead to traffic dismgpin the arterial from which the
on-ramp originates (2) Large queues might lead to exceg®walization of users of the ramp.
To elaborate consider the example from Figuré 2.3. When nngtés active in the on-ramp,
gueue starts building up on the on-ramp as the outflow isicesdr by the metering algorithm.
Limited storage spaces in the ramps mean that continued magbgring may lead to queue spill-
back onto the arterials. Additionally, the travel time oéthsers on the on-ramp is increased as
compared to the case when ramp metering was inactive. Td¢rsdaes the total travel time for the



18

users using the ramps. Queue controllers, which help lmeithaximum queue lengths indirectly
promote equity. Queue overrides and integral queue regglate some of the strategies proposed
to maintain queue lengths in on-ramps|[66].

Over the years, many ramp metering algorithms have beenapedand deployed. The sim-
plest ones are fixed time of day controllers which specify adirate at any particular time of
the day. These metering rates are usually determined frgtorldal data. Percent occupancy
control, which is another widely deployed ramp meteringtsigy, uses occupancy thresholds to
determine the metering rates. Alinea is a popular locdlitreésponsive ramp metering algorithm
developed by Papageorgiou et &l. [[47]. The basic version isitagral controller, which regu-
lates the density downstream of the ramp to be around thettdemsity (which is usually cho-
sen as the critical density). Compared to the percent ocmypscheme, which is a feedforward
controller, Alinea is a feedback controller and its field Ierpentations have yielded improved
performance[48]. Various versions of ALINEA, includingetlupstream ALINEA (which uses
density measurements upstream of the ramp) and FL-ALINERidfwuses flow measurements)
have been developed [65]. Various co-ordinated ramp nmefestrategies have been presented in
literature and deployed in the field. The most popular onekitte Compass, Bottleneck algo-
rithm, SWARM (Systemwide adaptive ramp metering), ZONEakhpm and METALINE, among
others[[76]. Heuristic Co-ordinated ramp metering (HERO)pordinated ramp metering strategy
[54], was recently deployed successfully in the Monashaiesein Australia.

Variable speed limits

Variable speed limits(VSL) is another popular control &gy for traffic regulation in freeways.
Variable message signs display the current speed limiex) ofetermined in response to the current
road, traffic and weather conditions. In some installatiting posted speeds are advisory, while
many require mandatory compliance with enforcement. Introbshe installations, the main
target objective is to ensure traffic safety, and the VSLé&s dasigned to ensure speed reduction
and homogenisation in locations with high traffic incidef@@].

There are very few studies documenting the direct effect 8L \WWn aggregate traffic flow
characteristics. Various researchers have proposedatiffenodels for effect of VSL on the fun-
damental diagrams [25] 5| 4]. Figure 2.5 shows two of the [awpuodels capturing the effect
of VSL on fundamental diagrams. There is a general consehatighe reduction of speed limits
decrease the total flow throughput at under-critical desssitHeygi et al.[[25] suggest that the new
critical density is the point of intersection of the new ffémv line with the original fundamental
diagram, and the fundamental diagrams overlap beyond therigcal density (Figuré 215, Left).
This differs from the fundamental diagram models propose@drison et al.[[4], where different
fundamental diagrams result as the speed limits changethasd fundamental diagram often in-
tersect. In general, these models predict higher flows age@itical densities when speed limits
are changed. The models proposed by Carlson et al. can ati&l moreases in capacities as speed
limits are decreased. This model was developed in respontge tempirical observations made
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Figure 2.4: Avoiding capacity drop. Top : By ramp metering{t®m : Using variable speed limits

by Papageorgiou et al. [49]. However, this study does ndudea rigorous statistical analysis,
presumably due to lack of large amounts of data, to summewitglude the effects of VSL on the
fundamental diagram. Moreover, the effect of VSL on ovéiaal densities, as modeled by Carl-
son et al. is debatable. For example, consider that therdwstate of the traffic flow corresponds
to overcritical densities with no VSL in effect. The modeggests that decreasing the speed limit
would lead to increase in throughput. In fact, this would lhe tase even when the speed limit
is still above the current speed on the highway. On the otardhthe model proposed by Heygi
et al., predict that the VSL is ineffective unless the spémit imposed is lesser than the current
speed on the highway.

Variable speed limits can be used as a mainline traffic comtezhanism. Figure 2.4 (Bottom)
shows the application of variable speed limits to creatdrotiad congestion to prevent capacity
drops downstream. Suppose the bottleneck section expesencapacity drop once its density
exceeds critical density. This capacity drop can be avoil¢&L is applied to the location up-
stream of the capacity drop section, such that the feedimgflo this section maintain its density
below the critical density. VSL offers a couple of advantageer ramp metering for avoiding
capacity drop. VSL can be applied to the area directly upstref the bottleneck section, and
there is usually a minimal delay for the effect of the conérction. In contrast, if the first upstream
on-ramp is located far away, there will be a large time delhgmramp metering based controllers
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Figure 2.5: Effects of variable speed limits on fundamedtagrams. Left : Heygi et al.[ [25],
Right : Carlson et all[4]

are used. In the case that there is a off-ramp in between timarop and the bottleneck location,
the effectiveness of ramp metering may be limited, espgaidien the exact portion of vehicles
leaving the off-ramp is not known. Finally, the presence wéug regulators and queue overrides,
along with the limited storage capacity of on-ramps limg #ffectiveness of ramp metering in
dealing with the capacity drop. In contrast, the VSL coméradlirectly uses the freeway mainline
to store the additional vehicles present due to excessivadds.

Model based predictive controllers

Model based predictive controllers use predicted demaladg avith a model of the freeway net-

work to specify ramp metering rates and/or variable speetdifor freeway traffic control. These

strategies typically employ an optimal control/optiminatframework to design strategies to min-
imize a chosen performance objective function. Hg. (2. 9wshsome of the commonly used
objective functions used in these formulations.

Wattleworth [72] was the first to use an optimization appho@cspecify ramp metering rates
using a simple steady state model. Blinkin [2] and Papageof®$0d] present some of the other
early efforts in the development of model based optimal rmbrstrategies. While many of the
early efforts used simple models in the formulations, wité &dvent of powerful numerical tools,
various optimal control strategies based on more accuratgascopic models have been investi-
gated over the last couple of decades. For freeway netwiindtsprder models (Cell Transmission
model, CTM [11]) and second order models (METANETI[52]) anenecnonly used to describe the
traffic dynamics within these controllers.

The following approaches employ METANET as the underlyiraffic model. Kostalis et
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al. [31], present an freeway control approach using on-raragering in conjunction with routing
suggestions through variable messaging signs (VMS). Kes&tizal. have also developed an model
based coordinated ramp metering strategy which is pres@m{@9]. Hegyi et al. [[25], presented
an optimal control strategy using the METANET model, empigyramp metering as well as
variable speed limits. Some of the other recent effortspuMETANET models can be found in
[63,/5]. Second order models have an advantage over the ffiitst smodels in incorporating the
capacity drop. However, the optimization problems basethersecond order models are non-
linear, computationally intensive and the solutions af#diare usually only locally optimal. The
former proves to be a drawback when the controller is emisbddea part of a model predictive
framework, since this requires fast optimizations to becated repeatedly[29].

While many optimal control efforts have focussed on usirgg@i M as the underlying model,
two particular efforts are most relevant in terms of the cataponal efficiency of solutions pro-
posed. Ziliaskopoulos[77] presents the problem of coreptentrol of a road network based on
the CTM model. The model assumes that all users are headedgihgla destination, and the
system operator can specify flow controllers as well as sotdken by various users. The flow
controllers used in this formulation include ramp metemngl variable speed limits. Ziliaskopou-
los showed that under complete control, the optimal coroblem can be solved using a linear
program, even though the CTM model is inherently non-lin€ames and Horowitz [20] present
an optimal coordinated ramp metering strategy based ongimAetric Cell Transmission Model
(ACTM) [19], [2C], which is a simplified model of the CTM develegto simulate traffic dynam-
ics in freeways. In this effort, the authors demonstraté timaler certain restrictions, the ramp
metering problem can be solved using a relaxed linear pnogra
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Chapter 3

Modeling and calibration of freeway

networks

In this chapter, we review and discuss the application otélledransmission model for simulation
of traffic dynamics in freeways. We present in detail, howegtvay is represented in the macro-
scopic modeling framework, and discuss the calibratiorgse used to create a simulation model
of a chosen freeway stretch. The cell transmission modalepted here will form the basis of
different algorithms discussed in the rest of this dissiena This chapter will also highlight the
usage of the imputation algorithm, which is presented imitlet the next chapter. The process
of model creation is work done along with other members of T¥°L group, notably Gunes
Dervisoglu.

3.1 Link Node Cell transmission model for freeway traffic

flow simulation

The cell transmission model [11] was developed as a vegsatidel to describe traffic dynamics
in networks. In Sectio 2.2, we reviewed the basic cell tn@asion model which was used to
describe the traffic dynamics in a stretch of roadway withamiyt junctions. Daganzo presented
an extension of the cell transmission model to general métwapologies([13], including traffic

merges and diverges. The Link-Node Cell transmission madis referred as the LN-CTM, was
presented in [32] as a modification of Daganzo’s network mael this will be used here. The
LN-CTM is implemented in Aurora, a simulation platform usasla part of TOPL. Aurora uses
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the LN-CTM to simulate traffic flows in freeway networks as W arterial streets.

— 6 == 0=

Link O

Figure 3.1: A directed graph representation of an arbithaffic network.

In LN-CTM, the traffic network that is to be modeled is reprasel as a directed graph of links,
joined together at Nodes. Figure 3.1 shows an example ofvaonletrepresented as a directed
graph in the model. Each link represents a finite road segmahtuniform geometric properties.
A network has normal links which represent road segmentseaximng an upstream node to a
downstream node. Links that do not have an upstream nodesamra source, and these links
introduce vehicular demand into the network. Links withaudownstream node serve as sinks,
and they discharge the traffic out from the traffic network: €ach link, traffic flow properties are
defined through a fundamental diagram. Additionally, seditks are also provided with input
demand profiles, which specify the number of vehicles emgetine link at any particular time.
Sinks are sometimes specified with a flow capacity profilectvdenotes a time varying restriction
on the flow out of this link. Nodes are located at road junctja@ach node transfers traffic from
its input links to the output links. These nodes can be madepesent simple road junctions like
the merge (with 2 input links and 1 output links) and the digefwith 1 output link and 2 input
links), which are the junctions modeled in Daganzo’s nekwaodel. However, the node model
in the LN-CTM is more general and it can be used to represgnganeral traffic junction with
multiple inputs and outputs. Each node is specified with &tuarying routing matrix, known as
the split ratio matrix. The split ratio matrix entries repeat the portion of traffic moving from one
particular input link to any given output link. Nodes canstire any vehicles, and any flow that
enters the node through an input link is completely tramsteto the output links according to the
given split ratios. Hence the sum of the split ratios for aaytipular input link is 1. In limited
cases, some of the split ratios can be undefined and caldutateal-time in response to traffic
conditions[[33].

The LN-CTM algorithm is explained in [32]. The model updageekecuted in two steps: (a)
Density updates and (b) Flow updates. Density updates gragtonservation equation involving
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the flows entering and exiting each link. These flows are tatled using the flow update equations.
This density update can be simultaneously executed for acim the network. Flow updates,
executed in parallel at each node, involve a series of sepisstrirst, the demand and supply are
calculated for each input/output link respectively, aslaixgd in Section 2]2. Using the split ratio
matrix at each node, the portion of this calculated demastirdsl to a particular output link is
determined. The total demand for each output link can theralwellated as the sum of all demands
destined to enter the output link. If the total demand for amtput link exceeds the supply, then all
input demands contributing to the traffic demand are reduceatrder to reduce the total outflow
to equal the supply. For each input link, the demands aredcalrresponding to the supply of the
most restrictive output link, to determine the realized #own case none of the output links have
supply restrictions, the realized flows equal the demanc fidws out of the input links, along
with the split ratios, provide the flows entering into eaclpom link. This procedure is applicable
for general networks and is explained(in[32] (Pg. 128).

In the case of a freeway network, the update equations caimipdified. Figurd 3.2 shows the
actual geometry of a freeway. There are two types of junstigpically encountered in freeways
- a merge (when an on-ramp joins the freeway) and a diverger{veim off-ramp breaks diverge
from the freeway). In freeways in the U.S, off-ramp juncsare located upstream of on-ramps
and there is only a short segment of freeway located in betwée cases when the segment is
quite short, we can choose to disregard the correspondikgiithe network model, and represent
both junctions with the same node. In this case, we indidetthe split ratio for flows from the
on-ramp onto the off-ramp is 0, since traffic entering theamp cannot exit through the off-ramp.

On-ramps are modeled as sources which feed traffic into ttweonle and the off-ramps are
modeled as sinks through which flows exit the network. The fiezway link is also a source,
while the last freeway link is modeled as a sink. All the boamess, including the off-ramps as
well as the last freeway link are assumed to be congestien ®&-ramp boundaries are generally
observed to be congestion free. In many cases, the freewagsti@am boundary can also be
chosen to be in free-flow. This condition is not necessaryrfodeling the base scenario, since it
is possible to introduce flow capacity restrictions on sirntdkewever, when the modeled freeway
is used for freeway control simulation studies, the resglgimulations are usually inaccurate,
since levels of congestion in boundaries change as trafficvilithin the network changes. In this
dissertation, we will assume that all the boundaries, gidlg the off-ramps are in free-flow.

Table[3.1 defines different symbols and variables used utitrout this dissertation. The
variables can be interpreted in conjunction to the freewescdbed in Figuré_3l2. The freeway
is assumed to hawd links, which form the freeway mainline. A link indexedi =1---N—1
connects upstream node- 1 to downstream node The first link (Link 0) and the last link
(Link N) are a source and sink respectively. Similarly, each of theamps and off-ramps are
represented as a source and sink respectively. Ramps ameethddy the nodes to which they
connect, as seen in Figure 3.2.

All the freeway links have a fundamental diagram associatéadthem. We adopt a triangular
fundamental diagram as shown in Figure 3.3. The trianguladdmental diagram is characterized
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Figure 3.2: Freeway with N links. Each Node contains a maxrmad one on- and one off-ramp.
Note that Node is upstream of Link

by the free-flow speed/), congestion wave speeWi), Capacity §) and the jam densitynf).
With each freeway link, we associate two variables, its entrdensity -n;(k), represented in
units of number of vehicles per section and the flow exitirglihk at the current time stefp(k),
represented as number of vehicles per period. For eachnop;nae keep track of the on-ramp
queue [(k)), on-ramp demandgii(k)) and the flow out of the on-ramp;(k)). The split ratio
Gi(K) represents the portion of the demand from Lintkat is intended to exit through the off-
rampi. Since the CTM model uses a First In First Out (FIFO) prireif) (k) also represents the
portion of the realized flow from Linkthat exits through the off-ramip The units adopted in this
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Symbol Name Unit
K flow capacity of Link i veh/period
\Y; free flow speed of Link i section/period
W congestion wave speed of Link i section/period
niJ jam density of Link i veh/section
k period number dimensionless
Gi(k) split ratio at node dimensionless
fi (k) flow out of Linkii veh/period
ni (k) number of vehicles (vehicle density) in Link  veh/period

i
s(k),ri(k) off-ramp, on-ramp flow in node veh/period
di (k) on-rampi demand veh/period
li (k) gueue length on on-ramp veh/period
ré(k) ramp metering rate for on-ranip veh/period
G flow capacity for on-ramp veh/period
L queue capacity for on-ramp veh/period
Qi(k) input flow for on-ramp veh/period

Table 3.1: Model variables and parameters.
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Figure 3.3: A triangular fundamental diagram, with the dachand supply functions
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dissertation, along with the conversion factor from the ownly used units is given in Takle 3.2.
The simulation time step is chosen to ensure that\® <V, < 1. If a chosen simulation time
step does not satisfy this we can reduce the simulation tiepewsitil the condition is satisfied. For
freeway networks with minimum link length of 1500(excluding sources and sinks), a simulation
time step ofT = 10sis appropriate under maximum free-flow speeds up Bl

Variable Commonly reported units X Conversion factor New urits

Flows veh/hr T veh/period
Density veh/mile L veh/section
Speeds miles/hr LI, veh/period

Table 3.2: Conversion factors for units. Simulation timepst is given in units otr, while L; is
given in miles.

The LN-CTM update equations for the freeway networks descriabove can be simplified as
follows :

Density Update Equations : Mainline/Queue Conservatioumeign

No(k+ 1) = ng(K) + Qo(k) — fo(k)
ni(k+1) =nij(k) + fi—1(k) (1= Bi—1(k)) +ri—1(k) — fi(k) i=1,---,N
(k1) = 1K)+ Q(k) —ri(K) =1 N @1)

Flow Update Equations

fi(k) = Di(Kk) x mln(ng)(in(k)) i=0,---,N—1
ri(k) = di(K) x minﬁg)(’k?*“k)) i=1... N
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where

Di(k) = min(ni(k)Vi, F),

R (k) = Di(k)(1—Bi(k)) +di (K),

St1(k) = min(Wya (n g —niga(K)), Fiva)

di (k) = min(rf(k),li(k),Ci) (3.2)

The density update equations include the conservatiortieggdor the on-ramps and the main-
line. The first link (Link 0) and the on-ramps are source liaksd they implement a simple queuing
model. The closed form expressions for flows are obtainedbyparing the total demand func-
tions destined for each link(R;_1(k)) with its supply §(k)). The total demand function for each
link i (Ri_1(K)) is composed of two terms(a) On-ramp demandd((k)) (b) Demand from previ-
ous link, minus the portion that exits through the off-ranvpjch equal®D;(k)(1— Gi(k)). In case
this total demand is lesser than the supply for any link, thedlthat are realized are equal to the
demands, and the node corresponding to this traffic exchiarggad to be irfree-flow. Alterna-
tively, the total demand can also be greater than the suaptyjn this case the flow conditions in
the corresponding node acengested In congested conditions, the flows can be determined by
scaling the demand function such that the total flow into liekjuals the supply. There are many
ways to scale the demands to meet the supply constraintshend done by assigning priorities
to the input links of the node. The LN-CTM assigns prioritfes each input link according to
the total demand presented by each link. Thus the availalplel\sis shared proportionally to the
demands (i.efi(K) /ri(k) = Dj(k)/di(k)).

In the equations above, we do not include separate congemejuations for the off-ramps,
detailing their dynamics. Off-ramps are assumed to be $3imkthout any capacity restrictions
due to congestion in their boundary. As a result, they do xioib& any influence on the discharge
flow out of the network. This is consistent with the flow comatis encountered in many of the off-
ramps in a majority of freeways. However, one situation welthrs assumption can be violated is
in large freeway to freeway interconnects, as congestinrsoeetimes spill back into the modeled
freeway due to flow restrictions at the exit of the intercatnBor modeling purposes, it is possible
to include a time-varying capacity for the off-rangK)), to capture the flow restriction out of the
off-ramp. In this case, the equations for flow out of link given by

min(R (), §+1(k)) s_(k))
Ri(K) "Bi(K)

The first and the second terms corresponds to the scalingneduaigs to comply with the supply

restrictions in linki + 1 and the off-ramp respectively. It can be seen that off-ramp boundary

flow restrictions indirectly introduce a time-varying cafg for flows out of a linki, which is also
dictated by the off-ramp split ratios. We again caution thlaén the model is used for simulation

f(K) = min <Di(k) x (3.3)
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under modified conditions (for example, in the presence ofdroller), these boundary conditions
can change as the realized flows within the network impaajested boundaries. In this case, it
is better to incorporate a complete model of the interactiatyvork in order to get consistent
results. This is beyond the scope of this dissertation, and/il assume that flow conditions in all
boundaries are not congested for the reminder of this thesis

The model presented here can be used to simulate traffic dgaama freeway when ramp
metering is active. Ramp metering rates can be specified iaseavarying profile through the
variabler?(k). Ramp metering operation can be interpreted as a restritdithe flow capacity of
an on-ramp. Another emerging form of traffic control is vateaspeed limits. The original version
of the LN-CTM does not model the traffic dynamics under thefbf variable speed limits. We
will address the problem of modeling variable speed limitewwe introduce the optimal ramp
metering and variable speed limit based congestion cdetrol

3.2 Building freeway models

In the previous section, we described the difference egusthat can be used to model the traffic
dynamics for a freeway network. In this section, we will diss the process of creating a model
of a given stretch of highway from observed data. Along tleeess, we will use the example of a
stretch of I-80E freeway in the Bay area, CA.

Freeway Representation

The first part of the process is to represent the given freawalye directed graph framework,

based on the geometrical characteristics of the site. ey is divided into successive links,
and nodes are created in the junction of on-ramps or off-saamal at location of lane changes
(lane drops or lane increases), along the freeway. As destin the previous section, the node
corresponding to an off-ramp junction and the next on-raumztion can be merged if there is
only a short segment of freeway located in between. Some lin&ated with this process can
be quite long, and they can are further divided into smaiidsl. This helps to ensure that good
guality simulations can be obtained as the congestion caonteately modeled. The length of the
freeway links dictate the sampling time used in simulatMhen the minimum link size is around

1500ft, a sampling time of 19is usually sufficient.

Figure 3.4 shows an example of the directed graph repregantd a short stretch of the I-80E.
TOPL network editor[[68], &00gle Mapsbased tool developed by other members of the TOPL
group, was used to generate this network. In this figure lligstration, nodes are represented by
round markers. Normal links can be seen to connect two rousutkers and they represent the
freeway mainline. Sinks are highlighted in red, and theBtiha&tion is represented by a square
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marker. Source links start at a square marker and end at aahaode. Freeway geometry can
also be specified manually by listing the links and nodesjghdhis may be cumbersome.
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Figure 3.4: A short stretch of the I-80E freeway. The dirddeaph representation is overlaid.

Data acquisition and selection

Vehicle detector stations (VDS) containing loop detectweslocated along the freeway to provide
flow and occupancy data. PeMS processes and archives thiasan darm of time series over
different days of operation. This archived data can be abthfrom their website [57]. The data
are aggregated over an interval of 5 minutes such that eacbatiains 288 data points for each
reported quantity - density, flow and speed. However, detectd data health is a major concern.
PeMS also reports detector performance for each day of tigeraFor the purpose of model
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calibration, we choose days in which PeMS reported over 7&86tionality for all detectors in
the freeway stretch, to ensure that the models generatedlmigle. Figuré 3J5 shows the detector
health report, as well as the number of samples reportedfteratit weekdays, over 3 months
from July 2008 to September 2008. We typically choose mieltilays of data with good detector
health. Multiple days of detector data will be useful fordamental diagram calibration, and also
the specification of multiple sets of on-ramp demands andawiffp split ratios to represent traffic
dynamics of different representative days. We highlight #eMS imputes missing mainline data
using data from adjacent detectors, and the final data @utaines not contain any gaps. Days
in which traffic congestion patterns were not represergabivnominal freeway operations are
generally discarded. This includes days with major traff@idents, weekends, holidays and days
with special events. It is also advisable to disregard datts adverse weather conditions, unless
the intent is to specifically capture its effect on the resdifraffic dynamics.
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Figure 3.5: Detector health and number of samples repotedgiweekdays.

Throughout the model creation process, we choose a 5 minlgrity of data so that the
chosen profiles are sufficiently smooth. In general, obsetadfic data is non-smooth, as they
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represent observation of discrete vehicles, whereas, T iGodels the vehicular traffic using a
continuous fluid approximation. Also, the goal of the mouiglprocess is to reproduce macro-
scopic features of traffic, and for this purpose 5 min avetggefiles are usually suitable.

Fundamental Diagram Calibration

Fundamental diagram calibration is the process of esthgdtie parameters of the fundamental
diagrams using empirical data. For the triangular fundaaietiagram, we need to estimate four
parameters - (1) freeflow speed)((2) congestion wave speed/], (3) flow capacity F) and (4)
jam density §7) (out of which three are independent). We calibrate a furetgai diagram for
data obtained from each detector. For this purpose, we uliplaudays of data obtained from the
data selection process described before. We briefly desttréoprocess of calibration below. For
a more thorough reference, the reader is referred ta [17, 39]

For the purpose of calibration, we use flow-density scatietsp The free-flow speed/, is
estimated by performing a least-squares fit on the flow-tiedsita at the time instants where the
speed was reported to be above 55 mph (this threshold is faalidcations with speed limits
around 65mph). This portion of data is assumed to correspofr@e-flow conditions. The ca-
pacity estimate for model calibration is chosen deterrtically to be the highest observed flow
throughout all investigated days. This maximum value of fimross the section is then projected
horizontally to the free-flow line, to establish the tip oétliangular fundamental diagram (Figure
[3.8). The intersection point (apex point) is the criticahsiéy for the section, above which the
flow is congested. The last parameter to be calibrated isthgestion speed parametéf, which
also defines the jam density for the section. A constraineditije regression of data points whose
speeds are lesser than 55mph is used to obtain the congestienparameteny). The point
where the regression line crosses zero flow is the jam deofsihye section. In certain detectors,
congestion (i.e data points with speeb5mph) is not observed due to the nature of prevalent de-
mands. In this case, the capacity of the section, congestiwe speed and the jam density cannot
be estimated. In this case, nominal values are usually asddng as they are consistent with the
data observed (particularly the flow capacity).

A different fundamental diagram can be calibrated for eatkator located along the freeway.
The fundamental diagram of a link is usually obtained from plarameters calibrated using the
detector located in the link. In many cases, links might restehfunctioning detectors associated
with them, and detectors from nearby links, which have singeometric characteristics are used.

On-ramp input demands and off-ramp split ratio specification

The final step in the model creation process is to specify theamp input demands and the off-
ramp split ratio profiles. It is necessary that the ramp dateamd split ratios specified for the
model are derived from a consistent set of on-ramp flows afchofps flows, which require that
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Figure 3.6: The end result of the fundamental diagram catiitan

the flows are recorded during the same time period on the sagérdthe case all of the data are
available, on-ramp flows (measured at the start of the orpyaan be used as the on-ramp demand
into the freeway. Split ratios are obtained by dividing tifiteramp flows by the flows measured at
the previous mainline section. Both the on-ramp demand #&ndump split ratios are provided as
time varying profiles with a time step of 5 mins.

In freeways in California, mainline detector data is usualichived and available, while on-
ramp and off-ramp flow data is missing. This is sometimes dukadk of detectors on ramps
(particularly off-ramps) or lack of data feeds from the ragigpectors into the PeMS archival center.
From the point of view of performance monitoring, mainliretalis usually sufficient to obtain
measures for characterizing freeway operations, andftrere¢here is a general lack of investment
(or interest) in installing detectors on ramps and settipglata feeds for the existing detectors.
However, for the purposes of freeway model creation, rampdiata is a critical component. In the
next two chapters we discuss imputation algorithms whichlzaused to estimate the ramp flows
using detector measurements from the freeway mainline.imbatation algorithm provides the
missing ramp flows and split ratios, and is therefore an ésgd@mponent of the model creation
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process in the freeways.

Base case simulation and model validation

The final model consists of the following components : (a) Pedied graph representing the
freeway geometry (b) fundamental diagram parameters fdn Bak (c) demand profiles for on-
ramps (d) split ratio profiles for nodes with off-ramp divesge) Ramp metering rates for active
controllers. Once these details are provided, the LN-CTNM@hoan be used to simulate the traffic
dynamics. It produces density, flow and vehicle speed psdiieeach link.

A base case simulation refers to a simulation which remidhe conditions observed on a
particular day. In our case, this corresponds to the sinouatith no additional active controllers.
Many of the freeways we have modeled in California do not aonan active ramp meter. The
purpose of the base case simulation is to validate the maatdmqance and compare it against
the detector data measured along the freeway. This sironletiexpected to reproduce the flow,
density and speed profiles observed along the freeway mairdgasonably.

There are various metrics that can be used to validate thelm@de compare the model by
calculating the mean absolute density/flow error, evatlatea percentage of the mean observed
density/flow. This is referred to as the density/flow errothis dissertation. We also calculate
hourly VMT, VHT and VCD for the freeway and compare it agaithe measured values to obtain
the VMT/VHT/VCD errors. The formulaes for the error calditas are listed below.

i Sk |ni(k) —nMeagk)|
>i Yk|N"AK)|

Density error=

Si Ykl fi(k) — f1°%K)|
>i Ykl fMeK)|

Flow error =

Sk [VMT(k) —VMTMe k)|

VMT error =
>« VMT(K)

IVHT (k) —VHT™Mea k)]

2 K
VHT =
error 5 VAT(K)

S« [VCD(k) —VCD"¥k))|

VCD =
error 5 VCD(K)

(3.4)

where VMT/VHT/VCD are calculated hourly from the densitydatow data using the following
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equations.

(k+1)x3600/Ts
VHT(k) = Z n;i (k)
I k=k+3600/Ts
(K+1)%3600/Ts
DI
I k=k*3600/Ts
(k+1)x3600/Ts
VeDK) =5 Y (k) fi(K)/M)I(Ve(k) < 55mph
I k=kx3600/Ts

VMT (k)

(3.5)

Apart from the metrics listed above, one of the major soufasalidation is the visual inspec-
tion of contour plots of flow, density and speeds. For thesespk-axis represents consecutive
links along the freeway and the y-axis represents the timmmgluhe day. For the contour plots
used in this dissertation, direction of traffic flows fromtl&s right along the x axis. A visual
inspection is used to confirm that the system bottleneckggme of congestion and the extent of
congestion are replicated as close as possible in the diomla

Simulation studies

The main purpose of creating simulation models is to use tteegvaluate various operational
management strategies and to assess their benefits bedgreath be deployed in the field. The
simulation model created above can be used to simulatefénet ef various control strategies in-
clude ramp metering and variable speed limits. For examapleof the control strategies explained
in Chaptef 2 can be simulated using the simulation modelhidissertation, we will use these
calibrated models in Chaptelr 6 to demonstrate the perfaceahour optimal controllers.

Example

We present the base case scenario of an calibrated mode bBOE freeway in California. The
fundamental diagram parameters were estimated from ovelay$ of data obtained over the 3
month period shown in Figufe 3.5. We chose Aug 21st, 2008 taimlon-ramp demands and off-
ramp split ratios to create the model. For the I80 freewahélday area, no ramps reported data,
and thus we used the imputation procedure described in Et&apd obtain the on-ramp demands
and off-ramp split ratios.

Figure[3.8 shows the density and flow contour plots obtaineah the simulations and com-
pares it to the observed measurements. Figute 3.7 showslth@ty contours obtained using sim-
ulated and measured data. In all the contour plots, x-axistés the distance along the freeway,
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denoted by Post Miles, and the y-axis represents the timayfTkthe final density and flow errors
in this simulation were 3.1 % and 6.8 %. In this case, we carttsgethe simulations replicate
the observed freeway dynamics with good accuracy, excejpt $ection between PostMile 10-15.
This section corresponded to the Berkeley Highway Labitgcénd the detector data was verified
to be faulty/unreliable. We can see that the simulation le &b capture the range and temporal
extent of the congestion in other locations. Additionalg are also able to match the location of
the bottlenecks in the simulations. Figlre]3.9 comparesithalated and measured performance
measures. We see that VMT and VHT agree very closely with e#wdr, while the total delay
error is 10%. In general, we observe larger errors in delaysompared to other performance
measures (we have observed delay errors of 25-30 % in sores)c&ased on our conversations
with other researchers/engineers who model freeway n&sydelay errors of less than 40% indi-
cate a well calibrated model, as long as the delay profilesiatally similar. One reason can be
attributed to the errors in flow measurements that are ysseéin in mainline detectors.

Simulated Speed [mph] PeMS Speed [mph]
0

Time [hr]
Time [hr]
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Figure 3.7: Contour plots of simulated and measured vel@oihtours
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Chapter 4

Imputation of ramp flow data using the

asymmetric cell transmission model

On-ramp demands and off-ramp split ratios are critical tegar simulation of freeway traffic
dynamics. On-ramp demands are obtained from detectortelbed the on-ramp entrance while
off-ramp splits can be estimated by using measured flowgyalo® mainline and the off-ramps.
For freeways in California, mainline detector data is ulyualailable, while ramp flow data is
missing - either due to lack of detectors or lack of relialdéadeeds into the archival system. Tra-
ditional imputation algorithms [14, 9] based on statidtiroadels, have been successfully applied
for imputing missing data for detectors along the freewdyeylexploit statistical dependence in
traffic measurements between detectors from adjacenssadr the detectors in the nearby lanes.
However, these algorithms are not suitable for ramp flow itatien, as good quality historical data
is usually not available. Also the measurements from adfa@anps usually exhibit weak statisti-
cal dependence between each other. In some cases, lonpasref freeways can completely lack
any ramp detection data.

In this chapter, we present an imputation algorithm for amjp/off-ramp flows based on the
Asymmetric Cell Transmission Model (ACTM). This algorithean be described as a “model-
based” imputation method, as it estimates on-ramp flows #r@dump flows that match the avail-
able measurements in the freeway when fed into a simulatiogetndescribing the traffic dy-
namics. We use the ACTM as the underlying model for the impralgorithm in this chapter.
ACTM is a simplified version of the CTM for freeway traffic simations. The model dynamics
can be represented by a set of piecewise affine differetiffalence equations as compared to the
LN-CTM model. The simplified model lends to the developmdrthe first provably convergent
algorithm for ramp flow imputation in freeways. In the follow sections, we first describe the
ACTM model and the ramp flow imputation algorithms, and thezspnt the stability and conver-



39

gence results for this algorithm. Finally we present sonmasrgles of its application in a practical
scenario.

4.1 Asymmetric cell transmission model

The ACTM [19,/20] was developed as a simplification to Dag&gIM [12] for simulating
freeway dynamics. The main difference is the treatment afjeseof on-ramps into the freeway.
The CTM model treats the merge to be symmetric, such thatkini the order of consideration of
merging flows will not result in different flow realizations comparison, the ACTM introduces an
asymmetry in the treatment of joining flows, and makes artititin in the consideration of flows
from on-ramps. As we will see below (comparing to the modebkpnted in the previous chapter)
this simplifies the model equations. The original motivafior the development of the ACTM was
to use it as an approximation of the freeway dynamics in otletranalysis and optimal controller
synthesis/[19]. CTMSIM, a matlab based simulation tool iempénts the ACTM [32].

We present a short summary of the ACTM (The reader can ref§t9020] for a detailed
presentation). The freeway is specified as a sequence oesggneach with (at most) an on-ramp
near the beginning of the section and an off-ramp near theoémnide section. This is slightly
different from the way the freeway geometry is representethé LN-CTM model, which uses
nodes to represent flow exchanges. Figure 4.1 shows thedyediwided intoN sections or cells,
where vehicles move from left to right. Boundary conditiaas be specified in different ways
in the ACTM. Vehicles can be fed into the freeway through augyevhile the downstream is in
free-flow (BC-1). Alternatively, density of the cells upsam of the first section and downstream
of the last section can also be specified as the boundarytamslfor simulation (BC-2). As we
had noted before, BC-2 is appropriate to simulate the bassasio, but BC-1 is preferred for use
in simulation model. This is because under different openat strategies like ramp metering, the
control strategy usually modifies the densities at the batiad. It must be noted that BC-1 places
restrictions on the freeway sections chosen for simulatsimce the beginning and end of the
freeway section simulated should always be in free-flow. el@y, for our imputation algorithm,
any one of the stated boundary conditions can be used, diegenid the availability of detector
data.

STH T 2 b -

Figure 4.1: Freeway witN sections.
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Table[4.1 lists the model variables and parameters. Martyeofdriable definitions are similar
to the definitions presented before, excpt), which is defined as the flow entering into Link
i+ 1 from Link i according to the ACTM. These changes will be adopted onlyHeralgorithms
and proofs presented in this chapter. We associate eastalydimk with a triangular fundamental
diagram, similar to the ones used in the LN-CTM (Figuré 3T)e section lengths are absorbed

in the fundamental diagram parameters for convenience.

Symbol Name Units

K maximum flow (capacity) of sectian veh/s
V free flow speed of section section/s
W congestion wave speed of section section/s
n’ critical density of sectiom veh/section
n’ jam density of section veh/section
fi(t) flow from section to i+ 1 at timet veh/s
ri(t) on-rampi flows at timet veh/s
s(t) off-rampi flows at timet veh/s
N (t) number of vehicles in sectidrat timet veh/section
no(t) number of vehicles in the input queue to section 1 at time veh

Qo(t) input flow at upstream queue at tirhe veh/s

Table 4.1: Model variables and parameters.

The Cell Transmission Models are a time and space disctietizaf the Lighthill-Whitham-
Richards (LWR) equation. Thus, the ACTM can also be repiteskss a continuous time spatially
discretized model, as presented here. This continuousrtiotel is more amenable for develop-
ment of a provably convergent imputation algorithm. As ailteghe units for various variables
listed in Tabld 4.11 are slightly different from the ones usethe other chapters. Also, the general
model can be specified with off-ramp flows or off-ramp splttas. We will consider the version
with off-ramp flows, as these flows can also be convertedyetssiplit ratios. We will estimate the

off-ramp flows in our imputation algorithm. When BC-1 is usttk following equations describe
the model.

hi(t) = fi_1(t) = fi(t) +-ri—a(t) —si(t),
fit) = min(Vini(t) — s (t), Whsa [ — i (t), F)
fn(t) = min(Wnn (t) —sa(t), Fy)
fo(t) = min(Vono(t), Wa[n{ — ny ()], Fo)
ho(t) = Qo(t) — fo(t) (4.1)
When density boundary conditiongy(andny 1) are specified, the model is specified as

M (t) = fiog(t) — fi(t) +rica(t) —si(t)

fi(t) = min(Vini(t) — s (t), W 1y — i1 ()], F)

1<i<N
0<i<N
4.2)
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wherewy +1 andnJNJrl are the congestion wave speed and jam density of the cettlgifellowing
the boundary. The flow, denoted Ifiyt) corresponds to free-flow when

Vini(t) — S (t) < minM [0 5 — 1 (1)), (4.3)

Otherwise, the resulting flow corresponds to congesteditiond. With respect to each section,
the inflow (from upstream/previous link) can be either ireffeow or in congestion and the outflow
(to downstream link) can also be either in congestion/fogefl In each of the four cases, the
density and the flow equations can be combined to a singlet@ed@ation. Thus the model can
also be represented using a four mode model. Finally, theaafp splits can be represented as

t
Bi(t) =+ (_t?n(L;(—t)

There are some differences in the model presented herepgsaced to the general model. In
the original ACTM, there is a blending coefficiemt € [0, 1]) associated with each ramp, signifying
the location of the ramp. In our freeway geometry, the onpsrare located at the beginning
of each link, and in this case the blending coefficient eqaats, and the corresponding terms
are not included in the model equations represented abomethar approximation is that ramp
flows are directly allowed to merge into the freeway, whiclussially the case when the ramp
flows are not very large. However, there are some instances Whs model will be inaccurate,
such as in freeways that have large on-ramps due to freewlageivay connectors. The original
ACTM model includes additional parameters which providdighfly better approximation for
these situations, but the ACTM still lacks the model accyadthe LN-CTM to represent freeway
dynamics when large on-ramps are modeled.

The expression for the freeway dynamics represented ats®/@élaws exiting out of the on-
ramps and flows entering into the off-ramps. Our imputaticdet will be designed to estimate
these flows. The flows entering the off-ramp, along with thentivee flows, provide a direct
estimate of the off-ramp split ratio profile. We assume that flows exiting the on-ramps are
a good estimate of on-ramp demands (i.e the flows into theaomps). This approximation is
valid when ramps are in free-flow and they are not metered. t dbthe ramps in California
are usually not metered, and rarely exhibit queues. In tlse @ghen ramps are metered, this
approximation is less accurate. This approximation istlaasurate when ramps are metered, and
mainline is congested, which leads to queues on the raml tilrese cases, the errors decrease
when aggregates over large time intervals are considered.

4.2 Imputation algorithm

The imputation algorithm presented in this section usesAtB&M model described above. We
estimate on-ramp flows and off-ramp flows, which replicatedhserved mainline measurements
when used with the ACTM model. Formally, the ramp flow impigtafproblem can be stated as:
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Problem. Estimate on-ramp and off-ramp flowigt),5(t), t € [0, T], such that the model evo-
lution, described using Eq.(4.1) with the ramp flow estimates generate flow/density profiles
(fi(t),Ai(t), t € [0,T]) that replicate the corresponding measurement \,ini(t), t € [0,T]) ob-
tained from detectors along the freeway.

The imputation algorithm presented in this section is basedn adaptive repetitive learning
technique described in [38, 26]. This is a control technigsed to identify periodic input profiles
for a dynamic system so that it can track a given periodic wupvofile. For our imputation
algorithm, the input profiles are the on-ramp and the offpdlows, and the target output profiles
are the measured densities and the flow profiles. In the lggmigorithm, we assume initial
estimates for the input profiles, and adaptively improve¢hestimates as the process is executed
repeatedly. The final estimates learnt from this procesespected to track the actual output
profiles, in case that a solution exists.

The adaptive repetitive learning algorithm requires thiestg and ramp flow profiles to be
periodic. For example, the density profiles are expectedtisfg n(0) = n(T), whereT is the
period. Under this condition, the algorithm can executetiplgl runs using the observed profiles
corresponding to a single day (even though the actual medsi@nsities/flows can vary day to day,
particularly during morning/evening commute times), &igr simulating a repetitive process. In
our case, we assume that the profiles are measured stadind #:00am and ending at 11:59pm.
The measurements have a typical sample time of 5 mins andenaesar interpolations to specify
the complete profiles which satisfy the continuity condiio Traffic conditions are very light (as
seen by the low density/flow values) in the early morning. Laemsity/flow values in the night
ensure that we obtain sufficiently smooth profiles.

In our imputation algorithm, the on-ramp and off-ramp flows eepresented as a convolution
of a kernel on a constant periodic ramp parameter (influevespr.

r(t):/OT Ke(T,)c(T)d, s(t):/OT Ko(T,)co(T)dT (4.4)

whereK;(7,t) and Ks(7,t) represent periodic, time dependent kernel functions wéhog T,
which is also the period of the process considered. Somedlygernel functions include an
impulse or a gaussian window centered at tikneéKernel function width is chosen with respect
to the degree of smoothness expected from the imputed préfikhort kernel window (eg. an
impulse function) will lead to noisy estimations as compiaea kernel with a large window.

The structure of the ACTM allows us to decouple the estinmatibramp flows. The impu-
tation is carried out section by section sequentially,tistgrfrom the most upstream section 1.
For estimation of sectionramp flows, we consider the immediate upstream sectioh and the
immediate downstream section- 1. For convenience, the upstream (downstream) section for a
sectioni is specified with the subscriptup (i,dn). Figure[4.2 shows the parameters and mea-
surement data used for imputation of ramp flows in sedtiofhe upstream boundary conditions
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Figure 4.2: Imputation parameters and cell definitions

includes the upstream density, fundamental diagram pdesisnas well as the off-ramp flosyyp.
The imputation proceeds sequentially from upstream to doswam and eithes; ,, or its estimate
is available. Since all the parameters and variables chegtibscript, for clarity, we drop it in
the following equations.

In the imputation algorithm, unknown on-ramp and/or offa@flows are estimated indirectly
by estimating their respective influence coefficientg,t) andcs(1,t) using a repetitive adaptive
learning algorithm, which runs continuously cycling thgbuthe 24 hour traffic data. For each sec-
tion, the imputation procedure assumes initial estimaieshie ramp parameter functiong7’t)
andcg(1,t). These estimates are then adapted so that the model cattdensities match the
density profile recorded in the vehicle detector station.Rueepresent Plant (i.e. the actual system
described using the ACTM) whilM represents the Model, calculated using the estimates. The
model variables and the estimates are represented with'g g, f(t) etc.) and the errors with a
‘tilde’ (e.g. fi(t) = n(t) —A(t), wheren(t) is the section’s measured number of vehicles ailis
the number of vehicles generated by the model at in&)afithe actual variables (ie. the measured
variables) are represented without any accent. Table 4s&pts the various modes considered in
the imputation. In this table, and throughout this sectia will introduce a new variablesg(t)
to simplify the expressions.

Wgn(t) = min (ﬁ,wdn) (4.5)

The modes considered here only refer to the flow conditiomsxdtream (i.e out of the section con-
sidered) and® — F andP — C correspond to free-flow and congested flow conditions dawast
respectively.

For each section, we assume that we have the following me@asunts: upstream link density
Nup(t), upstream off-ramp flows,p(t) or its estimatesp(t), current link density(t), link outflow
f(t) and downstream link densityy(t). In addition, the fundamental diagram parameters are also
available for all three links. The mode dependent adaptdéieys for the parameters at each step



Symbol Condition

P—F  f(t) <Wgn(t)[n3,— Nan(t)]

P-C  f(t) =wan(t)[ny, — Nan(t)]
M—F  VA(t) — §t) < Wan(t)[n3,, — Nan(t)]
M—-C  Wi(t) — §t) > Wyn(t)[ng,, — Nan(t)]

Table 4.2: Plant and model modes.

are given by

() P-F , M-F (plant and model are both in free-flow downstream)

& (T,1) = GiK, (T, 1)fi(t),
&s(T,t) = —GoKg(T,1) fy(t),

(b) P-C , M-C (plant and model are both in congestion downstream)

ér(T,t) = GlKr<T7t)ﬁ(t)v
Cs(T,t) = —GaKs(T, 1)fi(t),

VT e [0,T]
VT e [0,T]

VT e [0,T]
VT e [0,T]

(c) P-C , M-F (plant is in congestion and model is in free flow downstream

Casei) A(t) >0
& (T,1) = GiK, (T, 1)A(t),

&s(T,t) = —G1Ks(T, t)f(t) — Gz&(fi)M,

Casdii) fAi(t) <0
& (T,t) = G1K, (T, 1)f(t),
&s(T,t) = —GoKg(T,1) fy(t),

VT e[0,T]

VT e [0,T]

VT e [0,T]
VT e [0,T]

(d) P-F , M-C (plant is in free flow and model is in congestion downstream

Casei) A(t) <0

G (T,1) = GiK (T,1)fi(t),

Es(T,1) = —G1Ks(T,1)A(t) — GoKs(T,1) fy(t),
Case€ii) fi(t) >0

G (T,1) = GiK (T, 1)f(t),

Gs(T,1) = —GoKs(T,t) fu(t),

VT e [0,T]
VT e [0,T]

VT e[0,T]
VT e [0,T]
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(4.6)

4.7)

(4.8)

4.9)
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whereG;, G, are user defined positive gains.The model update equati@aslk step are given by
A(t) = n(t) —A(t)
A(t) = fup(t) — F(t) +F(t) —&t) +afi(t) (4.10)

f(t) = min(A(t)V — 8(t), Wan(t) (g — Nan(t)))

F(t) = TKr(T,t)Cr(T,t)dT
OT
§(t):/0 Ke(T,1)85(T,t)dT
fa(t) = f(t) — (n(t)V — §(t)) (4.11)

The error termfd(t) is designed to capture the errors in off-ramp flows during-ftew. The
parametea > 0 in (4.10) is chosen so as to make the error equations asyiogy stable. In
the update equations, on-ramp flows are always updated teatecthe density error, and hence
the updates are proportional to the current density erttoe. aff-ramp flows are adapted using the
density error (terms with gai6,) and/or flow errorfy (t) (terms with gainG,), depending on the
mode. This allows the downstream flows to converge to the nnedwvalues, as we will see in the
next section.

The imputation algorithm is initiated from the most upstnesection. After convergence, the
off-ramp flow estimates from the current section is used ambary data for imputing the ramp
flows in the next section. The imputation algorithm then iptyed section-wise to the most
downstream section.

While the parameter and model density update equationsieea m continuous time, this
procedure is implemented in discrete time with a small tirrep and small gains, so that the
imputation procedure as well as the model are stable. Tiypite time stept is chosen such that
Vimalt < 1, wherévmax= max Vi andV, is the free flow speed at sectiarrhe adaptation is carried
out for the entire density profile multiple times, so as touaslthe 24-hour ‘errorsy |fi(k)| and
Sk f(k)|. This procedure is repeated until both the errors becongrifiisant, i.e.

Z|ﬁ(k)| < 0.005x Zn(k), and Z|f~(k)| < 0.005x Z f(K)

or stop decreasing

A (Z \ﬁ(k)|> < 0.005% Zn(k), and A <Z|F(k)|> < 0.005x Z f (k)

In the expression abovA(.) is the change in errors across iterations.
The final ramp parameter functiogs and cs give us the imputed estimates of on-ramp and
off-ramp flow profiles £;(t),(t)). The off-ramp split ratios are computed from the off-rampits

profiles and the model calculated flows,[ﬁet) = %
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4.3 Analysis of the algorithm

In this section, we will study the stability and convergeatthe density errors under the adaptation
laws given in Section 412. The error equations are given by

r'”\( ) = fup(t) — f(t) +7(t) —§t) —ari(t) (4.12)
/Krrtcrrtd

“1

§(t) :/0 Ko(T,1)E(T,t)dT (4.13)

We will also show that the downstream flow converge with zerors in all the modes. The
condition stated below will be used in the following lemmal @neorems.

Condition 4.3.1. For the system described in Figlire 4.2, the following cdodg apply:
(1) sup(t) = Sup(t) when the plant upstream is in free-flow.
(2) W(n? —n(t)) < min(Fup, Nup(t)Vup — Sup(t))) when the plant upstream is in congestion.

Condition4.3.1 guarantees that the upstream off ramp atimerrorsgp(t) = syp(t) — Sup(t)
is either zero or it does not affect the upstream (input) flswthe current section. For the freeway
described in Figure 4.1, this condition is easily achievadlie first cell (i=1) and as it will later
be shown by induction in Theorem 4.8B.2, it will apply to alllse

Lemma 4.3.1. For the system described by Figurel4.2 executing the imjoumtatigorithm de-

fined by Eq.(4.8) - (4.11) given np(t), Sup(t), Nany), f(t), n(t) and the fundamental diagram

parameters for all the cells, under ConditiBi ZI3flp(t) = fup(t) — fup(t) is given byfup(t) =
—{ (t)WA(t) where0 < {(t) < latany timet.

The flows entering the section can either be in free-flow owoimgestion, and they could pos-
sibly be different for the Plant and the Model. This lemmavtes a compact representation for
the ﬁ,p(t) for all the cases. In fact this term will be a stabilizing temthe proofs that follow. The
proof of this lemma is presented in Section|4.5.

Theorem 4.3.1.For the system described in Figure 1.2, givenp(h), Sup(t), ngn(t), f(t) , n(t),
and the fundamental diagram parameters, the parameter tegdsvs in Sectioh 412 stabilize the
error equationg4.12)(@.13)when Conditio 4.3]1 applies. The density errdgig)) and the flow
errors (f(t),fup(t)) converge to 0. Moreover(l§ = §(t) when the plant downstream is in free-flow
andwgn(t) (N}, — Nan(t)) < min(F,A(t)V — §(t))) otherwise.
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Proof. Consider the Lyapunov functiondl(t) (and its time derivative) given by
I TRCINNE S IR N PRY

v(t) = 5A() +2—61/0 &(1,1) dr+2—61/0 &(1,t)%dt

. . T . T .

V(t) = ~(t)ﬁ(t>+/ ér(r,t)Gl_lér(r,t)dr—i—/ &(1,1)Gy YT, t)dT (4.14)

0 0

In deriving V(t), we use the fact that ramp parameter functioiis), cs(7) are not a function of
time. We need to show thai(t) is negative semi-definite, for the error equations to belstab

From lemmdZ4.311, we see thafy(t) = —{ (1)WFi(t) for some 0< (t) < 1, irrespective of
the mode of the plant/model with respect to upstream flow.cdgetine error equations can be sim-
plified into four cases corresponding to the downstream flbine following equations show that
V(t) < 0in all the four cases.

(i) P-F, M-F
In this case, we have

Substituting these terms in EQ._(4.14), we get

V(t) = A(t) (—afi(t) — § (HWA(t) —VA(t) +F(t))

I
~—
1
o))
+
<
+
™~
S
—
SN—
=2
=1}
S
—
SN—

N
+
=}
S
—
SN—
=
S
—
SN—
SN—"
|
=]
S
—
SN—
=
S
—
SN—
|
I
M
—~
(o d
N—
N

< —afi(t)®?— =2§(t)2 <0 (4.15)
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(ii) P-F, M-C
For this case,

— (@fi(t) + fup(t) — (Wan(t) (N — Nan(t))) +F() — §(1))
(t) OV + S(t) + Wrn(t) (N — an(t)) +F(1) — &) (4.16)
8-+ V)A(t) — AV + 8(t) + Wen(t) (M, — Nan(®)) +F(1) (4.17)

When plant is in free-flow and model is in congestion, we have
N(HV — s(t) < Wan(t) (NG — Nan(t)) < ALV —§(1) (4.18)

We substitute for the individual terms in EQ. (4.14), andtise condition in the following expres-
sions.

(a) fi(t)<O
Under this condition, we have
& (1,t) = —G1K (T, 1)f(t)
Cs(T,t) = GiKs(T,)fi(t) + GoKs(T, ) fu(t)
Using these terms along with EQ. (4.17) in EHqg. (4.14), we get
V(1) = fi(t) (—(C (W +a)fi(t) = n(t)V + S(t) +Wan(t) (Ngn — Nn(t)) +F(t) —§(1))

S
+/ & (1,1)G1 {(—GyKy (T,1)fi(t))dT

o [

(G1Ks(T,1)fi(t) — G2Ks(7,1)8(t))dT

I
= —(a+Z(W)RA(L)?+ fi(t) (—n()V +S(t) +Wyn(t) (D, — Nan(t)))
+A(t)F(t) —A(t)S(t) —A(t)F(t) +At)S(t) —g—ig(t)z
< _aii(t)’ gz 5t)2<0 (4.19)
1

where we utilize the fact that

NV —(t) < Wean(t) (NG — Nan(t))
(b) fi(t)>0



Here, we have

& (1,t) = —G1K (T, 1)f(t)

&s(T,1) = GoKy(T,1) fy(t)

Substituting these terms along with Elg. (4.17) in Eq. (4.0 get

V(t) =f(t) (—(J(OW+a+V)f(t) — AtV + 8(t) + Wan(t) (N, — Nan(t)) +F(t))
t) dr+/ (1,8)G7 (— GoKe(T,1)§t))dT
= —(a+(HW+V)F(t)® — fi(t) (A(t)V — §(t) — Wan(t) (NG — Nan(t)))

+/OT & (1,1)G7H(—G1Kr (T, )R

+ Ai(t)F(t) — A(t)F(t) — g—ig(m

< _aii(t)?— 2512 <0
Gy
where we utilize the fact that
A(t)V — §(t) > Wan(t) (NG, — Nan(t))

(i) P-C, M-F
fi(t) = (fup(t) — (Wan(t) (NG — Nan(t)) + s(t))
— (afi(t) + fup(t) — (A)V —§(t ))) F(t) —&(t))

= —(Z(HW +a)fi(t) —Wan(t) (Ngn —Nan(t)) + AV — 8(t) +F(t) — §(t)

= —(Z ()W +a+V)fi(t) —Wan(t) (Ngn— Nan(t)) +N(t)V —s(t) +F(t)
fa(t) = Wan(t) (NG, — Nan(t)) — (N(t)V — §(t))

= Wan(t) (Ngn— Nan(t)) — (N(V —s(t)) — §(t)

= Wgn(t) (NG — Nan(t)) — (A()V — §(t)) — i)V

When plant is in congestion and model is in free-flow, we have

AV — §t) < Wn(t) (G — Nan(t)) < OV — (1)

49

(4.20)

(4.21)
(4.22)

(4.23)
(4.24)

(4.25)
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We use this condition in the results below. Depending onitpesf fi(t), we have

(a) Alt)>0
Under this condition, we have
ér(r,t) = —G1K (1, t)f(t)

éS<T7t) = G1Ks(T,1)A(t) + GoKs(T, t)w

From Eq. [4.2B), whenevdg(t) > 0, we see that
fa(t) = Wan(t) (Ngn—Ndn(t)) — (N(HV —s(t)) — §t) > 0
— §(t) < Wan(t) (N3, — Nan(t)) — (N(t)V —s(t)) <0 (4.26)
Substituting these terms along with Elg. (4.21) in Eq. (4.04) get
V() = fi(t) (—(Z ()W +a)fi(t) — Wan(t) (Ngn — Nan(t)) +At)V —§(t) +(t) - §(1))

)
+/ & (1,8)G7 Y(—GyK (T,1)fi(t))dT

+/ &s(1,1)G G]_Kg (1,0)A(t) + GoKg(T, t)w)d'[

N

—(a+ (W ) fi(t)? — fi(t) (Wan(t) (N — Nan(t)) — ALV +8(t)) + )T (L)
80 - A + s + s O TO) <
< —aii(t)?+ g—iga)—( )+2| Ol < (4.27)
where we utilize Eq.[{4.25) and Ed. (4126)
(b) At) <0

From Eq. [(4.26),[(4.24), we have
A(t)V —§(t) >0 = 0>f(t)V > §(t), since nit) <0
and  fu(t) = Wan(t) (N, — Nan(t)) — (ALY — 8(t)) — Ai(t)V > 0
& (1,t) = —G1K( (T, 1)f(t)
Gs(T,t) = GoKs(T, 1) fu(t) >
Substituting these terms along with Elg. (4.22) in Eq. (4.4 get
V(1) = fi(t) (—(C(OW +a+V)f(t) — Wan(t) (Ngn — Nan(t)) +N(HV — S(t) +F(t))
f

+/OT(":r(r,t)Gl1(—GlKr(r,t)ﬁ(t))dT+/O &(T,1) G H(GaKs(T, 1) fy(t))dT
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— (@t Z(OW V() — A(t) (Wan(t) (N — Nan(t)) — MOV - S(t)) + AL)F(L)
LR + 280 fa(t)

—afi(t)2+ ==§(t) fa(t) < 0 (4.28)

(
— (afi(t) + fup(t) — (Wan(t) (Mg — nan(t))) + F(t) — §(t))

= —(a+{(HW)A(t) +F(t) — &)
&(1,t) = —G1K, (T,0)f(t)
&(T,1) = G1Ks(T, 1)A(t)

1
—(a+Z(HW)RA(t)>+At)F(t) — A(t)5(t) — AtF(t) +Ft)§(t)
< —afi(t)><0 (4.29)

Therefore the Lyapunov functiondl(t) is bounded and non-increasing. By Lyapunov’s theorem
[64], we conclude that

()] <0 Wt
.
/Cr(r,t)zdr<oo vt
0
.
/és(r,t)zdr<oo vt
0

f(t) ands(t) are also bounded, by Schwartz’s inequality, as shown below

I7(t)] = |/OTK(T,t)6r(r,t)dT| < (/OT K(T,t)zdr>% (/OT ér(r,t)zdr)% <o

15t) = |/OTK(T,t)65(T,t)dT| < (/OTK(r,t)Zdr)% (/OTCS(T,t)ZdT>% <o

Since our system is periodic, by LaSalle’s invariance ppiec[64,62], the error equations con-
verge to the largest invariant set which satisfiés) = 0. Examining the above expressions for
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Y(t) in all the four cases shown above, we can concludertfiat-3 0. Sincefyp(t) = ¢ (t)WH(t),
fup(t) — 0 also.

We can also show that model converges to the correct congestide at equilibrium. When
the plant is in free-flow, as seen in Case (i) and Cases(ii),— 0, sinceV(t) = 0 at equilibrium.
In fact, when the plant is in free-flow, the model cannot cogeen the congestion mode (except
along its boundary, which can be interpreted as the free+ihmae). This is because the off-ramp
flows satisfys(t) = O after convergence.

We can also show that the model cannot converge in the freerflode when the plant is in
congestion (Case(iii)). This is because, under this caite have

N(HV — §(t) < Wan(t) (NG — Nan(t)) < NV — (1)
— fa(t) = Wan(t) (N — Nan(t)) — (N(V — (1)) >0 and s{t) <0
and these violaté’(t) = 0. Thus, the model always converges in the congested modedime
instants where the plant is congested. When the plant/medelcongestion (Case (iv)), we see
that the convergence conditiorig(f) = 0) do not dictate thas(f) = 0 . In fact, in this mode the

off-ramp flows need not converge to their actual values. Wedemonstrate this in the example
presented in the next section.

Utilizing the observations in the last two paragraphs, tleing equations show theﬁ(t) —

0.
f(t) = min(n(t)V —s(t), Wan(t) (NG — Nan(t))) —min(A(t)V —§(t), Wan(t) (N, — Nan(t)))
Plant-F:  n(t)V —s(t) = A(t)V — §(t) — f(t)=0
Plant-C:  n{t)v—§(t) > Wyn(t) (N, — Nan(t)) — f(t)=0
This shows the the imputed off-ramp flows satisfy Conditidh%. O

The results derived for the above system with density boyratanditions also apply with other
boundary conditions. The following theorem states theiagbility of the sequential imputation
of ramp flows to a multi-section freeway.

Theorem 4.3.2. For the freeway described by Figure 4.1, given the upstreardo&nstream
boundary conditions, density, flow measurements and fuediaidiagram parameters of all the
sections, we can impute the ramp flows sequentially fronregstto downstream section-wise
using the update laws described in Section 4.2. In all thé@es, fi=0andf = 0.

Proof. For the first section, since upstream boundary conditioagien, the imputation ensures
f1 = 0 andn; = 0, ands; satisfies the Condition 4.3.1. We can see that for any settiginen
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measurement data and upstream off-ramp flow estimateysatjstonditioni4.3.11, the imputation
algorithm ensured; = 0, fi; = 0 after imputation. Moreover, the imputed off-ramp flow, alhi
forms the upstream boundary condition for sectionl satisfies Conditioh 4.3.1 by Theorem
4.3.1. This proves the theorem by induction. O

4.4 Examples

The imputation algorithm is demonstrated with three exaspln the first example, we demon-
strate the performance of the imputation algorithm on alsisgction of a freeway network. We
use artificial data, in the form of known boundary conditiansl on-ramp/off-ramp flows, to gen-
erate density and flow profiles in freeway section. Then thasgp flows (assumed unknown) are
imputed using the imputation algorithm. The initial rampirasites were set to be identically zero
before the start of the imputation algorithm. Figlre 4.3 pares the imputed trajectories gener-
ated after convergence, with the actual densities and flomweshaare known. As seen in Figure
4.3, the resulting flow and the density errors are very snfitdt @onvergence. However, in some
time periods the on-ramp and the off-ramp values have noterged to their true values. These
segments correspond to the P-C M-C mode, and in this casentnamp and off-ramp flows
cannot be determined individually, only the effective raflov r(t) — s(t) can be determined. In
fact, there are infinitely many combinations of on-ramp affidamp flows in the P-C M-C mode
that can produce the observed density/flows. Only when aumeagnt of the flow is available at
a location just before the off-ramp or just after the on-rainpaddition to the already available
measurements), we can estimate the ramp flows uniquely, He&se measurements corresponds
to fi(t) +s(t) and fi_1(t) +ri_1(t) respectively. Since we have measurement§ ®j, these ad-
ditional measurements allow us to uniquely determine timeprélows in the P-C, M-C mode.
However, in many freeways in the U.S, these quantities aresually measured.

In the second example, a 6.3 mile highway segment from I-248& chosen. This freeway
segment was divided into 8 sections with 9 on-ramps and Taofips, out of which 3 on-ramps
and 5 off-ramps were imputed. In any section, if one of theamp flows/off-ramp split ratios
are known, then we directly substitute the known ramp flonthexmodel. We only execute the
adaptation equations for the ramps flows that need to be edpuh locations where one of the
ramp flows is known, we can impute the other ramp flows uniquer obtaining all the imputed
ramp flows, we use these ramp flows to simulate the traffic dycgam the entire freeway. For
simulation, we use the ACTM model. The density, flow and vié&yocontours of the simulation
are shown in Figure_4.4. The x-axis of the contours repreBestMiles, which measure distance
along the freeway, and the Y-axis represents the time of dlye @abld 4.8 lists the density/flows
errors for this simulation.
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Figure 4.3: Results of the Imputation with artificial data.
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Figure 4.4: Simulation results for I1-210E.

In the third example, a 8.8 mile highway segment from 1-80Wswhosen. This freeway
segment was divided into 10 sections with 8 on-ramps and-gaafps, all of which had no mea-
surements. Ramp flows were imputed and then used to simbkatentire section. The density,
flow and velocity contours of the simulation are shown in Fgd.5. The density and flow errors
for the simulation are given in Takle 4.3.

Freeway Density error Flow error

I-210E 15% 11%
I-80W 8.4% 8.75%

Table 4.3: Final errors for simulations carried out with paflows imputed using the ACTM based
imputation algorithm.

It was observed that in many sections (for I80W, [210E impotaexamples), the imputa-
tion algorithm stopped converging and the solutions shasigificant errors in flow and density.
While small errors in the final density/flow are expected dusaime model mismatch, larger errors
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Figure 4.5: Simulation results for 1-80W.

indicate that the some of the measurements may be faultg.iF hecause the imputation algorithm
is expected to converge to zero density/flow error valuesige ¢here exists some plausible ramp
flows that replicate the freeway dynamics. These faulty nnessents may either correspond to the
mainline density/flow measurements of the current linkherdensity/flow measurements in one of
the boundaries. In[18], Dervisoglu and Horowitz use thigparty to determine the freeway main-
line detectors that report erroneous/faulty measuremesmen under conditions when on-ramps
and off-ramps are imputed using these mainline detectar. dattending the results presented in
this chapter, the authors analyze cases where systemdti ¢an be detected. This algorithm is
also successfully demonstrated on a 23 mile segment in tNAreeway in California in their
paper.
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Proof of Lemmal4.3.1
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Proof. Depending on the upstream flow condition in the model andtpilae system falls into four

modes.

Case (a) : Plant upstream (F), Model upstream (F)

fu(t) = min(Fyp, Nup(t)Vup — Sup(t)))
fu(t) = min(Fyp, Nup(t)Vup — Sup(t)))

Case (b) : Plant upstream (F), Model upstream (C)

fu( ) = min(Fyp, Nup(t)Vup— Sup(t)))
fu(t) = w(n’ — A(t))
fu(t) = —Z(®wit)  0<(t) <
J

since w(n’ - <w>>nmmammawwp—%dw»>mmf—ﬁa»

Case (c) : Plant upstream (C), Model upstream (C)

fu(t) = w(n’ —n(t))
fu(t) = w(n’ —A(t))
fu(t) = —wA(t)

Case (d) : Plant upstream (C), Model upstream (F)

fu(t) = w(n’ —n(t))
fu(t) = min(Fup, Nup(t)Vup — §up<t)))
fut) = —C(OWit)  0<Z(t) <

since (n’ —n(t)) < min(Fyp, nup(t )Vup Sup(t))) <w(n? —A(t))

(4.30)

(4.31)

(4.32)

(4.33)

Hence fu(t) = —Z(t)wfi(t) where 0< {(t) < 1, irrespective of the plant/model upstream flow

conditions

O
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Chapter 5

Imputation of ramp flow data using the

link-node cell transmission model

In this chapter, we present an imputation algorithm for amyp/off-ramp flows based on the Link-
Node Cell Transmission Model (LN-CTM). The LN-CTM is welliged for modeling traffic in
freeways with large on-ramps (for example, freeway-freeimterconnections) as compared to the
ACTM. However, the design of an algorithm based on the LN-Cddes additional challenges.
The ACTM simplifies the non-linear model equations of the Cail the resulting dynamic equa-
tions are piecewise affine. Also, the structure of the ACTMves the estimation of the ramp flows
section-wise, and leads to easy analysis of the convergdnite imputation algorithm. As we
will see in this chapter, the LN-CTM presents additional ptinations due to the non-linearities
of the model.

We first recap the LN-CTM, and rewrite the equations to magivthe development of the
imputation algorithm based on the LN-CTM. The structurehsd tN-CTM dictates that all of
the ramp flows are simultaneously estimated for the enteeway. The imputation procedure
tackles the problem in two steps, first calculating a toti@étive demand parameter capturing
aggregate flows into and out of each link and then decompdbmgffective demand into on-
ramp demands and off-ramp split ratios, along with the gpmading flows. The first step of the
algorithm uses an adaptive iterative learning algorithmat tnatches the model calculated densities
and the measured densities. The second step uses a lingearprtm minimize the error between
the model calculated flows and the measurements.
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5.1 Link Node Cell Transmission Model

The LN-CTM is used as the underlying model for the imputatitgorithm presented in this chap-
ter. Sectio 3]1 presents the LN-CTM for traffic flow simubas, along with the geometry speci-
fication, variable definitions and their units.

For the purposes of the imputation algorithm, we introdutaaaadditional terms,

Capacity adjusted free-flow speed\((k)) : vi(k) = vi(ni(k)) = min (vi, %)

N

Capacity adjusted congestion wave speedv(k)) : w;(k) = W;(ni(k)) = min (W., (—nJ_Fr;—(l()))

Total/effective demand €;(k)) : ci(k) = ni(k)vi(k)(1— Bi(Kk)) + di(k)

Under these definitions, the demand, and supply functiondeaepresented as

Di(k) = min(ni(k)\Vi, Fi) = ni (k)vi (k)
Si(k) = Wi (k) (] — i (K)) (5.1)

The total effective demand closely resembles the total denvactorR;(k), described in Sec-
tion[3.1, with some additional assumptions on the on-rammathel function (originally defined
asd;(k) = min(l;(k),r¢(k);,Ci)). We assume that ramp metering is inactive, and there ase onl
short queues present in the ramps. The first assumptionasiatr (k) = C;, while the second
assumption can be rigorously stated;@k) < C;. These assumptions are necessary to ensure ob-
servability of the on-ramp queue lengths through the onprdemand function (i.€; (k) = I;(k)).

This is necessary to determine the on-ramp input flows, whidlhoe extracted from the queue
lengths. These assumptions are reflected in the model egaagiven below,

ni(k+1) = g(ni(K), Gi—a(k), i (K), nira(K)) = ni(k) + " (k) — £ (k) (5-2)
(k) = £"(6i-2(K), mi(K)) = min (W (k) (0 — i (K)), Gi-1(K)))

Wit 1(K) (07,3 = nisa(K))
ci(K)

FOU(K) = £%(ci (), i (K), i () = i ()W (K)min (1,

)
~ min(ci (k), Wi 1(K) (0 —nij1(K)))
o ci (k)

di (k) (5.3)

The above equations represent the model evolution for @nantink. In the case of the first link
(Link 0), f" = Qo and for the last link, under free-flow conditiorf®t (k) = n; (k)vi (k).
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The on-ramp and off-ramp flows/demands affect the dynanfitdseofreeway through the ef-
fective demands. Hence, from the point of view of the freewajinline dynamics, given the
effective demand, the on-ramp and off-ramp flows providedutiteonal information for the sim-
ulation process. We take advantage of this fact in the intutalgorithm, and first estimate the
effective demands before obtaining the individual ramp flow

The update equation for any particular link can be represeas a four mode piecewise non-
linear model for density evolution. Each link on the freeviiag a four mode update equation, and
the modes are dependent on the flow conditions at the inpubatpadit node. Flow conditions at
Nodei — 1 (i.e. the in-flow into Linki and flow out of Linki — 1) is said to be in congestion if
ci—1(k) > wi(K)(n? —ni(K)), otherwise it is in free-flow. Considering the possibilifyozcurrence
of one of the two modes in the input and output nodes of a link, density evolution can be
described by a four mode update model, where the modes widfeered as FF, FC, CC ,CF (C-
congestion, F- free flow) with the first (second) letter sfy@eg the input (output) node conditions.
The model evolution in these four modes can be written as

(k1) = mi(K) + ¢i_1(K) — ()% (K) FE
(k1) = mi(K) + 61 (K) — (K (K) W‘“(k)(”if(t : Mi+1(k)) .
(1) = -+ - 0) -y 2T ) e
(k1) = (K- ()Y~ 13 (0) ~ (K oF 54

From the above equations, we see that the effective demaresponding to a Nodieappears

in the density evolution equation of Linlor Link i + 1 (not both) depending on whether the node
conditions are in free-flow or congestion. This means thatimands may be observable from
the densities of the link before/after the ramp locatiompehding on the traffic mode. Also, the
mode is itself dependent on the effective demand, which sid@at an incorrect estimate of the
effective demands can possibly lead to density evolutiaghénvrong mode. Finally, we also note
that the density update equations are either a linear or-dimear function of the effective demand
depending on the congestion mode. All these factors dithatteany estimation procedure needs
to simultaneously estimate these effective demands foettiee freeway, and the non-linearity
prevents us from performing the imputation section-wike the procedure adopted for the ACTM
imputation.

5.2 The Imputation Algorithm

The imputation algorithm is based on the four-mode modedgmted in the previous section. The
algorithm estimates ramp flows that replicate observedviagéoehavior, captured by the freeway
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density and flow measurements. Formally, the problem catetbedsas : A
Problem. Estimate ramp demands, ramp input flows and split ratio mfefﬂi(k),@i(k),ﬁi(k),
k=1---Kandi=1---N) such that the model evolution (E.3)) using these estimates repli-
cate the given flow and density measurementk)f"¢2<k)) obtained from detectors along the
freeway mainline.

In contrast to the imputation algorithm based on the ACTM joltsimultaneously tries to
match the density and flow profiles, we split the problem into $teps. From the density evolution
equations, we can see that the on-ramp flows and off-rampragilbs have a combined effect
captured by the effective demand function. In the first ste@ will estimate the effective flow
demand functiorgi(k) with the function estimate; (k) and then extract the on-ramp flows and
off-ramp split ratio functions.

Estimation of the effective demands

The density evolution (Eq[(8.3)) along the freeway can bapetely specified using the effec-
tive demand profile. The first step of the imputation algentbomputes the unknown effective
demands for the entire freeway section by allowing the modklulated density profiles to track
the measured density profiles.

This contrasts the section-wise procedure adopted for @EM\based imputation algorithm
because the LN-CTM does not offer the same decoupling ptiepers the ACTM. In particular,
the LN-CTM has both input and state non-linearity and it dugshave the piecewise linear density
update structure of the ACTM. This imputation algorithmoal:iproves on some of the assump-
tions used in the ACTM algorithm. First, we directly prestrg algorithm in discrete time, and
the convergence results are also presented in discreteSievendly, the ACTM imputation algo-
rithm required the density evolution profiles to be 24-hoerigdic, so that an adaptive repetitive
(periodic) algorithm can be used to estimate the (peria@ig)p flow parameters. The algorithm
presented here does not utilize that assumption, and isllmasan adaptive learning algorithm
where exact re-initialization of the initial conditionsused. This class of adaptation algorithms,
which requires exact re-initialization of the initial catidns are generally known as adaptive it-
erative learning laws and have been widely used in robotidsather mechatronics applications
[74,[61]. Given initial estimates for the effective dema((f:?s{k),k =1.--K,i=1---N—-1),we
run the model for the given simulation period, and simultarsty adaptively estimate the param-
eters to decrease the density errors. This forms a sing#gida of the algorithm. The procedure
is iterated with exact re-initialization of the initial $¢eof the link densities. Unlike many iterative
control applications, exact re-initialization does nos@@ problem here, since initial conditions
are usually specified in the simulation model. In fact, in oase, the initial conditions are the
density measurements at the start time. Finally, the ctiaigorithm can be applied to situations
where partial profiles are known.

We will distinguish between actual measured variables haul estimates by placing a hat on
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top of the estimates. Moreover, since the effective demandtion estimates will be updated at
each simulation iteration by an adaptive iterative leagraigorithm, we will introduce the super-
script j to denote the iteration index. For example, the density memof vehicles) in Link at
periodk estimated by the model at iteratigrwill be denoted byni“(k), in order to differentiate
it from the actual measured number of vehicte&). According to our model, at each node
there is at most one on-ramp and one off-ramp. If both theaomgrdemand and the off-ramp
split ratio are measurable during some time instants, thereffective demand function estimate
can be calculated by (k) = i/ (k)¥' (k)(1— Bi(k)) +di(k). By contrast, if either the on-ramp or
the off-ramp flow measurements are not available and need tmputed at the time instakt
the effective demand function estima:,’ék) will have to be imputed using the adaptive iterative
learning algorithm. Let;(k) = 1 denote that the effective demand functimiis imputed at time
instantk, while I;(k) = 0 denotes that the ramp measurements are available.

As discussed above, within each iteration we adaptivelynase the effective demand function
estimates:ij“(k) at each simulation time step. The demand function estinatesised in turn to
update the density (number of vehicle) estimates and tloeiesponding estimation errors. Two
different density estimates (and their correspondingsymill be generated: the a-priori estimates
and the a-posteriori estimates. A-priori density estimaie generated by applying the effective
demand function estimates from the previous iteration Cj'.él(k), wherej is the current iteration
index) to the density update equation. In contrast, A-pamialensity estimates use the demand
function estimates from the current iteration (iqé(kj, wherej is the current iteration index). In
the formulae that follow, a-priori errors are representgglacing a tilde and a® (e.g. ﬁij’o(k))
while a-posteriori errors estimates and actual a-postezioors are represented with a bar (e.g.
n’ (k)) and tilde (e.gn(k)).

It is assumed that effective demand estimates are boundedfh < €i(K) < Cmax < o with

known bound€min, Cmax. ANy non-zero feasible initial estimates are allowed (éi‘.g.: Cmin forj =
0). Also exact re-initialization implies/ {0) = nj(0) Vi = 1...N.

determine the a-priori and a-posteriori mode (congesteeetflow conditions) corresponding to
flows in Nodei (from Link i —1 to Link ). It can be seen tha\_ﬂil(k) = 1 under congested flow

conditions, ancMij (k) = —1 under free-flow conditions. Whewt! (k) = 0, the flow conditions can
either be interpreted as congested or free-flow.

The adaptation equations at the simulation stgpafd iteration {) involves the following
sequence of steps, for each link:

(a) Compute the a-priori density errors for Link i, ﬁi"o(k+ 1) and congestion modesv! (k)

1The jam number of vehicles of Linkis denotemﬂ, which is a constant parameter.
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and M|‘+1(k) for the corresponding upstream and downstream node pairsi(i+ 1):

AO(k+1) = ny(k+1) — g(A)(K), &)} (k), & (K),A), 1 (K)
M! (k) = sign(&)~ (k) — W (k) (n — A (K)))
M/, (k) = sign(e) (k) — W, () (0., -

where the functiony(-) is defined in Eq.[(5]2).

|1 () (5.5)

(b) Compute a-posteriori density error estimate. This depads on the a-priori congestion
mode (for example, in FC mode bothc;_1(K) and ci(k) affect link density).

SetA\j'=0 and A} =0
it MJ(k)<O0or (Mij(k) —0andii® (k+1) < o)
AP =Gy x1i_1(K)

it M/ ,(k)>0o0r (M|'+1(k) —0andi°(k+1) > o)
N = Go x i (KWL (K) (0P, — A4 (K))) > A (K) V) (K)
~j,0
S ) — i (kD) .
nk+d) 1+ AT + A3 &0

If the effective demand function corresponding to a patéicnode is not imputed, we see that the
corresponding term;’/A3! is set to zero. We are able to calculate the a-posterior estimate,
without knowing the effective demand estimate at the curitenation. This is possible through
mathematical manipulations that are commonly used in thptace control literature. This result
will be derived in detail in the next section when we analyrepgroperties of this algorithm.

(c) Update effective demand estimates using the a-posterialensity estimate.
if Al>o0
(“:I‘ 1(K) = max(cm.n,m|n<w.(n — A (k)) Gt 1))
where g1 = €1 (k) + G1n} (k+ 1)
MJ (k) =0
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if /\i271'>0
el (k) = — 1
o <W|]+l(k)(n[]+11 n'JH(k))’maX(cm_lax’ct%))
where gy = 1
2T g0 - Go (k1)
M1 (k) =1
A (k+1) = g(A) (K), (k)& (k) .

From the previous step, we note tigf " x Al = 0. This implies that;"is updated with density
errors corresponding to either Limlor Link i -|- 1, not both. As seen in Ed.(5.4), the current con-
gestion mode, determined by the effective demand estllﬂaﬁfk} from the previous iteration,
determines whether changes in the effective demand estaffact the density equations of Link

i or Link i+ 1. The effective demand estimates are updated using thé&yen®rs of the Link
directly affected by its changes. This guarantees that4asteriori errors are not larger than the
a-priori errors. The bounds used for the update equatiogs (7)) ensure that the a-posteriori
mode is the same as the a-priori mode (Mg.(k) x M/ (k) > 0), so that the update equations can
exploit the piecewise nonlinearity structure of the stajeations. This ensures that any changes
in the effective demand parameter estimates only affea¢insity errors of the link which is used
in its update equations. When‘(k) 0 (the flow is both free-flow and congested), the update
is chosen to ensure that parameter updates at-least detheasrror in the assigned link, as seen
in Eq. (5.6). M‘( k) is used to capture the congestion mode corresponding topifegtes used. It
equals 0 or 1 depending on whether the updates are carriathdat the first (free-flow)/second
(congested) conditions in Ed._(5.7). When the effective alednestimate is not imputed at a par-
ticular time step, we st} (k) = 1, if & (k) < W (k)(n? — Al (k))) and 0 otherwise.

(d) Calculate a-posteriori density estimate, which can be sed in the next simulation step.

A (k+ 1) = g(Al (k), &), (Kk), € (K))
i(k+ 1) =ni(k+ 1)—ni (k+1) (5.8)

The a-posteriori density error estimaigk) is different from the actual a-posteriori erram (K)),
since the updates adhere to the minimum and maximum bouftise bounds are not enforced
(active) during the update procedure, then these will besdmee.

At any iteration, we execute the four steps detailed aborwedch of the links at the current
time periodk. This provides the initial conditions to execute the updafeations for the next time
periodk+ 1, where the process is repeated. WkeaK, the current iteration is finished, and we
move on to the next iteration. At the start of any iteratiom, @ecute the exact re-initialization
condition
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which gives us the initial condition for link density estitea. We execute multiple iterations until
the density errors across all links{|n(k) — fi(k)|) becomes insignificant, i.e.,

Z I7i(k)| < 0.005x Zn(k)

or stop decreasing,

A (Z \ﬁ(k)|> < 0.005x Zn(k)

whereA(.) is the change in errors across iterations.

The four steps presented above can be elaborated intoetliffapdate equations for each of
the four modes (FF/FC/CF/CC). It is interesting to note thalhe case of the CF mode, the update
equations do not depend on eitleeor ¢ _; and hence the a-posteriori error will equal the a-priori
error when this congestion mode is in effect. In contraghh@FC mode, both andc;_1 affect the
density estimate. The update equations are decentralotad updates only require knowledge of
local modes, not the actual mode of the entire system. Thidésirable feature as the total number
of modes in the entire systems #8,2vhich grows as size of the freeway increases. Finallygisye
to see that density measurements are only needed in links thheamps in the input node/output
node need to be imputed.

The adaptive iterative algorithm presented above caniactly converge to some modes. The
most common occurrence is the incorrect convergence in then@le, where none of the ramps
are affected by the density errors, and incorrect conversyénthis mode (at some links) cannot
be thwarted by allowing more iterations of the algorithmtHaese cases, it is possible to identify
(after the algorithm converges), the “actual” mode of timé land reset the parameter updates to
ensure correct convergence. There exists principled dintlueoretically slow) methods to ensure
perfect convergence when an input profile exists which ciovidhe given profiles. However, in
most of the cases, due to noisy/incorrect measurementsemests, satisfyin@min < Gi(K) < Cmax
that allows the system to track the measured density proflesce, we need to resort to heuristic
methods. Here we list a heuristic method that has workediwelactice.

Trigger Algorithm

v ik st A(k+1)>toleranceli_1(k) =1, Ii(k) = 1M} (k) = 1, M/, (k) =0
set ¢ (k) = Va3 (K) (071 =4 (K) | |

vV ik st il(k+1) < —toleranceli_1(k) =1, lj(k) = 1M/(k) =1, M} ;(k) =0
set € ;(k) = Yo (k) () —n/(K))
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V ik st f(k+1)>toleranceli_1(k) =0, li(k) =1, M (k) =0
k) =

i+1
set c'( W|J+1(k)(nl+1 n,‘+1(k))
V ik st i (k+1) < —tolerance li_1(K) =1, li(k) = OM} (k) = 1
set &5 (K) = YoW) (k) (n? - n (k)

whereYy > 1 andY> < 1 are positive reset factors. The first two resets preseiaekacorrespond
to the condition when link gets stuck in the CF mode. These resets are made accordimggigh

of the error, so as to ensure that the algorithm is able toedserthe errors in future iterations, by
modifying the effective demand estimates which are triggeA similar situation arises when one
of the demand estimates is known and not imputed. These aeseaptured by the last two reset
conditions.

With the trigger algorithm in place, we summarize the corgédgorithm below :

Step a : Assume initial estimates

Step b : Iterate until rate of change of errors is below toleea
Stop if error is within tolerance, otherwise go to Step ¢

Step c : Trigger and go back to step b.

As we execute multiple triggers, there is a possibility thaterrors can increase after a particular
trigger is executed. This mostly happens due to the inh@@se present in the measurements. In
this case, the best results across iterations are used.

Estimation of the on-ramp flows and off-ramp split ratios

Once the effective demands are estimated for all sectioasie®d to extract the on-ramp demand
and off-ramp split ratios from the effective demand vedtoorder to ensure that the on-ramp flow
and off-ramp splits track the dynamics obtained using tfec@fe demand parameter estimate, we
require that thaf (k) andd (k) satisfy,c (k) = f; (k)Vi (k) (1 — B.( k)) 4 di(k) at all time instants,
whereri (k) is the density profile obtained usiegK) in the model equations. With this constraint
it can be seen that ramp demand and split ratio estimate®aramque, unless either (a) On-ramp
flows/demands are known (b) Off-ramp flows/splits are mess(x) Mainline flow in between the
on-ramp and the off-ramp, are available or (d) one of the saarp absent. Figure 5.1 illustrates
the position of the mainline detector, from which flow datasilable. On-ramp detectors are
usually placed at the entrance into the freeway, and hemgenieasure on-ramp exit flow, not the
on-ramp input demand. Off-ramp detectors are placed neasftiramp entry.

When any of the measurements listed above are available awdrame the problem as a
linear program. The structure of the linear program depeandsvhether the node is in free-
flow/congestion. In both cases, depending on which measnenare available, the objective
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Figure 5.1: Decouple on-ramp and off-ramp flows.

of the linear program can be written as,

— (70K — §7523K)) — Fira () + 1(FO(k)
P :|r.+1< k) — iz 1(K)|

J3: |3+1( k) —S41(K)|
|< |+1 k |T?Las(k k |<fiout k
= | (f74(k) — f7523K)) — Fiya (k)| + (£ (k) —

- 5T) -
£1€25K)) — &, 1(K)| + ]S 41(K) — §11(K)|
FIE°TK)) — 842K+ alriva(k) — Fira(K)

(5.9)

f,'_';l(k) and f°U(k) are obtained using (k) in the model equationsx > 1 is used to increase the
weight of the errors in ramp flows in the last two objectivese The optimization problem for
decoupling the ramp flows is given by

Free-flow
min J*
st (k) = Ai(K)Vi(k) —§(k) +Fi(K)
Fi(K) > dmin(k)
§(k),fi(k) =0
In the case of free-flow; (k) = d (k) and [Si (k) = A (i§\§)(k)
Congestion

min J*
st (k) = i (K)(K) — fr (k) +di(K)
W (k) (0 — AL (K) -

S0 = frit
ilk) = W‘J”(k)(néﬁlm LIRS

di (K) > dmin(K)
S(k),fi(k) >0
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In the case of congested conditions, we can obtain the gfilit estimate aéi(k) = %

In both the problems abov@yin(k) = di(k— 1) — fi(k— 1) k = 2..N with dmin(0) = dinit
wheredi,i; denotes the initial condition of the system. This varialbéeks the residual demand
from the previous time instant. Finally, the on-ramp inpoiM$ can be calculated &3 (k) =
di(k+1) — (di(k) = fi(k)).

5.3 Convergence Analysis

The imputation algorithm presented here has been designeiéw of obtaining favorable con-
vergence properties. This is particularly beneficial tdifyethe performance of the algorithm in
relatively unsupervised applications. We analyze the $§itsp of the imputation algorithm, in-
volving the adaptive iterative estimation of effective derds. The first important property we
will explore is the boundedness and convergence of the tyesmsbrs and the effective demand
estimates. The change in density across iterations is ¢iyen

A (k1) = k) = A (-0 + (el 40,4 00) — AM(E200, 72 (k))

= (1€ (0.0, 00) = 1€ 0.0 (KD ) (5.20)

The following lemmas will be useful for analyzing the eqoas above.

Lemma 5.3.1. The following two relations hold

W () (n? — A (k) — W () — AV (k) = —nd (WA (k) — A (K))

where0 < n{(k),nzj(k) <1

To analyze the error equation Ed. (5.10), we need to simghiéyexpressions for input flow
difference and output flow difference across iterations. ailalyze each term separately in the
following lemmas.

Lemma 5.3.2.For the imputation algorithm defined in the previous sectiwhen effective demand
parameter ¢_1(k) is imputed (i.e.jL1(k) = 1),
(64 (k). A () = (€5 (). A ()
= (1=M)(E4 (0~ §71(K) = W (R! (0 — A~ (K))

where0 < Zij’l(k) <1
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Lemma 5.3.3.For the imputation algorithm defined in the previous sectiwhen effective demand
parameter ¢_1(k) is not imputed,
30 < k), Z1 (k) < 1s.t
(4 (), Al (k) — ! <étf<k> A (k) =
o) (k) (A (k) — AL (k)N — &P (K) (A (k) — A (k)W

Defining aij’l(k) = 0 whenl;_41(k) = 1, we can combine the results from the two lemmas above to
get

K), A2 (K)) = (k) + 11 (k) (L= M) (€4 (k) — €175 (K))
J

(e 4 (), A (k) — (€5
W <k> ﬁi"‘1<k>>+ai'*1<k><ﬁi"_1<k>—1_1<k>>vi_1 (5.11)

where, hi(k) = 21 (KW (A

Lemma 5.3.4. For the imputation algorithm, when(k) = 1,

FOU(E] (), B, 1 (K)) — FOU(E) k), AV (K))

Ui+l i Ui
. . . o Al (k)Y .
= &M (k) — A () zi”3<k>”'6jk)—l('k<)k>wi+1<n.+l<k> A1)
N NN 1 1
+ ML ()3 = B3 ()R ()9 () L, PRCE (k)]

where0 < Z}2(k),z13(k) < 1

Lemma 5.3.5. For the imputation algorithm, when(k) = 0,

fiout(éij (k), ﬁ|]+1<k)) — inUt(éij_l(k) , ﬁ.j_l(k))
J

whered! (k) = Al (k)9 (k) (1— Bi(K)) + di (k) and0 < Z}2(k), Z13(k), o % (k) < 1.
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Again, we defineuij’z(k) = 0 whenlj(k) = 1 and combine the lemmas above to get

FOU(E! (), A, 4 (K)) — FOU(E) (k) A7 (K))

i i+1 i+1
o i N N X 1 1
= hiz(k) + Ii(k)MiJJrl i]+1(k)(nij+1_nij+1(k)>nij(k>vij(k> [éij(k) - éij_l(k)]
| o | N _ |
P09 = & “00M(] =) 7) — 0 g cwa (a0 - 1K)
2 AU T
ME T [GE] (5.12)

We present the proofs to these lemmas in Se€tidn 5.6.

Lemma 5.3.6.Consider the parameter updates corresponding to Link i in@&dd). There exists
0<Ty!(k) <Gy and0< I3 (k) < Gy such that

if /\il’j >0
¢ 1(k) =& 10+ (Al (k+12)
if A3'>0
1 1

The derivation of this lemma is presented in Sectioh 5.6hénproof of this lemma, we show
how the a-posteriori density error estimates are obtaimdyl wsing the a-priori density error es-
timates. In the next theorem, we detail how the imputatigo@ihm has estimates with bounded
errors during any iteration.

Theorem 5.3.1.Given0 < ni(k) < n’ Vi € 1,...,N, the imputation algorithm ensures that the
density errors are bounded. In particul¢|ﬁi‘(k)| < niJ Vi € 1,...,N across all iterations.

Proof. To prove this theorem we will first prove that<0ﬁij (k) < niJ Viel, ...,N holds during any
iteration. For a given iteration, we can prove the preceding claim using inductiorkpthe time
index. Sincenf(0) = n;(0)Vi, the claim holds fok = 0. Assume 0< /) (k) < n? for somek. We
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also note that 6 cpin < é—j < Cmax < % using the update laws. Then for peribd 1,

i (k+1) = A (k) + £ (€], (k), A (k) — £U(E] (), A (K), A, 4 (K))
J

|
0< ™ (k) <@ (! —Al(k)) and £2"I(k) = Ny (K)¥ (k) > 0 where 0< n; < 1
— A (k1) < Ak -+ H(E 3 (0,7 (K) < AilKk) -+ () — ()
< Ai(K) + () — Al (k) =y
and nd(k+1) > fi '(k)—'”llﬁij( )Vij(k >0

Hence 0< Al (k) < nIVi € 1,...,N by induction. Since < ni(k) < n?Vi € 1,...,N, we see that
A (K)| < n?Vi € 1,...,N for any iteration. O

Substituting the results from Ed.(5]11) and Eq. (5.12) Edo (5.10), we see that

Al (k4 2) = A (k4 2) = 4 (0 — A1k + 12 (0 (1 M) (€4 (k) — €71 (k) + W (K
N NN 1 1
+h?(k) - |i(k)M|J+1W|J+1(k)(n|J+1 Al 1 (k)R (k)7 (k) [,\ij<k) - éij]_(k>]
Collecting terms and noting thaf (k) — & ~*(k) = Al (k) — Al (k), we get

¢l
—li_a (K1 = M)(E 4 (k) — &1 (k)
L N N 1 1
+ 1M W3 (k) (07, = A ()R (k)9 (k) L, PRCE (k)] (5.13)

Finally, substituting Lemmia’5.3.6 and re-arranging thenter

A (K4 1) (1+ 11 (K () + i (k)5 (k) — A (k+ 1)

— (00— 70 [ 1 oW — g 200v + a2 LR
¢ k)
i . Al (1o .
el 0940~ {00+ 00 w00 1K) (519
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where

M0 = @-M)ril(
F3 (k) = M43 (W3 (R (0, — 3 ()R] () (K
M3 (k) = 11 (K (k) + 1 (k)5 (k)

Taking norm on both sides and using the triangular inequad# get,

A (k+ 1) (1+ T (k) — ) (k+1)] < & (K) (5.15)
£100 = (14 ) W00~ 2001+ IR0 - H W1+ R0 - AW
&l (k) > 0vk

From the equations above, we can also get

A k1))
| J(k+ )Lm“‘ﬁj(k)

and|fil (k+ 1) < [ (k+ 1) + &) (k) (5.16)

Theorem 5.3.2.For the imputation algorithm defined {&.8) the error equations and the demand
estimates are bounded and convergent.

Proof. From Theoreni 5.3]1 and the update equations, we can easithaethe error equations
and demand estimates are bounded. We will prove the comveege the error equations using
induction on time index and link index. Clearly,r# (0) = 0Vi, j, and henca‘KO) converges along

iteration axis. Supposef (p) converges/p < kandvi , we will prove thain*(k+ 1) converges.

_ Sincen”(k) converges for all, Ilmj_me (k) = 0. From [5.16), we also get thEmsup
Il (k+1)| — |l (k+1)| < 0. In addition|! (k+ 1)(1+i(K)) — Al "t (k+1)| — 0 asj — o, as
seen from Eq.[(5.15).

Givenrif(k+ 1), we can see that ed.(5]14) generates bounded sequengesith aj = i/ (k+
1) andgj = (k). Thus, there exists a convergent subsequengsuch that liny_,.aj, = a1,
where jp, p€ N, jx < jkp1Vk € N. Since the sequence is bounded, there exists another sub-
sequence that converges dp # a; if the sequence is not convergent. However, from (5.16)
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we getlimsup_|aj| —|aj—1| < 0. This implies thafay| = |a;|. In addition, we also have
laj(1+9j) —aj_1] I, 0, where(1+gj) > 1 which implies thaty; = a; = a. This contradicts
our assumption that, # a; and therefore the sequenagis convergentg; Iz, a). Howevera
is not necessarily zero. #+# 0, sinceja;(1+gj) —aj_1 Iz, 0, we get thay; LN’}

Hencen}}(k-l— 1) converges to a limit (which is not necessarily zero), whenélb(k) converges.

We also see that (k) converges, since eithef (k+ 1) or i (k) converges to 0 Vi. Hence by
induction, the above theorem is true. O

It is to be noted that no restrictions have been assumed aggrds to the actual profite(k+
1) (except 0< nj(k+ 1) < n?). In fact, it might happen that no feasible inputs exist favidg the
system to follow the profile. In this case, the algorithm anges with non-zero profile tracking
errors. However, one must also note that even if an inputasigrofile exists for tracking the
given profile, the algorithm need not necessarily convertjle zero errors. The following lemma
provides some insight into this. Let us denote the conveegéichates by (k)6 (K) (i.e. we drop
the iteration index).

Lemma 5.3.7.Let G, cmin < Ci(K) < cmaxbe the effective demand parameter that can exactly track
the given density profile. Suppose at some tinfg,K) = 0,p=1i,i+1,i —1andfij(k+1) # 0.
Then the following statements are true :

(@ Atleast { ;=1 or ;=1

(b) licg=1andi=1 = M;(k)>0and M;1(k) <O
() li-r1=1land k=0 = Mj(k) >0andfi(k+1) <0
(d) licg=0andl=1 = Mi;1(k) <Oandfij(k+1) >0

Also, in all the cases above, it is possible to modify tharegs and rerun the adaptation al-
gorithm to ensure convergence. In addition, in case (c) ah)dhe estimates can be modified to
correspond to the “true” mode.

Proof. First we prove statement (a). Suppdsg =0 and |; =0, we havecy(k) = cp(k), p=
i,i —1sincenp(k) =0,p=i,i+1,i —1. Therefore, we have

g(fi(k),Ci-1(k),Ci(k), Ni+1(k)) = g(ni(k), ci—1(k), ci(k), ni+1(k))
— fij(k+1)=0
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which contradicts our assumption. Therefgqrg =1 orl; = 1.
To prove statement (b), we analyze all the four possiblescase
Case (i)M;i(k) < 0 andM;;1(k) >0

This case corresponds to the FC mode. In this mode Qotitk) andcj(k) affect the density

update. Clearly, iink+ 1) # 0, then atleast one df;’, 5} is non-zero. At steady state, the
algorithm will not converge in this mode with non-zero esor

Case (ii)M;(k) < 0 andM;;1(k) <0

This case corresponds to the FF mode,@ng(R) < w(n? — i (k). If i (k+1) > 0, clearlyl';’ #0
which violates steady state assumptionsnj{k¥+ 1) < 0 and F'l” =0, thenci_1(K) = Cmin. But
this is not possible sincéc_1(K) s.t. Cmin < ¢i—1(K) < cmaxWhich can track the density profile,
andnj(k+ 1) > ni(K) + cmin — Ni(K)vi(k) = fii(k+ 1), which conflicts with our assumption that
fii(k+1) <O.

Case (iii)M;(k) > 0 andM;;1(k) > 0
This case is not possible by an argument similar to Case (ii).
Case (iv)M;(k) > 0 andM;;1(k) <O

Clearly, this case corresponds to the CF mode, wheredpdthandc;_1 (k) do not affect the state
equations. Hence non-zero errors can exist (k¥ 1) > 0, we can seti(k) > Wi 1(k)(nY, ; —
ni+1(k)) (this is the only possible way to increase the density esé)rand restart the adaptation
algorithm. In fact, in this case the actual mode is eitheiR@eor the FF mode, but we modify the
estimate to the FF mode. tif(k+ 1) < 0, we set 1 (k) < Wi (K)(n? — ni(k)) before restarting. In

this case, the actual mode is either the CC or the FC mode, dpewurb the estimate to the CC

mode.

For statement (c), we can see tbdkf = c;j(k). Hence, for the system to converge in this case
with nonzero errordii(k) > 0 which implies thahTk-+1) < 0. This can be shown by considering
individual cases like the proof for statement (b). In thiseave set;”1(k) < Wi(K)(n! — nj(Kk)).
Statement (d) can be proven similarly. For this case, we theestimate; (k) such that it satisfies
& (k) > Wi1(K) (0, ; —mi1(K)) . In both these, the reset switches the link to the correctemod

In all the cases discussed above, once the parameter resekeauted, we restart the iterations
(corresponding to the imputation algorithm). Ff we exedhiese modifications in an orderly
fashion (starting from the earliest time insté&ntind executing from the most downstream link to
the first upstream link for each iteration and allowing thenestes to converge before executing
the next trigger), we can ensure that the estimates exaatl the measured profiles. This can be
seen as the trigger algorithm never changes the node estioite wrong mode, and each trigger
instance will at-least correct the mode in one of the noddso,Ahe subsequent iterations will
never switch the perturbed nodes back to the wrong mode.dtbealgorithm will converge after
at mostN x K triggers, whereN is the number of links anH{ is the total number of time steps in a
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single simulation run. O

In the lemma above, we outlined the cases when the algorifmtonverge with non-zero
density errors during the parameter updates. We also sgxkeifprovably convergent algorithm to
modify the estimates to ensure exact density tracking. dctpre, the procedure is slow, since we
need to execute triggers in sequence both in time and spdme méasurements also tend to be
noisy, and the assumptions of the algorithm are violate@ Aéuristic algorithm presented in the
previous section extends on the ideas presented here heifblitowing differences (i) We do not
enforceny(k) =0, p=1i,i+1,i — 1. before executing the trigger (ii) All triggers are sinauleously
executed (iii)There is a tolerance parameter, to accoumtfors. The heuristic method has worked
well in practice, and it usually leads to sufficient convergewithin 5 instances of trigger updates.

Assuming noise-free measurements, suppose that we cenwgtly zero density errors, the
total demand vector need not converge to its actual valumghE total demand vectors to converge
to the actual values, we first require that the mode of thedorkverges to the actual value. Table
lists the possible mode errors that occur even underittomsiof zero density errors, when the
effective demands corresponding to the input and the outpds is imputed. The table is obtained
by analyzing the reachable sets in each mode.

Actual Mode Mode Estimate Comments

CcC FF Not possible, since this would lead to non-zero errors.

FF CcC Not possible, since this would lead to non-zero errors.

CF FF/CC Not possible, since the parameter updates wilthwite mode.
FF/CC CF Not possible, since this would lead to non-zerarsrro
FF/CCICF FC Possible.

FC FF/CCICF Possible.

Table 5.1: Converged mode/ true mode misclassification.

If the converged mode of a particular link is incorrect, eitthe previous/next link also contains
an incorrect mode. To understand in detail, we need to cen#fi¢ combined mode of the entire
freeway. At any time instant, the freeway can be divided g#otions, with each section being in
congestion or free-flow. Thus the true mode can be written &CFECF..FC..CF..F (where F...F
represents consecutive nodes with the free-flow mode), thi#ghboundaries in free-flow . The
modes in the imputation algorithm estimate can also be septed in a similar fashion. Assume
that each congestion section spans multipld] nodes. From the rules explained in Tdblg 5.1, we
can see that convergence to the wrong mode might occur ot &ail of the congestion section,
where the FC mode is prevalent. Moreover, the location ofrtberrect “mode” convergence can
be determined to be around the location where the estimateeoges to the FC mode. In this
case, the mode estimates disagree with the true modes insttwo links. The first link is the
link at which the mode estimate is FC. The other link can eitleethe one before/after the first
link. Combining the rules in the table, we can see that onky ohthe two scenarios is possible
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(1) Actual mode : *FFC*, Mode Estimate: *FCC* or (2) Actual uhe®: *FCC*, Mode Estimate :
*FFC*,

In links where at least one of the affecting ramps measuresreme available (i.e. one of
the effective demand estimates is available), the modmatgiconverges to the correct mode. A
special case of this is when there are two adjacent detenteesh freeway stretch between ramps.
In this case, the demand and split ratios are trivially kngsince there are no ramps in between),
and they help in the parameter convergence. Clearly, siromgrect modes occur in pairs of links,
this means that incorrect convergence requires at leass ttontiguous effective demands to be
imputed. Even at locations where there are three contigaffestive demands that are imputed
which can lead to convergence in the wrong mode as indicatétkitable, it must be noted that
the density value might not be reachable using the dynamiateans of the wrong mode. As an
extreme example, at low densities, or during heavy congegtie imputation procedure converges
in the correct mode.

Thus, for the imputation algorithm, the total demand veoted not converge to its true value
as . (a) the adaptive learning procedure does not ensure¢ @asity profile matching due to
incorrect convergence in the CF mode (the application otrilgger algorithm helps avoid this)
(b) Even in case the density profiles match, the mode estimajiet be different from the actual
congestion mode (c) It is not possible to uniquely deterntiveetotal demand vector in the FC
mode, due to lack of observability. The FC mode is presenbhetupstream of the congestion
region, and it is usually transient as the congestion taspa through the section.

Theorem 5.3.3.Assume that the measurements are noise-free. If the totel g vector converges
to its actual value, then the solution of the linear prograiti @orrespond to zero errors between
model calculated flows and measured flows. Moreover, the flowgestimates will correspond to
the actual measurements.

Proof. The total demand vector is combination of the on-ramp denaawidhe off-ramp flow. We
can see that if any one of the objective functions given in £Q9) is chosen, we are provided
with measurements that can uniquely separate the dematuat igo the components. Moreover,
the objective function is only minimized when all the flowdqag) the freeways and the on-ramps)
estimates agree with the measurements. O

5.4 Examples

We present two examples of application of the imputatiori@dlgm. Both these examples are
based on a 23 mile section (with 32 on-ramps and 26 off-raofgke I1-210W freeway in Pasadena,
California. The geometry of the freeway gives rise to sonmrestraints on the estimation procedure.
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In particular, not all nodes have both an on-ramp and anaoffgr. This corresponds to additional
constraints (bounds) ol (k) (e.g.¢ (k) < Al (k)% (k) for sections without on-ramps). We run the
actual imputation algorithm without these constraintsif@iterations, to allow sufficient conver-
gence, and then apply these bounds during the update eggiatio

Original Density [veh/mile] Density estimate [veh/mile]

1300 1300

1250 1250
1200 1200

1150 1150

100 100

50

0 10 20 0 10 20
Link No. Link No.

Figure 5.2: Final density contours obtained after impotati

The first example corresponds to the application of the immpart algorithm on a simulated
scenario. In this case, we know the exact on-ramp flows andaofp split ratios, which we
use to generate density and flow profiles using the LN-CTM rhodéer this, we assume that
some of the ramps (4 on-ramps and 11 off-ramps) need to betéwhpand estimate these using
the imputation algorithm. This example will demonstrate itheal performance of the algorithm,
including the convergence of the estimates. Figure 5.2 shbeoriginal simulated density (left)
and the converged density estimate of the imputation dlgari It can be seen that the density
estimates have converged to their true values. This islglsaen in Figuré 513, which shows the
Sik [ (k)|
Yikni(K)
algorithm after iterations,®,12 15. If no triggers are executed, the error converges.0d%,
while after the resets, the error decreases@08%.

decrease in error across algorithm iteratipagor = 100x . We execute the trigger

Figure[5.4 plots the contour map of the difference betweerptiginal effective demand pa-
rameters and the estimated effective demand parametarefigh shows the location of the FC
mode. These figures demonstrate the theoretical analysducted in the previous section. We
see that in most cases, the effective demand parametersrgerno the actual mode and the lack
of convergence occurs near the location of the FC mode. Mergt does not occur during all
the instances where the FC mode is active, since there are density ranges where parameters
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Density Errors
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Figure 5.3: Density errors across iterations.
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Figure 5.4: Effective demand errors. Figure 5.5: Location of the FC mode.
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cannot converge in the wrong modes. Moreover, the presdrsmme measurements also helps in
the exact convergence of the effective demand parameters.

Density Errors
107¢

Error [%]
Sr—\

10 | |
0 5 10 15
Iteration No.

Figure 5.6: Density error across iterations.

In the second example, measured data from loop detectaasedtfrom PeMS was used. 5
on-ramps and 12 off-ramps needed to be imputed and the seastith both on-ramp/off-ramp
measurements were not imputed. Fidure 5.6 shows the dedreagors across iterations. In this
case, the final error with trigger resets i$% as compared ta 9% final error obtained without any
heuristic resets. We also notice that after the triggeréseted in Iteration 12, there is an increase
in the error. In this case, we use the estimates correspgrdithe best errors (i.e. estimates
from iteration 12, before the trigger algorithm is execliteeigure[5.Y and Figure 5.8 presents a
comparison of simulation results (obtained using imputedp flows/split ratios) with the loop
detector measurements. Heavy congestion regions (degreiiter than 300 veh/mile) are also

well captured in the simulation. The final density and flonoesrfor this simulation were 4.2%
and 9.37 % respectively.

5.5 Summary

In this chapter, we presented a model based imputation guoed¢o estimate the on-ramp flows
and off-ramp split ratios in a freeway section. The problsmalved in two steps, with the first
step employing an adaptive iterative learning procedure$timation of the total demand vector
from the density measurements across the freeway. We peelsamletailed convergence analysis
for this algorithm, and we derived an exact as well as a hieitiggger algorithm to ensure good
convergence properties. We presented situations wheestheated effective demand parameter
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Figure 5.7: Final density contours obtained after impotati
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correctly tracks the actual effective demand parametas i$lalso illustrated using a synthetic ex-
ample in the previous section. Once the effective demarehpeters were obtained, we described
a linear program to decouple the on-ramp flows and off-rantipsspVe showed that by the ap-
propriate design of the objective cost function, we can enenact identification of the unknown
ramp flows if the effective demand parameters have conveayéa: true values.

The imputation algorithm developed here is computatigrfalt. For example, for the models
shown in this dissertation, which involved imputing 24-hcamp flow profiles for a freeway with
up to 30 links, the algorithm, programmed in MATLAB was exeszlwithin 5 minutes. We have
been able to explicitly solve the linear program, and desigsed form solutions for on-ramp flows
and off-ramp splits. It is easy to derive these on paper, lugest can also use multi-parametric
programs|3] to arrive at a solution. The use of these ex@alutions is necessary to achieve fast
computations. Before using these explicit solutions, wepantered computation times which ran
up to 0.5 hour for these cases.

In our experience, the imputation algorithm presented im¢hapter is more ‘robust’ in com-
parison to the algorithm based on the ACTM. The imputatiggoathm based on the ACTM is
executed section-wise. We have noticed that the algorithmeaerges with non-zero errors, since
measurement errors exist. Faulty detectors and faulty uneaents also lead to significant errors
(after convergence) in some sections. Since we use act@asurements as boundary conditions in
the sectionwise imputation procedure, once the estimétiesn@d from each section is combined
and fed into the final model of the complete freeway, the sitoths might have large errors, es-
pecially if there was an interior section with faulty measuents. Even nominally encountered
measurement errors might be amplified in the final simulatidfe expect that the final results
deteriorate as number of links in the freeway increase. mparison, the LN-CTM imputation
algorithm imputes all ramps simultaneously. Also, anyaten of the imputation algorithm is
actually a simulation of the entire freeway. This ensurastine errors of the imputation procedure
correspond to the actual errors of the final simulation. This very useful feature, particularly
when the imputation algorithm is used as a part of an autahakbration/model building rou-
tine. As we have stressed before, another advantage of th@ T algorithm is that it is based
on a more reliable model of the the freeway traffic dynamidse dnly drawback (as compared
to the ACTM imputation algorithm) is that there might be solmeations/time periods when the
ramp flow estimates might not converge to the true value, etean measurement errors are non-
existent.
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5.6 Proofs

Proof of Lemmal5.3.1

Proof. The function miriF, W (n) — ﬁij (k))) is concave and non-increasing. We use it to prove the
following.

W (k) (7 — (k) — W () () — A (k)
= min(R, W{( — A/ (K))) — min(F, W{(n? — &/~ (K))
Without loss of generality, assumingg,(n — Al (k)) > W (n? — Al (k)
)

= 0< W (k) () — & (k) — W (k) (! — A (k) < Wi — A (k) —WH(n? —A) (k)
= W) (k) (07— (K)) W (k) (07 — Al (k) = —nd (W (] () — A/~ (k)
similarly, & (k)9 (k) — Al (k)% "2 (k) = nd (M (R (k) — A2 (K)).

Proof of Lemmal5.3.2

Proof. We consider four cases
Case (a) M!(k)=1andW '(k)=1

£l (), A (k) — £ (€13 (), A (k) = (k) () — A (k) — & (k) (n? — A2 ()
Case (b) M!(k)=1 andl\?l-j_l(k) )
fln(

Case () M/(k)=0andW) ™ (k)=0
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Case (d) M/ (k) =0andM) (k) =1

W (07— R H0) < €770 < W (! — Al (k)
Hn (el g ( > ﬁ( k) — (&)1 (k), Al ()
= e300 + (7300 — 67509 ) =W (i) () -/~ (k)
= ¢ 10— €1 — g (WAl (k) — Al (k)
ee

These cases generalize to the expression given in the lemma. O

Proof of Lemmal5.3.3

Proof. We consider four cases
Case (a) M/(k)=1andw/~ 1(k) 1

fin(el (k). Al (k) — £M(E LK), A H(K) = W (k) (n? — A (k) — (k) (n? — AV (k)
j j

Case (b) M (k) =0andM/*(k)=0

7] 1(K). /() — (&1 (k). /() -
= (A1 (K1 (K) (21— Bi_1(K)) +di_1(K) — (AT (KW (K) (1~ Bi_a(K)) +di—1(K))
= o/ (k) (A (k) — A1 (K))Vi , with &) (k) € [0, 1]

Case () M/(k)=1andW) ™ (k)=0
W/ ) (nf — Al 1<k>>>n.‘ f(kw’ 1(k)(1—3ifl(k)>+difl(k>
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The last expression can be obtained by noting that the inpwtdifference has the same sign as
either its upper bound or its lower bound. Depending uporstbe, the flow difference can be
written as a scaled version of the expressions given in tbeeatwo cases.

Case (d) M/ (k) =0andM) (k) =1

W k) () — A () < AT ()9 () (L — Bioa(K)) +ch-1(K)
and A (K9 (K)(1—B_1(K) +di_1(k) < W (K)(n! — & (k)
el (k.8 (k) — fn(El (), Al (k)
— A0 (KW (K) (1 Bio1(K)) + i1 (K) — Wi (K) (0 — A (k)

(k) Al (k) — finE k), Al (k)
> (A1 (K)¥ 4 (K)(1— Bi_1(K)) + 0 1<k>
(el (), (k) — fn(El (), Al (k
< (W (k) (ny —ﬁ-j<k>>> <w‘ 1<k><n —ﬁ'

(AL (VL () (1 Bi_1(K)) + di—1(K))
k)
'(k)))

k <ﬁit1<k>—ﬁi' OV >> — &) (A (k) — AL ()W

These cases generalize to the expression given in the lemma. O

Proof of Lemmal5.3.4

Proof. We consider four cases. In all the cases we assug]é’ibz(k),fij’3(k) <1

Case (a) M/ ;(k)=1andV/ (k) =1

FOU(E] (), A, (K)) — FOU(E) (k). AV L (K))
. Wij+1(ni]+1 B ﬁij+1(k)> N ~ |J+1 (n|J+1 n|1+1l(k)> Al—lani—1
= élj K A (K)V; (k) — Cij 1(k) A (K (K)

A (nd I (k . Moo A k)
= [W'“(n'gi}(k)n'“( s .‘(k)v-'<k)—W'“(ngll(:)'“( Dad toe) 0]



W (=L (00) g W A R)
R e (U = (OUIC)
Wy = A 0) o W AT )
+| e =l

(99 (k)

= M5 (1 — AL, ()] ()9 (K [6,-1 — ]
A (9] (K

AR ASA R
ZI (k) éijil(k)

, N -1 A1
Since, 0<W (0, —n! 7 (K) <& (k)

Wi 1 (A4 (K) — A 1K) + 202 (Vi () — Al )

Case (b) M/ ,(k)=0andW/ '(k)=0

FOU(E) (K), Al 5 (K) — FOU(E (), AV 1 (K) = A (k)W) (k) — A (k)9 (k)

Case (c) M/ ,(k)=1andV (k) =0

GRCTON) B RN ()
= Wilﬂ(nijﬁ} — %209 54991 00 — 2099100
G (k)
_ Wij+1(niJ+1_ﬁij+1(k>)Aj N _Wij+1(niJ+1_ﬁij+1(k>)Aj N
B e Uk (G ey e et (CLC)
Wy (0, Al k)
= e (L (UL UL "]
. i N R R l l
= ML 8 (0 (1 — AL, ()] ()9 (K LI, PRCE (k)]
A (9] (K

(S
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1(niJ+1—n
= W|]+1(n|J+1_ﬁij+1(k)) éj_l(k)
z.+1< )W, 1 (1 = A, (K) =W (04— R (K))
<>w.+1< L (0 — A 1K)
where O<Z|+1(k)

A -1 Sl
Since, Wi, L) <&k < W T ), —nl (k)

Case (d) M/, (k)=0andW/ (k) =1

FOU (&) (), A4 (K)) — £OU(E) (), A (K))

i+1
1 1
— 0l ()9 k) - W']+1(”iﬁll<if)‘]+l(k>)ﬁi"1<k>vi"1(k>
= [ 109 10 — Al 09/ (k)
et it W (W = A 0)
+ [0 g - 2 T L ']
. . . ) Al (1l .
— ZiLz(k)Vi(ﬁiJ _ ﬁiJ*]-) o Zi],3(k) rhéjl?il(lk()k)wi—ﬁ—l(n|+1(k> ﬁﬂ;f(k))
since, Wi, (Y., — A, 1(K) > &

. )ZVAV|J+11(niJ+1 n|‘+11(k))
= d7 W (W - AT (K)

Z|+1( k) (W |+1(n|J+1 ﬁj 1(k> W|J+1(nl+1 nlj+1l(k)>)
——Z'J ()Wi+1(n|]+1(k) ﬁijJ:ll(k))

where 0< Z|+1( k) <1

These cases generalize to the expression given in the lemma.

Proof of Lemmal5.3.5

Proof. We consider four cases. In all the cases we assug]é’ibz(k),zij’?’(k), aij’z(k) <1

Case (a) M/ ;(k)=1andV/ (k) =1

86
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Following along the lines of Case (a)[in 5.3.4, we get

» i+l i

(el (k). Al 2 (k) — e (), AT ()
J

— Zij,z(k)vi(ﬁij(k) — ﬁiifl(k)) — Zij’s(k)ﬁwi+l(n'+l(k> ﬁl‘;ll(k))
3 (9 (1 = A, (k)R (K9 () [é,fk) - é,-j(k)]
. Al )
= GHVHA) () — A (0) = % >é_,-”'1v('k> (1 (0) = A ()
2, W) T
o) (k) R (R} () — Al ()]

and w3 () (W, = 5()) < €/ ()

Case (b) M/ (k) =0andV/ (k)=0

(el (), ALy () — (e (k). A () = A (09 () — Al (k)9 (k)

Case () M/,,(k)=1andW/ (k) =0

FPU(E! (), 4 (K) — e k), A ()
_ VV|1+1(”|J+A} — ni1+1(k)) ﬁij (k)\7ij (k) — ﬁij_l(k)vij_l(k)’ and
G (k)
(010 s wijj(nﬁﬁ— L)V
¢ (k)

¢k |
(G (9, 4 (0) — 1800, AL () < AT () — /(9 (k)

(k)W (k) <

The output flow difference in Case(c) is bounded by the exiwas given in Case (a) and Case
(b). Depending upon the sign of the flow difference, the floffedence can be written as a scaled
version of the expressions given in the above two cases.ththese case, the resulting expression
satisfies the lemma.
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Case (d) M/, (k)=0andw/ '(k) =1

(el (k). 4 (k) — £ (el ). AT 1 ()
_ ﬁi (k)\7ij (K) — WiJJ::Ll(niJ—kl - nljill(k» ﬁj_l(k)V-j_l(k)

[ A1
| RO
i n _n.j k)) , A1 n? _n.jfl k)) .
W|+1( |-t} |+1( )) ﬁi] (k)\?i’(k) _ W|+1( I,\TE]_ |+1( )>ﬁijfl(k>\7ij—1(k) >
G (‘f) . . G (k) - . .
(8 (), A 1)) — FP4(E (). AL () > A (k) (k) — A (k)9 (k)
The result for this case is similar to the one given above. O
Proof of Lemmal5.3.6

Proof. For any node,

A >0 = & (k= max(cmin,min(wi(ni‘] — ) (K)), & ~1(K) + Gyl (k+ 1)))

Nl >0 — %:min(Aj Jl ~ ,max(i,%—Ggﬁij(qul)))

Remember that, by construction, the a-priori mode is theesasrthe a-posteriori mode.

Ai' >0 — ¢4 (k) = 859 +Gag (0] (k1)

since ¢ (k) € [cmin, Wi (0 — A (K))]
A 50— Ajl _ A,-j G232 (k) (k+ 1)

Gk &1k

,since c?__ll(k) e (W, () (N1 — Al 1 (K), Cma
1+AY + A

j j,1 j,2
where, nf(k+1) = and 0< 8 (k),8(k) <1

Also,

A0 (k+ 1) = Al (k) + FM(E 1K), A (k) — FU(E T (K), Al 4 (K))
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A (k+1) = Al (k) + F"(&)_y (k). Al (k) — £U(E] (), A4 (K)
— A (K1) — AMO(k+ 1) = 11 (K) (1 — M (K)) (&, (k) — & 73H(K)

M (W, 5 (03 =0l (k)R (k) (K)
— A°(k+1) - A (k+1) = A (k+1) — A °(k+

Al o(k+ 1)
1+A + A

= (30N + (A

+ (1§ + (1§29
1+A +AS
= (k+ 1) (1 (1= & DAY + (1= §2(k)A )

i (k+1) =i (k+1)8 k),
where 0< glj(k) =

— il (k+1) =A°(k+1)

1 <1
A=A + (1= 0)Ay

Substituting fornijr(k+ 1) in the update equations, we prove the lemma. Additionally,nete
that when the updates do not hit the boundary, Elé.l(k) = c‘ilj’z(k) =0, we havenﬁk-l— 1) =
ﬁij(k—i- 1). We can see that we are able to estimate the a-posteriorsesithout using the a-
posteriori estimateij(k), directly from the a-priori errors and the update gains. 0J
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Chapter 6

Optimal control of freeway networks

Traffic control is an important operational managementagpiathat can be used to relieve traffic
congestion in freeways. Ramp metering and variable spedtslare two commonly used con-
trol strategies to regulate traffic flow and delay the onsetapigestion. The performance of any
controller is primarily judged by their ability to decreatte traffic congestion, and this can be
usually captured by performance metrics like Total Travehd (TTT), or the Total Congestion
Delay(TCD) of all the vehicles using the freeway system.e&@iene of these performance func-
tions, optimal control theory allows us to compute the dtajectories as well as the control inputs
which minimize the performance objective. Optimal coriend require a model of the freeway to
compute these control laws. In this chapter, we present amalpcontroller utilizing Link Node
Cell Transmission Model (LN-CTM) as its underlying model.

Macroscopic models, including first order models (eg. CedinBmission Models) as well as
second order models (METANETI- [29]) have been used in frgeapgimal control formulations
reported in literature[29, 20, 25| 4]. While the formulatiof these optimal control problems is
typically easy, the challenge remains in specifying a sofutechnique which can calculate good
quality solutions without being computationally interesivi his is because the optimization prob-
lems that arise in these optimal control formulations argdascale in nature (typically involving
thousands of variables, at the least, for even a small frgeeetion), apart from being non-linear
and non-convex. Applying commonly available solution t@ghes lead to large computation
times [29] with no guarantees of global optimality of thewgan. Optimal controller formulations
based on second order models like METANET suffer from thésaddantages.

In contrast, optimal controller formulations based on tledl Transmission Model show more
promise in terms of computational efficiency and global ity of the generated solution.
Gomes and HorowitZ [20] present an optimal ramp meteringrotber based on the Asymmet-
ric Cell Transmission Model (ACTM) along with an efficientlgbon strategy. The underlying
freeway dynamics in the controller formulations is the AC,TWhich is presented as a simplifica-
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tion to the CTM. The motivation for this simplification is toqvide a higher quality and efficiently
computable solution as compared to the original optimatrobproblem. The authors presented a
relaxed version of this optimal ramp metering problem, atod@d that the problems are equivalent
in terms of the optimal solution trajectory. The relaxedijemn is a linear optimization problem,
which can be solved efficiently for large freeway networkémong time horizons.

Compared to the ACTM, the LN-CTM uses a more accurate modgilomerges which makes
it suitable for simulating on-ramp merges even when on-ranftl@ys are appreciable (eg. freeway-
freeway interconnections). However, this comes at an ihdit cost of added non-linearity, and
therefore the results and techniques presented in [20ptd@rtranslated for this case. As we will
see in this chapter and the next, the use of the LN-CTM to desanderlying dynamics results
in the optimal controller utilizing both variable speed iismand ramp metering. This is different
from the results and observations of Gomes and Horowitzsthetv the optimal controller using
only ramp metering as its control mechanism.

6.1 Problem formulation

Traffic model

The underlying model for the optimal control problem is ti¢-CTM model, which was presented
in Section3.l. This model captures the effect of ramp megeoin the traffic dynamics on the
freeway. Additionally, we also need to model the effect afalale speed limits on the traffic state
evolution. Figuré 6]1 shows the fundamental diagram (witlefflow speed/, congestion wave
speedw; and Flow capacity) and the nominal demand and supply functions in solid liffdse
nominal demand and supply functions, without any applicatif variable speed limits (VSL) are
given by

(ni (k)

Di(n; min(n;(K)Vi, /)
S(ni(k))

min(W (n —ni(k)), F).

Variable speed limit controllers specify speed limitsk) which are less than the nominal
speed limits posted in the freeway. We assume that thesgblauspeed limits are followed with
full compliance. When variable speed limits are applied,demand functions are modified while
the supply functions are left unchanged, as seen below

Di(ni(k)) = min(nj(k)vi(k),R)
S(ni(k)) = min(W(n —ni(k)), ).

The dashed line in Figufe 6.1 show the demand function whemamaximum speed limit is used.
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Figure 6.1: (a)The nominal triangular fundamental diagrdty) The nominal demand function
(solid line), and the demand function when a speed limit () is imposed (dashed line) (c) The
supply function, which does not depend on the speed limit.

The complete model, which incorporates the variable speeits| described through a time
varying speed limit profiley; (k) is described below. This will form the model used inside the

optimal controller.

Density Update Equations : Mainline/Queue Conservatiameign

no(k+1) = no(k) + Qo(k) — fo(k)
ni(kK+1) = ni(k) + fi—1(K) (1= Bi-1(k)) +ri-1(k) — fi(k) =1,
li(k+1) =1i(k) + Qi(k) —ri(k)

Flow Update Equations
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k) = (k) x T =1 N-1
s (K) = fi(K)(1— Bi(K)) =1 N-1
where

Di (k) = min(ni(k)vi (k), ) i=0,---,N

Ri(k) = Di(k)(1—Bi(k)) +di(k) i=0,---,N—-1
S+1(K) = min(Wia(n 3 —1isa(K)), Fiv) =0, ,N-1

di (k) = min(r{(k), li(k)) i=1---,N (6.2

In the model, we can see that the flow out of linkf; (k)) is a non-decreasing function of the
speed limits. The reduction of speed, at any link, while kegphe downstream ramp metering
rates constant, leads to a decrease in flow out of the linkalligjrchanges in speed limits do not
lead to increases in capacity of the freeway section.

Objective function

The objective function for the controller needs to directflect the level of congestion in the
freeway. Total Travel Time (TTT) and Total Congestion Def&ZD), captured in units of vehicle

hours, are good candidate objective functions that capgh&eggregate effect of traffic conges-
tion on all users in the freeway. For our optimal controliee define the following generalized
objective function, based on the macroscopic variableséefin our model.

A
zZ

J= (ni(K) + i (k) — ai (K) fi(k) — ai(K)ri(Kk)) (6.3)
k=1i=

wherek = 1.--K denotes the time period and- 0---N denotes the linkr{(k)) or ramp (j(k))
index. By choosing values for the parametey&) > 0, aj(k) > 0, we can represent the following
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commonly used objective functions.

Ja=TTT
Jb=TTT—KTTD
Je=TCD
TTT= Z(ni(k) +1i(k)) Total Travel Time
i
TTD= Z(fi(k) +ri(Kk)) Total Travel Distance
il
1 ,
TCD= Z <ni(k) +1i(k) — v fi(k)) Total Congestion Delay (6.4)
X !

Control mechanisms and additional constraints

The optimal controller regulates the traffic using a spemit frofilev; (k) and a time varying ramp
metering rate (k). The speed limit profile serves as an indirect control meisiafor regulating
flows that exit any particular link of the freeway to enteitihe next downstream section. Ramp
metering rate serves to regulate the flow entering into ey through any particular ramp by
storing additional vehicles in the ramps.

We impose the following constraints on the control actions.

0<vi(k) <V

0<rf(k) <G (6.5)

As seen above, the variable speed limit controller is altbteeimpose time varying speed limits
up to the maximum speed limit of the freeway section. The ramfering controller specifies any
realizable flow rate up to the maximum flow capacity of the r&@npNote that the ramp metering
rater?(k) can be zero, according to our constraints. This assumptibbevuseful to ensure the
validity of the solutions proposed in the next section. lagpice, many ramp meters require a
minimum ramp metering rate to ensure that vehicles waitingmp queues get serviced without
excessive delay. Towards the end of this chapter, we witldis ways to indirectly implement a
minimum ramp metering rate for all the ramps in the freeway.

Apart from the control constraints, we also introduce a mmaxn queue limit constraint. This
is necessary to ensure that queue lengths do not exceediilabéystorage space in the ramps. In
practice, presence of queue limit constraints preventahgrmeters from affecting traffic at the
arterial streets which connect to the ramps. The queuereamistfor our controller are.

li(kK) <L (6.6)
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Initial conditions and model parameters

The following parameters and initial conditions must bec#pe for each link and on-ramp:

e Link i fundamental diagram parameters : CapaéEijtyFree-flow spee®; and Congestion
wave speellV.

On-rampi parameters (Flow capacity and maximum queue len@h):;

Off-rampi parameters (Split ratiosi(k) k=1,--- /K

Initial Conditions :n;(0),1;(0) i=0,---,N

Flow Demands Qij(k) i=0,---,N,k=0,---,K

Optimal Control formulation

Combining the objective functions, the freeway dynamic gl@hd the constraints, the final prob-
lem can be written as

min: J, given by Eq. [(6.B)
St. : For k=1,--- K

Conservation equations

Equations[(6.]1)

Flow equations

Equations[(6.2)

Constraint equations

Equations[(6.6)[(616)
ni(K), li(k), fi(k),ri(k) >0, Vi

with given initial conditions/fundamental diagram paraens (6.7)

We will present an efficient solution methodology for thisiplem in the next section.
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6.2 Efficient solutions

The goal of our optimal control problem is to specify ramp enielg rates (k) and variable speed
limit profiles v (k) for all the links in the freeway such that our chosen objeci/minimized. We
see that the original optimal control problem has constsaimich are non-linear and non-convex.
We will present two optimization problems, whose solutioas be used to derive the optimal state
and control trajectory for the original problem.

We now define two optimal control problems. The first, whichdemoteProblem A, is very
similar to the optimization problem corresponding to theirapl controller formulated above.
Its solution involves nonlinear optimization. The secomdigbem, which we denotBroblem B
constitutes a relaxed optimization problem since its smudnly involves linear programming.
Subsequently we prove that a solutionRrioblem B can be extended to provide a solution of
Problem A.

For the first problem, which we will denoteroblem A, we absorb the ramp metering profile
variablesf(k) in the constraints in the optimal controller formulation(H6.7)).
Problem A Original Problem

min: J, given by Eq.[(6.B)
St. : For k=1,--- K

Conservation equations

Equations[(6.]1)

Flow equations

Equations[(6.2)

Constraint equations

0<vi(k) <V

0 < di(k) < min(C;,l;(k))

li(k) <L

ni(k), li(k), fi(k),ri(k) >0

with given initial conditions/parameters (6.8)

Problem A is equivalent to the optimization problem correspondinghi® original optimal
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control formulation. The optimal controller defined”Pnoblem A provides a ramp demand profile
(di(k)) for all ramps and a speed limit;(k)) profile for all links in the network. This ramp demand
profile can be used to extract the ramp metering rate profftée)§. Sinced; (k) =min(rf(k),l;(k))
(Eq. (6.2)), by choosing®(k) ) we can get a ramp metering rate profile that will be optimal
according to the original formulatlon The optimal profifemm Problem A and the ramp metering
rate determined by choosing(k) = d(k) will be the optimal solution for the original optimal
control problem. Note that we are able to eliminate the \dem corresponding to the ramp flow
constraints without introducing additional non-lineanstraints since the lower bound of the ramp
metering rate is set to 0.

We now pose an alternate relaxed optimization problem wiblation that only involves a
linear program.

Problem B Relaxed Problem
min: J, given by Eq.[(6.B)
St. : For k=1-- K

Conservation equations

Equations[(6.]1)

Relaxed Flow equations

709 < (kv =0, N
fi(k) <R i=0,---,N
fi(K)(1—Bi(K) +Fi(k) < R i=0,--- ,N—1
fi(K) (1= Bi(K)) +i(k) < Wha(n?y g — Aipa(k) i=0,---,N-1

Constraint equations

0 < fi(k) < min(C;,1(k)) i=1,--,N
li(K) < Li i=1.--,N
ni(k), li(k), fi(k),ri(k) > 0 Vi
with the same initial conditions/parameters (6.9)

Notice that we have chosen to use an upper bar to denote tin@zgtton variables ifProblem
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B (e.g.ni(k), fi(k), ri(k)) in order to distinguish them from their counterpart$imblem A. The
main differences between the two problems is that we do ritcitky consider the link velocity
variables (e.g;(k)) and the on-ramp demands (edyk)) in Problem B. Next, we will outline the
methodology adopted to convert a solutiorPebblem B to a solution ofProblem A.

Conversion algorithm

Letni(k), lf‘(k),l?(k),r_i*(k) denote the optimal (or a feasible) solutionRybblem B. Algorithm
A given below generates outputs(k), f;*(k), 1 (k), i (k), v (k), d* (k).

Algorithm A

For each time perioldd and link 0<i <N,

For each time period and link 0<i <N -1,
if (k) =min(n’(k)Vi,F)
Vi (k) =V

elseif f(K)(1—Bi(k)+ri(k) < S.1(K)

vi (k) = fi" (k) /ni' (k)
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. r (k) min(C;, 1 (k))
elsell 5 (0 = min(n (KVioF) (1= Bi(K)) + min (G (K)
Vi () = Vi

] ] min(nf (K)Vi, /) (1 - Bi(k))
di (k> =T (k) X S);l( ) I'I*(k)

else

Ny ( )( .(k)) (k)
i (K) = min (G, i (K))
where  $(k) = min (W (1} — ¥ (k)), Fi(K))
and for each time perioki
if £3(k) = min(iin (k) Vi, )
Vn(K) =W

else
W (K) = (k) /nn (K)

The conversion algorithm provides an optimal solution te Bioblem A. The speed limit
variables can be directly applied as the control input, etiile on-ramp demands are used to
obtain the ramp metering rategk) = d; (k).

Proofs

The following results will help prove that the variableSk), f*(k), 1 (k),r*(k), v (k),d* (k) are
feasible and optimal foProblem A.

Lemma 6.2.1. Let A:= {ni(k), fi(k),li(k),ri(k),vi(k),di(k)} be the solution derived from B=
{ni(k), fi(K),li(k),ri(k)} usingAlgorithm A. Then A is a feasible solution f@roblem A if B is a
feasible solution oProblem B. A and B evaluate to identical costs for the respective dpétion
problems.
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Proof. The constraints corresponding to the conservation equeasind the queue limits are identi-
cal for both problems. Thug\ satisfies the conservation equations and the queue canstsaice
B satisfies the conservation equations/queue constraisiedt to prove tha satisfies the flow
equations and other constraintsRybblem A, which are

fn (k) = Dn(K)

0<vi(k) <V
0< di(K) < min(G;, i (K)) (6.10)

As before, we define

Sy1=min (|:|+1(k)7VV|+1(niJ+1 —ni1(k)))
(k) = min(n;(k)vi(k),F)(1— Bi(k)) +di(k)
i(K) = min(ni(K)vi(K), /)

O X

The link densities and flows as well as the ramp flows and quengthis are identical for both
the problems. Therefore, from the constraint®ajblem B we get,

fi(k) <min(nj(k)V;,F) i=0.N
fi()(L— () +1i(K) < Sy i=0.N-1
ri(k) < min(G,li(k)) i=1.N (6.11)

At each time instank and for any linki = 0---N — 1, the ramp demands and speed limits are
obtained from one of the four different branches of the coowlal algorithm. We analyze all the
four cases.

Case (ai(k) = min(mi(k)\Vi, ) :
In this case, we have
vi(k) =V,
ri(k) = di(k) < min(C;,li(k))



Usingri(k) = di(k) and fi(k) = min(n;j(k)Vi, F) along with Eq. [(6.111),
R (K) = min(ni (k)i (k), 7) (1= Bi(k)) 4 di (k) = fi(k)(1 - Bi(K)) +ri(k) < Sa
min(Ri(k),S+1(k)) _ Rk _

Ri(K) - Rk
Therefore, mign;(K)vi(k),F) x mln(R.(F:)(k) +1(K) = fi(k)
and gk x TR09S100) g — 1,k

This shows that the generated variables satisfy the cantstigiven in Eq.[(6.10).
Case (b)fi(k) < min(ni(k)i, F) and fi (k) (1 - Bi(k)) +ri(K) < Sa(K) :

In this case, we have

di(k) = ri(k) <min(Ci,li(k)),

vi(K) = fi(k)/ni(K) < (ni(K)Vi) /ni(K) =V,

Using the expressions given above along with Eq. (6.11),

min(my (K)vi(K), Fy) = min (m(@%,ﬁ) — min(fi(k),F) = fi(k) and

Ri(k) = min(n; (K)vi (k), /) (1= Bi(k)) +di(k) = fi(k)(1—Bi(K)) +ri(K) < S41
_, min(R(k),S11(K) _ Rk

R RK
Therefore, miiin;(k)vi(k), F) x mm(Ri(F:)(’lj“(k)) = fi(K)
and d(k) > mln(Rl(k)7S+l(k)> _ d|<k) _ ﬁ(k)

Ri(k)

Hence the new variables generated in this case satisfy tistramts given in EqL(6.10).

Case (c)fi(k) <min(ni(K)Vi,F), fi(k)(1—pBi(k))+ri(k) = S;1(k) and
i~ min(G, 1 (k) .
Sk = MR RVER) (3 (k) -minC i (K)

In this case, we have
vi(K) =V,
G (k) — 110 N (V) (1 ()

S+1(k) —ri(k)

101
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Therefore,

di(k) _ min(ni(K)Vi, F)(1—Bi(k)) _ [min(ni(K)Vi, F)(1—Bi(k)]+[di(K)] _ Ri(k)

ri(K) S11(K) —ri(k) [S+1(K) = ri(K)] + [ri(K)] S+1(K)
— 10 =409

Sincefi(k)(1— Bi(k)) +ri(k) = S11(k) and fi(k) < min(ni(k)Vi, F),

Rk min(n(kVi, F)(1—Fi(K) _ min(mi(k), F)
Sia(k) S+a(k) —ri(k) fi (k)

. min(Ri(k),S11(k))  S41(k)

— S;+1(k) < R(k) and R0 + _ I%(k)

Combining the results stated above,

>1

ri(k) = dl(k)mm(R'( 9. 541(k) fi(k) = min(n(K)vi (k), F) x min(R (k). S+1(k)

Ri(K) ’ Ri(K)
k) (K
AlS0 S (K = min(m (O, F) (L — B (K) + 6 (K
min(C;, l;(k))

= in(m (VG F)(L— Bi(K)) + min(Cr,(K))
= di(k) <min(C,li(k))

In this case, we see that the new variables generated bygbethim satisfy the constraints given

in Eq. (6.10).

Case (@) () < min(i(k\. ). fi(k)(1— B(K)) + (k) = S2(K) and
rik) min(Ci,li (k) .
S+1(k) 7 min(ni (K)V;,F) (1-p6; (k))+min(C; li (k) -

In this case, we have

di(k) = min(G;, li(k)) > ri(k),

o minGilik) (Siall)

0= g * o3

ritk) min(C;, li(k))
S+1(k) mln(nu( K)Vi,F)(1—Bi(k) +min(C,li(k))’

_ min(Gli(k)) mln(n.(k)\/., 1)(1=pBi(k) +min(C,li(k))

09 < e min (G, 1 (K) )
< min(ni (k)Vi, F) (1 — Bik)) _ min(ni(k)Vi, Fi)
B ni(k)(1— Bi(k)) ni (k)

and ni(k)vi(k) = min(n;(k)v;(k),F) < min(n;(k)V;, K

Using

~—

Vi

— A
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Finally,

min(n; (K)vi(k), F) (1 - Bi(k)) _ <S+1(k) _1) _ fi(k(A-pBi(k)
min(C;, li(k)) ri (k) ri(k)
and fi(k)(1—Bi(k)) +ri(k) = S41(k)

: . , « S+1(k) . A S+1(k)
= fi(k) = ni(k)vi(k) R(K and 1(K) = di(k) x R
Moreover, ri(k) <di(k) = S;1(k) <Ri(k) = SF:.%I((l)() _ mln(Ri(RiT)(ijﬂ(k))

The variables generated from this conditional branch asisfg Eq. (6.10).

From the analysis of all the four cases, we see that the gexdevariables satisfy the flow
conditions ofProblem A. By construction, we see thAtandB evaluate to identical costs for the
respective optimization problems. O

Lemma 6.2.2.Let A= {nj(Kk), fi(k),li(K),ri(k),di(k),vi(k)} be a feasible solution d?roblem A,
then B= {n;(k), fi(k),li(k),ri(k)} is a feasible solution folProblem B. Moreover, A and B evaluate
to identical costs for the respective optimization proldem

Proof. Clearly, B satisfies the constraints corresponding to the conservatipations and the
gueue limits oProblem B. We show below that B satisfies the relaxed flow constrainBsatblem
B.

Noticing that vij(k) <V; i=0---N

fn(K) = Dn(k) = min(ny(K)vn (K), F) < min(ny(K)Wn, F)
— fn(k) <KW, Fu(k) < Fy
Forany linki=0---N—1

) — D, min(R; (k),S+1(k))
fi(k) = Di(k) x R0 +

— fi(k) <ni(KV;, fi(k) <FK

< Dj(k) < min(ni(k)V;, )
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min(R (k), S+1(k))

fi(K) (1= Bi(K) +Ti(K) = (Di(K) (1= Bi(K)) + di(K)) % R(K

= min(R(K),§1(K) < § 1(K)
(L= B(k) +70) < Fa and k)L~ A0+ <Wea (s~ Aia(k)

min(Ri(k),S11(k)) < di(k) < min(C;,li(K))

Also, for any on-ramp r;(k) = d;(k)

Ri(k)
Hence, B is a feasible solution f@roblem B. It is also easy to see thatandB have identical
costs for the respective optimization problems. O

Theorem 6.2.1.Let B= {n*(k), f; ( k), (k),r?‘(k)} be an optimal solution oProblem B and
A= {n¥(k), f*(k), 17 (k),r (k),vi’( ) ( )} be the solution derived usimrygorithm A. Then A is
an optimal solution foProbIem A.

Proof. Lemmd6.2.11 shows that A is a feasible solutionPooblem A. Suppose A is not optimal
for Problem A, i.e. there is another solution A’ which evaluates to a los@st. Lemma 6.2]2
allows us to compute a new solution B’ which is feasiblePooblem B, and also has a lower cost
than B (which has a cost equivalent to A). This contradicesféttt that B is optimal foProblem

B. ThusA, derived fromB is an optimal solution oProblem A. 0J

Extensions

As we will demonstrate in the next section, the optimal coliér and the solution technique pre-
sented above can be used inside a model predictive comtrdfiehis situation, it is beneficial
to modify the formulation presented above, by convertirgghlird constraints on queues to soft
constraints. In practice, when the on-ramp demands carptdalicted accurately, queue con-
straints are expected to be frequently violated when an MRGrporating hard constraints is
executed. Soft constraints on queues can help in maintpheasibility even when queue con-
straints are violated. Lefi(k) be the new variable that captures the queue violation. Ten,
modify the cost function ad = J+C5; ({i(k), and addj(k) —Li < (k) i=1.N,k=1.K,

and 0< ¢i(k) i=1..N,k= 1..K to the constraints. The presence of these new soft constrain
eliminate problems related to infeasibility.

The optimal controller presented here may specify very vy metering rates during certain
time periods, as we do not include constraints on minimunpraratering rates. In many ramps,
minimum ramp metering rates (typically around 180 vphp8 asually specified, to ensure that
vehicles in some ramps are not subjected to long wait timesnwhmp metering is active. As
specified in[[19] 20], we could obtain metering rates from dpgmal controller, and replace
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metering rates below the accepted minimum by the minimunpnau@tering rate. Another method
we could use to permit a fair service time is to ensure thapréows exceed a given proportion of
the current queue length, using the constrgifk) > I;(k)p, with0 < p < % S0 as to ensure that

ramp flows do not exceed capacity. Suppose we wish to targeta flow rate ot)imi” when ramp

min . .. .
gueue reaches its limit;, we can choose = C'T We typically convert this into a soft constraint,
using the same technique presented above.

Finally, we can also add constraints to limit the average vitaie in different queues. The
average wait time accumulated for all vehicles between pereodsk = k; to k = ks is given by

SEEli(k)
li(ke) + K2 Qi(K)

Notice that the above definition does not include wait timesuaulated by vehicles before the
start time period; (i.e. it does not include the initial wait times of vehicletish were part of
the initial queue). Similarly, it does not include the cometpl wait times of vehicles which may
be still waiting at the end of time peridd. Due to these limitations, this approximation may not
be suitable when short time periods are considered. Nolestheve can add linear constraints to
limit the average wait times during different periods. Feample, [efT,"® be the max wait time
specified for the controller, then the following linear in@djty constraints are added to the optimal

controller.
k=k2 k=k2
li(k) < T™& 1 (k i (K
k;l (k) <T, ( ( 1)+k;lQ( ))

To ensure that adding these constraints do not lead to ibfigswe can also convert them into
soft constraints, and add a penalty term to the cost function

In all of the three extensions presented above, we only adduiconstraints to the optimal
controller formulation, and the solution techniques aredttteoretical results presented above still

apply.

Remarks

In the solution methodology presented here, we have usddxati®n technique to map the non-
linear optimization problem to a linear optimization prefl. The relaxation technique works
only when variable speed limits are applied to all links, atldamps are metered. In the problem
formulation, we have also allowed the split ratByk) to be time-varying. However, one needs to
be careful while searching for an optimal speed control [@afi case of time-varying split ratios.
For example, consider the case where the split ratios fofittstecell increase with time. In this
case, an optimal speed control law might initially hold baekicles (by decreasing the speed
limit), so that the vehicles catch a higher split ratio, and the freeway. This does not reflect
reality, since the vehicles are routed to the wrong destinafThis effect is exacerbated whég
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is considered as the objective, since vehicles that exibdoantribute to the Total Travel Time in
the downstream links. In contrast, augmenting the objedtiith the flow terms-{ f;(k)) serves to
alleviate this effect here, as vehicles exiting the freedayot contribute to the flow downstream.
In the case of decreasing split ratios, the roles of thesestare reversed. Hence we argue that
or J is a better objective function to consider for the problemthe case of constant split ratios,
this problem does not arise. This problem is not unique totenab control formulation using the
LN-CTM, but arises due to the use of a split-ratio based ngusicheme adopted by this model.
This observation was hinted by the authors in [20].

6.3 Model Predictive ramp metering and speed control

We present a model predictive controller (MPC) based on fitenal control formulation pre-
sented in the previous section. The model predictive ctiatrsolves an open loop optimal control
problem online based on a plant model at each sampling tisigg the state information measured
at the current sampling time. The controller implementscitnatrol steps of the obtained optimal
control profile till the next sampling time, and then the @esis repeated|[3].

Let T and Np denote the model time step and prediction horizon used iroftienization
problem respectively. We execute the MPC evByy= N: x T time instants (here we assume that
Np, Nc are natural numbers). In the model predictive controlleg, $plit ratio is assumed to be
constant, equal to the split ratio observed at the instanttimtroller is initiated. This averts the
problem related to time varying split ratios detailed in finevious section, and does not usually
lead to any appreciable decrease in the controller perfoceaithin the MPC framework. We also
adopt soft constraints for queues, as presented in theguesgection. We choose total congestion
delay, as the controller optimization cost.

For the simulation experiments presented here, we usetaaiaid model of the I-80E freeway
in the Bay area between the Bay Bridge and the Carquinez &riddne model was calibrated
to replicate the congestion patterns observed on SeptePniokr2008. Figuré 612 (Top) shows
the speed contours produced by the model without any comtealsures activated. This freeway
experiences congestion during the evening commute peraoakwe limit the temporal axis to
cover the evening congestion. We apply a model predictinérotber withT = 10s, N, = 100 and
N: = 9 to specify the ramp metering rates and variable speed gifofilthis freeway. A queue
limit of L;j = 50Vi was imposed for this simulation. The actual demand profileevassumed to
be known and used to specify the demands in the controllenst@at split ratios, equal to the
split ratios at the time period of controller actuation, eversed. Figuré 612 (middle) represents
the speed contour observed when the MPC is used, and Eidglileddtom) shows the speed limit
profile generated by the MPC. Given the limited queue sizettaimt imposed on the controller,
the controller did not completely eliminate the congestesent in the freeway. However, the
MPC succeeds in delaying the onset of congestion on the &gew this scenario, the controller
resulted in a delay reduction of Bb6%. In Figure_6.3, we show the resulting queues on all the
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Figure 6.2: Top : Speed contours in the uncontrolled casaldMi: Speed contours with ramp
metering and VSL. Bottom : VSL specified by the MPC.
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onramps. We see that the queue constraints are not adverskdied in this case (whe@ = 5
was chosen), as the queues lengths are within the 50 vehliraihp

Table 6.1: Role of demand and split ratio information

Demands Splitratio Delay reduction

Exact Exact 185%
Constant Exact 128%
Exact Constant 185%
Constant Constant 142%

Next, we explore the role of perfect demand and split ratformation on the performance
gains obtained using the MPC, as seen in Table 6.1. We chbeskmand/split ratio information
to either be exact (ie. equal to the actual realized profilethé simulation model), or constant
(equal to the realized value at the instant the controlleniigated). We caution that the delay
reduction with exact split ratios (with/without exact demda) are just shown for comparison. In
this case, the optimal controller decreased the speedsydore values during some periods, so
that vehicles can exit the freeway at a later time, when thierspio values are higher, and this
might not reflect reality. Nonetheless, this study shows\eacan expect a marginal decrease in
delay reduction when operating with constant splits. THecebf not knowing the exact demand
information also leads to a small decrease in the performgams. We have observed that the
controller performance is more sensitive to the inaccutddemand information around the start
time of the prediction horizon. For example, if incorrectrdnd information is provided for the
first N. steps, we observed a marked decrease in the controllerpenfice. In contrast, decrease
in accuracy of the demands along the prediction horizon doesffect the controller performance,
as long as the demand information around the current timegsers accurate. In this case, when
the MPC is executed during the next time period, we get mararate demands to base the future
control actions on. In fact, when constant demands (equilet@ealized value at the instant the
controller is initiated) are chosen, the demand informraticound the controller actuation period
IS quite accurate, since our demand profiles are sufficisntigoth.

We also explore the effect of various parameters on the padoce of the model predictive
controller. In these parametric studies, we use exact désnamd constant split ratios. Tablel6.2
lists the performance of the MPC when the control horizoadption horizon and the maximum
gueue limit, are varied. We have generally observed thatahéol horizon is more critical than
the prediction horizon. In particular, we note that pradichorizons can be as short as 10 minutes
(Np = 60) in this case. It is expected that the prediction horizan be decreased for shorter
freeway sections. In contrast, we see that the control borieeeds to be sufficiently small i.e
2 or 3 mins (. 12— 18). Longer control horizons lead to a decrease in contrpkgformance
(this was found to be the case irrespective of the predidimiizon chosen). The main reason
for the need for shorter controller horizons is the use ofstamt split ratios in our models. In
the case of imperfect demand information, control horiZomnher determine the performance of



109

60
50+ 1
=
g 40+ ]
e
= 30r 1
o
— 20t ]
)
=)
o 10} 1
@4
o L .
-10 : : : :
12 14 16 18 20 22

Time of Day (hr)

Figure 6.3: Queue lengths in the controlled case.

the controller, as short control horizons allow the coméraio correct the demand estimates used
inside the MPC, as well as measure the queues and indirecthuat for the faulty ramp demand
estimates. We observed a performance decrease of 2% as agednthaeN, from 6 to 18, when
constant demands and constant split ratios were used. &irdrol horizons necessitate the use of
a fast optimization routine in the MPC. Finally, we also das tamp queues limits have a major
effect on the efficiency gains that can be expected out ofdh&alled system.

Table 6.2: MPC Parameter study

Ne (Np=120L; =50) 6 12 18 24 30
Delay reduction 1791% 17.76% 17.55% 17.2% 15.96%
Np (Nc=9,Li =50) 30 60 90 120 150
Delay reduction 17.82% 17.85% 17.85% 17.85% 17.85%
Li (Np=120N;=9) 10 20 50 100 0

Delay reduction 7.6% 11.7% 17.86% 23.8% 25.65%

Finally, we explore the role of variable speed limits in thetimal control formulation. In the
scenario demonstrated in the first experiment, variabledfienits are important to ensure that
ramp queue limits are not violated. Generally, when the dlokvnstream of a ramp starts getting
congested, the controller meters the ramp flows enterimgtivg section, and the on-ramp queues
build up. However, once the queue reaches its limit, thenmgdtcontroller needs to maintain the
ramp flow to be equal to the demand entering the ramp, so tleategudo not exceed the given
limits. When the link downstream gets congested, and theaddnfrom the upstream freeway
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Figure 6.4: Queue lengths, when only the ramp meteringgodf the optimal controller is used.

mainline is also high, these ramp flow rates cannot be rehlmdy by specifying high ramp
metering rates (this corresponds to the fourth conditi@talement inAlgorithm A). Variable
speed limits help maintain the queue limits in this case. Weied out a simulation experiment
(with the same parameters as the first experiment explainede, where we only applied the
ramp metering portion of the control actions specified byMiC, while discarding the variable
speed limits. This resulted in a delay reduction of 17.78 Hictvis very similar to the performance
gains in the first simulation. However, the queues in somé@bin-ramps were violated, as seen
in Figure[6.4. When ramp queue limits were not used, disogrthie VSL and applying the ramp
metering portion of the control actions lead to a perforneagain of 25.26 %, as compared to
the delay reduction of 25.34 %, when the complete contrels used. It is our conjecture that
variable speed limits do not contribute to significant perfance improvements for the freeways,
if maintaining exact queue limits are not a priority. Howg#peed limits play a central role, when
capacity drop is present, as we will see in the next chapter.
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6.4 Summary

In this chapter, we presented a framework for optimal comgesontrol for freeway networks,

using ramp metering and variable speed limits. The modetdasedictive controller used the
LN-CTM as the underlying model to describe the traffic dynasrin the freeway network. The
optimization problem based on the LN-CTM had non-linear mond-convex constraints. We pro-
posed a relaxed optimization problem, with only linear édjea and inequalities, and provided a
procedure to map the solution of the relaxed problem to a raetering and speed limit profile for
the original problem. We proved that the resulting contsalso optimal for the original problem.

Given the large-scale nature of a typical centralized fegewptimal control problem, this
methodology enables us to solve the optimization problereahtime to incorporate it in a model
predictive controller. Typically, a problem witd, = 100, T = 10s andn = 33 had around 35000
and 7000 inequality and equality constraints of around DA@biables. This problem can be ef-
ficiently solved within 5 seconds using the MOSEK Linear peog solver, which is a fraction
of the controller time horizon. Thus the controller presenhere has a potential to be adopted
for real time traffic control. The approach taken in this papes advantages over the approaches
presented in [29, 25] that use second order models; patlguhith respect to global optimality
and computation speed. The global optimality guaranteettisyapproach ensures that optimal
controller (executed using a MPC) can be used to compare\ahdiaee other control methodolo-
gies applied to the same setup. We can also use the MPC sgiaddom parametric studies. The
controller has been previously used within TOPL to studysfiects of queue limits, as well as
gueue expansions, on the controller performance gains.
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Chapter 7

Predictive control of freeway networks

under weaving and capacity drop

In the last chapter, we presented an optimal controllerdasdhe Link-Node Cell Transmission
Model (LN-CTM), along with an efficient methodology for sotg the actual non-linear optimiza-
tion program presented by the optimal control problem. is¢hapter, we extend the results when
capacity drop and weaving are present.

Capacity drop denotes the reduction in the (maximum) flowughput of a freeway section
when traffic density at the section increases beyond a knloweshold. Capacity drop is sometimes
observed in locations of geometric discontinuities likedarops along the freeways. First order
models, like the Cell Transmission Models, do not model capdrop. On the other hand, second
order models (for example, METANET [52]), are shown to extaldrop in capacity in bottleneck
locations. Even though capacity drop is not a universal phramnon, the ability to include the
capacity drop in the model used within an optimal contrdibemulation is expected to be useful
for capturing additional performance improvements invaie situations. While optimal control
formulations based on second order models [29! 20| 125, 4lisetl in this regard, the lack of
efficient solutions are definitely a drawback. The optimaitoal formulation presented in this
chapter will use a modified LN-CTM model, which includes tlapacity drop, as the underlying
traffic model.

Another interesting feature that is not captured in theinalgLN-CTM model is traffic weav-
ing. Weaving is usually observed when two traffic streamsseach other, leading to frequent
lane change maneuvers. Weaving is usually accompanieddduation of the operational capac-
ity of the freeway section where it is observed. In this chgpwe introduce a simple model to
capture weaving/lane changing effects near the entranoe-cdmps as well as in links preceding
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the off-ramps. This model will be used within the predictoantrol formulation presented in this
chapter.

7.1 Modeling capacity drop and weaving

The Link-Node Cell Transmission Model presented in thigisaccontains two additions to the
original model : (a) Ramp weaving and (b) Discontinuous caparop models. We will reuse all
the notation followed in Chaptelrd 8,6. Additional termsdfieto this chapter are given in Table
71

Symbol Name Unit

n' Weaving coefficient for flows entering from on-rafp dimensionless

ns Weaving coefficient for flows exiting through off-rampdimensionless
[

= Reduced flow capacity of link veh/period

nfd Density beyond which capacity drop is observed in veh/section
link i

Table 7.1: Model variables and parameters.

Ramp weaving

Weaving in freeways can occur at on-ramp merge locationsedisaw off-ramp diverge locations.
Weaving at on-ramp merges occur near the on-ramp junctities wehicles entering the freeway
from the ramp execute lane change maneuvers to merge witfiebway traffic. In contrast,
weaving near off-ramp diverges actually occur in the linkgading the off-ramp, as vehicles
change lanes to leave the freeway. More complicated wedahgviors can be seen in locations
where large freeways merge/diverge. For example, the MboAMaze [[73], experiences intense
weaving during the commute periods. We present a simple htodmpture on-ramp/off-ramp
weaving behavior, and this might not be applicable to cooapdid situations like the MacArthur
Maze.

During the lane changing operations, vehicles occupy pigltanes and impact the operational
capacity of a freeway section. This can be captured by modgjfthe demand function to reflect
additional space occupied by the vehicles changing lanesdé&finen > 1 andn?® > 1 to denote
the weaving factor for on-ramipand off-ramp respectively. These variables capture the intensity
of lane change behavior exhibited by the vehicles as thesrfexit the freeway. Under nominal
conditions (i.e. under the absence of weaving), theserfaeate equal to 1.
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For on-ramp weaving, the modified demand function and the o are given by

di(k) = nf minli (k),r7 (k)
| di(k)  min(Ri(k),S1(k))
rl(k) r’ir R|( ) (71)

Ri(k),S1(k) are defined as before as

Ri(K) = Di(k)(1 - Bi(k)) +di(k),
S1(k) = min(W 1 (n, 1 — it 1(K)), Fa) (7.2)

We see that the modified demand function is magnified by afactg; compared to the nominal
model.The supph§.1(k) (i.e. the amount of space available in the downstream litdwhich
the ramp flows are destined) is the same as compared to th@alonodel. On the other hand, the
demand functiorR; (k) increases by an amoudt(k)(n — 1), which is proportional to the ramp
demand. The total flow entering Link- 1 in the presence of weaving is given by

min(Ri (k), S1+1(k)
Ri(K)

E(K))) it Ri(K) < S21(K)

) _ =S+1(k)— (nf —Dri(k) otherwise

fi(k) (1= Bi(k)) +1i(K) = (Di(K) (1~ Bi(k)) +min(li (K), r(k))) x

oo
Si+a(k) RO

These equations show the impact of on-ramp weaving behawidiow entering linki + 1. We
now show that for the same available supply, the total flovermg the downstream link+ 1 can
be lower when weaving is present. Defining the nominal denfamdn weaving is absent) as

Ri(k) = Di(k)(1 - Bi(k)) +min(li(k),rf(k)), and noting thaRi(k) > R; (k)

fi(k) (L — Bi(K)) +ri(k) = (Di(K)(1— Bi(K)) +min(li(k),rf(K))) x min(Ri(;)(i()SH(k))

R (i) MRS — Rk MRSl it R (k) < Sy (K)
R (k) Min(R (k Iii(k)—(——mi”('k%’s“(k)) otherwise

where the total flow entering linkt- 1 when weaving is absent is given B;,(k)&%‘)(k?*ﬂ.

We can also show that weaving decreases the operationaiit;aphthe section. When the
downstream densities are under-critical, which lead#fto (n? ; — ni;1(k)) > F11, and under
sufficiently high demandgD;(k)(1— Bi(k)) +min(li(k),rf(k))) > Sy1(k) = R4, the total flow
entering linki + 1 is given by

Fa1i—(nf=Dri(k)<Fy1  when nf >1, ri(k)>0
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When ramp weaving factoy’ = 1, the maximum downstream flow that can be sustainégis
while weaving decreases the flow of the downstream sectibe flow reduction also increases as
higher flows merge onto the freeway.

Finally, we also see thdt(k)(1— Bi(k)) +nri(k) = S+1(k), when the node exhibits congested
conditions (i.e R (k) > S11(k)). In this case, when we interpr@t, 1 (k) as the total space available
downstream, we can see that space occupied by the traffiecngdrgm the on-ramp is inflated by
a factorn. This reflects the increased space occupied by vehicleegshange lanes to merge
into the freeway traffic.

Traffic weaving can also be observed as vehicles change fams# an off-ramp. We assume
that off-ramp weaving occurs in the freeway link that prexethe off-ramp diverge location® >
1, captures the additional space occupied by the weaviffig texiting the off-ramp. The effect of
off-ramp weaving corresponding to off-rampan be captured by modifying the demand function
of link i. Under weaving, the new capacity of links given by

F
1+ (n?—1)Bi(k)
and the new demand function is given by

. H
Di(K) = min{ nj(K)v;(k), 7.3
|( ) ( I( ) I( ) 1+(’7.S—1)B|(k)) ( )
To understand the effect of off-ramp weaving, we note thatttial flow exiting the linkf;(k) is
composed of the flow exiting through the off-ramfp(k) 5i(k)) and the flow continuing onto the
next freeway link € (k)(1— Bi(k))). Weaving near off-ramp diverges leads to a decrease in the
effective capacity of the input link, as the traffic exitingetoff-ramp change lanes and occupy
additional space. Interpreting® as the inflation factor that captures the space occupied éy th
weaving traffic, the capacity of the section imposes a i@gin of total flow that can exit link,
given by fi(k)(1— Bi(k)) + fi(k)Bi(k)n? < K. This is equivalent to replacing the capacity of the
section by an effective weaving capacitYrs" - DEW"

The simple model presented above captures the main featypested when traffic weaving
is observed, i.e. the reduction in operational capacity séetion. Moreover, the reduction in
operational capacity increases with the increase of flovhettaffic streams that contribute to
the weaving. This model differs from the model presentediby2B], which assumes a space
dependent weaving coefficient. The author considers a stralich of road with a space and
time dependent weaving factor. The weaving coefficient ridmuties to an increase in perceived
density, and the author also modifies the demand and supmiyidums, defined through a nominal
fundamental diagram, using a weaving factor. A simple madglovided to calculate the weaving
coefficients as a function of ramp and mainline densitiegmtonstant ramp flows are assumed.
The model cannot be easily extended to situations when rawg fire varying, due to presence
of ramp controllers. TOPL simulator also incorporates astgrbased weaving model. For on-
ramp weaving, this model keeps track of downstream dessitatributed by the different traffic
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streams, and modifies the demand and supply function depgodithe amount of weaving traffic

(a reference for this model is not currently available, big expected to be posted in [67] when
ready). While this model can keep track of the effect of megdraffic, the presence of additional
state variables pose additional difficulties when usediwim optimal controller. In contrast, the

model presented here is simple, and can be easily integratethe solution scheme presented in
the previous chapter, as we will show here.

Capacity drop model

In any freeway section, congestion originates at bottles@nd propagates upstream. A passive
bottleneck exists when the capacity of the link upstreaneeds the capacity of a link down-
stream. Natural bottlenecks can occur due to lane dropg merges and also less typically in
graded locations and turns. Bottlenecks are said to beadetiwhen the demand feeding into the
bottleneck section (link) exceeds the capacity downstre&sma result, vehicle buildup occurs in
the link before the bottleneck and congestion propagatssegm.

The flow exiting a bottleneck in the presence of a vehicle gugastream is equal to the flow
capacity. In normal sections, this flow capacity is given lg low corresponding to the apex of
the fundamental diagram. In some locations, bottleneakslaracterized by a drop in capacity, as
vehicle queues build up, leading to higher densities in titddneck locations. Various researchers
[24, 6], have observed capacity drop at bottleneck locatidrhe empirical relationship between
capacity drop and the vehicle density at a bottleneck londtas been investigated in [10].

The LN-CTM model is modified to simulate the capacity droprgarporating a discontinuous
link demand function, defined as

5ok — min(n(K)Vi, ) if nj(k) < nf,
i(k) = £ if mj(k) > ncd.

where niCd is the density above which capacity drop occurs &net F. The flow out of any
link is the minimum of its demand, and the supply imposed leydbwnstream link. Hence, to
derive the effective capacity drop, one needs to consiagecdipacity imposed by the downstream
supply, since the effective capacity of any junction is git®y min(F,F.1). In case the current
link (link i) and the next downstream link (linki- 1) do not have ramps in between, the effective
capacity drop (for link) is defined as mifF;, 1) — min(F, K1), which is different fromF — F,.
Clearly, even with a discontinuous demand function, unfess > F;, the link will not experience
capacity drop. Figurie 7.1 shows an example of a section wdte@ntinuous demand function. In
this figure, we illustrate that capacity drop occurs at thesdg corresponding to the apex of the
fundamental diagram, i.e. the critical dengify In general, the density used for the capacity drop
can be located beyond this value, and the definition najuealiends in the case of a trapezoidal
fundamental diagram. Finally, in case speed control isiagpthe demand function is given by

Di (i (k)) = min(n;(k)vi (k), Di(ni(k))).
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Complete model

Mainline/Queue Conservation Equation

No(k+ 1) = ng(k) -+ Qo(k) — fo(k)

Fl F2 Demand
>‘ llllllllllllllllllllllllllllllllllll
rol _f, NG Demand ’
o Vi ’
A Vi w Supply ’ Suppl
) /' 1 1 ’ upply

’
Density Density

Figure 7.1: Demand (dashed line) and Supply (solid linerfioms of two consecutive sections.
The first section (left) experiences a capacity drop

Let | denote the indices of all sections (links) considered, avhjldenote the freeway sections
where discontinuous capacity model is used. Capacity dsapsually observed in a subset of
locations corresponding to the locations of recurrentibiogicks of the traffic system. The density
and flow update equations are given by

ni(K+1) = ni(k) + fi—1(k) (1 = Bi-1(k)) +ri-1(k) — fi(k)

li(k+1) = li(k) + Qi(k) —ri(k)

Flow Equations

i=1---,N

(7.4)
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F_i )

. min(n (k)vi(K), Fi ()  if (k) < max(né, sty
I - .
T —DB® otherwise

Vi € lyg
. F
S TSV

Ri(k) = Di(k)(1 - Bi(k)) +di(k),

S+a(k) = min(W g (n 4 — iy a (k) Fipa)

di(k) = n{ min(ci(k),li(k)) i=0,---,N—-1 (7.5)

The complete model combines the capacity drop and weavirdgta@resented above. This
model will be used in our predictive controller formulatidetailed in the next section.

7.2 Optimal controller formulation
We first present an optimal controller formulation along lines of the problem defined in Sec-
tion[6.1. The only difference is the traffic model used in tbateoller formulation. The control

constraints, initial conditions and the performance dibjeaemains the same. The optimization
problem corresponding to the optimal control formulatisigiven below.

min: J, given by Eq.[(6.B)
St. : For k=1,--- K

Conservation equations

Equations[(74)

Flow equations

Equations[(75)

Constraint equations

Equations[(6.5)[(616)
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ni(K),li(K), fi(k),ri(k) >0 Vi

initial conditions/fundamental diagram parameters givelnist[6.1 (7.6)

This optimal controller with the modified model poses newllemges to the development of
an efficient solution methodology. This is due to the presesfca discontinuous capacity drop
function in the optimal controller formulation. The reldiam technique presented in the previous
chapter cannot be directly adopted to reduce this optimsizairoblem to a linear program. In
the next section, we present some good heuristics whichusetprmulate an efficient predictive
controller based on the optimal controller formulation.

7.3 Efficient predictive controller

The formulation in the previous chapter relied on absorhireggspeed limit/ramp demand vari-
ables, thereby relaxing the flow constraints. Under the nedified demand function, when the
same techniques are applied, the constraints correspptalihe flows in the links with the dis-
continuous capacity drop are no longer linear or even carnivegontrast, the weaving model can
be directly integrated without additional difficulties anthe control specification presented in the
previous chapter.

To develop a computationally efficient controller, we enypdodivide and conquer approach.
As noted in [21], given a set of (stationary) ramp demands,ftkeway can be divided into re-
gions, with each region consisting of multiple sectiom&i. In this setup, the first link of each
region is in free-flow, while the most downstream section oégion acts as a bottleneck. These
bottleneck regions are accompanied by congested congliipstream while the downstream is in
free-flow. Therefore, the bottleneck discharge flows at igs<imum flow capacity. Under time-
varying demands, we can expect that these bottleneck egmrd possibly change as bottleneck
regions merge and new bottleneck regions are created. \Mtheory, every latent bottleneck can
be triggered by available demands, a few of these bottlenaekrecurrent. If we observe traffic
contours over multiple days, we usually find that a small nends these bottleneck locations are
triggered frequently (for example,![8] presents an autariadttieneck identification algorithm),
even under the presence of time varying demands. The peesénapacity drop generally creates
a recurrent bottleneck. For example, locations with larapswith sufficient demand acts as a
natural recurrent bottleneck.

To employ our approach, we separate the freeway into regieitls each region consisting
of only one bottleneck with a modified demand function at isstrdownstream link. Note that
inside each region, we may have multiple latent/activel&oticks as long as they do not expe-
rience capacity drops. A controller based on an optimalrobftamework will be described for
each region, where the controller will prescribe ramp niegerates and speed limits for all links
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belonging to the section. The complete control of the effiteeway will be managed by indepen-
dent controllers that act on each region. In this sectionwilledescribe the process of solving
the optimal control problem for each of these sections. WtHoss of generality, we state the
following assumption.

Assumption 7.3.1.The freeway section considered has only one bottleneckibedaising the
modified demand function. This bottleneck with the capalityp will be located in the most
downstream section, ie. link N.

It is expected that the bottleneck locations usually exqe free-flow conditions downstream.
However, congestion from another downstream bottlenechtion can also impact the down-
stream boundary. First, we will develop our predictive colter under the assumption that the
location downstream of the bottleneck is in free-flow. Latae controller will be modified to
account for congestion downstream.

We now define three optimal control problenfaoblem P states the original non-linear op-
timal control problem for our individual region, anBroblem Q poses additional restrictions on
the optimal trajectory and reduces the problem to a mixesbigrt program. FinallyProblem R
solves Problem Q through a sequence of relaxed linear programs.

Problem P Original Problem
min: J, given by Eq.[(6.B)
St. : For k=1,--- K

Conservation Equations

Equations[(7.14)

Flow equations

Equations[(7.5)

Constraint equations

0<vi(k) <V
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0 < di(k) < min(C;,l;(k))

li(k) <L

i (K), 11 (K), fi(K),Fi(k) >0 i =1---N

with given initial conditions/parameters (7.7)

As in the previous controller formulations, the optimal totier regulates freeway traffic using
the ramp metering rate$(k) for each ramp and the speed limit profilggk) for each link. In
Problem P, we absorb the ramp metering variablggK)) and retrieve it after solving the problem,
asri(k) = di(k)/nf. In addition, we can also introduce a new variaplé) € {0,1}, to capture
the “mode” of the final link. This “mode” can either correspoto free-flow or capacity drop,
depending on whether link density is less/greater ti‘i'?énWe can add the new variableRooblem
P to convert it into a mixed integer program. The constraihtd teplace the modified demand
function are

D (k) = min(mi(K)vi(k), K + (F — ) (K))

(k) < 01— (k) + (k)

(k) = neu (k)

u(k) € {01} (7.8)

We can see thati(k) = 0 < ni(k) < n{%, and u(k) = 1 < ni(k) > nf%. Under these new
constraints, the demand function can either take on theevlor F; when the density exactly
equalsnicd. However, in our definition of the demand function with theaeity drop, we assumed
a discontinuity at this operation point, and defined the defhrfanction to take on valuds at this
density. Even though the constraints are not an exact remiason of this discontinuous demand
function, the solution of the optimal control problem witirte the demand function to take the
valueF atn;(k) = niCd. An intuitive explanation for this fact is to realize that wan decrease the
performance objective by maximizing the output flow at thalflmk.

The addition of these new constraints instead of the dismootis demand function does not
provide any computational advantage in solving the opticoalkrol problem. InProblem Q, we
replace the above mixed integer constraint for the modifesdahd function, and also make the
following assumption.

Assumption 7.3.2.For the freeway section considered, we restrict the systgtugon such that
once the downstream link switches to the "free-flow” modentains in the free-flow mode.

This heuristic restriction is expected to produce an ogttnat almost similar toProblem P,
since the free-flow mode is more efficient as it allows velsitteexit the region at a much faster
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rate. Hence, once the system switches into the free-flow mbeusually optimal for the con-
troller to maintain this mode for maximum throughput. Usthg assumption we get,

Problem Q Modified Problem
min: J, given by Eq.[(6.B)
St. : For k=1,--- K

Conservation equations

Equations[(74)

Flow equations

Equations[(7)5) with (7]8) replacing the modified demana:fiom

Constraint equations

0<vi(k) <V

0 < di(k) < nf min(G;,li(k))

pk)>puk+1)k=1-.- K-1
u(k) € {0,1} k=1,--- K
with given initial conditions/parameters (7.9)

In the above formulation, the constrainigk) > u(k+1) k=1,--- /K —1 is equivalent tadj
{1---K}st uky=1 k=1,---,jandu(k) =0, k= j+1,--- K. This interpretation is used
to formulate Problem R. For a givenj, we can formulate an equivalent linear program by relax-
ing the flow constraints, as presented in the previous chapte convert the non-linear equality
constraints in the flow equations to a set of linear inequabinstraints, by removing the variables
vi(k) anddi(k) from the formulation. The final optimal control problem sedva linear program
for eachj and computes the minimum cost and corresponding contrioract



Problem R Final Problem

min :
j=0..K

where

Ji,

Ji = min J, given by Eq.[(6.B)

St.

For k=1,---,K

Conservation equations

Equations[(6.J1)

Relaxed flow equations

fi(k)(1+(nf-1)*BK)<F i=1,---,N

fi(k)(L—Bi(K) +n{Ti(k) <Fop i=1---,N-1

fi(K) (1= Bi(k) + (k) <Wa (g —fa(k) i=1,-

Constraint equations

0<fi(k) <min(G,ii(k) i=1,-- N
li(K) < Lj

For k=1, ]

(k) > ngf
fn()(1+ (MR- 1) *Bu(k) <R

For k=j+1,--,K

(k) < ngf

ni(K),i(K), fi(K),ri(k) >0 i=1---N

with the same initial conditions/parameters

123

(7.10)
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Consistent with the notation used in the previous chaptehave chosen to use an upper bar
to denote the optimization variables in each subproblefroblem R (e.g. ni(k), fi(k), ri(k)).
Each subproblem dProblem R is a linear program. Th¢!" subproblem captures the situation
when the system is in the capacity drop mode for the fitgihe instants and thereafter switches

to the free-flow mode. Lej* = argomin Ji, denote the subproblem that produces the optimal
j=0..K

cost. We denote the corresponding optimal trajectomyds), f,*(k),1*(k),r; (k). Along the lines

of Algorithm A , we outline the methodology to extract ramp metering ratesspeed limit pro-

files, along with the equivalent system trajectory corresipag to Problem Q usingAlgorithm

B. Letn(k), f;*(k),1*(k),r"(K), v (k), d" (k) represent the trajectory correspondingPtoblem Q

from Algorithm B given below.

Algorithm B

For each time periok and link 0<i <N,

. F
T T DB

For each time period and link 0<i <N —1,

it (k) = min(n (k)Vi, " (K))
Vi (k) =M
d (k) = niri"(k)
elseif ' (k)(1—Bi(K)+niri(k) < Sia(k)
d (k) =" (k)n{

Vi (k) = fi" (k) /ni' (k)
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orRns min(C;,li(k)) nf
else Il Sk = min(n (V. B () (1— Bi(K)) -+ 7 min (G, 1K)
Vi =\

, min(n (k)V., ())(1 Bi(k))

+ | |

e i min(Gli(k)  / §a(k)
= oA BK) (n..(k> 1)

d (k) = nf min(Ci,li(k))
(7.11)
where  $(k) = min (W (nf — i (k)), R (K))

and for each time periokl

P if ny(k) < ng

ﬁN(k) _ {(H(nﬁ;_i)*BN(k))

(I+(nR—1)=Bn (k)

if £35(k) = min(ng (K)V, i)

otherwise

(k) = N (K)/ny (k) (7.12)

Algorithm B is very similar toAlgorithm A, with some additional modifications added to
account for ramp weaving factors and the capacity drop itttz link.

Theorem 7.3.1.Let R= {n*(k), f; ( K),I; 1*(K), T r’(k)} be an optimal solution oProblem R and
Q= {nf(k), f*(k),1;*(K), ri (k), v ( ) ( )} be the solution derived usinfggorithm B. Then Q is
an optimal solution foProbIem Q.

Proof. The feasible sets dProblem Q and Problem R are equivalent, as each subproblem of
Problem Q is mapped on to a feasible realizationpofk) k= 1,--- K, by construction and any
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feasibleu (k) corresponds to one of the subproblems of the linear progvdercan easily show that
Algorithm B maps a feasible solution &froblem R to a feasible solution dProblem Q, along
the lines of the results shown in Chapitér 6. Since the feasibls, and the objective functions
are identical, we can show th@ obtained fromR is optimal forProblem Q, with an argument
similar to the one given for Theordm 6.2.1. O

Now we consider the effect of boundary conditions downstreé the bottleneck. We make
the following assumption.

Assumption 7.3.3.For the freeway section considered, the downstream boyncamdition can
be represented using a constant boundary flow restrictién F

The boundary flow restriction means that flows from the mostrektream location cannot ex-
ceedrY. When the boundary is in free-flow, we hav& = Fy. However, as the link downstream of
our downstream boundary begins to get congested, it rssthie flow that can exit the region and
F9 < Fy. We assume that the downstream flow restriction is constgeh though the downstream
flow restriction will be usually time varying. In fact, thewwastream boundary condition is a func-
tion of the upstream flows, and is usually indeterminate. el@w, when the optimal controller
is used as a part of a model predictive control strategy, weusa the current downstream flow
measurement to provide an estimatd=8f which we can assume to be constant. This is updated
to a better estimate during the next controller update step.

WhenFy > F9 > F, we can replacéy by F9, and solve the optimal control problem as before.
In this case, even whef, > F9, we recognize that maintaining the first link in the free-flmede
would increase the current section throughput. Howeveen#y > F9 this is no longer true,
since both modes are equally efficient with respect to maetimgidischarge from the particular
section. In fact, in this case, it is efficient to switch to twgested mode, since this allows the
freeway section to store more vehicles in the freeway (ddleddncreased density prevalent in the
capacity drop mode). This will release some of the congestipstream, leading to large exit flows
in the blocked off-ramps. We replaég by F9 and solve the following linear program to obtain
the optimal solution in this case.

min J, given by Eq.[(6.B)
St. For k=1,---,K

Conservation equations

Equations[(6.]1)
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Relaxed flow equations

(k) <AV i=1,.N

filk)(1+ (MR —D*Puk) <F i=1---,N
fi(k)(1-Bi(k) +nTi(k) <Ry i=1-,N-1
fi(k) (1= Bi(k) +n{Ti(k) <Wa(nfy g —Pia(k) i=1,-- N-1

Constraint equations

li(k) <L
(), 1i(K), fi(K), () >0 i =1.-N

with the same initial conditions/parameters (7.13)

The optimal solution of the above linear program can be useambtain speed limit profiles
and ramp metering rates usiidgorithm B, with a slight modification. We need to replace the
calculations for determining the speed limit profile in thstlsection by

T (k) = min (”“(k)VN’ TRt *BN<k>>>
VN (K) =W
else
W (K) = (k) /ny(K) (7.14)

Generally, the optimal controller does not specify a regie speed limit profile for the last link
in any of the cases mentioned above, as these would incieaskelay of vehicles in the freeway
region considered.

In our final optimal control problem, we do not explicitly cder traffic speed variables. At
any section, we can calculate the speed of the traffig’ds = fi(k)/ni(k). One concern is to
ensure that the variable speed limits do not lead to suddemge!s in speed at a particular section.
We adopt an indirect method to limit speed variations at aayiqular section. Lef\V; denote
the nominally allowed speed variation within which we woliket to operate. Then we add the
following constraint

— AVi

G- S (ke 1) < B0 D) 609 < G+ 5 (k) + (ke 1)
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We will also add a penalty tenﬁzivk Z_i(k) to our cost function. The above constraint indirectly
limits speed variations at a particular section by limitflogv variations across different time steps.

Characteristics of the solution

In this section, we study the characteristics of the satutibthe optimal control problem, in the
case of constant split ratios. The presence of capacity idrtipe model necessitates the use of
variable speed limits. In this section, we will show thatshepeed limits serve two purposes (a)
Throttling of the flow into the link with the capacity drop (Bgacilitating the optimal merging, as
well as limiting the queue on the on-ramps.

In order to investigate the properties of the solution, wiasider the KKT conditions of the
optimal subproblem oProblem R. Note that we do not consider any constraints corresponding
to speed limit variations described at the end of the prevgmction. Here we assume that there
is at least one subproblem which is feasible. Since we imchard queue constraints, this is
not always guaranteed since the demand might be exceedhiggiysuch that no feasible solution
exists. One way to relax on this is to include soft queue camgs, and add a corresponding
function to the objective penalizing excess queues. Natethie main results derived below do not
change even for the problem with soft queue constraints claoity we write the constraints and
the corresponding dual variables.

min J, given by Eq.[(6.B)

mi(k 1) = (k) + 1 (K)(1— B_1(K))

+ri1(k) — fi(K) :ni(k+1)
li(k-+1) = 1i(k) + Qi(K) —ri(K) Ni(k+1) i=1,--,N
No(k+1) = no(K) +Qo(k) — fo(K) : No(k+1)
fi(k) < (k)M vik) i=1.---.N
fi(k) < F v2(k) i=1,---,N

(1+(n°—1) = Bi(k))
fi(K)(1— Bi(K)) +niTi(K) <Fi1 v3k) i=1,---,N—1
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fi(k) (1= Bi(K) +niTi(K)

<Wa (g — Mg (K)) vi(k) i=1 N-1

ri(k) <1i(k) K i=1- N—1
ri(k) <G k) i=1-N-1
ri(k) >0 v3k) i=1,---,N—1
(k) <Ly k) i=1,---,N—1
For k=1,---,]

n(K) > n{ n(K)

(k) < i VR(K)

(k) < n$d - In(K)
with the same initial conditions/parameters (7.15)
The optimal solution satisfies the KKT conditions for the adbnear program (assuming that

a feasible solution exists). We will present the statidgarondition for the LP given above. The
lagrangian is given by
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N N

% |3 (m09+1i(k)) -3 (iR fi(k) + G (ri(k) )

+ 3 ((fi00 = MV + (filk) — R/ (1+ (0 = 1)+ BR)IVK) + (= Fi(k)vE(k) )+

(R0 (1= B9+ — a0 + (K (1= B(K) +nfTi (K

a(W — W1 ()V(K) )+
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From the lagrangian, we get the following stationarity dands.

Fori = 1---N—landk=1---K

(k) = =1+ 1 (k+ 1) + v (K) - G (K)

Ni(k) = =1+ Ni(k+21) + v (Vi — vty (W

with ni(K+1) =0andni(K+1)=0

Fori = 0---N—l1andk=1---K

o —ni(k+1)+nipa(k+1)(1-B)

= Vi(K) + VP (K) + V3 (K) (1= B) + v (K) (1= B) — vP(K)

Fori = 1---Nandk=1---K

a — Ni(k+21) + Mipa(k+1) = Vi(k) + V2(k) + v (R)n] + v (k)n — v (k)
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Fork =1---j

MN(K) = =1+ NN (K+ 1) + v (KN + (k)

o — n(k+1) = Vi (K) + VA (K) — VR (K) + V& (K
Fork = j+1.--K-1

N (K) = =1+ (k4 1) + v (VN — n(K)

a —nn(k+1) = viH(K) +vi(K) — v>(K)

The optimal trajectory also satisfies the primary and dualstraints. The dual feasibility
constraints are given by

The usual complementary slackness conditions apply, ayddte not explicitly stated here.

Lemma 7.3.1.When the optimal trajectory satisfigsr; (k) < min (F1, W 1(n, ; — nit1(K))),
Vkandi=1...N—-2, we havex — nj(k) + ni(k+1)(1— ) >0Vkandi=1..N—2and at least
one ofvl(k), v2(k), v3(k), v} (k) is strictly positive. Moreover? (k) = 0V k

Proof. Foranyi=1,--- ,N—2, we provex — nji(Kk) +ni(k+1)(1— ) > 0 by backward induction.
Clearly, fork = K 41, we havea — ni(K +1) + ni;1(K+1)(1— ) = a > 0. Assume that the
statement is true fdt+ 1, then

a—ni(k+1)+nip1(k+1)(1-5)
=V (K) + V(K + v3(K) (1 - B) + vi(K) (1 - Bi) — v’ (k) > 0

It can be easily shown that the optimal trajectories satigfly) > 0, givenn;(0) > 0. When we
consider the complimentary slackness conditions, we sge/t(k) > 0 or vZ(k) > 0 implies that
v>(k) = 0. Also, we are given thay/ri(k) < min(F1, W a(n,, —iy1(k))) for the optimal
trajectory. Using this fact along with the complementaigckhess conditions, we also get that
v3(k) > 0 or v*(k) > 0 implies thatv?(k) = 0. Sincea — ni(k+ 1) + nipa(k+1)(1 - B) is
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positive, at least one of! (k),v2(k),v3(k), or v*(k) is non-zero. Thug>(k) = 0. Now,

@ —m(K)+nia (k)1 )
= a— [ L mk 1)+ v M v 4 (W]

+ (1= B) | = 1+ sk 1)+ Vi (V2 = (W
=[o—ni(k+1) +Niza(k+1)(1-B)]+1-(1-B)
+F Vi (KVica(1 = B) + L (W — VT (W 1(1 - B) — vt (K)V;
> o —ni(k+21) + Misa(k+ 1) (1= B)] = v (W 1(1 - B) — viH (k)W
>0
Since VA (k)(1—B)+vi(k) <a—ni(k+1)+nisi(k+21)(1—6)

Hence, by induction, we prove the lemma stated above. O

The lemma presented here applies to all links which are nette@m of a link with a modified
capacity drop function. The optimal controller specifiegpaed limit and a ramp metering rate.
For any link discharging its output to a “normal” link (i.e.ithout a capacity drop), the optimal
controller does not throttle the flow by means of a speed Jinait

- min(Fi; .1, W1 (', —fi1(K)) — nfFi(k)
fi(k) = min (ni(k)\/i,F., s 11_ 5 i ) .

Particularly, when the next link has no ramp flows, we seedhttow follows the LN-CTM equa-
tions with nominal speed limits. However, when the ramp haszero flow and the downstream
link is congested (i.e. the third term in the equation stéefre is active), a speed limit may still
be applied to ensure optimal merging. Even in this case,dta inflow into the next link will
be the same as the flow in the no speed limit case, but in theatdke optimal trajectory the
total outflow may be arbitrarily divided between the ramp #mel previous link. In some cases,
this will correspond to the application of a speed limit. FEsample, when ramp flows satisfy
the third conditional statements Wgorithm A/B , speed limits are not necessary, while speed
limits need to be specified when the fourth conditional st&tet is active. The most common
reason for this is that in cases when queue limits are specifieorder to maintain the queue
within its limit, the controller will try to assign more prefence to the ramp flow, by means of
reduced speed limits to the link. Even when queue limits atespecified, the optimal controller
may still specify a variable speed limit, as we saw in the jomey chapter. In cases of extreme
congestion/excessive ramp demargik) < W, 1(n?, ; — ni;1(k)) may not apply and the optimal
controller might lead to additional throttling to ensurattisufficient space is available for ramp
demand. In the case of on ramps which are not freeway imeexds, this condition is not vio-
lated whenn{C; < W1 (n? "1 —Niz1(K)) for the optimal trajectories. During nominal operation,
freeways do not generally get very congested as to viola&etmdition. We also expect the same
when the freeway is under the effect of the optimal controlle
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The results of this lemma do not apply for the link feedingiatsection which experiences
capacity drop. Mathematically, this is due of the te€q(k) in the recursive equation far —
Nn-1(K) +nn(k)(1— Bn—1). We can see that depending on the sign of this term, the floydirfg
into the link with the capacity drop can be zero (i¥(k) = 0). We will see an example of this
in the next section. The results for this lemma also applynmthe optimal solution of the original
optimal control problem is considered.

7.4 Simulation examples

We demonstrate the application of a model predictive cdietrbased on the optimal control for-
mulation presented in the previous section. Given the miahel stepT, the prediction horizon
Np (in units of number of periods), and the control hori2dy) we can create a model predictive
controller that is executed evefy = N; x T time instants. We demonstrate the application of our
controller in the presence of weaving and capacity drop.

Link 6
| Pt Pt | | Pt >t —
On-ramp 1 On-ramp 2 Off-ramp
Link 7 Link 11 Link 13

Section with
On-ramp 3 Capacity drop

Figure 7.2: Freeway geometry with location of on-ramps dffidaonps.

Figure 7.2 represents the geometry of the freeway secti@mgBe length) which is considered
for our simulation studies. The geometry is artificially sbmcted to demonstrate the application
of our controllers. In this portion of the freeway, link 11tise only link which experiences a
capacity drop. The fundamental diagram parameters agesllist Tabld 7.2. We can see that the
maximum throughput of link 11 is 7600vph in free-flow conalits. This decreases to 7300vph
once the density in link 11 exceeds the critical density diiin. This represents a capacity drop
of around 4% which is representative of the nominal capalritp generally reported in literature.
We assign our optimal controller to operate on links O to 1khe ®ptimal controller can specify
variable speed limits for these links, in addition to the pametering rates for the on-ramps 1-3.
A constant split facto3 = 0.15 is chosen for the three off-ramps during the entire timéope
considered. For all the on-ramps, we assume a weavingnatio1.3. We do not consider any
off-ramp weaving in the examples shown here. Fiduré 7.3 shtbw on-ramp demands we use
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Figure 7.3: On-ramp input flows for all ramps.

for the simulation. The on-ramp demands are chosen suclhi&teeway is congested between
T=1hr to T=2hr. We use a constant flow of 7000vph as the input fiftdo the first link on the

freeway (link 0).

Table 7.2: Link parameters

Links V W F

0,1 65mph 20mph 8500vph n.a

2,3 65mph 20mph 8900vph n.a
4-10 65mph 20mph 10500vph  n.a

11  65mph 20mph 7900vph 7300vph
12,13 65mph 20mph 7600vph n.a

We use the LN-CTM with the capacity drop/weaving model tdgren our simulations. In the
first simulation, we assume that the boundary downstrearmlofll3 is in free-flow. Figuré 7|4
(top) shows the velocity contours that result when no camicton is applied. In this simulation,
the freeway starts to get congested around T=1hr. We camselditlenecks in the simulation,
at link 3 and link 11 respectively. The bottleneck in link Klattributed to the capacity drop,
while the bottleneck in link 3 is due to the on-ramp merge apdwing (this bottleneck disappears
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when weaving factor equals 1 for the demands in the simulai@mple). Next, we simulate
the freeway, with the model predictive controller specifyithe metering rates and speed limits.
The controller is initially inactive, and we start applyitige controller at T=1.11hr, when link 11
already experiences capacity drop. We chddge- 30, T = 10s, N; = 6 for our controller. The
gueue limits in both the ramps are chosen to be 75 vehicles.chteseAV; to correspond to
5mph to limit the variations in speed in the link preceding bottleneck section. In this case, the
controller has to solve at most 30 (and in most cases, lesgriprograms. Figute 7.4 (middle),
shows results of the simulation in which our model predetontroller is used. In this case, the
severity and the extent of congestion is reduced. Figurébbiom) shows the variable speed limit
profiles specified by our optimal controller. The optimal woher specifies a speed limit profile
for link 10, and this helps decrease the density of link 11dtmW critical density. Thereafter,
it still maintains the speed limit which enables link 11 taysin free-flow. Thus, the optimal
controller creates a new bottleneck, through controlleagestion, at link 10 to prevent link 11
from experiencing a drop in capacity. This controlled catga helps in increasing the throughput
of link 11, which limits the extent of congestion, even thbugis not completely eliminated.
Finally, we see from Figuré. 7.5 that the optimal controffezintains the ramp queue limits. The
most downstream ramp meter corresponding to on-ramp 3 éstaszontrol the congestion arising
out of the bottleneck at link 13. In contrast, the flows in amp 2 are controlled to alleviate the
effects of weaving. Decreasing the on-ramp flows (until @ueenstraints are violated) increases
the operational capacity of the section. For every addifigahicle stored in the on-ramp; = 1.3
vehicles are discharged from the previous section. In ac@len the congestion spills back to block
other off-ramps, this increase in operational capacityfaaier help delay congestion. The total
travel time and the delay experienced by all users in theamtrol scenario are 1358vh (vehicle-
hours) and 245vh respectively. In contrast, these redudé2%6vh and 143vh respectively when
the controller is used. This leads to a substantial delayatéoh of 41.5%.

In the second simulation, we assume that the boundary dowamstof link 13 is initially in
free-flow. At 1.4hr, the boundary (link 13) begins to get cestgd and this congestion propagates
back onto link 11 soon after. At 1.6hr, the boundary becomas-fiowing. All other parameters
and demands are same as the first simulation. Figure 7.6gbapys the velocity contours under
the no-control scenario. The congestion is more widespsadmpared to the simulation with the
optimal controller (Figure 716 (middle)). From Figlrel7b@{tom), we note the speed limit profiles
specified by the controller. In this case, we see that thealert specifies a speed limit profile until
the boundary congestion reaches the location downstredmkoil. Thereafter, the predictive
controller only resumes the speed limit control when thegestion due to the downstream section
has dissipated. The total travel time and the delay expegtkhy all users in the no-control
scenario are 1364 (vehicle-hours) and 252vh respectilreontrast, these reduce to 1284vh and
172vh respectively when the controller is applied. Thislteto a delay reduction of 31.8%.
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7.5 Summary

In this chapter, we extended the predictive congestionrothat presented in the previous chap-
ter, by augmenting the traffic model used within the con¢rolb include weaving and capacity
drop phenomena. The modified model adds additional contplexithe optimization problem
corresponding to the actual optimal control problem, angresent various assumptions that are
needed to allow us to solve the optimal control problem effitty. First, we divide the freeway
into regions and assume that each region is controlled asingdependent controller which con-
trols all sections within that region. One drawback to tlppr@ach is that we cannot completely
co-ordinate all controller actions, and this might limiettotal performance improvements in some
cases. When the downstream boundary of each region alwmgane in free-flow, lack of co-
ordination is not expected to limit the controller performa. However, during periods when the
region boundary transitions into congestion, better airation can help manage and delay it.
Next, we also assume that the optimal trajectory does natkwiack from the free-flow mode to
the capacity drop mode. When the downstream boundary isyalimaree-flow, this assumption
is generally valid, since the free-flow mode is generally enefficient in discharging traffic out
of the region. Finally, we assume that congestion in the dongam boundary can be represented
by a constant flow capacity restriction for flows exiting theafilink. This provides us a tractable
method to calculate an predictive control strategy wherdtivenstream boundary is congested.

All of these assumptions allows us to specify an efficientdjmtése controller used when sec-
tions of the freeway exhibit capacity drop. We highlighttthhdnen only weaving is present, these
assumptions are not necessary, and we can solve the finalad@ontrol problem exactly. With
our approach, the optimization problem corresponding th gaedictive controller step can be
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solved within 5 seconds for our scenario, when we use the MOBIEar program solver. This is
a fraction of the controller time horizon. We also see thatsmguence of linear programs can be
solved completely in parallel. One single iteration of tlhatroller can be executed within 10-20s
for a realistic sized freeway, even for longer time horiz(theugh that may not be necessary) like
the one shown in previous chapter when we exploit the inligramallelism.

In this chapter, we also presented some details of the dieaistcs of the solution. Particularly,
we investigated the role of variable speed limits within oantroller. Variable speed limits are
useful in two cases : (a) to ensure optimal merging in on-rgigtions and (b) to limit the
feeding flows into the section that experiences capacitp.diSL application corresponding to
(a) is generally useful in maintaining queue limits, as we tiamonstrated with simulation results
in Chaptei 6. We expect that the performance gains with tpécgpion of VSL in this case may
be limited, as shown by our simulations. In contrast, VSLctetl in case (b) is nhecessary to
increase the efficiency of the capacity drop section. We &xpat an optimal controller that only
uses ramp metering to prevent capacity drop might be mofedieat and less robust.

Finally, we presented simulation results where we comptredreeway characteristics with
and without the application of our model predictive corigol In both scenarios, our controller
leads to a substantial reduction of delay experienced byadelers in the freeway, even though
we only had one section with a modest capacity drop. From xqpergence of simulating freeway
sections with and without capacity drop, we determine tlagtacity drop is usually the single
most important factor that contributes to delay in the fragwf present. Accounting for capacity
drop in ramp metering and variable speed limit controlletsenever they are present, can help us
significantly improve traveler experience on the contobfieeways.
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Chapter 8

Conclusions

In this dissertation, we have investigated specific aspedisffic flow modeling and control of
freeway networks. We presented an imputation algorithradws a part of a data driven model
calibration process to build a model of a chosen freewayi@eciWe also presented an efficient
optimal controller, that can be used for congestion comftihe given freeway system.

In Chapter’2, we reviewed concepts and previous work relaietie development of this
dissertation. We discussed the current state of trafficctiete the usually observed detection
problems and commonly adopted solutions to impute missatg ith freeway mainlines. This was
followed by a review of the popular models commonly used taetdreeway traffic dynamics.
We also presented a detailed account on the control metbgiésicommonly adopted to combat
congestion in freeways, along with a review of previousreffan the area of model based optimal
congestion control. We presented the Link-Node Cell Traasion Model (LN-CTM), a first order
model used for simulating traffic dynamics in traffic netwarkn Chaptef13. This chapter also
discussed the steps taken by a user to create the freewayettg@and automatically calibrate a
model. We identified the necessity of imputation of ramp fl@atado complete the model creation
process. In fact, to completely calibrate the model, we hearhputation algorithm presented in
Chaptetb. Finally, we present a model created using the heoefgtion and calibration process.

Chapter$ 4 anld 5 described two imputation algorithms thabeaused to estimate the missing
ramp flow data. First, we developed a link-wise imputatiggpathm based on the Asymmetric
Cell Transmission Model (ACTM), along with the proof of camgence of the algorithm. The
ACTM, being a simplified piecewise affine model, lent to easglgsis and design of the first
model based ramp imputation algorithm. We were able to ptbaeramp estimates converged
to the actual values (assuming that the freeway dynamiceisapproximated by the ACTM)
in most cases. Even though in some cases, we might not beabl@duely identify the on-
ramp and off-ramp flows, the errors do not propagate and tafifecimputed estimates of the
ramp flows in the downstream links. We showed that the imputalgorithm results in zero
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density and flow errors in the steady state. Thus, a lack ofergence of the density or the
flow errors usually imply that some of the measurements seghphay be erroneous/faulty. This
forms the basis of fault detection algorithms, that havenl®/eloped by other members of the
TOPL group for detecting bad detectars|[18]. In Chajpter Spresented an imputation algorithm
based on the LN-CTM. The LN-CTM was more accurate for modetin-ramp merge dynamics
especially when the ramp flows are large. This algorithm &aneously imputed all the ramp
flows in two steps, first matching the observed mainline dexssbefore matching the available
mainline flows. We also demonstrated the convergence oflmithm, and discussed various
properties of the algorithm. We have observed that the LMA@Igorithm provides better imputed
estimates for simulation, since it simultaneously impadéthe ramp flows together. The presence
of noisy/faulty measurements at any interior section dagsmpact the LN-CTM algorithm like
in the case of the ACTM imputation algorithm. Both these athms are computationally fast,
being able to impute the 24 hour ramp flow profiles for mostviigges within 5 minutes.

The imputation algorithm forms an essential piece of the ehadeation process. With the
imputation algorithm in place, under the presence of no dvtaulty detection, a mildly expe-
rienced user can build freeway models for an entire freewidlyinvl day. In some cases, faulty
detectors present extend the effort to almost a week, ifabks are to be identified and the data
discarded manually. A recently developed fault detectigorgthm, based on the ACTM, can
automate the process to reduce the model creation efforalfdhie week[18]. Once the initial
model geometry along with the faulty detectors are idemtjftbe imputation algorithms can be
run autonomously to estimate daily ramp demands and spbsréor multiple days. This allows
the user to build models for different days of the week, sbtheaous operational strategies can be
tested across multiple days before deployment. In contir@stsportation planners currently use
microsimulation models, and their calibration is knowndke around 3-6 months of user efforts.
Moreover, micro simulation model based studies are usliaiijed to a single “nominal” day of
operation, due to limited time and project budgets.

Once a validated freeway model is available from our calibngprocedure, we can apply and
test various operational management strategies. One qfdpelar strategies is the congestion
control using ramp metering and variable speed limits. @rap presents an optimal controller
based on the LN-CTM. The controller optimizes a parameteidqggmance objective, which can
be chosen to represent two commonly used congestion indécathe total travel time or total
congestion delay of all vehicles using the freeway netw®tks controller prescribes time varying
ramp metering rates for each on-ramp link as well as timeingrgpeed limit profiles for the
freeway mainline. We demonstrate that, though the actuahigation problem corresponding to
the optimal controller is non-linear and non-convex, weadnle to absorb some variables and relax
some constraints to present a linear program. We presentatyarithm to convert the optimal
control/state trajectory prescribed by the relaxed lingagram into an optimal solution of the
actual optimal control problem. We also demonstrated a MBdedictive Controller, utilizing
this optimal control formulation and established its e#fi@y in obtaining a solution. The optimal
controller, used on a calibrated model, allows us to get amate of the best performance benefits
that can be obtained by implementing ramp metering and blarigpeed limits in the field, since
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we obtain a globally optimal solution to the optimal confpobblem. Within TOPL, the optimal
controller can be used to compare and certify (and possilnig)tother commonly deployed ramp
metering controllers. Being computationally efficientsttontroller can also be possibly deployed
in the field in the future.

In Chaptel¥, we extended the predictive control formutatiy modifying the underlying traf-
fic model. The original LN-CTM model does not model the effecon-ramp/ off-ramp weaving
and capacity drop, when they are present. When these e#fiextsignificant, inclusion of these
models can allow a predictive controller to obtain increlaperformance gains. We present an
augmented LN-CTM model, with additional modifications t@ae on-ramp/off-ramp weaving
as well as the capacity drop. When this model is used withgmfitimal controller, it can no longer
be efficiently solved using the techniques given in Chdgtelu@ to the presence of a discontin-
uous demand function modeling the capacity drop. Hence, iwdedthe freeway into regions,
with each region containing a capacity drop location at ibstalownstream section, and assign an
independent controller to co-ordinate the ramp meterimhvamiable speed limits in each section.
With additional heuristic assumptions, which are not exgeto significantly degrade the quality
of the solutions, we demonstrate the optimal control pnobdéan be solved using a sequence of
linear programs, by using a relaxation technique simildhéone presented in Chaptér 6. In this
case, the optimal solution can be mapped back using an tidgosimilar to the one presented
before.

Future Work

There are multiple avenues of future work related to the rnatdeveloped in this dissertation.
First, our model creation procedure and the imputationrélyo should be extended to include
weaving and capacity drop. When all ramp measurements arkalale, it is possible to directly
extend the calibration process to include capacity dropwaeaving. We also need to validate
the weaving model, and ascertain its ability to replicate tiaffic flow characteristics in ramp
junctions. Multiple sites, with working mainline and ramgtelctors, should be used to validate the
model, and compare it with the other models discussed hefiie extension of the imputation
algorithm in the presence of capacity drop might not be ag &k, since the current imputation
algorithm takes advantage of the monotonicity of the floneeng and exiting the link. Though
the update equations for the ramps adjoining the capaatyldcations might need to be modified,
it is expected that the imputation algorithm might remaig shme for other ramps.

The LN-CTM imputation algorithm could also be extended tolude statistical models of
ramp inputs, as a part of the imputation process. As we arbaéate, even with ramp detector
data is available, a purely statistical imputation aldoritis not expected to produce good quality
imputed data for our simulation models. However, a hybrigrapch, utilizing statistical models of
ramp flow data along with the model based imputation schemedna®e useful, particularly when
some of the mainline measurements are noisy/missing. Vitnlecurrent imputation algorithm
could be extended to impute ramp demand estimates in real-a hybrid approach holds more
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promise in providing better quality estimates.

The predictive control methods, which are specified in Cééptdefine separate controllers for
each region. This does not lead to any appreciable drop fornpeance, as long as the bottleneck
downstream remains un-congested. However, in case thermtk downstream gets congested
during the controller operation, the lack of coordinati@iveeen the controllers acting in different
regions limit the performance improvements that can beiodtafrom the controllers. One pos-
sible extension is to embed these controllers within a heéreal control scheme, where a meta
controller provides commands to coordinate the contrabastof these controllers. In this case,
we need to identify the set of control actions that can beifpddy the meta controller, while
also extending the individual region controllers to inamgie these control commands.
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