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Abstract

Tools for modeling and control of freeway networks

by

Ajith Muralidharan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

This dissertation presents algorithmic tools that are useful to transportation engineers for freeway
traffic modeling and control. A modeling framework that utilizes the link-node cell transmission
model (LN-CTM) to simulate traffic dynamics on a chosen freeway network is presented here.
A data driven approach, which utilizes available detector measurements on the freeway network
to calibrate and specify the model is also illustrated. Flowmeasurements in ramps, which are
needed to specify demands and routing characteristics for the freeway, are usually not available.
Two novel imputation algorithms which estimate the missingramp flows in the freeway network
are presented. These algorithms employ a model based estimation procedure, that calculates the
unknown on-ramp flows and off-ramp split ratios which can be fed into the model to match the
observed mainline density and flow measurements. A detailedanalysis of the convergence of these
algorithms is presented, along with the advantages of theseindividual approaches. The final model,
specified with the imputed ramp flows is able to replicate the traffic dynamics with good accuracy,
as seen by error rates around 5-8% for density/flows contours, and the accurate replication of the
bottleneck locations. These imputation algorithms, used within our modeling framework, enables
a user to build a freeway model simulating multiple days of freeway behavior, within a week.

A model based optimal predictive controller for freeway congestion control, which utilizes the
LN-CTM as its underlying model is also presented. The approach searches for solutions repre-
sented by a combination of ramp metering and variable speed limits. The optimization problem
corresponding to the optimal control problem based on the LN-CTM is non-convex and non-linear.
A relaxation method is presented to solve this problem efficiently using an equivalent linear pro-
gram, before generating the solution to the original problem using a new mapping algorithm. The
predictive controller is also extended to cover situationswhen ramp weaving and/or capacity drop
exists in the freeway network. In this case, a set of heuristics are presented and the optimal control
problem is solved using a sequence of linear programs, before mapping the solutions back to the
original problem.
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Chapter 1

Introduction

Traffic congestion can be encountered in metropolitan areasduring various time periods across
the day or sometimes during the night. Congestion levels have also been increasing over the last
decade, due to ever increasing demand. An average commuter experiences recurrent congestion
during his commute due to presence of system bottlenecks. Inaddition, non-recurrent events,
both planned (road work, public events) and unplanned (accidents) contribute increasingly to the
unreliability in commute times. The 2011 annual urban mobility report [15] compiled by the
Texas Transportation institute calculated that the average commuter experienced 34 hours of delay
in 2010, up from 14 hours in 1982. In 2010, congestion costs accumulate over $100 billion dollars,
which is more than $750 per commuter.

The easiest way to combat congestion is through infrastructure expansions. Adding additional
lanes and new freeways are not always feasible due to economic and environmental concerns. In
many cases, freeway and roadway expansions might be infeasible due to lack of construction space.
As a result, transportation engineers increasingly rely onintelligent operational management of
the existing infrastructure to improve system efficiency. Over the years, different measures have
been implemented, ranging from tolls, congestion pricing,introduction of HOV lanes and freeway
control techniques like ramp metering. Simultaneously, transportation authorities also rely on less
direct measures like improving transit, providing better information etc to combat congestion.

Transportation authorities can plan and execute strategies over various time scales: long term,
medium/short term and real-time. In the long term, transportation systems planning is intertwined
with urban planning, policies etc.. Transportation planners project future population patterns and
transportation demands to plan for long term capacity expansions. In the medium/short term,
planners and engineers evaluate and design operational management strategies to combat current
as well as short term projected congestion. For example, system operators might install and enable
ramp meters to control freeway traffic, decide on tolls/congestion pricing. Finally, in real-time
operations, traffic engineers are expected to take short term measures and counter measures to
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combat congestion, traffic incidents, as well as planned events. For example, traffic engineers
might warn users using variable message signs regarding incidents on their commute route, as well
as possible reroute options. They might also deploy incident specific countermeasures to decrease
their impact.

Transportation planners, system operators as well as traffic engineers are increasingly relying
on traffic flow simulators to aid in the planning and operational management. Traffic simulators
provide a cheap and non-intrusive method to plan and study operational strategies before their
implementation in the field. Transportation planners frequently use traffic simulators to perform
cost-benefit analysis among these various options available to justify short/medium term strategies.
Traffic simulation based planning/decision support tools are also seen as essential for improved real
time management of transportation systems.

Tools for operations planning (TOPL) [67] is a Caltrans/NSFfunded project started at PATH
and UC Berkeley on April 2006, to provide simulation based support for operational planning and
real time management of freeway traffic corridors. Freeway corridors usually include freeways and
nearby arterials, providing a self contained road system that can be consistently analyzed when the
chosen operational strategies are implemented. TOPL provides a quantitative assessment of the
effects of operational strategies designed to improve traffic congestion in freeway corridors. The
main elements of such strategies can be classified into

Traffic control - Employ congestion control through the use of ramp metering, and possibly vari-
able speed limits.

Demand Management- Reduce or redistribute current road network demand in space and time.

Incident Management - Alleviate congestion related to planned and unplanned incidents (road
work, accidents etc).

Traveler Information - Provide up to date current and predictive information of traffic conditions
for trip planning and routing.

At the centerpiece of TOPL is a fast and trusted simulator, Aurora. This software executes simula-
tions magnitudes faster than real-time, providing the operator the ability to simultaneously execute
multiple operational management strategies and predict their effect in real time. Geometric models
of corridors are built using Network editor [68], which has been built to leverage maps provided
by Google Maps.

This dissertation is motivated, and at many times, guided bythe development of TOPL. All of
the theory and algorithms developed in this dissertation has been implemented as a part of various
tools which are a part of TOPL. The first part of this dissertation is related to building calibrated
models of freeways using measured data from the freeway. Calibrated models of the managed
freeway sections are essential to ensure that realism of thesimulations used as a part of TOPL. We
will describe algorithms that aid in building these models from measured data, under conditions
that some of the data is usually missing.
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The second part of this dissertation presents the design of model based optimal control of free-
way network, used as an operational strategy for congestionmanagement. Freeway control, using
ramp metering and variable speed limits are being increasingly adopted as the first step to com-
bat congestion in freeway networks. Optimal controllers provide the “best” achievable congestion
reduction, and we present solution techniques that be used to solve the optimal control problem
efficiently. As we will explain later, this optimal controller is a useful tool for simulation based
operational management, and also for implementation in thefield.

Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we review different concepts and previous
research related to the material presented in this dissertation. First, we review the vehicle detection
technologies and the traffic measurements available from commonly deployed vehicle detectors.
We also review the Performance Measurement System (PeMS), before highlighting the quality of
data available and data imputation schemes used to fill in missing values. We also review traf-
fic flow models including the Cell Transmission Model. Finally we describe the commonly used
freeway control mechanisms: ramp metering and variable speed limits before describing goals of
freeway control as well as the metrics for evaluation.

In Chapter 3 we introduce the Link Node Cell Transmission Model (LN-CTM), along with
the dynamic equations that can be used to model traffic dynamics in freeway networks. We also
describe the methodology used to build a model of a chosen freeway, including geometry spec-
ification and parameter calibration. In this chapter, we motivate the necessity and importance
of developing imputation algorithms for estimation of on-ramp flows and off-ramp splits in the
freeway. We present simulation results obtained using a calibrated model of the I-80E freeway,
constructed using the procedure explained in this chapter.

In Chapter 4, we describe an imputation algorithm based on the Asymmetric Cell Transmission
Model (ACTM). The ACTM is a simplified model based on the CTM, described by piecewise
affine dynamic equations. This simplified dynamics allowed the development of the first provably
convergent imputation algorithm that can be used to estimate on-ramp flows and off-ramps split
ratios which are not measured.

In Chapter 5, we present an imputation algorithm based on theLN-CTM, which is a more
accurate representation of freeway dynamics when merging flows from on-ramps are appreciable.
The LN-CTM contains state as well as input non-linearity, and these present new challenges as
compared to the imputation algorithm based on the ACTM. The new imputation algorithm esti-
mates the unknown ramp flows in two steps: first matching the densities along the freeway, and
then matching the available flow measurements. We present, in detail, the convergence properties
of the algorithm, and also demonstrate the application of the algorithm.

We present model based predictive controllers for traffic congestion control in Chapters 6 and 7.
These controllers regulate traffic flow in the freeway through the use of ramp metering and variable
speed limits. In Chapter 6, we present the optimal control problem, utilizing the LN-CTM model
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presented in Chapter 3. The solution of the original optimalcontrol problem involves nonlinear
optimization, due to the presence of nonlinear, non-convexconstraints. We present a relaxed linear
program, whose solution can be mapped to a feasible solutionof the original optimal control
problem. We prove that this solution is the globally optimalsolution of the original optimization
problem.

We extend the optimal controller in Chapter 7 when the freeway network experiences weaving
and/or capacity drop. We supplement the LN-CTM by integrating a node based weaving model
and a discontinuous capacity drop model. The solution technique presented in Chapter 6 cannot
be directly applied due to the presence of capacity drops, and we present a set of heuristics that
allow us to solve the optimal control problem using a sequence of linear programs. We demon-
strate the application of the model predictive controller on a simulated example, and discuss the
characteristics of the controller.

A preliminary version of the results in Chapter 4 have been presented in [41]. [40] describes
our first imputation algorithm utilizing the LN-CTM. The algorithm presented in Chapter 5 has
been modified in view of obtaining favorable convergence properties. Preliminary analysis of a
part of this algorithm is published in [42]. We have also presented some of the results described in
Chapters 6, 7 in [43, 44].
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Chapter 2

Review of Related Work

In this chapter, we review concepts and literature related to the material covered in this dissertation.
Additional references are also provided for readers interested in exploring the material in detail.

2.1 Traffic detection and data archival

Traffic state measurement and data archival are crucial components of any intelligent transportation
infrastructure designed for operational management of traffic networks. Transportation planners
frequently require a rich source of historical data to plan for long term as well as medium term
projects. A good quality data set will allow these planners to budget and invest resources in projects
that have high benefit to cost ratio. Traffic engineers also use real time data in the day to day
operations of the traffic network. For example, traffic engineers informed of unforseen congested
traffic conditions can plan countermeasures in real time to better manage the traffic system.

Vehicle Detection

A broad range of vehicle detection technologies exist to measure the traffic properties in road
networks. These may be classified as intrusive or non-intrusive, depending on whether they need
to be embedded or installed in the road pavements. We list a few commonly found detection
technologies below.

Inductive loops Inductive loops use induced eddy currents to determine the presence of vehicles
on top of the detectors. These are the most commonly deployedvehicle detection system.
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While their detection accuracy is high, their deployment causes significant traffic disruption
and they are highly susceptible to malfunction.

Magnetometers Magnetometers detect vehicles using the changes in magnetic fields caused by
their presence on top of the detector. Increasingly, these are being deployed to replace loop
detectors. They offer advantages in reducing deployment times, and also provide built in
failure detection features.

Pneumatic Tubes Pneumatic tubes, deployed perpendicular to the road, detect vehicle axles when
tires run over the tubes. These are non-intrusive, quick to install and mostly deployed for
short term studies. Tube wear prevents their successful deployment for long term traffic
monitoring.

Video Detection Video cameras can be used to detect vehicles by analyzing successive images to
detect vehicle presence and movement. These can be used for vehicle presence detection or
vehicle tracking. Their main advantage is that a single camera can mimic the operation of
multiple loops. However, they are susceptible to bad weather, shadows, vehicle occlusion
and also require routine cleaning and maintenance.

Microwave Radars Microwave radars transmit energy towards an area of the roadway and mea-
sure reflected energy to detect vehicle presence and track their movement. They have better
performance over video cameras as they are not susceptible to weather or light conditions.

Some of the other specialized detectors deployed are license plate readers, toll tag readers,
weigh-in motion detectors. The traffic detector handbook [35] is a extensive reference for various
detection technologies commonly deployed in the field.

Traffic state measurement

The detectors mentioned previously provide a rich source oftraffic measurements. The most com-
monly obtained traffic measurements are

Occupancy Occupancy is the fraction of time when the detection zone of the sensor is occupied
by a vehicle. Inductive loops, magnetometers, microwave radars and video detection sys-
tems provide this measurement. In case case of radars and video, it is possible to configure
multiple detection zones (of variable sizes) and measure traffic occupancies simultaneously.

Volume Volume is defined as the total number of vehicles that pass over the detection zone of the
sensor during a chosen interval of time. Inductive loops, magnetometers, microwave radars
and video detection systems provide direct measurement of volume counts. Pneumatic tubes,
on the other hand, can only be used to estimate volume counts indirectly, since they provide
axle counts.
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Speed Detectors are also deployed to measure point speeds of vehicles as they pass the detection
zone of the sensors. Dual inductive loops/magentometers, separated by a known distance,
are commonly deployed to measure speeds indirectly by noting the activation times of each
detectors. Video detection systems also employ loop emulation to measure speeds, but new
systems are also capable of tracking vehicles. Microwave radars, based on doppler principle,
can directly measure vehicle speeds.

Some detectors also provide specialized traffic information. Microwave and video detection
equipment can be deployed in intersections to obtain queue length estimates of vehicles waiting
at the signals. Toll tag readers, bluetooth readers and license plate readers are commonly used
to re-identify vehicles from one point to another, and thesemeasurements are commonly used to
derive origin destination demand samples as well as travel time samples. Vehicle re-identification
has also been successfully demonstrated for short distances though the use of magnetometers, to
measure travel time in arterials [34]. A recent rich source of traffic data has been GPS measure-
ments from mobile smartphones and dedicated GPS devices. These devices can be used to obtain
measurements of vehicle speeds and travel times. Details ofa recent academic effort in this area
can be found in [1].

Traffic data is collected from these detectors by local controllers which usually process and use
this data for local control actions. For example, an actuated intersection may use detection events to
trigger traffic signal light changes. If the controller is connected by a network (wireless or wired),
then the data is transmitted to the Traffic management center(also known as a traffic operations
center in some states in the U.S), where it can be processed and used for daily operations. This
data may also be aggregated in a database for archival.

The Performance Measurement System

The Performance Measurement System (PeMS) is a traffic data archival system used in the state of
California [7, 57]. This system collects real time data fromover 25000 detectors in California (as
of 2012), spanning over multiple freeways located in the major metropolitan areas of California.
Data from other sources like weigh-in motion stations, tag readers and CHP (California Highway
patrol) incident feeds are also aggregated in this system. The collected data is filtered, processed
and stored in databases, and users can access data sources going back to 1998. This data is used
to calculate performance measures of the freeways as well asaccess the traffic conditions both
historically as well as in real-time. PeMS has been extensively used by traffic engineers, planners,
traveler information services as well as academics over itsyears of operation.

In the case of loop detectors, PeMS receives 30s occupancy and flow values from the vehicle
detector stations (vds) which house these loop detectors. In the case of dual loops, PeMS also
receives velocities. PeMS aggregates the data into 5-minute intervals, and also estimates vehicle
speeds for single loops through the use of g-factors [27]. PeMS has detailed diagnostic measures to
ascertain the operation of the detector and the quality of the data. PeMS also has an imputation al-



8

gorithm, which fills in the missing data with plausible values. Finally, this data is used to compute
aggregate performance measures, including Vehicle Miles Traveled (VMT), Vehicle Hours Trav-
eled (VHT), Congestion Delay, and the productivity ratio ‘Q’ (ratio of VMT over VHT) interpreted
as the average speed in the region of analysis.

Detector health and data quality

Good detector health and data quality are important to ensure that the acquired data can be used
for modeling and performance analysis. PeMS has a bank of filters to evaluate the quality of
data and flag failed detectors. PeMS expects loop detectors in California to report occupancy and
volume counts every 30 seconds. Additionally, PeMS screensthe data for sample quality metrics
and decides whether the detector is functioning or malfunctioning. Particulary PeMS screens and
identifies the following common issues .

Data never receivedMany of the detectors never report data, possibly due to communication line,
power or detector failure.

Too few samplesVery limited number of samples were received, which indicate the the data feed
is active, but the detector is functioning intermittently.

High Values and/or constant occupancyThreshold detectors are used to indicate whether the
detector reports unrealistic flows and occupancies. Constant occupancies indicate that the
detector is stuck on high.

Zero flow/occupancy and/or flow-occupancy mismatchData tests in 5 min aggregated data can
be used to indicate too many samples with zero occ/flow.

Based on these simple data quality filters, it is not uncommonto find that 40% of the detectors
which report data are flagged by PeMS as failed detectors [59]. Moreover, there are a lot of
sensors which are active, but unlisted in PeMS. Particularly, detectors at on-ramps and off-ramps
are usually found missing in the PeMS system for many freeways.

Imputation of missing/bad data

Imputation is the process of filling in missing data with plausible values. The problem of esti-
mation of missing detector counts is commonly addressed by various data imputation techniques,
which allows the use of partially complete data for performance analysis and modeling. For de-
tectors along the freeway mainline, simple imputation schemes typically replace missing data by
spatial averages (of nearby detectors) or historical averages of the detector data. Modern tech-
niques place higher emphasis on developing a good statistical model for estimating missing data.
Dailey [14] introduced an Kalman filtering based data smoothing, error detection and imputation.
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Many commonly used imputation techniques employ the standard techniques for imputation pro-
posed in statistics [63]. Some of these include algorithms based on Expectataion-Maximation
[16], Multiple imputation [45] or Principle component analysis[58]. PeMS uses the imputation
algorithm developed by Chen et al. [9] to replace missing data counts. Given large databases of
historical data, linear regression models are built to predict missing data in freeway mainline loop
detector stations using data from detectors upstream/downstream or in nearby lanes. Most of these
techniques perform best when data is missing for short time intervals and also when sufficient his-
torical data is available. Apart from these statistical methods, model based imputation has been
explored in [23]. The authors use traffic flow theory by applying the Lighthill-Whittam Richards
(LWR) first-order model. This model is used to generate missing measurements in locations along
the freeway mainline using detector data available at an upstream and downstream locations.

All of the techniques presented in literature address the imputation of missing measurements in
detectors present on the mainline. However, it is very frequently observed that on-ramp/off-ramp
data is missing. In some cases, detectors are not available to measure these flows while in some
cases, the data feeds have not been set up. These measurements form an important input without
which freeway modeling studies cannot be undertaken. The techniques presented for freeway loop
data imputation is not suitable for ramp flow imputation. It is difficult to build accurate statistical
models for ramp flow imputation, since one cannot guarantee ahigh correlation of data between
neighboring ramp loop detector stations (or a nearby freeway detector). In addition, for many
ramps, archived data may not be available to build models with. In this dissertation, we provide
a model-based method to impute flow data for ramps, using the available measurements in the
freeways.

2.2 Traffic Models

There are two different approaches to traffic flow modeling - microscopic models and macroscopic
models. In microscopic models, individual vehicles are modeled along with their interaction with
other vehicles and the road network. These individual vehicles adjust their speeds and lanes and the
interaction of all vehicles models the resulting traffic in the network. Macroscopic models ignore
these individual vehicle interactions and represent the aggregate dynamic properties of a group
of vehicles, usually represented as a continuum. Most macroscopic models represent traffic as a
compressible fluid, and describe the density, flow and speed evolution using dynamic equations.

Macroscopic models offer various benefits in comparison to microscopic models. These mod-
els run significantly faster than microscopic models, sincethey do not simulate individual vehicles
in the network. This is particularly beneficial when the simulation platform is used in real-time to
assist the traffic operators. The process of calibration (i.e. the specification of the parameters in
the models) is usually simpler in macroscopic models, sincethe model variables can be directly
observed from measurements (i.e. flow, speeds and occupancy). In comparison, calibration of
microscopic models require the user to infer individual driver characteristics from macroscopic
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measured variables like flow, speeds and occupancy.

In the definitions that follow, the space coordinate is represented byx, which denotes the dis-
tance along the traffic flow direction. At any cross-section,traffic properties are assumed to be
uniform, and the models we will present will not capture lanechange behaviors.t corresponds to
the time coordinate. We will use the following definitions, adopted from the Highway Capacity
Manual [69] in the materials that follow.

Speed (v(x, t)): Rate of motion defined as distance per unit time. Space mean speed is defined
as the average speed in an infinitesimal segment aroundx (x−δx/2,x+δx/2) at timet. The speed
referenced in this section will correspond to this definition. In comparison, time mean speed is the
average speed of vehicles observed passing a given point, which is usually reported by detectors.

Flow ( f (x, t)): Total number of vehicles that pass the pointx during an infinitesimal time interval
(t −δ t, t), divided by the length of the time intervalδ t. It is obtained from volume measurements
and usually expressed as an hourly rate.

Density (ρ(x, t)): Number of vehicles occupying a length of freeway about pointx at instantt.
Its measurement is difficult because it requires the observation of a stretch of road. Instead, it is
often approximated from measurements of flow and speed byρ(x, t) = f (x, t)/v(x, t).

Demand: Number of vehicles (or number of vehicle occupants) who desire to use the facility
during the specified period of time.

Capacity: Maximum hourly rate at which vehicles can be reasonably expected to traverse a point
or a uniform section of a lane or roadway during a given time period under prevailing roadway,
traffic, and control conditions.

Bottleneck: Any road element where demand exceeds capacity. Freeway bottlenecks sometimes
appear near heavy on-ramps, where a localized increase in demand is combined with a decrease in
capacity due to lane changing.

Macroscopic models define the evolution of density, speed and flow over space and time using
a set of partial differential equations (PDEs), together with other constituent relationships. Each
continuous model has a basic vehicle conservation equation(which captures the fact that vehicles
cannot be created or destroyed), along with other PDEs depending on the order of the model. We
review a few important models in this section.
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Lighthill Whitham Richards (LWR) Model

The Lighthill Whitham Richards model, commonly known as theLWR model [36, 60], is a first
order model described by the vehicle conservation equation

∂ρ(x, t)
∂ t

+
∂ f (x, t)

∂x
= 0 (2.1)

and the static flow-density relationship

f (x, t) = ρ(x, t)v(x, t) = Φ(ρ(x, t)) (2.2)

where the functionΦ(ρ) is the fundamental diagram of traffic flow. WhenΦ(ρ) is differentiable,
the conservation equation can also be represented as

∂ρ(x, t)
∂ t

+Φ′(ρ(x, t))
∂ρ(x, t)

∂x
= 0 (2.3)

The main assumption in the first order models is the existenceof a static density flow relation-
ship, which also implies a static speed-density relationship. Greenshields was the first to propose a
parabolic fundamental diagram from observations of trafficalong a two lane highway [22]. Figure
2.1 shows some of the common fundamental diagrams used in practice. In general, the fundamen-
tal diagram has the following characteristics.

1. Φ(0) = Φ(ρJ) = 0, whereρJ is the maximum density in the freeway which is known as the
jam density.

2. Φ(ρ)≥ 0 is a concave continuous function.

3. Φ(ρ) attains a maximum (F) at ρc, which is known as a critical density. The maximal flow
F is known as the capacity.

The critical density separates the fundamental diagram into two sections - the free flow regime
whenρ ≤ ρc and the congested regimeρ > ρc. Empirical measurements are well represented
by a straight line during free-flow, while measurements are usually scattered in the congestion
region. Some researchers have observed that there is a difference in the maximal flow (capacity)
in a few sections depending on whether the freeway section isin free-flow or congestion [24, 6].
This change in flows is known as the capacity drop, and researchers estimate that it is usually in
the region of 5-10% when present.

The solution to the LWR model can be given in terms of characteristics [36], which are tra-
jectories in the space time plot whose evolution is defined using ordinary differential equations
(ODEs). Flows and densities are constant along these characteristics, whose slope is given by
Q′(ρ). It can be seen that the characteristics have a positive slope during free-flow and a negative
slope during congestion. Thus, when well-posed initial andboundary conditions are given, the
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Figure 2.1: Commonly used fundamental diagrams

value of the density or flow at any point is equal to a boundary or initial condition to which the
point is connected by a characteristic. The boundary value problem is well-posed if the family
of characteristics emanating from the initial and boundaryconditions spans the entire time/space
plane. The main complication arises, when characteristicsintersect in location known as shocks
(discontinuities), leading to multiple values at the pointof intersection. In this situation, the PDE
admits only weak solutions, which satisfy a integral form ofEq. (2.3). The speed of the shock is
given by

vs=
f2− f1
ρ2−ρ1

(2.4)

where subscripts 2/1 denote the state of traffic infinitesimally upstream/downstream of the shock.

Cell Transmission Models

The Cell Transmission Model (CTM) was developed by Daganzo [11] as a first order discrete
dynamic model which is consistent with the hydrodynamic theory of the LWR model. The CTM
can be interpreted as the discretization of the LWR model with a time step ofTs and uniform
sections with lengthL, according toL = Tsvf , wherevf is the free-flow speed. The uniform
sections are known as cells, and they are increasingly numbered from upstream to downstream.
Figure 2.2 shows a uniform stretch of roadway divided into cells. The density of celli (represented
by ni(k)) can be represented by the conservation equation

ni(k+1) = ni(k)+ fi−1(k)− fi(k) (2.5)

where fi(k) is the flow moving from celli to cell i + 1 during the time stepk (each time step
corresponds toTs seconds). In the CTM, this flow is obtained by comparing the sending and
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receiving flows, also known as the demand and supply, as

fi(k) = min(Di(k),Si+1(k))

Di(k) = min(Fi,ni(k)Vi)

Si(k) = min
(

Fi ,Wi(n
J
i −ni(k))

)

(2.6)

In the equations above, we have assumed a trapezoidal fundamental diagram. The fundamental
diagrams can be different for each cell, and the parameters are indexed by the cell numberi. The
trapezoidal fundamental diagram is characterized by the free-flow speed (Vi , the slope of the free-
flow part of the diagram), the capacity (Fi , the maximum flow), the congestion wave speed (Wi ,
the slope of the congested region) and the jam density (nJ

i , the maximal density). The demand
functionDi(k) captures the flow that can be sent from the upstream cell, while the supply function
Si(k+1) specifies the maximum flow that can be received by the downstream section. The flow
can be obtained by taking the minimum of the demand and the supply. From the flow equation, we
say that the flow conditions in the boundary of celli and celli+1 are congested, when the demand
function exceeds the supply, and otherwise the boundary is in free-flow.
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Figure 2.2: A road segment divided into cells of equal length

The CTM was extended to simulate traffic dynamics in a networkwith a more general topol-
ogy, by introducing models for merging and diverging flows [12]. This model was also further
adapted to accommodate nonuniform cell lengths and other continuous, piecewise differentiable
fundamental diagram [12]. This resulted in a density-basedmodel for the conservation equations.
Despite the relative simplicity, it still captures the shock behavior predicted by the LWR.

Higher order models

In first order models, fundamental diagrams specify the static function that exists between the den-
sity and the realized flow, which results in a static speed-density relationship. As a result, the re-
sulting density dynamics might result in large speed variations as drivers travel along the freeway,
especially in the locations with shocks. Higher order models capture the fact that drivers can-
not respond to speed changes instantaneously. These modelsaugment the conservation equations
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with the dynamics of the space-mean speeds to provide betterdescriptions of the traffic dynamics.
These additional PDEs, which represent the speed dynamics are often referred to as the momentum
equations.

Payne [55] was the first to propose a second order traffic flow model, which he implemented
in FREFLO [56], a macroscopic simulator. Paynes original model was demonstrated to allow
negative speeds (wrong way travel) and to allow vehicles to be influenced by traffic upstream [13].
This model was modified and improved by various researchers (Zhang [75], Liu et al. [37], among
others ), to improve its traffic realism. Papageorgieu et al.[51, 30, 52] extended Payne’s model to
develop the METANET model for network traffic simulation. This is a one of the popular second
order models reported in literature.

While second-order traffic models are claimed to be more accurate for representing traffic
dynamics, they suffer from additionally complexity which makes model calibration difficult. In
contrast, as shown in the next chapter, the calibration of models with the Cell Transmission Mod-
els are relatively simple. The LWR and the CTM model are generally accurate for reproducing
congestion phenomena and the propagation of jams. The relatively simple traffic dynamics allows
us to perform theoretical analysis and also design convergent estimation and control algorithms. In
this dissertation, we use the first order models, particularly some extensions of the CTM.

2.3 Freeway traffic control

Traffic congestion in metropolitan areas has been increasing over the last decade, leading to large
losses in productivity due to increased commute times. Due to significant investments involved,
infrastructure expansions are not always feasible even though they provide the best means to tackle
traffic congestion. As a result, transportation engineers rely on intelligent operational management
of the existing infrastructure to increase system efficiency. The most commonly used operational
management strategy is traffic control.

Goals and Metrics of evaluation

Before going into the control strategies, it is beneficial toreview the goals of freeway control and
also the metrics of evaluation. The main goals of ramp metering is to reduce freeway congestion
and increase the efficiency of the freeway. One natural way tocapture this is to consider the Total
Travel Time (TTT), which is the sum of travel times of all the users of the freeway system. Given
constant demands, any controllers performance can be captured by the magnitude of decrease of
the TTT experienced by all the freeway users. The condition of constant demand can be roughly
captured using the Total Travel Distance (TTD), which is thesum of distances traveled by all
the users in the freeway. For reasons explained later, the application of ramp metering or control
actions might change the demand patterns and the TTD of the freeways, and in this case a combi-
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nation of TTT and TTD is used to evaluate the adopted control measures. Another useful metric
for evaluation is the Total Congestion Delay (TCD), which isthe additional time spent by all users
under congested conditions as compared to conditions underwhich the traffic is in free-flow.

Given the density and flow along the freeway, TTT, TTD and TCD can be measured as

TTT=
∫ t2

t1

∫ x2

x1

ρ(x, t)

TTD=
∫ t2

t1

∫ x2

x1

f (x, t)

TCD= TTT−
TTD

vf
(2.7)

In the above formula for delay calculation, we have assumed aconstant free flow speedvf through
the freeway. The formulaes can also be extended to capture the delay, and time spent by users in
the ramps, as the wait to enter the freeway. It can be seen thatit is easy to measure these quantities
using detectors along the freeways. In this dissertation, we calculate all system utility/performance
measures as the sum of individual vehicle utility/performance measures, as opposed to consid-
ering individual passengers. One advantage of this choice is that we can directly measure these
performance measures using the detection systems commonlyemployed in the freeway.

Care must be taken to define the boundaries of the network chosen for computing these perfor-
mance measures so that we can correctly evaluate the controller performance. Ideally, the network
should be chosen such that the application of the controllerdoes not change the boundary con-
ditions (for eg. density and flows at the boundaries) as compared to the case against which it is
compared. This is difficult to achieve in reality and it is generally acceptable that the boundaries
of the chosen system are in free-flow.

To understand the working principle of the controllers, we rewrite TTT from Eq. (2.7) along
the lines explained in [46].

TTT= (t2− t1)
∫ x2

x1

ρ(x, t1)+
∫ t2

t1
(t2− t) f in(t)−

∫ t2

t1
(t2− t) f out(t) (2.8)

Here, f in(t) ( f out(t)) is the sum of all flows entering (exiting) the system. In the above equation,
the first term corresponds to the initial conditions, which cannot be affected by freeway control.
Likewise, the second term corresponds to the demands entering the system, which we assume are
not affected by the controller, since the controllers we design do not change demand profiles. Thus
the controllers affect the performance of the system through the third term, which is a weighted
integral of the flows exiting the system. To decrease the TTT,the controller must operate the
system such that vehicles exit the system as soon as possible. The least TTT can be realized when
vehicles entering the system travel at free-flow speeds and then exit the system.
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Ramp Metering

Ramp metering is a control method in which vehicles enteringthe freeways through the on-ramps
are controlled. A traffic light, present at the ramp entranceregulates the traffic entering the freeway
when the controller is active. Most traffic lights in ramps allow 1 or 2 cars per green. Therefore,
regulating the frequency of green lights leads to the indirect control of the rate at which vehicles
enter the freeway.

Ramp metering algorithms can be classified depending on the scope of their action as either
local or co-ordinated. As the name suggests, local ramp metering algorithms adjust the metering
rates independent of other controllers which are active. Generally, their scope and objective is
limited to relieving congestion present locally around theregion of the ramp where the meter is
installed. In coordinated controllers, several ramp meters coordinate their actions to regulate traffic
simultaneously. Ramp meters can also be classified as trafficresponsive, or fixed time, depending
on whether the metering actions are dependent on the traffic conditions or not.
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Figure 2.3: Effects of ramp metering in action.
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Ramp metering can lead to earlier exit flows (thereby improving TTT) in the freeways through
two main mechanisms(1) Avoiding off-ramp (exit) blockage(2) Preventing capacity drop. Figure
2.3 depicts an example of the first scenario, where there is a bottleneck just downstream of the
on-ramp. To understand off-ramp blockage, we consider the scenario when ramp metering is
not used (Figure 2.3 top), and demand exceeds the capacity atthe bottleneck. The congestion
propagating from this bottleneck leads to vehicle queues along the mainline that extend quickly
past the off-ramps located upstream of the on-ramp. This delays the vehicles exiting through this
off-ramp, even though they do not pass through the bottleneck region. Furthermore, these vehicles
which cannot exit through the off-ramp also add to the queuesand contribute to further congestion
upstream. In comparison, when the ramp is metered, the upstream off-ramp blockage can either
be delayed or avoided leading to increased earlier exit flowsfrom the system. This leads to a
decrease in the TTT of all users of the system, as shown in Eq. (2.8). Ramp metering can also help
avoid capacity drop, thereby increasing the exit flows from the system. Figure 2.4 (Top) shows
the application of ramp metering to avoid capacity drop. As described before, under congested
conditions the queue discharge rate might be below capacity, while flows equal to the capacity
can be sustained when the bottleneck section is in free-flow.Ramp metering, in this case, aims to
maintain free-flow conditions at this section, leading to a higher throughput while also prevent exit
blockage. In comparison, the ramp metering controller can maintain controlled congestion when
only mechanism(1) is present, as long as the congestion tail does not reach the upstream off-ramp.

Ramp metering may also have an indirect effect on freeway congestion by inducing changes in
routing choices or leading to a temporal shift in demands. Wardrop’s first principle [71] states that
users with multiple route choices choose the route that minimizes their travel time. This principle
is also relevant in describing the temporal model of vehicular demands on the ramps. In order to
accurately model these phenomenon we need demand data, segregated by intended destination,
along with a description of preferred route choices for eachusers. Accurate data in this format
is not usually available. Also, it is generally expected that ramp metering does not change the
choices of users, when the metering leads to bounded queues and bounded increases in waiting
delays. The users who are expected to be directly affected would be users who use the freeway
for a short commute. In this dissertation, we will not model and take advantage of traffic diversion
as a methodology to improve travel times. Thus we generally expect that the performance gains
reported by using the model with the controllers may be a lower bound of the performance gains
that can be expected in a field implementation.

Ramp metering is often used in conjunction with queue lengthcontrollers. The objective of
these queue controllers is to prevent excessive queue buildups in the ramps. This is necessary for
two reasons (1) Excessive queues might lead to traffic disruptions in the arterial from which the
on-ramp originates (2) Large queues might lead to excessivepenalization of users of the ramp.
To elaborate consider the example from Figure 2.3. When metering is active in the on-ramp,
queue starts building up on the on-ramp as the outflow is restricted by the metering algorithm.
Limited storage spaces in the ramps mean that continued rampmetering may lead to queue spill-
back onto the arterials. Additionally, the travel time of the users on the on-ramp is increased as
compared to the case when ramp metering was inactive. This increases the total travel time for the
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users using the ramps. Queue controllers, which help limit the maximum queue lengths indirectly
promote equity. Queue overrides and integral queue regulators are some of the strategies proposed
to maintain queue lengths in on-ramps [66].

Over the years, many ramp metering algorithms have been developed and deployed. The sim-
plest ones are fixed time of day controllers which specify a fixed rate at any particular time of
the day. These metering rates are usually determined from historical data. Percent occupancy
control, which is another widely deployed ramp metering strategy, uses occupancy thresholds to
determine the metering rates. Alinea is a popular local traffic responsive ramp metering algorithm
developed by Papageorgiou et al. [47]. The basic version is an integral controller, which regu-
lates the density downstream of the ramp to be around the target density (which is usually cho-
sen as the critical density). Compared to the percent occupancy scheme, which is a feedforward
controller, Alinea is a feedback controller and its field implementations have yielded improved
performance [48]. Various versions of ALINEA, including the upstream ALINEA (which uses
density measurements upstream of the ramp) and FL-ALINEA (which uses flow measurements)
have been developed [65]. Various co-ordinated ramp metering strategies have been presented in
literature and deployed in the field. The most popular ones include Compass, Bottleneck algo-
rithm, SWARM (Systemwide adaptive ramp metering), ZONE algorithm and METALINE, among
others [76]. Heuristic Co-ordinated ramp metering (HERO),a coordinated ramp metering strategy
[54], was recently deployed successfully in the Monash freeway in Australia.

Variable speed limits

Variable speed limits(VSL) is another popular control strategy for traffic regulation in freeways.
Variable message signs display the current speed limits, often determined in response to the current
road, traffic and weather conditions. In some installations, the posted speeds are advisory, while
many require mandatory compliance with enforcement. In most of the installations, the main
target objective is to ensure traffic safety, and the VSL’s are designed to ensure speed reduction
and homogenisation in locations with high traffic incidents[70].

There are very few studies documenting the direct effect of VSL on aggregate traffic flow
characteristics. Various researchers have proposed different models for effect of VSL on the fun-
damental diagrams [25, 5, 4]. Figure 2.5 shows two of the popular models capturing the effect
of VSL on fundamental diagrams. There is a general consensusthat the reduction of speed limits
decrease the total flow throughput at under-critical densities. Heygi et al. [25] suggest that the new
critical density is the point of intersection of the new free-flow line with the original fundamental
diagram, and the fundamental diagrams overlap beyond the new critical density (Figure 2.5, Left).
This differs from the fundamental diagram models proposed by Carlson et al. [4], where different
fundamental diagrams result as the speed limits change, andthese fundamental diagram often in-
tersect. In general, these models predict higher flows are over-critical densities when speed limits
are changed. The models proposed by Carlson et al. can also model increases in capacities as speed
limits are decreased. This model was developed in response to the empirical observations made
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Figure 2.4: Avoiding capacity drop. Top : By ramp metering, Bottom : Using variable speed limits

by Papageorgiou et al. [49]. However, this study does not include a rigorous statistical analysis,
presumably due to lack of large amounts of data, to summarilyconclude the effects of VSL on the
fundamental diagram. Moreover, the effect of VSL on overcritical densities, as modeled by Carl-
son et al. is debatable. For example, consider that the current state of the traffic flow corresponds
to overcritical densities with no VSL in effect. The model suggests that decreasing the speed limit
would lead to increase in throughput. In fact, this would be the case even when the speed limit
is still above the current speed on the highway. On the other hand, the model proposed by Heygi
et al., predict that the VSL is ineffective unless the speed limit imposed is lesser than the current
speed on the highway.

Variable speed limits can be used as a mainline traffic control mechanism. Figure 2.4 (Bottom)
shows the application of variable speed limits to create controlled congestion to prevent capacity
drops downstream. Suppose the bottleneck section experiences a capacity drop once its density
exceeds critical density. This capacity drop can be avoidedif VSL is applied to the location up-
stream of the capacity drop section, such that the feeding flows to this section maintain its density
below the critical density. VSL offers a couple of advantages over ramp metering for avoiding
capacity drop. VSL can be applied to the area directly upstream of the bottleneck section, and
there is usually a minimal delay for the effect of the controlaction. In contrast, if the first upstream
on-ramp is located far away, there will be a large time delay when ramp metering based controllers
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Figure 2.5: Effects of variable speed limits on fundamentaldiagrams. Left : Heygi et al. [25],
Right : Carlson et al. [4]

are used. In the case that there is a off-ramp in between the on-ramp and the bottleneck location,
the effectiveness of ramp metering may be limited, especially when the exact portion of vehicles
leaving the off-ramp is not known. Finally, the presence of queue regulators and queue overrides,
along with the limited storage capacity of on-ramps limit the effectiveness of ramp metering in
dealing with the capacity drop. In contrast, the VSL controller directly uses the freeway mainline
to store the additional vehicles present due to excessive demands.

Model based predictive controllers

Model based predictive controllers use predicted demands along with a model of the freeway net-
work to specify ramp metering rates and/or variable speed limits for freeway traffic control. These
strategies typically employ an optimal control/optimization framework to design strategies to min-
imize a chosen performance objective function. Eq. (2.7) shows some of the commonly used
objective functions used in these formulations.

Wattleworth [72] was the first to use an optimization approach to specify ramp metering rates
using a simple steady state model. Blinkin [2] and Papageorgiou [50] present some of the other
early efforts in the development of model based optimal control strategies. While many of the
early efforts used simple models in the formulations, with the advent of powerful numerical tools,
various optimal control strategies based on more accurate macroscopic models have been investi-
gated over the last couple of decades. For freeway networks,first order models (Cell Transmission
model, CTM [11]) and second order models (METANET [52]) are commonly used to describe the
traffic dynamics within these controllers.

The following approaches employ METANET as the underlying traffic model. Kostalis et
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al. [31], present an freeway control approach using on-rampmetering in conjunction with routing
suggestions through variable messaging signs (VMS). Kostalis et al. have also developed an model
based coordinated ramp metering strategy which is presented in [29]. Hegyi et al. [25], presented
an optimal control strategy using the METANET model, employing ramp metering as well as
variable speed limits. Some of the other recent efforts using METANET models can be found in
[53, 5]. Second order models have an advantage over the first order models in incorporating the
capacity drop. However, the optimization problems based onthe second order models are non-
linear, computationally intensive and the solutions obtained are usually only locally optimal. The
former proves to be a drawback when the controller is embedded as a part of a model predictive
framework, since this requires fast optimizations to be executed repeatedly[29].

While many optimal control efforts have focussed on using the CTM as the underlying model,
two particular efforts are most relevant in terms of the computational efficiency of solutions pro-
posed. Ziliaskopoulos[77] presents the problem of complete control of a road network based on
the CTM model. The model assumes that all users are headed to asingle destination, and the
system operator can specify flow controllers as well as routes taken by various users. The flow
controllers used in this formulation include ramp meteringand variable speed limits. Ziliaskopou-
los showed that under complete control, the optimal controlproblem can be solved using a linear
program, even though the CTM model is inherently non-linear. Gomes and Horowitz [20] present
an optimal coordinated ramp metering strategy based on the Asymmetric Cell Transmission Model
(ACTM) [19, 20], which is a simplified model of the CTM developed to simulate traffic dynam-
ics in freeways. In this effort, the authors demonstrate that under certain restrictions, the ramp
metering problem can be solved using a relaxed linear program.
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Chapter 3

Modeling and calibration of freeway

networks

In this chapter, we review and discuss the application of thecell transmission model for simulation
of traffic dynamics in freeways. We present in detail, how a freeway is represented in the macro-
scopic modeling framework, and discuss the calibration process used to create a simulation model
of a chosen freeway stretch. The cell transmission model presented here will form the basis of
different algorithms discussed in the rest of this dissertation. This chapter will also highlight the
usage of the imputation algorithm, which is presented in detail in the next chapter. The process
of model creation is work done along with other members of theTOPL group, notably Gunes
Dervisoglu.

3.1 Link Node Cell transmission model for freeway traffic

flow simulation

The cell transmission model [11] was developed as a versatile model to describe traffic dynamics
in networks. In Section 2.2, we reviewed the basic cell transmission model which was used to
describe the traffic dynamics in a stretch of roadway withoutany junctions. Daganzo presented
an extension of the cell transmission model to general network topologies [13], including traffic
merges and diverges. The Link-Node Cell transmission model, also referred as the LN-CTM, was
presented in [32] as a modification of Daganzo’s network model, and this will be used here. The
LN-CTM is implemented in Aurora, a simulation platform usedas a part of TOPL. Aurora uses
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the LN-CTM to simulate traffic flows in freeway networks as well as arterial streets.

����

����

Figure 3.1: A directed graph representation of an arbitrarytraffic network.

In LN-CTM, the traffic network that is to be modeled is represented as a directed graph of links,
joined together at Nodes. Figure 3.1 shows an example of a network represented as a directed
graph in the model. Each link represents a finite road segment, with uniform geometric properties.
A network has normal links which represent road segments connecting an upstream node to a
downstream node. Links that do not have an upstream node represent a source, and these links
introduce vehicular demand into the network. Links withouta downstream node serve as sinks,
and they discharge the traffic out from the traffic network. For each link, traffic flow properties are
defined through a fundamental diagram. Additionally, source links are also provided with input
demand profiles, which specify the number of vehicles entering the link at any particular time.
Sinks are sometimes specified with a flow capacity profile, which denotes a time varying restriction
on the flow out of this link. Nodes are located at road junctions, each node transfers traffic from
its input links to the output links. These nodes can be made torepresent simple road junctions like
the merge (with 2 input links and 1 output links) and the diverge (with 1 output link and 2 input
links), which are the junctions modeled in Daganzo’s network model. However, the node model
in the LN-CTM is more general and it can be used to represent any general traffic junction with
multiple inputs and outputs. Each node is specified with a time-varying routing matrix, known as
the split ratio matrix. The split ratio matrix entries represent the portion of traffic moving from one
particular input link to any given output link. Nodes cannotstore any vehicles, and any flow that
enters the node through an input link is completely transferred to the output links according to the
given split ratios. Hence the sum of the split ratios for any particular input link is 1. In limited
cases, some of the split ratios can be undefined and calculated in real-time in response to traffic
conditions [33].

The LN-CTM algorithm is explained in [32]. The model update is executed in two steps: (a)
Density updates and (b) Flow updates. Density updates employ a conservation equation involving
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the flows entering and exiting each link. These flows are calculated using the flow update equations.
This density update can be simultaneously executed for eachlink in the network. Flow updates,
executed in parallel at each node, involve a series of sub-steps. First, the demand and supply are
calculated for each input/output link respectively, as explained in Section 2.2. Using the split ratio
matrix at each node, the portion of this calculated demand destined to a particular output link is
determined. The total demand for each output link can then becalculated as the sum of all demands
destined to enter the output link. If the total demand for anyoutput link exceeds the supply, then all
input demands contributing to the traffic demand are reduced, in order to reduce the total outflow
to equal the supply. For each input link, the demands are scaled corresponding to the supply of the
most restrictive output link, to determine the realized flows. In case none of the output links have
supply restrictions, the realized flows equal the demand. The flows out of the input links, along
with the split ratios, provide the flows entering into each output link. This procedure is applicable
for general networks and is explained in [32] (Pg. 128).

In the case of a freeway network, the update equations can be simplified. Figure 3.2 shows the
actual geometry of a freeway. There are two types of junctions typically encountered in freeways
- a merge (when an on-ramp joins the freeway) and a diverge (when an off-ramp breaks diverge
from the freeway). In freeways in the U.S, off-ramp junctions are located upstream of on-ramps
and there is only a short segment of freeway located in between. In cases when the segment is
quite short, we can choose to disregard the corresponding link in the network model, and represent
both junctions with the same node. In this case, we indicate that the split ratio for flows from the
on-ramp onto the off-ramp is 0, since traffic entering the on-ramp cannot exit through the off-ramp.

On-ramps are modeled as sources which feed traffic into the network, and the off-ramps are
modeled as sinks through which flows exit the network. The first freeway link is also a source,
while the last freeway link is modeled as a sink. All the boundaries, including the off-ramps as
well as the last freeway link are assumed to be congestion free. Off-ramp boundaries are generally
observed to be congestion free. In many cases, the freeway downstream boundary can also be
chosen to be in free-flow. This condition is not necessary formodeling the base scenario, since it
is possible to introduce flow capacity restrictions on sinks. However, when the modeled freeway
is used for freeway control simulation studies, the resulting simulations are usually inaccurate,
since levels of congestion in boundaries change as traffic flow within the network changes. In this
dissertation, we will assume that all the boundaries, including the off-ramps are in free-flow.

Table 3.1 defines different symbols and variables used in throughout this dissertation. The
variables can be interpreted in conjunction to the freeway described in Figure 3.2. The freeway
is assumed to haveN links, which form the freeway mainline. A link indexedi, i = 1· · ·N−1
connects upstream nodei − 1 to downstream nodei. The first link (Link 0) and the last link
(Link N) are a source and sink respectively. Similarly, each of the on-ramps and off-ramps are
represented as a source and sink respectively. Ramps are indexed by the nodes to which they
connect, as seen in Figure 3.2.

All the freeway links have a fundamental diagram associatedwith them. We adopt a triangular
fundamental diagram as shown in Figure 3.3. The triangular fundamental diagram is characterized
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Figure 3.2: Freeway with N links. Each Node contains a maximum of one on- and one off-ramp.
Note that Nodei is upstream of Linki

by the free-flow speed (Vi), congestion wave speed (Wi), Capacity (Fi) and the jam density (nJ
i ).

With each freeway link, we associate two variables, its current density -ni(k), represented in
units of number of vehicles per section and the flow exiting the link at the current time stepfi(k),
represented as number of vehicles per period. For each on-ramp, we keep track of the on-ramp
queue (l i(k)), on-ramp demands (di(k)) and the flow out of the on-ramp (r i(k)). The split ratio
βi(k) represents the portion of the demand from Linki that is intended to exit through the off-
rampi. Since the CTM model uses a First In First Out (FIFO) principle, βi(k) also represents the
portion of the realized flow from Linki that exits through the off-rampi. The units adopted in this
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Symbol Name Unit

Fi flow capacity of Link i veh/period
Vi free flow speed of Link i section/period
Wi congestion wave speed of Link i section/period
nJ

i jam density of Link i veh/section
k period number dimensionless
βi(k) split ratio at nodei dimensionless
fi(k) flow out of Link i veh/period
ni(k) number of vehicles (vehicle density) in Link

i
veh/period

si(k), r i(k) off-ramp, on-ramp flow in nodei veh/period
di(k) on-rampi demand veh/period
l i(k) queue length on on-rampi veh/period
rc
i (k) ramp metering rate for on-rampi veh/period

Ci flow capacity for on-rampi veh/period
Li queue capacity for on-rampi veh/period
Qi(k) input flow for on-rampi veh/period

Table 3.1: Model variables and parameters.
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Figure 3.3: A triangular fundamental diagram, with the demand and supply functions
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dissertation, along with the conversion factor from the commonly used units is given in Table 3.2.
The simulation time step is chosen to ensure that 0< Wi < Vi < 1. If a chosen simulation time
step does not satisfy this we can reduce the simulation time step until the condition is satisfied. For
freeway networks with minimum link length of 1500f t (excluding sources and sinks), a simulation
time step ofT = 10s is appropriate under maximum free-flow speeds up to 90mph.

Variable Commonly reported units X Conversion factor New units

Flows veh/hr T veh/period
Density veh/mile Li veh/section
Speeds miles/hr T

Li
veh/period

Table 3.2: Conversion factors for units. Simulation time stepT is given in units ofhr, while Li is
given in miles.

The LN-CTM update equations for the freeway networks described above can be simplified as
follows :

Density Update Equations : Mainline/Queue Conservation Equation

n0(k+1) = n0(k)+Q0(k)− f0(k)

ni(k+1) = ni(k)+ fi−1(k)(1−βi−1(k))+ r i−1(k)− fi(k) i = 1, · · · ,N

l i(k+1) = l i(k)+Qi(k)− r i(k) i = 1, · · · ,N (3.1)

Flow Update Equations

fN(k) = Dn(k)

fi(k) = Di(k)×
min(Ri(k),Si+1(k))

Ri(k)
i = 0, · · · ,N−1

r i(k) = di(k)×
min(Ri(k),Si+1(k))

Ri(k)
i = 1, · · · ,N

si(k) = fi(k)(1−βi(k)) i = 1, · · · ,N
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where

Di(k) = min(ni(k)Vi,Fi),

Ri(k) = Di(k)(1−βi(k))+di(k),

Si+1(k) = min(Wi+1(n
J
i+1−ni+1(k)),Fi+1)

di(k) = min(rc
i (k), l i(k),Ci) (3.2)

The density update equations include the conservation equations for the on-ramps and the main-
line. The first link (Link 0) and the on-ramps are source linksand they implement a simple queuing
model. The closed form expressions for flows are obtained by comparing the total demand func-
tions destined for each linki (Ri−1(k)) with its supply (Si(k)). The total demand function for each
link i (Ri−1(k)) is composed of two terms :(a) On-ramp demand (di(k)) (b) Demand from previ-
ous link, minus the portion that exits through the off-ramp,which equalsDi(k)(1−βi(k)). In case
this total demand is lesser than the supply for any link, the flows that are realized are equal to the
demands, and the node corresponding to this traffic exchangeis said to be infree-flow. Alterna-
tively, the total demand can also be greater than the supply,and in this case the flow conditions in
the corresponding node arecongested. In congested conditions, the flows can be determined by
scaling the demand function such that the total flow into linki equals the supply. There are many
ways to scale the demands to meet the supply constraints, andthis is done by assigning priorities
to the input links of the node. The LN-CTM assigns prioritiesfor each input link according to
the total demand presented by each link. Thus the available supply is shared proportionally to the
demands (i.e.fi(k)/r i(k) = Di(k)/di(k)).

In the equations above, we do not include separate conservation equations for the off-ramps,
detailing their dynamics. Off-ramps are assumed to be (sinks) without any capacity restrictions
due to congestion in their boundary. As a result, they do not exhibit any influence on the discharge
flow out of the network. This is consistent with the flow conditions encountered in many of the off-
ramps in a majority of freeways. However, one situation where this assumption can be violated is
in large freeway to freeway interconnects, as congestion can sometimes spill back into the modeled
freeway due to flow restrictions at the exit of the interconnect. For modeling purposes, it is possible
to include a time-varying capacity for the off-ramp (¯si(k)), to capture the flow restriction out of the
off-ramp. In this case, the equations for flow out of linki is given by

fi(k) = min

(

Di(k)×
min(Ri(k),Si+1(k))

Ri(k)
,

s̄i(k)
βi(k)

)

(3.3)

The first and the second terms corresponds to the scaling of demands to comply with the supply
restrictions in linki + 1 and the off-rampi respectively. It can be seen that off-ramp boundary
flow restrictions indirectly introduce a time-varying capacity for flows out of a linki, which is also
dictated by the off-ramp split ratios. We again caution thatwhen the model is used for simulation
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under modified conditions (for example, in the presence of a controller), these boundary conditions
can change as the realized flows within the network impact congested boundaries. In this case, it
is better to incorporate a complete model of the interactingnetwork in order to get consistent
results. This is beyond the scope of this dissertation, and we will assume that flow conditions in all
boundaries are not congested for the reminder of this thesis.

The model presented here can be used to simulate traffic dynamics in a freeway when ramp
metering is active. Ramp metering rates can be specified as a time varying profile through the
variablerc

i (k). Ramp metering operation can be interpreted as a restriction to the flow capacity of
an on-ramp. Another emerging form of traffic control is variable speed limits. The original version
of the LN-CTM does not model the traffic dynamics under the effect of variable speed limits. We
will address the problem of modeling variable speed limits when we introduce the optimal ramp
metering and variable speed limit based congestion controller.

3.2 Building freeway models

In the previous section, we described the difference equations that can be used to model the traffic
dynamics for a freeway network. In this section, we will discuss the process of creating a model
of a given stretch of highway from observed data. Along the process, we will use the example of a
stretch of I-80E freeway in the Bay area, CA.

Freeway Representation

The first part of the process is to represent the given freewayin the directed graph framework,
based on the geometrical characteristics of the site. The freeway is divided into successive links,
and nodes are created in the junction of on-ramps or off-ramps and at location of lane changes
(lane drops or lane increases), along the freeway. As described in the previous section, the node
corresponding to an off-ramp junction and the next on-ramp junction can be merged if there is
only a short segment of freeway located in between. Some links created with this process can
be quite long, and they can are further divided into smaller links. This helps to ensure that good
quality simulations can be obtained as the congestion can beaccurately modeled. The length of the
freeway links dictate the sampling time used in simulation.When the minimum link size is around
1500f t, a sampling time of 10s is usually sufficient.

Figure 3.4 shows an example of the directed graph representation of a short stretch of the I-80E.
TOPL network editor [68], aGoogle Mapsbased tool developed by other members of the TOPL
group, was used to generate this network. In this figure, for illustration, nodes are represented by
round markers. Normal links can be seen to connect two round markers and they represent the
freeway mainline. Sinks are highlighted in red, and their destination is represented by a square
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marker. Source links start at a square marker and end at a normal node. Freeway geometry can
also be specified manually by listing the links and nodes, though this may be cumbersome.

Figure 3.4: A short stretch of the I-80E freeway. The directed graph representation is overlaid.

Data acquisition and selection

Vehicle detector stations (VDS) containing loop detectorsare located along the freeway to provide
flow and occupancy data. PeMS processes and archives these data in form of time series over
different days of operation. This archived data can be obtained from their website [57]. The data
are aggregated over an interval of 5 minutes such that each day contains 288 data points for each
reported quantity - density, flow and speed. However, detector and data health is a major concern.
PeMS also reports detector performance for each day of operation. For the purpose of model
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calibration, we choose days in which PeMS reported over 75% functionality for all detectors in
the freeway stretch, to ensure that the models generated arereliable. Figure 3.5 shows the detector
health report, as well as the number of samples reported on different weekdays, over 3 months
from July 2008 to September 2008. We typically choose multiple days of data with good detector
health. Multiple days of detector data will be useful for fundamental diagram calibration, and also
the specification of multiple sets of on-ramp demands and off-ramp split ratios to represent traffic
dynamics of different representative days. We highlight that PeMS imputes missing mainline data
using data from adjacent detectors, and the final data obtained does not contain any gaps. Days
in which traffic congestion patterns were not representative of nominal freeway operations are
generally discarded. This includes days with major traffic incidents, weekends, holidays and days
with special events. It is also advisable to disregard days with adverse weather conditions, unless
the intent is to specifically capture its effect on the realized traffic dynamics.
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Figure 3.5: Detector health and number of samples reported during weekdays.

Throughout the model creation process, we choose a 5 min granularity of data so that the
chosen profiles are sufficiently smooth. In general, observed traffic data is non-smooth, as they
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represent observation of discrete vehicles, whereas, the CTM models the vehicular traffic using a
continuous fluid approximation. Also, the goal of the modeling process is to reproduce macro-
scopic features of traffic, and for this purpose 5 min averaged profiles are usually suitable.

Fundamental Diagram Calibration

Fundamental diagram calibration is the process of estimating the parameters of the fundamental
diagrams using empirical data. For the triangular fundamental diagram, we need to estimate four
parameters - (1) freeflow speed (V) (2) congestion wave speed (W), (3) flow capacity (F) and (4)
jam density (nJ) (out of which three are independent). We calibrate a fundamental diagram for
data obtained from each detector. For this purpose, we use multiple days of data obtained from the
data selection process described before. We briefly describe the process of calibration below. For
a more thorough reference, the reader is referred to [17, 39].

For the purpose of calibration, we use flow-density scatter plots. The free-flow speed,V, is
estimated by performing a least-squares fit on the flow-density data at the time instants where the
speed was reported to be above 55 mph (this threshold is validfor locations with speed limits
around 65mph). This portion of data is assumed to correspondto free-flow conditions. The ca-
pacity estimate for model calibration is chosen deterministically to be the highest observed flow
throughout all investigated days. This maximum value of flowacross the section is then projected
horizontally to the free-flow line, to establish the tip of the triangular fundamental diagram (Figure
3.6). The intersection point (apex point) is the critical density for the section, above which the
flow is congested. The last parameter to be calibrated is the congestion speed parameter,W, which
also defines the jam density for the section. A constrained quantile regression of data points whose
speeds are lesser than 55mph is used to obtain the congestionwave parameter (W). The point
where the regression line crosses zero flow is the jam densityof the section. In certain detectors,
congestion (i.e data points with speed< 55mph) is not observed due to the nature of prevalent de-
mands. In this case, the capacity of the section, congestionwave speed and the jam density cannot
be estimated. In this case, nominal values are usually used,as long as they are consistent with the
data observed (particularly the flow capacity).

A different fundamental diagram can be calibrated for each detector located along the freeway.
The fundamental diagram of a link is usually obtained from the parameters calibrated using the
detector located in the link. In many cases, links might not have functioning detectors associated
with them, and detectors from nearby links, which have similar geometric characteristics are used.

On-ramp input demands and off-ramp split ratio specification

The final step in the model creation process is to specify the on-ramp input demands and the off-
ramp split ratio profiles. It is necessary that the ramp demands and split ratios specified for the
model are derived from a consistent set of on-ramp flows and off-ramps flows, which require that
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Figure 3.6: The end result of the fundamental diagram calibration

the flows are recorded during the same time period on the same day. In the case all of the data are
available, on-ramp flows (measured at the start of the on-ramp) can be used as the on-ramp demand
into the freeway. Split ratios are obtained by dividing the off-ramp flows by the flows measured at
the previous mainline section. Both the on-ramp demand and off-ramp split ratios are provided as
time varying profiles with a time step of 5 mins.

In freeways in California, mainline detector data is usually archived and available, while on-
ramp and off-ramp flow data is missing. This is sometimes due to lack of detectors on ramps
(particularly off-ramps) or lack of data feeds from the rampdetectors into the PeMS archival center.
From the point of view of performance monitoring, mainline data is usually sufficient to obtain
measures for characterizing freeway operations, and therefore, there is a general lack of investment
(or interest) in installing detectors on ramps and setting up data feeds for the existing detectors.
However, for the purposes of freeway model creation, ramp flow data is a critical component. In the
next two chapters we discuss imputation algorithms which can be used to estimate the ramp flows
using detector measurements from the freeway mainline. Theimputation algorithm provides the
missing ramp flows and split ratios, and is therefore an essential component of the model creation
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process in the freeways.

Base case simulation and model validation

The final model consists of the following components : (a) A directed graph representing the
freeway geometry (b) fundamental diagram parameters for each link (c) demand profiles for on-
ramps (d) split ratio profiles for nodes with off-ramp diverges (e) Ramp metering rates for active
controllers. Once these details are provided, the LN-CTM model can be used to simulate the traffic
dynamics. It produces density, flow and vehicle speed profiles for each link.

A base case simulation refers to a simulation which replicates the conditions observed on a
particular day. In our case, this corresponds to the simulation with no additional active controllers.
Many of the freeways we have modeled in California do not contain an active ramp meter. The
purpose of the base case simulation is to validate the model performance and compare it against
the detector data measured along the freeway. This simulation is expected to reproduce the flow,
density and speed profiles observed along the freeway mainline reasonably.

There are various metrics that can be used to validate the model. We compare the model by
calculating the mean absolute density/flow error, evaluated as a percentage of the mean observed
density/flow. This is referred to as the density/flow error inthis dissertation. We also calculate
hourly VMT, VHT and VCD for the freeway and compare it againstthe measured values to obtain
the VMT/VHT/VCD errors. The formulaes for the error calculations are listed below.

Density error=
∑i ∑k |ni(k)−nmeas

i (k)|

∑i ∑k |n
meas
i (k)|

Flow error=
∑i ∑k | fi(k)− f meas

i (k)|

∑i ∑k | f
meas
i (k)|

VMT error =
∑κ |VMT(κ)−VMTmeas(κ)|

∑κ VMT(κ)

VHT error =
∑κ |VHT(κ)−VHTmeas(κ)|

∑κ VHT(κ)

VCD error =
∑κ |VCD(κ)−VCDmeas(κ)|

∑κ VCD(κ)
(3.4)

where VMT/VHT/VCD are calculated hourly from the density and flow data using the following
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equations.

VHT(κ) = ∑
i

(κ+1)∗3600/Ts

∑
k=κ∗3600/Ts

ni(k)

VMT(κ) = ∑
i

(κ+1)∗3600/Ts

∑
k=κ∗3600/Ts

fi(k)

VCD(κ) = ∑
i

(κ+1)∗3600/Ts

∑
k=κ∗3600/Ts

(ni(k)− fi(k)/Vi)I(Vs(k)< 55mph)

(3.5)

Apart from the metrics listed above, one of the major source of validation is the visual inspec-
tion of contour plots of flow, density and speeds. For these plots, x-axis represents consecutive
links along the freeway and the y-axis represents the time during the day. For the contour plots
used in this dissertation, direction of traffic flows from left to right along the x axis. A visual
inspection is used to confirm that the system bottlenecks, regions of congestion and the extent of
congestion are replicated as close as possible in the simulation.

Simulation studies

The main purpose of creating simulation models is to use themto evaluate various operational
management strategies and to assess their benefits before they can be deployed in the field. The
simulation model created above can be used to simulate the effect of various control strategies in-
clude ramp metering and variable speed limits. For example,any of the control strategies explained
in Chapter 2 can be simulated using the simulation model. In this dissertation, we will use these
calibrated models in Chapter 6 to demonstrate the performance of our optimal controllers.

Example

We present the base case scenario of an calibrated model of the I-80E freeway in California. The
fundamental diagram parameters were estimated from over 45days of data obtained over the 3
month period shown in Figure 3.5. We chose Aug 21st, 2008 to obtain on-ramp demands and off-
ramp split ratios to create the model. For the I80 freeway in the bay area, no ramps reported data,
and thus we used the imputation procedure described in Chapter 5 to obtain the on-ramp demands
and off-ramp split ratios.

Figure 3.8 shows the density and flow contour plots obtained from the simulations and com-
pares it to the observed measurements. Figure 3.7 shows the velocity contours obtained using sim-
ulated and measured data. In all the contour plots, x-axis denotes the distance along the freeway,
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denoted by Post Miles, and the y-axis represents the time of day. The final density and flow errors
in this simulation were 3.1 % and 6.8 %. In this case, we can seethat the simulations replicate
the observed freeway dynamics with good accuracy, except for a section between PostMile 10-15.
This section corresponded to the Berkeley Highway Lab facility, and the detector data was verified
to be faulty/unreliable. We can see that the simulation is able to capture the range and temporal
extent of the congestion in other locations. Additionally,we are also able to match the location of
the bottlenecks in the simulations. Figure 3.9 compares thesimulated and measured performance
measures. We see that VMT and VHT agree very closely with eachother, while the total delay
error is 10%. In general, we observe larger errors in delays as compared to other performance
measures (we have observed delay errors of 25-30 % in some cases). Based on our conversations
with other researchers/engineers who model freeway networks, delay errors of less than 40% indi-
cate a well calibrated model, as long as the delay profiles arevisually similar. One reason can be
attributed to the errors in flow measurements that are usually seen in mainline detectors.
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Figure 3.7: Contour plots of simulated and measured velocity contours
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Chapter 4

Imputation of ramp flow data using the

asymmetric cell transmission model

On-ramp demands and off-ramp split ratios are critical inputs for simulation of freeway traffic
dynamics. On-ramp demands are obtained from detectors located at the on-ramp entrance while
off-ramp splits can be estimated by using measured flows along the mainline and the off-ramps.
For freeways in California, mainline detector data is usually available, while ramp flow data is
missing - either due to lack of detectors or lack of reliable data feeds into the archival system. Tra-
ditional imputation algorithms [14, 9] based on statistical models, have been successfully applied
for imputing missing data for detectors along the freeway. They exploit statistical dependence in
traffic measurements between detectors from adjacent stations or the detectors in the nearby lanes.
However, these algorithms are not suitable for ramp flow imputation, as good quality historical data
is usually not available. Also the measurements from adjacent ramps usually exhibit weak statisti-
cal dependence between each other. In some cases, long stretches of freeways can completely lack
any ramp detection data.

In this chapter, we present an imputation algorithm for on-ramp/off-ramp flows based on the
Asymmetric Cell Transmission Model (ACTM). This algorithmcan be described as a “model-
based” imputation method, as it estimates on-ramp flows and off-ramp flows that match the avail-
able measurements in the freeway when fed into a simulation model describing the traffic dy-
namics. We use the ACTM as the underlying model for the imputation algorithm in this chapter.
ACTM is a simplified version of the CTM for freeway traffic simulations. The model dynamics
can be represented by a set of piecewise affine differential/difference equations as compared to the
LN-CTM model. The simplified model lends to the development of the first provably convergent
algorithm for ramp flow imputation in freeways. In the following sections, we first describe the
ACTM model and the ramp flow imputation algorithms, and then present the stability and conver-
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gence results for this algorithm. Finally we present some examples of its application in a practical
scenario.

4.1 Asymmetric cell transmission model

The ACTM [19, 20] was developed as a simplification to Daganzo’s CTM [12] for simulating
freeway dynamics. The main difference is the treatment of merges of on-ramps into the freeway.
The CTM model treats the merge to be symmetric, such that switching the order of consideration of
merging flows will not result in different flow realizations.In comparison, the ACTM introduces an
asymmetry in the treatment of joining flows, and makes a distinction in the consideration of flows
from on-ramps. As we will see below (comparing to the model presented in the previous chapter)
this simplifies the model equations. The original motivation for the development of the ACTM was
to use it as an approximation of the freeway dynamics in controller analysis and optimal controller
synthesis [19]. CTMSIM, a matlab based simulation tool implements the ACTM [32].

We present a short summary of the ACTM (The reader can refer to[19, 20] for a detailed
presentation). The freeway is specified as a sequence of segments, each with (at most) an on-ramp
near the beginning of the section and an off-ramp near the endof the section. This is slightly
different from the way the freeway geometry is represented in the LN-CTM model, which uses
nodes to represent flow exchanges. Figure 4.1 shows the freeway divided intoN sections or cells,
where vehicles move from left to right. Boundary conditionscan be specified in different ways
in the ACTM. Vehicles can be fed into the freeway through a queue, while the downstream is in
free-flow (BC-1). Alternatively, density of the cells upstream of the first section and downstream
of the last section can also be specified as the boundary conditions for simulation (BC-2). As we
had noted before, BC-2 is appropriate to simulate the base scenario, but BC-1 is preferred for use
in simulation model. This is because under different operational strategies like ramp metering, the
control strategy usually modifies the densities at the boundaries. It must be noted that BC-1 places
restrictions on the freeway sections chosen for simulation, since the beginning and end of the
freeway section simulated should always be in free-flow. However, for our imputation algorithm,
any one of the stated boundary conditions can be used, depending on the availability of detector
data.

1 N2

��	
��	

Figure 4.1: Freeway withN sections.
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Table 4.1 lists the model variables and parameters. Many of the variable definitions are similar
to the definitions presented before, exceptfi(t), which is defined as the flow entering into Link
i +1 from Link i according to the ACTM. These changes will be adopted only forthe algorithms
and proofs presented in this chapter. We associate each freeway link with a triangular fundamental
diagram, similar to the ones used in the LN-CTM (Figure 3.3).The section lengths are absorbed
in the fundamental diagram parameters for convenience.

Symbol Name Units
Fi maximum flow (capacity) of sectioni veh/s
Vi free flow speed of sectioni section/s
Wi congestion wave speed of sectioni section/s
nc

i critical density of sectioni veh/section
nJ

i jam density of sectioni veh/section
fi(t) flow from sectioni to i +1 at timet veh/s
r i(t) on-rampi flows at timet veh/s
si(t) off-rampi flows at timet veh/s
ni(t) number of vehicles in sectioni at timet veh/section
n0(t) number of vehicles in the input queue to section 1 at timet veh
Q0(t) input flow at upstream queue at timet veh/s

Table 4.1: Model variables and parameters.

The Cell Transmission Models are a time and space discretization of the Lighthill-Whitham-
Richards (LWR) equation. Thus, the ACTM can also be represented as a continuous time spatially
discretized model, as presented here. This continuous timemodel is more amenable for develop-
ment of a provably convergent imputation algorithm. As a result, the units for various variables
listed in Table 4.1 are slightly different from the ones usedin the other chapters. Also, the general
model can be specified with off-ramp flows or off-ramp split ratios. We will consider the version
with off-ramp flows, as these flows can also be converted easily to split ratios. We will estimate the
off-ramp flows in our imputation algorithm. When BC-1 is used, the following equations describe
the model.

ṅi(t) = fi−1(t)− fi(t)+ r i−1(t)−si(t), 1≤ i ≤ N

fi(t) = min(Vini(t)−si(t),Wi+1[n
J
i+1−ni+1(t)],Fi) 1≤ i < N

fN(t) = min(VNnN(t)−sN(t),FN)

f0(t) = min(V0n0(t),W1[n
J
1−n1(t)],F0)

ṅ0(t) = Q0(t)− f0(t) (4.1)

When density boundary conditions (n0 andnN+1) are specified, the model is specified as

ṅi(t) = fi−1(t)− fi(t)+ r i−1(t)−si(t) 1≤ i ≤ N

fi(t) = min(Vini(t)−si(t),Wi+1[n
J
i+1−ni+1(t)],Fi) 0≤ i ≤ N

(4.2)
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wherewN+1 andnJ
N+1 are the congestion wave speed and jam density of the cell directly following

the boundary. The flow, denoted byfi(t) corresponds to free-flow when

Vini(t)−si(t)< min[Wi+1[n
J
i+1−ni+1(t)],Fi] (4.3)

Otherwise, the resulting flow corresponds to congested conditions. With respect to each section,
the inflow (from upstream/previous link) can be either in free-flow or in congestion and the outflow
(to downstream link) can also be either in congestion/freeflow. In each of the four cases, the
density and the flow equations can be combined to a single update equation. Thus the model can
also be represented using a four mode model. Finally, the off-ramp splits can be represented as
βi(t) =

si(t)
fi(t)+si(t)

There are some differences in the model presented here, as compared to the general model. In
the original ACTM, there is a blending coefficient (γi ∈ [0,1]) associated with each ramp, signifying
the location of the ramp. In our freeway geometry, the on-ramps are located at the beginning
of each link, and in this case the blending coefficient equalszero, and the corresponding terms
are not included in the model equations represented above. Another approximation is that ramp
flows are directly allowed to merge into the freeway, which isusually the case when the ramp
flows are not very large. However, there are some instances when this model will be inaccurate,
such as in freeways that have large on-ramps due to freeway tofreeway connectors. The original
ACTM model includes additional parameters which provide a slightly better approximation for
these situations, but the ACTM still lacks the model accuracy of the LN-CTM to represent freeway
dynamics when large on-ramps are modeled.

The expression for the freeway dynamics represented above use flows exiting out of the on-
ramps and flows entering into the off-ramps. Our imputation model will be designed to estimate
these flows. The flows entering the off-ramp, along with the mainline flows, provide a direct
estimate of the off-ramp split ratio profile. We assume that the flows exiting the on-ramps are
a good estimate of on-ramp demands (i.e the flows into the on-ramps). This approximation is
valid when ramps are in free-flow and they are not metered. Most of the ramps in California
are usually not metered, and rarely exhibit queues. In the case when ramps are metered, this
approximation is less accurate. This approximation is least accurate when ramps are metered, and
mainline is congested, which leads to queues on the ramps. Inall these cases, the errors decrease
when aggregates over large time intervals are considered.

4.2 Imputation algorithm

The imputation algorithm presented in this section uses theACTM model described above. We
estimate on-ramp flows and off-ramp flows, which replicate the observed mainline measurements
when used with the ACTM model. Formally, the ramp flow imputation problem can be stated as:
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Problem. Estimate on-ramp and off-ramp flowsr̂ i(t), ŝi(t), t ∈ [0,T], such that the model evo-
lution, described using Eq.(4.1) with the ramp flow estimates generate flow/density profiles
( f̂i(t), n̂i(t), t ∈ [0,T]) that replicate the corresponding measurements ( fi(t),ni(t), t ∈ [0,T]) ob-
tained from detectors along the freeway.

The imputation algorithm presented in this section is basedon an adaptive repetitive learning
technique described in [38, 26]. This is a control techniqueused to identify periodic input profiles
for a dynamic system so that it can track a given periodic output profile. For our imputation
algorithm, the input profiles are the on-ramp and the off-ramp flows, and the target output profiles
are the measured densities and the flow profiles. In the learning algorithm, we assume initial
estimates for the input profiles, and adaptively improve these estimates as the process is executed
repeatedly. The final estimates learnt from this process areexpected to track the actual output
profiles, in case that a solution exists.

The adaptive repetitive learning algorithm requires the density and ramp flow profiles to be
periodic. For example, the density profiles are expected to satisfy n(0) = n(T), whereT is the
period. Under this condition, the algorithm can execute multiple runs using the observed profiles
corresponding to a single day (even though the actual measured densities/flows can vary day to day,
particularly during morning/evening commute times), thereby simulating a repetitive process. In
our case, we assume that the profiles are measured starting from 12:00am and ending at 11:59pm.
The measurements have a typical sample time of 5 mins and we use linear interpolations to specify
the complete profiles which satisfy the continuity conditions. Traffic conditions are very light (as
seen by the low density/flow values) in the early morning. Lowdensity/flow values in the night
ensure that we obtain sufficiently smooth profiles.

In our imputation algorithm, the on-ramp and off-ramp flows are represented as a convolution
of a kernel on a constant periodic ramp parameter (influence)vector.

r(t) =
∫ T

0
Kr(τ, t)cr(τ)dτ, s(t) =

∫ T

0
Ks(τ, t)cs(τ)dτ (4.4)

whereKr(τ, t) and Ks(τ, t) represent periodic, time dependent kernel functions with period T,
which is also the period of the process considered. Some typical kernel functions include an
impulse or a gaussian window centered at timek. Kernel function width is chosen with respect
to the degree of smoothness expected from the imputed profile. A short kernel window (eg. an
impulse function) will lead to noisy estimations as compared to a kernel with a large window.

The structure of the ACTM allows us to decouple the estimation of ramp flows. The impu-
tation is carried out section by section sequentially, starting from the most upstream section 1.
For estimation of sectioni ramp flows, we consider the immediate upstream sectioni −1 and the
immediate downstream sectioni +1. For convenience, the upstream (downstream) section for a
sectioni is specified with the subscripti,up (i,dn). Figure 4.2 shows the parameters and mea-
surement data used for imputation of ramp flows in sectioni. The upstream boundary conditions



43

Figure 4.2: Imputation parameters and cell definitions

includes the upstream density, fundamental diagram parameters as well as the off-ramp flowsi,up.
The imputation proceeds sequentially from upstream to downstream and eithersi,up or its estimate
is available. Since all the parameters and variables carry the subscripti, for clarity, we drop it in
the following equations.

In the imputation algorithm, unknown on-ramp and/or off-ramp flows are estimated indirectly
by estimating their respective influence coefficients ˆcr(τ, t) and ˆcs(τ, t) using a repetitive adaptive
learning algorithm, which runs continuously cycling through the 24 hour traffic data. For each sec-
tion, the imputation procedure assumes initial estimates for the ramp parameter functions ˆcr(τ, t)
and ˆcs(τ, t). These estimates are then adapted so that the model calculated densities match the
density profile recorded in the vehicle detector station. Let P represent Plant (i.e. the actual system
described using the ACTM) whileM represents the Model, calculated using the estimates. The
model variables and the estimates are represented with a ‘hat’ ( n̂(t), r̂(t) etc.) and the errors with a
‘tilde’ (e.g. ñ(t) = n(t)− n̂(t), wheren(t) is the section’s measured number of vehicles and ˆn(t) is
the number of vehicles generated by the model at instantk). The actual variables (ie. the measured
variables) are represented without any accent. Table 4.2 presents the various modes considered in
the imputation. In this table, and throughout this section,we will introduce a new variable ¯wdn(t)
to simplify the expressions.

w̄dn(t) = min

(

F

nJ
dn−ndn(t)

,Wdn

)

(4.5)

The modes considered here only refer to the flow conditions downstream (i.e out of the section con-
sidered) andP−F andP−C correspond to free-flow and congested flow conditions downstream
respectively.

For each section, we assume that we have the following measurements: upstream link density
nup(t), upstream off-ramp flowssup(t) or its estimate ˆsup(t), current link densityn(t), link outflow
f (t) and downstream link densityndn(t). In addition, the fundamental diagram parameters are also
available for all three links. The mode dependent adaptation laws for the parameters at each step
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Symbol Condition
P−F f (t)< w̄dn(t)[nJ

dn−ndn(t)]
P−C f(t) = w̄dn(t)[nJ

dn−ndn(t)]
M−F vn̂(t)− ŝ(t)< w̄dn(t)[nJ

dn−ndn(t)]
M−C vn̂(t)− ŝ(t)> w̄dn(t)[nJ

dn−ndn(t)]

Table 4.2: Plant and model modes.

are given by

(a)P-F , M-F (plant and model are both in free-flow downstream)

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t), ∀τ ∈ [0,T]
˙̂cs(τ, t) =−G2Ks(τ, t) f̃d(t), ∀τ ∈ [0,T] (4.6)

(b) P-C , M-C (plant and model are both in congestion downstream)

˙̂cr(τ, t) = G1Kr(τ, t)ñ(t), ∀τ ∈ [0,T]
˙̂cs(τ, t) =−G1Ks(τ, t)ñ(t), ∀τ ∈ [0,T] (4.7)

(c) P-C , M-F (plant is in congestion and model is in free flow downstream)

Case(i) ñ(t)> 0
˙̂cr(τ, t) = G1Kr(τ, t)ñ(t), ∀τ ∈ [0,T]

˙̂cs(τ, t) =−G1Ks(τ, t)ñ(t)−G2Ks(τ, t)
f̃d(t)+ | f̃d(t)|

2
, ∀τ ∈ [0,T]

Case(ii) ñ(t)≤ 0
˙̂cr(τ, t) = G1Kr(τ, t)ñ(t), ∀τ ∈ [0,T]
˙̂cs(τ, t) =−G2Ks(τ, t) f̃d(t), ∀τ ∈ [0,T] (4.8)

(d) P-F , M-C (plant is in free flow and model is in congestion downstream)

Case(i) ñ(t)< 0
˙̂cr(τ, t) = G1Kr(τ, t)ñ(t), ∀τ ∈ [0,T]
˙̂cs(τ, t) =−G1Ks(τ, t)ñ(t)−G2Ks(τ, t) f̃d(t), ∀τ ∈ [0,T]

Case(ii) ñ(t)≥ 0
˙̂cr(τ, t) = G1Kr(τ, t)ñ(t), ∀τ ∈ [0,T]
˙̂cs(τ, t) =−G2Ks(τ, t) f̃d(t), ∀τ ∈ [0,T] (4.9)
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whereG1, G2 are user defined positive gains.The model update equations at each step are given by

ñ(t) = n(t)− n̂(t)
˙̂n(t) = f̂up(t)− f̂ (t)+ r̂(t)− ŝ(t)+añ(t) (4.10)

f̂up(t) = min(nup(t)Vup−sup(t),Fup,W(nJ− n̂(t)))

f̂ (t) = min(n̂(t)V− ŝ(t), w̄dn(t)(n
J
dn−ndn(t)))

r̂(t) =
∫ T

0
Kr(τ, t)ĉr(τ, t)dτ

ŝ(t) =
∫ T

0
Ks(τ, t)ĉs(τ, t)dτ

f̃d(t) = f (t)− (n(t)V− ŝ(t)) (4.11)

The error termf̃d(t) is designed to capture the errors in off-ramp flows during free-flow. The
parametera > 0 in (4.10) is chosen so as to make the error equations asymptotically stable. In
the update equations, on-ramp flows are always updated to decrease the density error, and hence
the updates are proportional to the current density error. The off-ramp flows are adapted using the
density error (terms with gainG1) and/or flow errorf̃d(t) (terms with gainG2), depending on the
mode. This allows the downstream flows to converge to the measured values, as we will see in the
next section.

The imputation algorithm is initiated from the most upstream section. After convergence, the
off-ramp flow estimates from the current section is used as boundary data for imputing the ramp
flows in the next section. The imputation algorithm then is employed section-wise to the most
downstream section.

While the parameter and model density update equations are given in continuous time, this
procedure is implemented in discrete time with a small time step and small gains, so that the
imputation procedure as well as the model are stable. Typically the time step∆t is chosen such that
Vmax∆t < 1, whereVmax=maxi Vi andVi is the free flow speed at sectioni. The adaptation is carried
out for the entire density profile multiple times, so as to reduce the 24-hour ‘errors’∑k |ñ(k)| and
∑k | f̃ (k)|. This procedure is repeated until both the errors become insignificant, i.e.

∑
k

|ñ(k)|< 0.005×∑
k

n(k), and ∑
k

| f̃ (k)|< 0.005×∑
k

f (k)

or stop decreasing

∆

(

∑
k

|ñ(k)|

)

< 0.005×∑
k

n(k), and ∆

(

∑
k

| f̃ (k)|

)

< 0.005×∑
k

f (k)

In the expression above,∆(.) is the change in errors across iterations.

The final ramp parameter functions ˆcr and ˆcs give us the imputed estimates of on-ramp and
off-ramp flow profiles (ˆr i(t), ŝi(t)). The off-ramp split ratios are computed from the off-ramp split

profiles and the model calculated flows, asβ̂i(t) =
ŝi(t)

f̂i(t)+ŝi(t)
.
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4.3 Analysis of the algorithm

In this section, we will study the stability and convergenceof the density errors under the adaptation
laws given in Section 4.2. The error equations are given by

˙̃n(t) = f̃up(t)− f̃ (t)+ r̃(t)− s̃(t)−añ(t) (4.12)

r̃(t) =
∫ T

0
Kr(τ, t)c̃r(τ, t)dτ

s̃(t) =
∫ T

0
Ks(τ, t)c̃s(τ, t)dτ (4.13)

We will also show that the downstream flow converge with zero errors in all the modes. The
condition stated below will be used in the following lemma and theorems.

Condition 4.3.1. For the system described in Figure 4.2, the following conditions apply:
(1) sup(t) = ŝup(t) when the plant upstream is in free-flow.
(2) W(nJ−n(t))< min(Fup,nup(t)Vup− ŝup(t))) when the plant upstream is in congestion.

Condition 4.3.1 guarantees that the upstream off ramp estimation error ˜sup(t) = sup(t)− ŝup(t)
is either zero or it does not affect the upstream (input) flowsin the current section. For the freeway
described in Figure 4.1, this condition is easily achieved for the first cell (i=1) and as it will later
be shown by induction in Theorem 4.3.2, it will apply to all cells.

Lemma 4.3.1. For the system described by Figure 4.2 executing the imputation algorithm de-
fined by Eq. (4.6) - (4.11), given nup(t), ŝup(t), ndn(t), f(t), n(t) and the fundamental diagram

parameters for all the cells, under Condition 4.3.1,f̃up(t) = fup(t)− f̂up(t) is given byf̃up(t) =
−ζ (t)Wñ(t) where0≤ ζ (t)≤ 1 at any time t.

The flows entering the section can either be in free-flow or in congestion, and they could pos-
sibly be different for the Plant and the Model. This lemma provides a compact representation for
the f̃up(t) for all the cases. In fact this term will be a stabilizing termin the proofs that follow. The
proof of this lemma is presented in Section 4.5.

Theorem 4.3.1.For the system described in Figure 4.2, given nup(t), ŝup(t), ndn(t), f(t) , n(t),
and the fundamental diagram parameters, the parameter update laws in Section 4.2 stabilize the
error equations(4.12),(4.13)when Condition 4.3.1 applies. The density errors (ñ(t)) and the flow
errors (f̃ (t), f̃up(t)) converge to 0. Moreover, s(t) = ŝ(t) when the plant downstream is in free-flow
andw̄dn(t)(nJ

dn−ndn(t))≤ min(F, n̂(t)V − ŝ(t))) otherwise.
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Proof. Consider the Lyapunov functionalV(t) (and its time derivative) given by

V(t) =
1
2

ñ(t)2+
1

2G1

∫ T

0
c̃r(τ, t)2dτ +

1
2G1

∫ T

0
c̃s(τ, t)2dτ

V̇(t) = ñ(t) ˙̃n(t)+
∫ T

0
c̃r(τ, t)G−1

1
˙̃cr(τ, t)dτ +

∫ T

0
c̃s(τ, t)G−1

1
˙̃cs(τ, t)dτ (4.14)

In deriving V̇(t), we use the fact that ramp parameter functionscr(τ),cs(τ) are not a function of
time. We need to show thatV̇(t) is negative semi-definite, for the error equations to be stable.

From lemma 4.3.1, we see thatf̃up(t) = −ζ (t)Wñ(t) for some 0≤ ζ (t) ≤ 1, irrespective of
the mode of the plant/model with respect to upstream flow. Hence, the error equations can be sim-
plified into four cases corresponding to the downstream flow.The following equations show that
V̇(t)≤ 0 in all the four cases.

(i) P-F, M-F
In this case, we have

˙̃n(t) = ṅ(t)− ˙̂n(t)

= ( fup(t)− (n(t)V−s(t))+ r(t)−s(t))

−
(

añ(t)+ f̂up(t)− (n̂(t)V − ŝ(t))+ r̂(t)− ŝ(t)
)

=−añ(t)−ζ (t)Wñ(t)−Vñ(t)+ r̃(t)

f̃d(t) = (n(t)V−s(t))− (n(t)V− ŝ(t)) =−s̃(t)
˙̃cr(τ, t) =−G1Kr(τ, t)ñ(t)
˙̃cs(τ, t) = G2Ks(τ, t) f̃d(t) =−G2Ks(τ, t)s̃(t)

Substituting these terms in Eq. (4.14), we get

V̇(t) = ñ(t)(−añ(t)−ζ (t)Wñ(t)−Vñ(t)+ r̃(t))

+

∫ T

0
c̃r(τ, t)G−1

1 (−G1Kr(τ, t)ñ(t))dτ +
∫ T

0
c̃s(τ, t)G−1

1 (−G2Ks(τ, t)s̃(t))dτ

=
(

−(a+V +ζ (t)W)ñ(t)2+ ñ(t)r̃(t)
)

− ñ(t)r̃(t)−
G2

G1
s̃(t)2

≤−añ(t)2−
G2

G1
s̃(t)2 ≤ 0 (4.15)
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(ii) P-F, M-C
For this case,

˙̃n(t) = ṅ(t)− ˙̂n(t)

= ( fup(t)− (n(t)V−s(t))+ r(t)−s(t))

−
(

añ(t)+ f̂up(t)− (w̄dn(t)(n
J
dn−ndn(t)))+ r̂(t)− ŝ(t)

)

=−(ζ (t)W+a)ñ(t)−n(t)V+s(t)+ w̄dn(t)(n
J
dn−ndn(t))+ r̃(t)− s̃(t) (4.16)

=−(ζ (t)W+a+V)ñ(t)− n̂(t)V + ŝ(t)+ w̄dn(t)(n
J
dn−ndn(t))+ r̃(t) (4.17)

f̃d(t) = (n(t)V−s(t))− (n(t)V− ŝ(t)) =−s̃(t)

When plant is in free-flow and model is in congestion, we have

n(t)V −s(t)≤ w̄dn(t)(n
J
dn−ndn(t))≤ n̂(t)V− ŝ(t) (4.18)

We substitute for the individual terms in Eq. (4.14), and usethis condition in the following expres-
sions.

(a) ñ(t)< 0

Under this condition, we have
˙̃cr(τ, t) =−G1Kr(τ, t)ñ(t)
˙̃cs(τ, t) = G1Ks(τ, t)ñ(t)+G2Ks(τ, t) f̃d(t)

Using these terms along with Eq. (4.17) in Eq. (4.14), we get

V̇(t) = ñ(t)
(

−(ζ (t)W+a)ñ(t)−n(t)V+s(t)+ w̄dn(t)(n
J
dn−ndn(t))+ r̃(t)− s̃(t)

)

+

∫ T

0
c̃r(τ, t)G−1

1 (−G1Kr(τ, t)ñ(t))dτ

+

∫ T

0
c̃s(τ, t)G−1

1 (G1Ks(τ, t)ñ(t)−G2Ks(τ, t)s̃(t))dτ

=−(a+ζ (t)W)ñ(t)2+ ñ(t)
(

−n(t)V +s(t)+ w̄dn(t)(n
J
dn−ndn(t))

)

+ ñ(t)r̃(t)− ñ(t)s̃(t)− ñ(t)r̃(t)+ ñ(t)s̃(t)−
G2

G1
s̃(t)2

≤−añ(t)2−
G2

G1
s̃(t)2 ≤ 0 (4.19)

where we utilize the fact that

n(t)V −s(t)≤ w̄dn(t)(n
J
dn−ndn(t))

(b) ñ(t)≥ 0
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Here, we have
˙̃cr(τ, t) =−G1Kr(τ, t)ñ(t)
˙̃cs(τ, t) = G2Ks(τ, t) f̃d(t)

Substituting these terms along with Eq. (4.17) in Eq. (4.14), we get

V̇(t) = ñ(t)
(

−(ζ (t)W+a+V)ñ(t)− n̂(t)V+ ŝ(t)+ w̄dn(t)(n
J
dn−ndn(t))+ r̃(t)

)

+

∫ T

0
c̃r(τ, t)G−1

1 (−G1Kr(τ, t)ñ(t))dτ +
∫ T

0
c̃s(τ, t)G−1

1 (−G2Ks(τ, t)s̃(t))dτ

=−(a+ζ (t)W+V)ñ(t)2− ñ(t)(n̂(t)V− ŝ(t)− w̄dn(t)(n
J
dn−ndn(t)))

+ ñ(t)r̃(t)− ñ(t)r̃(t)−
G2

G1
s̃(t)2

≤−añ(t)2−
G2

G1
s̃(t)2 ≤ 0 (4.20)

where we utilize the fact that

n̂(t)V − ŝ(t)≥ w̄dn(t)(n
J
dn−ndn(t))

(iii) P-C, M-F

˙̃n(t) =
(

fup(t)− (w̄dn(t)(n
J
dn−ndn(t))+ r(t)−s(t)

)

−
(

añ(t)+ f̂up(t)− (n̂(t)V− ŝ(t)))+ r̂(t)− ŝ(t)
)

=−(ζ (t)W+a)ñ(t)− w̄dn(t)(n
J
dn−ndn(t))+ n̂(t)V − ŝ(t)+ r̃(t)− s̃(t) (4.21)

=−(ζ (t)W+a+V)ñ(t)− w̄dn(t)(n
J
dn−ndn(t))+n(t)V−s(t)+ r̃(t) (4.22)

f̃d(t) = w̄dn(t)(n
J
dn−ndn(t))− (n(t)V− ŝ(t))

= w̄dn(t)(n
J
dn−ndn(t))− (n(t)V−s(t))− s̃(t) (4.23)

= w̄dn(t)(n
J
dn−ndn(t))− (n̂(t)V− ŝ(t))− ñ(t)V (4.24)

When plant is in congestion and model is in free-flow, we have

n̂(t)V − ŝ(t)≤ w̄dn(t)(n
J
dn−ndn(t))≤ n(t)V−s(t) (4.25)



50

We use this condition in the results below. Depending on the sign of ñ(t), we have

(a) ñ(t)> 0

Under this condition, we have
˙̃cr(τ, t) =−G1Kr(τ, t)ñ(t)

˙̃cs(τ, t) = G1Ks(τ, t)ñ(t)+G2Ks(τ, t)
f̃d(t)+ | f̃d(t)|

2
From Eq. (4.23), whenever̃fd(t)≥ 0, we see that

f̃d(t) = w̄dn(t)(n
J
dn−ndn(t))− (n(t)V−s(t))− s̃(t)≥ 0

=⇒ s̃(t)≤ w̄dn(t)(n
J
dn−ndn(t))− (n(t)V−s(t))≤ 0 (4.26)

Substituting these terms along with Eq. (4.21) in Eq. (4.14), we get

V̇(t) = ñ(t)
(

−(ζ (t)W+a)ñ(t)− w̄dn(t)(n
J
dn−ndn(t))+ n̂(t)V− ŝ(t)+ r̃(t)− s̃(t)

)

+

∫ T

0
c̃r(τ, t)G−1

1 (−G1Kr(τ, t)ñ(t))dτ

+
∫ T

0
c̃s(τ, t)G−1

1 (G1Ks(τ, t)ñ(t)+G2Ks(τ, t)
f̃d(t)+ | f̃d(t)|

2
)dτ

=−(a+ζ (t)W)ñ(t)2− ñ(t)(w̄dn(t)(n
J
dn−ndn(t))− n̂(t)V+ ŝ(t))+ ñ(t)r̃(t)

− ñ(t)s̃(t)− ñ(t)r̃(t)+ ñ(t)s̃(t)+
G2

G1
s̃(t)

f̃d(t)+ | f̃d(t)|
2

≤ 0

≤−añ(t)2+
G2

G1
s̃(t)

f̃d(t)+ | f̃d(t)|
2

≤ 0 (4.27)

where we utilize Eq. (4.25) and Eq. (4.26)

(b) ñ(t)≤ 0

From Eq. (4.25), (4.24), we have

ñ(t)V − s̃(t)≥ 0 =⇒ 0≥ ñ(t)V ≥ s̃(t), since ñ(t)≤ 0

and f̃d(t) = w̄dn(t)(n
J
dn−ndn(t))− (n̂(t)V − ŝ(t))− ñ(t)V ≥ 0

˙̃cr(τ, t) =−G1Kr(τ, t)ñ(t)
˙̃cs(τ, t) = G2Ks(τ, t) f̃d(t)≥ 0

Substituting these terms along with Eq. (4.22) in Eq. (4.14), we get

V̇(t) = ñ(t)
(

−(ζ (t)W+a+V)ñ(t)− w̄dn(t)(n
J
dn−ndn(t))+n(t)V−s(t)+ r̃(t)

)

+

∫ T

0
c̃r(τ, t)G−1

1 (−G1Kr(τ, t)ñ(t))dτ +
∫ T

0
c̃s(τ, t)G−1

1 (G2Ks(τ, t) f̃d(t))dτ
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=−(a+ζ (t)W+V)ñ(t)2− ñ(t)(w̄dn(t)(n
J
dn−ndn(t))−n(t)V+s(t))+ ñ(t)r̃(t)

− ñ(t)r̃(t)+
G2

G1
s̃(t) f̃d(t)

≤−añ(t)2+
G2

G1
s̃(t) f̃d(t)≤ 0 (4.28)

(iv) P-C, M-C

˙̃n(t) =
(

fup(t)− (w̄dn(t)(n
J
dn−ndn(t))+ r(t)−s(t)

)

−
(

añ(t)+ f̂up(t)− (w̄dn(t)(n
J
dn−ndn(t)))+ r̂(t)− ŝ(t)

)

=−(a+ζ (t)W)ñ(t)+ r̃(t)− s̃(t)
˙̃cr(τ, t) =−G1Kr(τ, t)ñ(t)
˙̃cs(τ, t) = G1Ks(τ, t)ñ(t)

When we substitute these terms in Eq. (4.14), we get

V̇(t) = ñ(t)(−(a+ζ (t)W)ñ(t)+ r̃(t)− s̃(t))+
∫ T

0
c̃r(τ, t)G−1

1 (−G1Kr(τ, t)ñ(t))dτ

+

∫ T

0
c̃s(τ, t)G−1

1 (G1Ks(τ, t)ñ(t))dτ

=−(a+ζ (t)W)ñ(t)2+ ñ(t)r̃(t)− ñ(t)s̃(t)− ñ(t)r̃(t)+ ñ(t)s̃(t)

≤−añ(t)2 ≤ 0 (4.29)

Therefore the Lyapunov functionalV(t) is bounded and non-increasing. By Lyapunov’s theorem
[64], we conclude that

|ñ(t)|< ∞ ∀ t
∫ T

0
c̃r(τ, t)2dτ < ∞ ∀ t

∫ T

0
c̃s(τ, t)2dτ < ∞ ∀ t

r̃(t) ands̃(t) are also bounded, by Schwartz’s inequality, as shown below

|r̃(t)|= |

∫ T

0
K(τ, t)c̃r(τ, t)dτ| ≤

(

∫ T

0
K(τ, t)2dτ

)
1
2
(

∫ T

0
c̃r(τ, t)2dτ

)
1
2

< ∞

|s̃(t)|= |

∫ T

0
K(τ, t)c̃s(τ, t)dτ| ≤

(

∫ T

0
K(τ, t)2dτ

)
1
2
(

∫ T

0
c̃s(τ, t)2dτ

)
1
2

< ∞

Since our system is periodic, by LaSalle’s invariance principle [64, 62], the error equations con-
verge to the largest invariant set which satisfiesV̇(t) = 0. Examining the above expressions for
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V̇(t) in all the four cases shown above, we can conclude that ˜n(t)→ 0. Since f̃up(t) = ζ (t)Wñ(t),
f̃up(t)→ 0 also.

We can also show that model converges to the correct congestion mode at equilibrium. When
the plant is in free-flow, as seen in Case (i) and Case (ii), ˜s(t)→ 0, sinceV̇(t) = 0 at equilibrium.
In fact, when the plant is in free-flow, the model cannot converge in the congestion mode (except
along its boundary, which can be interpreted as the free-flowmode). This is because the off-ramp
flows satisfy ˜s(t) = 0 after convergence.

We can also show that the model cannot converge in the free-flow mode when the plant is in
congestion (Case(iii)). This is because, under this condition we have

n(t)V − ŝ(t)< w̄dn(t)(n
J
dn−ndn(t))≤ n(t)V−s(t)

=⇒ f̃d(t) = w̄dn(t)(n
J
dn−ndn(t))− (n(t)V− ŝ(t))> 0 and s̃(t)< 0

and these violatėV(t) = 0. Thus, the model always converges in the congested mode during time
instants where the plant is congested. When the plant/modelis in congestion (Case (iv)), we see
that the convergence conditions (V̇(t) = 0) do not dictate that ˜s(t) = 0 . In fact, in this mode the
off-ramp flows need not converge to their actual values. We will demonstrate this in the example
presented in the next section.

Utilizing the observations in the last two paragraphs, the following equations show that̃f (t)→
0.

f̃ (t) = min(n(t)V −s(t), w̄dn(t)(n
J
dn−ndn(t)))−min(n̂(t)V − ŝ(t), w̄dn(t)(n

J
dn−ndn(t)))

Plant- F : n(t)V−s(t) = n̂(t)V − ŝ(t) =⇒ f̃ (t) = 0

Plant- C : n̂(t)v− ŝ(t)≥ w̄dn(t)(n
J
dn−ndn(t)) =⇒ f̃ (t) = 0

This shows the the imputed off-ramp flows satisfy Condition 4.3.1.

The results derived for the above system with density boundary conditions also apply with other
boundary conditions. The following theorem states the applicability of the sequential imputation
of ramp flows to a multi-section freeway.

Theorem 4.3.2.For the freeway described by Figure 4.1, given the upstream &downstream
boundary conditions, density, flow measurements and fundamental diagram parameters of all the
sections, we can impute the ramp flows sequentially from upstream to downstream section-wise
using the update laws described in Section 4.2. In all the sections, f̃i = 0 andñi = 0.

Proof. For the first section, since upstream boundary conditions are given, the imputation ensures
f̃1 = 0 andñ1 = 0, and ˆs1 satisfies the Condition 4.3.1. We can see that for any sectioni, given
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measurement data and upstream off-ramp flow estimate satisfying Condition 4.3.1, the imputation
algorithm ensures̃fi = 0, ñi = 0 after imputation. Moreover, the imputed off-ramp flow, which
forms the upstream boundary condition for sectioni + 1 satisfies Condition 4.3.1 by Theorem
4.3.1. This proves the theorem by induction.

4.4 Examples

The imputation algorithm is demonstrated with three examples. In the first example, we demon-
strate the performance of the imputation algorithm on a single section of a freeway network. We
use artificial data, in the form of known boundary conditionsand on-ramp/off-ramp flows, to gen-
erate density and flow profiles in freeway section. Then theseramp flows (assumed unknown) are
imputed using the imputation algorithm. The initial ramp estimates were set to be identically zero
before the start of the imputation algorithm. Figure 4.3 compares the imputed trajectories gener-
ated after convergence, with the actual densities and flows which are known. As seen in Figure
4.3, the resulting flow and the density errors are very small after convergence. However, in some
time periods the on-ramp and the off-ramp values have not converged to their true values. These
segments correspond to the P-C M-C mode, and in this case, theon-ramp and off-ramp flows
cannot be determined individually, only the effective rampflow r(t)−s(t) can be determined. In
fact, there are infinitely many combinations of on-ramp and off-ramp flows in the P-C M-C mode
that can produce the observed density/flows. Only when a measurement of the flow is available at
a location just before the off-ramp or just after the on-ramp(in addition to the already available
measurements), we can estimate the ramp flows uniquely. Here, these measurements corresponds
to fi(t)+si(t) and fi−1(t)+ r i−1(t) respectively. Since we have measurements offi(t), these ad-
ditional measurements allow us to uniquely determine the ramp flows in the P-C, M-C mode.
However, in many freeways in the U.S, these quantities are not usually measured.

In the second example, a 6.3 mile highway segment from I-210Ewas chosen. This freeway
segment was divided into 8 sections with 9 on-ramps and 7 off-ramps, out of which 3 on-ramps
and 5 off-ramps were imputed. In any section, if one of the on-ramp flows/off-ramp split ratios
are known, then we directly substitute the known ramp flows inthe model. We only execute the
adaptation equations for the ramps flows that need to be imputed. In locations where one of the
ramp flows is known, we can impute the other ramp flows uniquely. After obtaining all the imputed
ramp flows, we use these ramp flows to simulate the traffic dynamics in the entire freeway. For
simulation, we use the ACTM model. The density, flow and velocity contours of the simulation
are shown in Figure 4.4. The x-axis of the contours representPostMiles, which measure distance
along the freeway, and the Y-axis represents the time of the day. Table 4.3 lists the density/flows
errors for this simulation.
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Figure 4.3: Results of the Imputation with artificial data.
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Figure 4.4: Simulation results for I-210E.

In the third example, a 8.8 mile highway segment from I-80W was chosen. This freeway
segment was divided into 10 sections with 8 on-ramps and 9 off-ramps, all of which had no mea-
surements. Ramp flows were imputed and then used to simulate the entire section. The density,
flow and velocity contours of the simulation are shown in Figure 4.5. The density and flow errors
for the simulation are given in Table 4.3.

Freeway Density error Flow error

I-210E 15% 11 %
I-80W 8.4% 8.75 %

Table 4.3: Final errors for simulations carried out with ramp flows imputed using the ACTM based
imputation algorithm.

It was observed that in many sections (for I80W, I210E imputation examples), the imputa-
tion algorithm stopped converging and the solutions showedsignificant errors in flow and density.
While small errors in the final density/flow are expected due to some model mismatch, larger errors
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Figure 4.5: Simulation results for I-80W.

indicate that the some of the measurements may be faulty. This is because the imputation algorithm
is expected to converge to zero density/flow error values in case there exists some plausible ramp
flows that replicate the freeway dynamics. These faulty measurements may either correspond to the
mainline density/flow measurements of the current link, or the density/flow measurements in one of
the boundaries. In [18], Dervisoglu and Horowitz use this property to determine the freeway main-
line detectors that report erroneous/faulty measurements, even under conditions when on-ramps
and off-ramps are imputed using these mainline detector data. Extending the results presented in
this chapter, the authors analyze cases where systematic faults can be detected. This algorithm is
also successfully demonstrated on a 23 mile segment in the I210W freeway in California in their
paper.
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4.5 Proofs

Proof of Lemma 4.3.1

Proof. Depending on the upstream flow condition in the model and plant, the system falls into four
modes.

Case (a) : Plant upstream (F), Model upstream (F)

fu(t) = min(Fup,nup(t)vup−sup(t)))

f̂u(t) = min(Fup,nup(t)vup−sup(t)))

f̃u(t) = 0 (4.30)

Case (b) : Plant upstream (F), Model upstream (C)

fu(t) = min(Fup,nup(t)vup−sup(t)))

f̂u(t) = w(nJ− n̂(t))

f̃u(t) =−ζ (t)wñ(t) 0≤ ζ (t)≤ 1

since w(nJ−n(t))> min(Fup,nup(t)vup−sup(t)))> w(nJ− n̂(t)) (4.31)

Case (c) : Plant upstream (C), Model upstream (C)

fu(t) = w(nJ−n(t))

f̂u(t) = w(nJ− n̂(t))

f̃u(t) =−wñ(t) (4.32)

Case (d) : Plant upstream (C), Model upstream (F)

fu(t) = w(nJ−n(t))

f̂u(t) = min(Fup,nup(t)vup− ŝup(t)))

f̃u(t) =−ζ (t)wñ(t) 0≤ ζ (t)≤ 1

since (nJ−n(t))< min(Fup,nup(t)vup− ŝup(t)))< w(nJ− n̂(t)) (4.33)

Hence f̃u(t) = −ζ (t)wñ(t) where 0≤ ζ (t) ≤ 1, irrespective of the plant/model upstream flow
conditions



58

Chapter 5

Imputation of ramp flow data using the

link-node cell transmission model

In this chapter, we present an imputation algorithm for on-ramp/off-ramp flows based on the Link-
Node Cell Transmission Model (LN-CTM). The LN-CTM is well suited for modeling traffic in
freeways with large on-ramps (for example, freeway-freeway interconnections) as compared to the
ACTM. However, the design of an algorithm based on the LN-CTMposes additional challenges.
The ACTM simplifies the non-linear model equations of the CTMand the resulting dynamic equa-
tions are piecewise affine. Also, the structure of the ACTM allows the estimation of the ramp flows
section-wise, and leads to easy analysis of the convergenceof the imputation algorithm. As we
will see in this chapter, the LN-CTM presents additional complications due to the non-linearities
of the model.

We first recap the LN-CTM, and rewrite the equations to motivate the development of the
imputation algorithm based on the LN-CTM. The structure of the LN-CTM dictates that all of
the ramp flows are simultaneously estimated for the entire freeway. The imputation procedure
tackles the problem in two steps, first calculating a total/effective demand parameter capturing
aggregate flows into and out of each link and then decomposingthe effective demand into on-
ramp demands and off-ramp split ratios, along with the corresponding flows. The first step of the
algorithm uses an adaptive iterative learning algorithm, that matches the model calculated densities
and the measured densities. The second step uses a linear program to minimize the error between
the model calculated flows and the measurements.
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5.1 Link Node Cell Transmission Model

The LN-CTM is used as the underlying model for the imputationalgorithm presented in this chap-
ter. Section 3.1 presents the LN-CTM for traffic flow simulations, along with the geometry speci-
fication, variable definitions and their units.

For the purposes of the imputation algorithm, we introduce afew additional terms,

Capacity adjusted free-flow speed (̄v(k)) : v̄i(k) = v̄i(ni(k)) = min
(

Vi,
Fi

ni(k)

)

Capacity adjusted congestion wave speed (̄w(k)) : w̄i(k) = w̄i(ni(k)) = min
(

Wi ,
Fi

(nJ
i −ni(k))

)

Total/effective demand (ci(k)) : ci(k) = ni(k)v̄i(k)(1−βi(k))+di(k)

Under these definitions, the demand, and supply functions can be represented as

Di(k) = min(ni(k)Vi,Fi) = ni(k)v̄i(k)

Si(k) = w̄i(k)(n
J
i −ni(k)) (5.1)

The total effective demand closely resembles the total demand vectorRi(k), described in Sec-
tion 3.1, with some additional assumptions on the on-ramp demand function (originally defined
asdi(k) = min(l i(k), rc(k)i ,Ci)). We assume that ramp metering is inactive, and there are only
short queues present in the ramps. The first assumption implies thatrc

i (k) =Ci , while the second
assumption can be rigorously stated asl i(k) ≤Ci . These assumptions are necessary to ensure ob-
servability of the on-ramp queue lengths through the on-ramp demand function (i.edi(k) = l i(k)).
This is necessary to determine the on-ramp input flows, whichwill be extracted from the queue
lengths. These assumptions are reflected in the model equations given below,

ni(k+1) = g(ni(k),ci−1(k),ci(k),ni+1(k)) = ni(k)+ f in
i (k)− f out

i (k) (5.2)

f in
i (k) = f in

i (ci−1(k),ni(k)) = min
(

w̄i(k)(n
J
i −ni(k)),ci−1(k))

)

f out
i (k) = f out

i (ci(k),ni(k),ni+1(k)) = ni(k)v̄i(k)min

(

1,
w̄i+1(k)(nJ

i+1−ni+1(k))

ci(k)

)

ci(k) = ni(k)v̄i(k)(1−βi(k))+di(k)

di(k+1) = di(k)+Qi(k)− r i(k)

si(k) = βi(k) f out
i (k)

r i(k) =
min(ci(k), w̄i+1(k)(nJ

i+1−ni+1(k)))

ci(k)
di(k) (5.3)

The above equations represent the model evolution for an interior link. In the case of the first link
(Link 0), f in

i = Q0 and for the last link, under free-flow conditions,f out
i (k) = ni(k)v̄i(k).
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The on-ramp and off-ramp flows/demands affect the dynamics of the freeway through the ef-
fective demands. Hence, from the point of view of the freewaymainline dynamics, given the
effective demand, the on-ramp and off-ramp flows provide no additional information for the sim-
ulation process. We take advantage of this fact in the imputation algorithm, and first estimate the
effective demands before obtaining the individual ramp flows.

The update equation for any particular link can be represented as a four mode piecewise non-
linear model for density evolution. Each link on the freewayhas a four mode update equation, and
the modes are dependent on the flow conditions at the input andoutput node. Flow conditions at
Node i −1 (i.e. the in-flow into Linki and flow out of Linki −1) is said to be in congestion if
ci−1(k)> w̄i(k)(nJ

i −ni(k)), otherwise it is in free-flow. Considering the possibility of occurrence
of one of the two modes in the input and output nodes of a link, the density evolution can be
described by a four mode update model, where the modes will bereferred as FF, FC, CC ,CF (C-
congestion, F- free flow) with the first (second) letter specifying the input (output) node conditions.
The model evolution in these four modes can be written as

ni(k+1) = ni(k)+ci−1(k)−ni(k)v̄i(k) -FF

ni(k+1) = ni(k)+ci−1(k)−ni(k)v̄i(k)
w̄i+1(k)(nJ

i+1−ni+1(k))

ci(k)
-FC

ni(k+1) = ni(k)+ w̄i(k)(n
J
i −ni(k))−ni(k)v̄i(k)

w̄i+1(k)(nJ
i+1−ni+1(k))

ci(k)
-CC

ni(k+1) = ni(k)+ w̄i(k)(n
J
i −ni(k))−ni(k)v̄i(k) -CF (5.4)

From the above equations, we see that the effective demand corresponding to a Nodei appears
in the density evolution equation of Linki or Link i +1 (not both) depending on whether the node
conditions are in free-flow or congestion. This means that the demands may be observable from
the densities of the link before/after the ramp locations, depending on the traffic mode. Also, the
mode is itself dependent on the effective demand, which means that an incorrect estimate of the
effective demands can possibly lead to density evolution inthe wrong mode. Finally, we also note
that the density update equations are either a linear or a non-linear function of the effective demand
depending on the congestion mode. All these factors dictatethat any estimation procedure needs
to simultaneously estimate these effective demands for theentire freeway, and the non-linearity
prevents us from performing the imputation section-wise like the procedure adopted for the ACTM
imputation.

5.2 The Imputation Algorithm

The imputation algorithm is based on the four-mode model presented in the previous section. The
algorithm estimates ramp flows that replicate observed freeway behavior, captured by the freeway
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density and flow measurements. Formally, the problem can be stated as :
Problem. Estimate ramp demands, ramp input flows and split ratio profiles (d̂i(k),Q̂i(k), β̂i(k),
k = 1· · ·K and i= 1· · ·N) such that the model evolution (Eq.(5.3) ) using these estimates repli-
cate the given flow and density measurements (ni(k), fmeas

i (k)) obtained from detectors along the
freeway mainline.

In contrast to the imputation algorithm based on the ACTM , which simultaneously tries to
match the density and flow profiles, we split the problem into two steps. From the density evolution
equations, we can see that the on-ramp flows and off-ramp split ratios have a combined effect
captured by the effective demand function. In the first step,we will estimate the effective flow
demand functionci(k) with the function estimate ˆci(k) and then extract the on-ramp flows and
off-ramp split ratio functions.

Estimation of the effective demands

The density evolution (Eq. (5.3)) along the freeway can be completely specified using the effec-
tive demand profile. The first step of the imputation algorithm computes the unknown effective
demands for the entire freeway section by allowing the modelcalculated density profiles to track
the measured density profiles.

This contrasts the section-wise procedure adopted for the ACTM based imputation algorithm
because the LN-CTM does not offer the same decoupling properties as the ACTM. In particular,
the LN-CTM has both input and state non-linearity and it doesnot have the piecewise linear density
update structure of the ACTM. This imputation algorithm also improves on some of the assump-
tions used in the ACTM algorithm. First, we directly presentthe algorithm in discrete time, and
the convergence results are also presented in discrete time. Secondly, the ACTM imputation algo-
rithm required the density evolution profiles to be 24-hour periodic, so that an adaptive repetitive
(periodic) algorithm can be used to estimate the (periodic)ramp flow parameters. The algorithm
presented here does not utilize that assumption, and is based on an adaptive learning algorithm
where exact re-initialization of the initial conditions isused. This class of adaptation algorithms,
which requires exact re-initialization of the initial conditions are generally known as adaptive it-
erative learning laws and have been widely used in robotics and other mechatronics applications
[74, 61]. Given initial estimates for the effective demands(ĉ0

i (k),k= 1· · ·K, i = 1, · · ·N−1), we
run the model for the given simulation period, and simultaneously adaptively estimate the param-
eters to decrease the density errors. This forms a single iteration of the algorithm. The procedure
is iterated with exact re-initialization of the initial state of the link densities. Unlike many iterative
control applications, exact re-initialization does not pose a problem here, since initial conditions
are usually specified in the simulation model. In fact, in ourcase, the initial conditions are the
density measurements at the start time. Finally, the current algorithm can be applied to situations
where partial profiles are known.

We will distinguish between actual measured variables and their estimates by placing a hat on
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top of the estimates. Moreover, since the effective demand function estimates will be updated at
each simulation iteration by an adaptive iterative learning algorithm, we will introduce the super-
script j to denote the iteration index. For example, the density (number of vehicles) in Linki at
periodk estimated by the model at iterationj will be denoted by ˆn j

i (k), in order to differentiate
it from the actual measured number of vehiclesni(k)1. According to our model, at each node
there is at most one on-ramp and one off-ramp. If both the on-ramp demand and the off-ramp
split ratio are measurable during some time instants, then the effective demand function estimate
can be calculated by ˆc j

i (k) = n̂ j
i (k)v̂

j
i (k)(1−βi(k))+di(k). By contrast, if either the on-ramp or

the off-ramp flow measurements are not available and need to be imputed at the time instantk,
the effective demand function estimate ˆc j

i (k) will have to be imputed using the adaptive iterative
learning algorithm. LetIi(k) = 1 denote that the effective demand functionci is imputed at time
instantk, while Ii(k) = 0 denotes that the ramp measurements are available.

As discussed above, within each iteration we adaptively estimate the effective demand function
estimates ˆc j

i (k) at each simulation time step. The demand function estimatesare used in turn to
update the density (number of vehicle) estimates and their corresponding estimation errors. Two
different density estimates (and their corresponding errors) will be generated: the a-priori estimates
and the a-posteriori estimates. A-priori density estimates are generated by applying the effective
demand function estimates from the previous iteration (i.e. ĉ j−1

i (k), where j is the current iteration
index) to the density update equation. In contrast, A-posteriori density estimates use the demand
function estimates from the current iteration (i.e. ˆc j

i (k), where j is the current iteration index). In
the formulae that follow, a-priori errors are represented by placing a tilde and a ‘o’ (e.g. ñ j ,o

i (k))
while a-posteriori errors estimates and actual a-posteriori errors are represented with a bar (e.g.
n̄ j

i (k)) and tilde (e.g. ˜n j
i (k)).

It is assumed that effective demand estimates are bounded 0< cmin < ĉi(k) < cmax< ∞ with
known boundscmin,cmax. Any non-zero feasible initial estimates are allowed (e.g.ĉ j

i = cmin for j =

0). Also exact re-initialization implies ˆn j
i (0) = ni(0) ∀i = 1...N.

M j
i (k) = sign(ĉ j−1

i−1 (k)− ŵ j
i (k)(n

J
i − n̂ j

i (k)))

M̄ j
i (k) = sign(ĉ j

i−1− ŵ j
i (k)(n

J
i − n̂ j

i (k)))

determine the a-priori and a-posteriori mode (congested / free-flow conditions) corresponding to
flows in Nodei (from Link i −1 to Link i). It can be seen thatM j

i (k) = 1 under congested flow
conditions, andM j

i (k) =−1 under free-flow conditions. WhenM j
i (k) = 0, the flow conditions can

either be interpreted as congested or free-flow.

The adaptation equations at the simulation step (k) and iteration (j) involves the following
sequence of steps, for each link:

(a) Compute the a-priori density errors for Link i, ñ j ,o
i (k+1) and congestion modesM j

i (k)

1The jam number of vehicles of Linki is denotednJ
i , which is a constant parameter.
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and M j
i+1(k) for the corresponding upstream and downstream node pairs (i, i +1):

ñ j ,o
i (k+1) = ni(k+1)−g(n̂ j

i (k), ĉ
j−1
i−1 (k), ĉ

j−1
i (k), n̂ j

i+1(k))

M j
i (k) = sign(ĉ j−1

i−1 (k)− ŵ j
i (k)(n

J
i − n̂ j

i (k)))

M j
i+1(k) = sign(ĉ j−1

i (k)− ŵ j
i+1(k)(n

J
i+1− n̂ j

i+1(k))) (5.5)

where the functiong(·) is defined in Eq. (5.2).

(b) Compute a-posteriori density error estimate. This depends on the a-priori congestion
mode (for example, in FC mode bothci−1(k) and ci(k) affect link density).

SetΛi, j
1 = 0 and Λi, j

2 = 0

i f M j
i (k)< 0 or

(

M j
i (k) = 0 andñ j ,o

i−1(k+1)≤ 0
)

Λi, j
1 = G1× Ii−1(k)

i f M j
i+1(k)> 0 or

(

M j
i+1(k) = 0 andñ j ,o

i (k+1)> 0
)

Λi, j
2 = G2× Ii(k)ŵ

j
i+1(k)(n

J
i+1− n̂ j

i+1(k)))× n̂ j
i (k)v̂

j
i (k)

n̄ j
i (k+1) =

ñ j ,o
i (k+1)

1+Λi, j
1 +Λi, j

2

(5.6)

If the effective demand function corresponding to a particular node is not imputed, we see that the
corresponding termΛi, j

1 /Λi, j
2 is set to zero. We are able to calculate the a-posteriori error estimate,

without knowing the effective demand estimate at the current iteration. This is possible through
mathematical manipulations that are commonly used in the adaptive control literature. This result
will be derived in detail in the next section when we analyze the properties of this algorithm.

(c) Update effective demand estimates using the a-posteriori density estimate.

i f Λi, j
1 > 0

ĉ j
i−1(k) = max

(

cmin,min
(

ŵi(n
J
i − n̂ j

i (k)),ct,1

))

wherect,1 = ĉ j−1
i−1 (k)+G1n̄ j

i (k+1)

Ḿ j
i (k) = 0
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i f Λi, j
2 > 0

ĉ j
i (k) =

1

min

(

1
ŵ j

i+1(k)(n
J
i+1−n̂ j

i+1(k))
,max

(

1
cmax

, 1
ct,2

)

)

wherect,2 =
1

1/ĉ j−1
i−1 (k)−G2n̄ j

i (k+1)

Ḿ j
i+1(k) = 1

n̂ j
i (k+1) = g(n̂ j

i (k), ĉ
j
i−1(k), ĉ

j
i (k)) (5.7)

From the previous step, we note thatΛi+1, j
1 ×Λi, j

2 = 0. This implies that ˆci is updated with density
errors corresponding to either Linki or Link i +1, not both. As seen in Eq. (5.4), the current con-
gestion mode, determined by the effective demand estimate ˆc j−1

i (k) from the previous iteration,
determines whether changes in the effective demand estimate affect the density equations of Link
i or Link i +1. The effective demand estimates are updated using the density errors of the Link
directly affected by its changes. This guarantees that the a-posteriori errors are not larger than the
a-priori errors. The bounds used for the update equations (Eq. (5.7)) ensure that the a-posteriori
mode is the same as the a-priori mode (i.e.M̄ j

i (k)×M j
i (k) ≥ 0), so that the update equations can

exploit the piecewise nonlinearity structure of the state equations. This ensures that any changes
in the effective demand parameter estimates only affect thedensity errors of the link which is used
in its update equations. WhenM j

i (k) = 0 (the flow is both free-flow and congested), the update
is chosen to ensure that parameter updates at-least decrease the error in the assigned link, as seen
in Eq. (5.6).Ḿ j

i (k) is used to capture the congestion mode corresponding to the updates used. It
equals 0 or 1 depending on whether the updates are carried outunder the first (free-flow)/second
(congested) conditions in Eq. (5.7). When the effective demand estimate is not imputed at a par-
ticular time step, we set́M j

i (k) = 1, if ĉ j−1
i (k)≤ ŵ j

i (k)(n
J
i − n̂ j

i (k))) and 0 otherwise.

(d) Calculate a-posteriori density estimate, which can be used in the next simulation step.

n̂ j
i (k+1) = g(n̂ j

i (k), ĉ
j
i−1(k), ĉ

j
i (k))

ñ j
i (k+1) = ni(k+1)− n̂ j

i (k+1) (5.8)

The a-posteriori density error estimate ¯ni(k) is different from the actual a-posteriori error ( ˜ni(k)),
since the updates adhere to the minimum and maximum bounds. If the bounds are not enforced
(active) during the update procedure, then these will be thesame.

At any iteration, we execute the four steps detailed above for each of the links at the current
time periodk. This provides the initial conditions to execute the updateequations for the next time
periodk+1, where the process is repeated. Whenk= K, the current iteration is finished, and we
move on to the next iteration. At the start of any iteration, we execute the exact re-initialization
condition

n̂ j
i (0) = ni(0) ∀i = 1...N
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which gives us the initial condition for link density estimates. We execute multiple iterations until
the density errors across all links (∑k |n(k)− n̂(k)|) becomes insignificant, i.e.,

∑
k

|ñ(k)|< 0.005×∑
k

n(k)

or stop decreasing,

∆

(

∑
k

|ñ(k)|

)

< 0.005×∑
k

n(k)

where∆(.) is the change in errors across iterations.

The four steps presented above can be elaborated into different update equations for each of
the four modes (FF/FC/CF/CC). It is interesting to note thatin the case of the CF mode, the update
equations do not depend on either ˆci or ĉi−1 and hence the a-posteriori error will equal the a-priori
error when this congestion mode is in effect. In contrast, inthe FC mode, both ˆci andĉi−1 affect the
density estimate. The update equations are decentralized,local updates only require knowledge of
local modes, not the actual mode of the entire system. This isa desirable feature as the total number
of modes in the entire systems is 2N, which grows as size of the freeway increases. Finally, its easy
to see that density measurements are only needed in links when the ramps in the input node/output
node need to be imputed.

The adaptive iterative algorithm presented above can incorrectly converge to some modes. The
most common occurrence is the incorrect convergence in the CF mode, where none of the ramps
are affected by the density errors, and incorrect convergence in this mode (at some links) cannot
be thwarted by allowing more iterations of the algorithm. Inthese cases, it is possible to identify
(after the algorithm converges), the “actual” mode of the link and reset the parameter updates to
ensure correct convergence. There exists principled (though theoretically slow) methods to ensure
perfect convergence when an input profile exists which can follow the given profiles. However, in
most of the cases, due to noisy/incorrect measurements, noci exists, satisfyingcmin< ci(k)< cmax,
that allows the system to track the measured density profiles. Hence, we need to resort to heuristic
methods. Here we list a heuristic method that has worked wellin practice.

Trigger Algorithm

∀ i,k s.t. ñ j
i (k+1)> tolerance, Ii−1(k) = 1, Ii(k) = 1 Ḿ j

i (k) = 1, Ḿ j
i+1(k) = 0

set ĉ j
i (k) = ϒ1ŵ j

i+1(k)(n
J
i+1−n j

i+1(k))

∀ i,k s.t. ñ j
i (k+1)<−tolerance, Ii−1(k) = 1, Ii(k) = 1 Ḿ j

i (k) = 1, Ḿ j
i+1(k) = 0

set ĉ j
i−1(k) = ϒ2ŵ j

i (k)(n
J
i −n j

i (k))
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∀ i,k s.t. ñ j
i (k+1)> tolerance, Ii−1(k) = 0, Ii(k) = 1, Ḿ j

i+1(k) = 0

set ĉ j
i (k) = ϒ1ŵ j

i+1(k)(n
J
i+1−n j

i+1(k))

∀ i,k s.t. ñ j
i (k+1)<−tolerance, Ii−1(k) = 1, Ii(k) = 0 Ḿ j

i (k) = 1

set ĉ j
i−1(k) = ϒ2ŵ j

i (k)(n
J
i −n j

i (k))

whereϒ1 > 1 andϒ2 < 1 are positive reset factors. The first two resets presented above correspond
to the condition when linki gets stuck in the CF mode. These resets are made according to the sign
of the error, so as to ensure that the algorithm is able to decrease the errors in future iterations, by
modifying the effective demand estimates which are triggered. A similar situation arises when one
of the demand estimates is known and not imputed. These casesare captured by the last two reset
conditions.

With the trigger algorithm in place, we summarize the complete algorithm below :

Step a : Assume initial estimates

Step b : Iterate until rate of change of errors is below tolerance

Stop if error is within tolerance, otherwise go to Step c

Step c : Trigger and go back to step b.

As we execute multiple triggers, there is a possibility thatthe errors can increase after a particular
trigger is executed. This mostly happens due to the inherentnoise present in the measurements. In
this case, the best results across iterations are used.

Estimation of the on-ramp flows and off-ramp split ratios

Once the effective demands are estimated for all sections, we need to extract the on-ramp demand
and off-ramp split ratios from the effective demand vector.In order to ensure that the on-ramp flow
and off-ramp splits track the dynamics obtained using the effective demand parameter estimate, we
require that that̂βi(k) and d̂i(k) satisfy, ĉi(k) = n̂i(k)v̂i(k)(1− β̂i(k))+ d̂i(k) at all time instants,
wheren̂i(k) is the density profile obtained using ˆci(k) in the model equations. With this constraint
it can be seen that ramp demand and split ratio estimates are non-unique, unless either (a) On-ramp
flows/demands are known (b) Off-ramp flows/splits are measured (c) Mainline flow in between the
on-ramp and the off-ramp, are available or (d) one of the ramps are absent. Figure 5.1 illustrates
the position of the mainline detector, from which flow data isavailable. On-ramp detectors are
usually placed at the entrance into the freeway, and hence they measure on-ramp exit flow, not the
on-ramp input demand. Off-ramp detectors are placed near the off-ramp entry.

When any of the measurements listed above are available, we can frame the problem as a
linear program. The structure of the linear program dependson whether the node is in free-
flow/congestion. In both cases, depending on which measurements are available, the objective
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Figure 5.1: Decouple on-ramp and off-ramp flows.

of the linear program can be written as,

J1 = |( f̂ in
i+1(k)− f meas

i+1 (k))− r̂ i+1(k)|+ |( f̂ out
i (k)− f meas

i+1 (k))− ŝi+1(k)|

J2 = |r i+1(k)− r̂ i+1(k)|

J3 = |si+1(k)− ŝi+1(k)|

J4 = |( f̂ in
i+1(k)− f meas

i+1 (k))− r̂ i+1(k)|+ |( f̂ out
i (k)− f meas

i+1 (k))− ŝi+1(k)|+α|si+1(k)− ŝi+1(k)|

J5 = |( f̂ in
i+1(k)− f meas

i+1 (k))− r̂ i+1(k)|+ |( f̂ out
i (k)− f meas

i+1 (k))− ŝi+1(k)|+α|r i+1(k)− r̂ i+1(k)|
(5.9)

f̂ in
i+1(k) and f̂ out

i (k) are obtained using ˆci(k) in the model equations.α ≥ 1 is used to increase the
weight of the errors in ramp flows in the last two objectives. we The optimization problem for
decoupling the ramp flows is given by

Free-flow

min J∗

s.t ĉi(k) = n̂i(k)v̂i(k)− ŝi(k)+ r̂ i(k)

r̂ i(k)≥ dmin(k)

ŝi(k), r̂ i(k)≥ 0

In the case of free-flow, ˆr i(k) = d̂i(k) andβ̂i(k) =
ŝi(k)

n̂i(k)v̂i(k)
.

Congestion

min J∗

s.t ĉi(k) = n̂i(k)v̂i(k)− f̂ r i(k)+ d̂i(k)

ŝi(k) =
ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k))

ĉi(k)
f̂ r i(k)

r̂ i(k) =
ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k))

ĉi(k)
d̂i(k)

d̂i(k)≥ dmin(k)

ŝi(k), r̂ i(k)≥ 0
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In the case of congested conditions, we can obtain the split ratio estimate aŝβi(k) =
f̂ r i(k)

n̂i(k)v̂i(k)
.

In both the problems abovedmin(k) = d̂i(k− 1)− r̂ i(k− 1) k = 2..N with dmin(0) = dinit

wheredinit denotes the initial condition of the system. This variable tracks the residual demand
from the previous time instant. Finally, the on-ramp input flows can be calculated aŝQi(k) =
d̂i(k+1)− (d̂i(k)− r̂ i(k)).

5.3 Convergence Analysis

The imputation algorithm presented here has been designed in view of obtaining favorable con-
vergence properties. This is particularly beneficial to certify the performance of the algorithm in
relatively unsupervised applications. We analyze the firststep of the imputation algorithm, in-
volving the adaptive iterative estimation of effective demands. The first important property we
will explore is the boundedness and convergence of the density errors and the effective demand
estimates. The change in density across iterations is givenby

n̂ j
i (k+1)− n̂ j−1

i (k+1) = n̂ j
i (k)−n̂ j−1

i (k)+
(

f in
i (ĉ j

i−1(k), n̂
j
i (k))− f in

i (ĉ j−1
i−1 (k), n̂

j−1
i (k))

)

−
(

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k))
)

(5.10)

The following lemmas will be useful for analyzing the equations above.

Lemma 5.3.1.The following two relations hold

ŵ j
i (k)(n

J
i − n̂ j

i (k))− ŵ j−1
i (k)(nJ

i − n̂ j−1
i (k)) =−η j

1(k)Wi(n̂
j
i (k)− n̂ j−1

i (k))

n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k) = η j

2(k)Vi(n̂
j
i (k)− n̂ j−1

i (k))

where0≤ η j
1(k),η

j
2(k)≤ 1.

To analyze the error equation Eq. (5.10), we need to simplifythe expressions for input flow
difference and output flow difference across iterations. Weanalyze each term separately in the
following lemmas.

Lemma 5.3.2.For the imputation algorithm defined in the previous section, when effective demand
parameter ci−1(k) is imputed (i.e. Ii−1(k) = 1),

f in
i (ĉ j

i−1(k), n̂
j
i (k))− f in

i (ĉ j−1
i−1 (k), n̂

j−1
i (k))

= (1− Ḿ j
i )(ĉ

j
i−1(k)− ĉ j−1

i−1 (k))−ζ j ,1
i (k)Wi(n̂

j
i (k)− n̂ j−1

i (k))

where0≤ ζ j ,1
i (k)≤ 1.
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Lemma 5.3.3.For the imputation algorithm defined in the previous section, when effective demand
parameter ci−1(k) is not imputed,

∃0≤ α j ,1
i (k),ζ j ,1

i (k)≤ 1s.t

f in
i (ĉ j

i−1(k), n̂
j
i (k))− f in

i (ĉ j−1
i−1 (k), n̂

j−1
i (k)) =

α j ,1
i (k)(n̂ j

i−1(k)− n̂ j−1
i−1 (k))Vi −ζ j ,1

i (k)(n̂ j
i (k)− n̂ j−1

i (k))Wi

Definingα j ,1
i (k) = 0 whenIi−1(k) = 1, we can combine the results from the two lemmas above to

get

f in
i (ĉ j

i−1(k), n̂
j
i (k))− f in

i (ĉ j−1
i−1 (k), n̂

j−1
i (k)) = h1

i (k)+ Ii−1(k)(1− Ḿ j
i )(ĉ

j
i−1(k)− ĉ j−1

i−1 (k))

where, h1
i (k) =−ζ j ,1

i (k)Wi(n̂
j
i (k)− n̂ j−1

i (k))+α j ,1
i (k)(n̂ j

i−1(k)− n̂ j−1
i−1(k))Vi−1 (5.11)

Lemma 5.3.4.For the imputation algorithm, when Ii(k) = 1,

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k))

= ζ j ,2
i (k)Vi(n̂

j
i (k)− n̂ j−1

i (k))−ζ j ,3
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

ŵi+1(n̂
j
i+1(k)− n̂ j−1

i+1 (k))

+ Ḿ j
i+1ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k)))n̂
j
i (k)v̂

j
i (k)

[

1

ĉ j
i (k)

−
1

ĉ j−1
i (k)

]

where0≤ ζ j ,2
i (k),ζ j ,3

i (k)≤ 1.

Lemma 5.3.5.For the imputation algorithm, when Ii(k) = 0,

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1 (k))

= ζ j ,2
i (k)Vi(n̂

j
i (k)− n̂ j−1

i (k))−ζ j ,3
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

wi+1(n̂
j
i+1(k)− n̂ j−1

i+1 (k))

−α j ,2
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

[

(n̂ j
i (k)− n̂ j−1

i (k))
]

whereĉ j
i (k) = n̂ j

i (k)v̂
j
i (k)(1−βi(k))+di(k) and0≤ ζ j ,2

i (k),ζ j ,3
i (k),α j ,2

i (k)≤ 1.
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Again, we defineα j ,2
i (k) = 0 whenIi(k) = 1 and combine the lemmas above to get

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k))

= h2
i (k)+ Ii(k)Ḿ

j
i+1ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k))n̂
j
i (k)v̂

j
i (k)

[

1

ĉ j
i (k)

−
1

ĉ j−1
i (k)

]

h2
i (k) = ζ j ,2

i (k)Vi(n̂
j
i − n̂ j−1

i )−ζ j ,3
i (k)

n̂ j
i v̂

j
i

ĉ j−1
i (k)

wi+1(n̂
j
i+1(k)− n̂ j−1

i+1 (k))

−α j ,2
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

[

(n̂ j
i − n̂ j−1

i )
]

(5.12)

We present the proofs to these lemmas in Section 5.6.

Lemma 5.3.6.Consider the parameter updates corresponding to Link i in Eq. (5.7). There exists
0≤ Γi, j

1 (k)≤ G1 and0≤ Γi, j
2 (k)≤ G2 such that

i f Λi, j
1 > 0

ĉ j
i−1(k) = ĉ j−1

i−1 (k)+Γi, j
1 (k)ñ j

i (k+1)

i f Λi, j
2 > 0

1

ĉ j
i (k)

=
1

ĉ j−1
i−1 (k)

−Γi, j
2 (k)ñ j

i (k+1)

The derivation of this lemma is presented in Section 5.6. In the proof of this lemma, we show
how the a-posteriori density error estimates are obtained only using the a-priori density error es-
timates. In the next theorem, we detail how the imputation algorithm has estimates with bounded
errors during any iteration.

Theorem 5.3.1.Given 0 < ni(k) < nJ
i ∀ i ∈ 1, ...,N, the imputation algorithm ensures that the

density errors are bounded. In particular,|ñ j
i (k)|< nJ

i ∀i ∈ 1, ...,N across all iterations.

Proof. To prove this theorem we will first prove that 0< n̂ j
i (k)< nJ

i ∀ i ∈ 1, ...,N holds during any
iteration. For a given iterationj, we can prove the preceding claim using induction onk, the time
index. Since ˆn j

i (0) = ni(0)∀i, the claim holds fork = 0. Assume 0< n̂ j
i (k) < nJ

i for somek. We
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also note that 0< cmin< ĉ j
i < cmax< ∞ using the update laws. Then for periodk+1,

n̂i(k+1) = n̂ j
i (k)+ f in

i (ĉ j
i−1(k), n̂

j
i (k))− f out

i (ĉ j
i (k), n̂

j
i (k), n̂

j
i+1(k))

0< f in, j
i (k)< ŵ j

i (n
J
i − n̂ j

i (k)) and f out, j
i (k) = η1n̂ j

i (k)v̂
j
i (k)≥ 0 where 0≤ η1 ≤ 1

=⇒ n̂ j
i (k+1)≤ n̂i(k)+ f in

i (ĉ j
i−1(k), n̂

j
i (k))≤ n̂i(k)+ ŵ j

i (n
J
i − n̂ j

i (k))

< n̂i(k)+(nJ
i − n̂ j

i (k)) = nJ
i

and,n̂ j
i (k+1)≥ n̂ j

i (k)−η1n̂ j
i (k)v̂

j
i (k)> 0

Hence 0< n̂ j
i (k) < nJ

i ∀i ∈ 1, ...,N by induction. Since 0< ni(k) < nJ
i ∀ i ∈ 1, ...,N, we see that

|ñ j
i (k)|< nJ

i ∀ i ∈ 1, ...,N for any iteration.

Substituting the results from Eq. (5.11) and Eq. (5.12) intoEq. (5.10), we see that

n̂ j
i (k+1)− n̂ j−1

i (k+1) = n̂ j
i (k)− n̂ j−1

i (k)+ Ii−1(k)(1− Ḿ j
i )(ĉ

j
i−1(k)− ĉ j−1

i−1 (k))+h1
i (k)

+h2
i (k)− Ii(k)Ḿ

j
i+1ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k)))n̂
j
i (k)v̂

j
i (k)

[

1

ĉ j
i (k)

−
1

ĉ j−1
i (k)

]

Collecting terms and noting that ˜n j
i (k)− ñ j−1

i (k) = n̂ j−1
i (k)− n̂ j

i (k), we get

ñ j
i (k+1)− ñ j−1

i (k+1) = (ñ j
i (k)− ñ j−1

i (k))

(

1−ζ j ,1
i (k)Wi −ζ j ,2

i (k)Vi +α j ,2
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

)

−α j ,1
i (k)(ñ j

i−1(k)− ñ j−1
i−1 (k))Vi−1+ζ j ,3

i (k)
n̂ j

i (k)v̂
j
i (k)

ĉ j−1
i (k)

wi+1(ñ
j
i+1(k)− ñ j−1

i+1 (k))

− Ii−1(k)(1− Ḿ j
i )(ĉ

j
i−1(k)− ĉ j−1

i−1 (k))

+ Ii(k)Ḿ
j
i+1ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k)))n̂
j
i (k)v̂

j
i (k)

[

1

ĉ j
i (k)

−
1

ĉ j−1
i (k)

]

(5.13)

Finally, substituting Lemma 5.3.6 and re-arranging the terms,

ñ j
i (k+1)(1+ Ii−1(k)Γ̄

i, j
1 (k)+ Ii(k)Γ̄

i, j
2 (k))− ñ j−1

i (k+1)

= (ñ j
i (k)− ñ j−1

i (k))

(

1−ζ j ,1
i (k)Wi −ζ j ,2

i (k)Vi +α j ,2
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

)

−α j ,1
i (k)(ñ j

i−1(k)− ñ j−1
i−1 (k))Vi−1+ζ j ,3

i (k)
n̂ j

i (k)v̂
j
i (k)

ĉ j−1
i (k)

wi+1(ñ
j
i+1(k)− ñ j−1

i+1 (k)) (5.14)
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where

Γ̄i, j
1 (k) = (1− Ḿ j

i )Γ
i, j
1 (k)

Γ̄i, j
2 (k) = Ḿ j

i+1Γi, j
2 (k)ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k))n̂
j
i (k)v̂

j
i (k)

Γ̄i, j(k) = Ii−1(k)Γ̄
i, j
1 (k)+ Ii(k)Γ̄

i, j
2 (k)

Taking norm on both sides and using the triangular inequality we get,

|ñ j
i (k+1)(1+ Γ̄i, j(k))− ñ j−1

i (k+1)| ≤ ε j
i (k) (5.15)

ε j
i (k) =

(

1+
Fi

cmin

)

|ñ j
i (k)− ñ j−1

i (k)|+
Fi

cmin
|ñ j

i+1(k)− ñ j−1
i+1(k)|+ |ñ j

i−1(k)− ñ j−1
i−1(k)|

ε j
i (k)≥ 0∀k

From the equations above, we can also get

|ñ j
i (k+1)| ≤

|ñ j−1
i (k+1)|

(1+ Γ̄i, j(k))
+ ε j

i (k)

and|ñ j
i (k+1)| ≤ |ñ j−1

i (k+1)|+ ε j
i (k) (5.16)

Theorem 5.3.2.For the imputation algorithm defined in(5.8) the error equations and the demand
estimates are bounded and convergent.

Proof. From Theorem 5.3.1 and the update equations, we can easily see that the error equations
and demand estimates are bounded. We will prove the convergence of the error equations using
induction on time indexk and link indexi. Clearly,ñ j

i (0)= 0∀i, j, and hence ˜n j
i (0) converges along

iteration axis. Suppose ˜n j
i (p) converges∀p≤ k and∀i , we will prove that ˜n j

i (k+1) converges.

Sinceñ j
i (k) converges for alli, lim j→∞ ε j

i (k) = 0. From (5.16), we also get thatlimsupj→∞

|ñ j
i (k+1)|− |ñ j−1

i (k+1)| ≤ 0. In addition|ñ j
i (k+1)(1+ Γ̄i, j(k))− ñ j−1

i (k+1)| → 0 as j → ∞, as
seen from Eq. (5.15).

Givenñ0
i (k+1), we can see that eq. (5.14) generates bounded sequencesa j ,g j with a j = ñ j

i (k+
1) andg j = Γ̄i, j(k). Thus, there exists a convergent subsequencea jp such that limp→∞ a jp = ā1,
where jp, p ∈ N , jk < jk+1 ∀k ∈ N. Since the sequence is bounded, there exists another sub-
sequence that converges to ¯a2 6= ā1 if the sequence is not convergent. However, from (5.16)
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we get limsupj→∞|a j | − |a j−1| ≤ 0. This implies that|ā2| = |ā1|. In addition, we also have

|a j(1+g j)−a j−1|
j→∞
−−−→ 0, where(1+g j) ≥ 1 which implies that ¯a2 = ā1 = ā. This contradicts

our assumption that ¯a2 6= ā1 and therefore the sequencea j is convergent (a j
j→∞
−−−→ ā). Howeverā

is not necessarily zero. If ¯a 6= 0, since|a j(1+g j)−a j−1|
j→∞
−−−→ 0, we get thatg j

j→∞
−−−→ 0.

Henceñ j
i (k+1) converges to a limit (which is not necessarily zero), whenever ñ j

i (k) converges.
We also see thatc j

i (k) converges, since either ˜n j
i (k+1) or Γ̄i, j(k) converges to 0 ∀i. Hence by

induction, the above theorem is true.

It is to be noted that no restrictions have been assumed with regards to the actual profileni(k+
1) (except 0≤ ni(k+1)≤ nJ

i ). In fact, it might happen that no feasible inputs exist for driving the
system to follow the profile. In this case, the algorithm converges with non-zero profile tracking
errors. However, one must also note that even if an input signal profile exists for tracking the
given profile, the algorithm need not necessarily converge with zero errors. The following lemma
provides some insight into this. Let us denote the convergedestimates by ˆni(k),ĉi(k) (i.e. we drop
the iteration indexj).

Lemma 5.3.7.Let ci , cmin< ci(k)< cmaxbe the effective demand parameter that can exactly track
the given density profile. Suppose at some time k,ñp(k) = 0, p = i, i +1, i −1 andñi(k+1) 6= 0.
Then the following statements are true :

(a) Atleast Ii−1 = 1 or Ii = 1

(b) Ii−1 = 1 and Ii = 1 =⇒ Mi(k)> 0 and Mi+1(k)< 0

(c) Ii−1 = 1 and Ii = 0 =⇒ Mi(k)> 0 andñi(k+1)< 0

(d) Ii−1 = 0 and Ii = 1 =⇒ Mi+1(k)< 0 andñi(k+1)> 0

Also, in all the cases above, it is possible to modify the estimates and rerun the adaptation al-
gorithm to ensure convergence. In addition, in case (c) and (d) the estimates can be modified to
correspond to the “true” mode.

Proof. First we prove statement (a). SupposeIi−1 = 0 and Ii = 0, we have ˆcp(k) = cp(k), p=
i, i −1 since ˜np(k) = 0, p= i, i +1, i −1. Therefore, we have

g(n̂i(k), ĉi−1(k), ĉi(k), n̂i+1(k)) = g(ni(k),ci−1(k),ci(k),ni+1(k))

=⇒ ñi(k+1) = 0
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which contradicts our assumption. ThereforeIi−1 = 1 or Ii = 1.

To prove statement (b), we analyze all the four possible cases.

Case (i)Mi(k)< 0 andMi+1(k)> 0

This case corresponds to the FC mode. In this mode both ˆci−1(k) and ĉi(k) affect the density
update. Clearly, if ˜ni(k+ 1) 6= 0, then atleast one ofΓi, j

1 ,Γi, j
2 is non-zero. At steady state, the

algorithm will not converge in this mode with non-zero errors.

Case (ii)Mi(k)< 0 andMi+1(k)≤ 0

This case corresponds to the FF mode, and ˆci−1(k)<w(nJ
i − n̂i(k)). If ñi(k+1)>0, clearlyΓi, j

1 6= 0

which violates steady state assumptions. If ˜ni(k+1) < 0 andΓi, j
1 = 0, then ˆci−1(k) = cmin. But

this is not possible since∃ci−1(k) s.t. cmin < ci−1(k) < cmax which can track the density profile,
and ni(k+ 1) ≥ ni(k) + cmin− ni(k)v̄i(k) = n̂i(k+ 1), which conflicts with our assumption that
ñi(k+1)< 0.

Case (iii)Mi(k)≥ 0 andMi+1(k)> 0

This case is not possible by an argument similar to Case (ii).

Case (iv)Mi(k)> 0 andMi+1(k)< 0

Clearly, this case corresponds to the CF mode, where both ˆci(k) andĉi−1(k) do not affect the state
equations. Hence non-zero errors can exist. If ˜ni(k+1) > 0, we can set ˆci(k) > ŵi+1(k)(nJ

i+1−
ni+1(k)) (this is the only possible way to increase the density estimate) and restart the adaptation
algorithm. In fact, in this case the actual mode is either theFC or the FF mode, but we modify the
estimate to the FF mode. If ˜ni(k+1) < 0, we set ˆci−1(k)< ŵi(k)(nJ

i −ni(k)) before restarting. In
this case, the actual mode is either the CC or the FC mode, but we perturb the estimate to the CC
mode.

For statement (c), we can see that ˆci(k) = ci(k). Hence, for the system to converge in this case
with nonzero errors,Mi(k)> 0 which implies that ˜ni(k+1)< 0. This can be shown by considering
individual cases like the proof for statement (b). In this case we set ˆci−1(k) < ŵi(k)(nJ

i −ni(k)).
Statement (d) can be proven similarly. For this case, we reset the estimate ˆci(k) such that it satisfies
ĉi(k)> ŵi+1(k)(nJ

i+1−ni+1(k)) . In both these, the reset switches the link to the correct mode.

In all the cases discussed above, once the parameter resets are executed, we restart the iterations
(corresponding to the imputation algorithm). Ff we executethese modifications in an orderly
fashion (starting from the earliest time instantk, and executing from the most downstream link to
the first upstream link for each iteration and allowing the estimates to converge before executing
the next trigger), we can ensure that the estimates exactly track the measured profiles. This can be
seen as the trigger algorithm never changes the node estimate to the wrong mode, and each trigger
instance will at-least correct the mode in one of the nodes. Also, the subsequent iterations will
never switch the perturbed nodes back to the wrong mode. Hence the algorithm will converge after
at mostN ∗K triggers, whereN is the number of links andK is the total number of time steps in a
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single simulation run.

In the lemma above, we outlined the cases when the algorithm can converge with non-zero
density errors during the parameter updates. We also specified a provably convergent algorithm to
modify the estimates to ensure exact density tracking. In practice, the procedure is slow, since we
need to execute triggers in sequence both in time and space. The measurements also tend to be
noisy, and the assumptions of the algorithm are violated. The heuristic algorithm presented in the
previous section extends on the ideas presented here, with the following differences (i) We do not
enforceñp(k) = 0, p= i, i+1, i−1. before executing the trigger (ii) All triggers are simultaneously
executed (iii)There is a tolerance parameter, to account for errors. The heuristic method has worked
well in practice, and it usually leads to sufficient convergence within 5 instances of trigger updates.

Assuming noise-free measurements, suppose that we converge with zero density errors, the
total demand vector need not converge to its actual values. For the total demand vectors to converge
to the actual values, we first require that the mode of the linkconverges to the actual value. Table
5.1 lists the possible mode errors that occur even under conditions of zero density errors, when the
effective demands corresponding to the input and the outputnode is imputed. The table is obtained
by analyzing the reachable sets in each mode.

Actual Mode Mode Estimate Comments

CC FF Not possible, since this would lead to non-zero errors.
FF CC Not possible, since this would lead to non-zero errors.
CF FF/CC Not possible, since the parameter updates will switch the mode.
FF/CC CF Not possible, since this would lead to non-zero errors.
FF/CC/CF FC Possible.
FC FF/CC/CF Possible.

Table 5.1: Converged mode/ true mode misclassification.

If the converged mode of a particular link is incorrect, either the previous/next link also contains
an incorrect mode. To understand in detail, we need to consider the combined mode of the entire
freeway. At any time instant, the freeway can be divided intosections, with each section being in
congestion or free-flow. Thus the true mode can be written as F..FC..CF..FC..CF..F (where F...F
represents consecutive nodes with the free-flow mode), withthe boundaries in free-flow . The
modes in the imputation algorithm estimate can also be represented in a similar fashion. Assume
that each congestion section spans multiple (> 1) nodes. From the rules explained in Table 5.1, we
can see that convergence to the wrong mode might occur only atthe tail of the congestion section,
where the FC mode is prevalent. Moreover, the location of theincorrect “mode” convergence can
be determined to be around the location where the estimate converges to the FC mode. In this
case, the mode estimates disagree with the true modes in at-most two links. The first link is the
link at which the mode estimate is FC. The other link can either be the one before/after the first
link. Combining the rules in the table, we can see that only one of the two scenarios is possible
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(1) Actual mode : *FFC*, Mode Estimate: *FCC* or (2) Actual mode : *FCC*, Mode Estimate :
*FFC*.

In links where at least one of the affecting ramps measurements are available (i.e. one of
the effective demand estimates is available), the mode estimate converges to the correct mode. A
special case of this is when there are two adjacent detectorsin each freeway stretch between ramps.
In this case, the demand and split ratios are trivially known(since there are no ramps in between),
and they help in the parameter convergence. Clearly, since incorrect modes occur in pairs of links,
this means that incorrect convergence requires at least three contiguous effective demands to be
imputed. Even at locations where there are three contiguouseffective demands that are imputed
which can lead to convergence in the wrong mode as indicated in the table, it must be noted that
the density value might not be reachable using the dynamic equations of the wrong mode. As an
extreme example, at low densities, or during heavy congestion, the imputation procedure converges
in the correct mode.

Thus, for the imputation algorithm, the total demand vectorneed not converge to its true value
as : (a) the adaptive learning procedure does not ensure exact density profile matching due to
incorrect convergence in the CF mode (the application of thetrigger algorithm helps avoid this)
(b) Even in case the density profiles match, the mode estimatemight be different from the actual
congestion mode (c) It is not possible to uniquely determinethe total demand vector in the FC
mode, due to lack of observability. The FC mode is present at the upstream of the congestion
region, and it is usually transient as the congestion tail passes through the section.

Theorem 5.3.3.Assume that the measurements are noise-free. If the total demand vector converges
to its actual value, then the solution of the linear program will correspond to zero errors between
model calculated flows and measured flows. Moreover, the rampflow estimates will correspond to
the actual measurements.

Proof. The total demand vector is combination of the on-ramp demandand the off-ramp flow. We
can see that if any one of the objective functions given in Eq.(5.9) is chosen, we are provided
with measurements that can uniquely separate the demand vector into the components. Moreover,
the objective function is only minimized when all the flow (along the freeways and the on-ramps)
estimates agree with the measurements.

5.4 Examples

We present two examples of application of the imputation algorithm. Both these examples are
based on a 23 mile section (with 32 on-ramps and 26 off-ramps)of the I-210W freeway in Pasadena,
California. The geometry of the freeway gives rise to some constraints on the estimation procedure.
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In particular, not all nodes have both an on-ramp and an off-ramp. This corresponds to additional
constraints (bounds) on ˆc j

i (k) (e.g. ĉ j
i (k)≤ n̂ j

i (k)v̂
j
i (k) for sections without on-ramps). We run the

actual imputation algorithm without these constraints for10 iterations, to allow sufficient conver-
gence, and then apply these bounds during the update equations.
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Figure 5.2: Final density contours obtained after imputation.

The first example corresponds to the application of the imputation algorithm on a simulated
scenario. In this case, we know the exact on-ramp flows and off-ramp split ratios, which we
use to generate density and flow profiles using the LN-CTM model. After this, we assume that
some of the ramps (4 on-ramps and 11 off-ramps) need to be imputed, and estimate these using
the imputation algorithm. This example will demonstrate the ideal performance of the algorithm,
including the convergence of the estimates. Figure 5.2 shows the original simulated density (left)
and the converged density estimate of the imputation algorithm. It can be seen that the density
estimates have converged to their true values. This is clearly seen in Figure 5.3, which shows the

decrease in error across algorithm iterations

(

error = 100× ∑i,k |ñ
j
i (k)|

∑i,k ni(k)

)

. We execute the trigger

algorithm after iterations 5,9,12,15. If no triggers are executed, the error converges to 0.04%,
while after the resets, the error decreases to 0.003%.

Figure 5.4 plots the contour map of the difference between the original effective demand pa-
rameters and the estimated effective demand parameter. Figure 5.5 shows the location of the FC
mode. These figures demonstrate the theoretical analysis conducted in the previous section. We
see that in most cases, the effective demand parameters converge to the actual mode and the lack
of convergence occurs near the location of the FC mode. Moreover, it does not occur during all
the instances where the FC mode is active, since there are some density ranges where parameters



78

0 5 10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

Density Errors

Iteration No.

E
rr

or
 [%

]

Figure 5.3: Density errors across iterations.
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cannot converge in the wrong modes. Moreover, the presence of some measurements also helps in
the exact convergence of the effective demand parameters.
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Figure 5.6: Density error across iterations.

In the second example, measured data from loop detectors obtained from PeMS was used. 5
on-ramps and 12 off-ramps needed to be imputed and the sections with both on-ramp/off-ramp
measurements were not imputed. Figure 5.6 shows the decrease in errors across iterations. In this
case, the final error with trigger resets is 4.1% as compared to 9.1% final error obtained without any
heuristic resets. We also notice that after the trigger is executed in Iteration 12, there is an increase
in the error. In this case, we use the estimates corresponding to the best errors (i.e. estimates
from iteration 12, before the trigger algorithm is executed). Figure 5.7 and Figure 5.8 presents a
comparison of simulation results (obtained using imputed ramp flows/split ratios) with the loop
detector measurements. Heavy congestion regions (densitygreater than 300 veh/mile) are also
well captured in the simulation. The final density and flow errors for this simulation were 4.2%
and 9.37 % respectively.

5.5 Summary

In this chapter, we presented a model based imputation procedure to estimate the on-ramp flows
and off-ramp split ratios in a freeway section. The problem is solved in two steps, with the first
step employing an adaptive iterative learning procedure for estimation of the total demand vector
from the density measurements across the freeway. We presented a detailed convergence analysis
for this algorithm, and we derived an exact as well as a heuristic trigger algorithm to ensure good
convergence properties. We presented situations where theestimated effective demand parameter
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correctly tracks the actual effective demand parameter. This is also illustrated using a synthetic ex-
ample in the previous section. Once the effective demand parameters were obtained, we described
a linear program to decouple the on-ramp flows and off-ramp splits. We showed that by the ap-
propriate design of the objective cost function, we can ensure exact identification of the unknown
ramp flows if the effective demand parameters have convergedto the true values.

The imputation algorithm developed here is computationally fast. For example, for the models
shown in this dissertation, which involved imputing 24-hour ramp flow profiles for a freeway with
up to 30 links, the algorithm, programmed in MATLAB was executed within 5 minutes. We have
been able to explicitly solve the linear program, and deriveclosed form solutions for on-ramp flows
and off-ramp splits. It is easy to derive these on paper, but auser can also use multi-parametric
programs[3] to arrive at a solution. The use of these explicit solutions is necessary to achieve fast
computations. Before using these explicit solutions, we encountered computation times which ran
up to 0.5 hour for these cases.

In our experience, the imputation algorithm presented in this chapter is more ‘robust’ in com-
parison to the algorithm based on the ACTM. The imputation algorithm based on the ACTM is
executed section-wise. We have noticed that the algorithm converges with non-zero errors, since
measurement errors exist. Faulty detectors and faulty measurements also lead to significant errors
(after convergence) in some sections. Since we use actual measurements as boundary conditions in
the sectionwise imputation procedure, once the estimates obtained from each section is combined
and fed into the final model of the complete freeway, the simulations might have large errors, es-
pecially if there was an interior section with faulty measurements. Even nominally encountered
measurement errors might be amplified in the final simulation. We expect that the final results
deteriorate as number of links in the freeway increase. In comparison, the LN-CTM imputation
algorithm imputes all ramps simultaneously. Also, any iteration of the imputation algorithm is
actually a simulation of the entire freeway. This ensures that the errors of the imputation procedure
correspond to the actual errors of the final simulation. Thisis a very useful feature, particularly
when the imputation algorithm is used as a part of an automated calibration/model building rou-
tine. As we have stressed before, another advantage of the LN-CTM algorithm is that it is based
on a more reliable model of the the freeway traffic dynamics. The only drawback (as compared
to the ACTM imputation algorithm) is that there might be somelocations/time periods when the
ramp flow estimates might not converge to the true value, evenwhen measurement errors are non-
existent.
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5.6 Proofs

Proof of Lemma 5.3.1

Proof. The function min(Fi,Wi(nJ
i − n̂ j

i (k))) is concave and non-increasing. We use it to prove the
following.

ŵ j
i (k)(n

J
i − n̂ j

i (k))− ŵ j−1
i (k)(nJ

i − n̂ j−1
i (k))

= min(Fi ,Wi(n
J
i − n̂ j

i (k)))−min(Fi ,Wi(n
J
i − n̂ j−1

i j(k)))

Without loss of generality, assuming,Wi(n
J
i − n̂ j

i (k))≥Wi(n
J
i − n̂ j−1

i (k))

=⇒ 0≤ ŵ j
i (k)(n

J
i − n̂ j

i (k))− ŵ j−1
i (k)(nJ

i − n̂ j−1
i (k))≤Wi(n

J
i − n̂ j

i (k))−Wi(n
J
i − n̂ j−1

i (k))

=⇒ ŵ j
i (k)(n

J
i − n̂ j

i (k))− ŵ j−1
i (k)(nJ

i − n̂ j−1
i (k)) =−η j

1(k)Wi(n̂
j
i (k)− n̂ j−1

i (k))

Similarly, n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k) = η j

2(k)Vi(n̂
j
i (k)− n̂ j−1

i (k)).

Proof of Lemma 5.3.2

Proof. We consider four cases
Case (a) Ḿ j

i (k) = 1 andḾ j−1
i (k) = 1

f in
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j
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Case (b) Ḿ j
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i (ĉ j−1
i−1 (k), n̂

j−1
i (k)) = ŵ j
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Case (d) Ḿ j
i (k) = 0 andḾ j−1

i (k) = 1
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These cases generalize to the expression given in the lemma.

Proof of Lemma 5.3.3

Proof. We consider four cases
Case (a) Ḿ j
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i (k) = 1 andḾ j−1
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i (ĉ j−1
i−1 (k), n̂

j−1
i (k))

≥ (ŵ j
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i (k)(nJ

i − n̂ j−1
i (k)))

=⇒ f in
i (ĉ j
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The last expression can be obtained by noting that the input flow difference has the same sign as
either its upper bound or its lower bound. Depending upon thesign, the flow difference can be
written as a scaled version of the expressions given in the above two cases.
Case (d) Ḿ j
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These cases generalize to the expression given in the lemma.

Proof of Lemma 5.3.4

Proof. We consider four cases. In all the cases we assume 0≤ ζ j ,2
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ĉ j
i (k)

−
1
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ĉ j
i (k)

n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k)

=
[ŵ j
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i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
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These cases generalize to the expression given in the lemma.

Proof of Lemma 5.3.5

Proof. We consider four cases. In all the cases we assume 0≤ ζ j ,2
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Following along the lines of Case (a) in 5.3.4, we get
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i (ĉ j−1
i (k), n̂ j−1

i+1 (k))

= ζ j ,2
i (k)Vi(n̂

j
i (k)− n̂ j−1

i (k))−ζ j ,3
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

wi+1(n̂
j
i+1(k)− n̂ j−1

i+1 (k))

+ ŵ j
i+1(k)(n

J
i+1− n̂ j

i+1(k)))n̂
j
i (k)v̂

j
i (k)

[

1

ĉ j
i (k)

−
1

ĉ j−1
i (k)

]

= ζ j ,2
i (k)Vi(n̂

j
i (k)− n̂ j−1

i (k))−ζ j ,3
i (k)

n̂ j
i v̂

j
i

ĉ j−1
i (k)

wi+1(n̂
j
i+1(k)− n̂ j−1

i+1(k))

−α j ,2
i (k)

n̂ j
i (k)v̂

j
i (k)

ĉ j−1
i (k)

[

(n̂ j
i (k)− n̂ j−1

i (k))
]

Since, ˆc j
i (k)− ĉ j−1

i (k) = η j
i (k)(n̂

j
i (k)− n̂ j−1

i (k))Vi(1−βi(k)) = α j ,2
i (k)(n̂ j

i (k)− n̂ j−1
i (k))

and ŵ j
i+1(k)(n

J
i+1− n̂ j

i+1(k)))≤ ĉ j
i (k)

Case (b) Ḿ j
i+1(k) = 0 andḾ j−1

i+1 (k) = 0

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k)) = n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k)

= ζ j ,2
i (k)Vi(n̂

j
i (k)− n̂ j−1

i (k))

Case (c) Ḿ j
i+1(k) = 1 andḾ j−1

i+1 (k) = 0

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1 (k))

=
ŵ j

i+1(n
J
i+1−n j

i+1(k))

ĉ j
i (k)

n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k), and

ŵ j
i+1(n

J
i+1−n j

i+1(k))

ĉ j
i (k)

n̂ j
i (k)v̂

j
i (k)−

ŵ j−1
i+1 (n

J
i+1−n j−1

i+1 (k))

ĉ j−1
i (k)

n̂ j−1
i (k)v̂ j−1

i (k)≤

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k))≤ n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k)

The output flow difference in Case(c) is bounded by the expressions given in Case (a) and Case
(b). Depending upon the sign of the flow difference, the flow difference can be written as a scaled
version of the expressions given in the above two cases. In both these case, the resulting expression
satisfies the lemma.
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Case (d) Ḿ j
i+1(k) = 0 andḾ j−1

i+1 (k) = 1

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k))

= n̂ j
i (k)v̂

j
i (k)−

ŵ j−1
i+1 (n

J
i+1−n j−1

i+1 (k))

ĉ j−1
i (k)

n̂ j−1
i (k)v̂ j−1

i (k)

ŵ j
i+1(n

J
i+1−n j

i+1(k))

ĉ j
i (k)

n̂ j
i (k)v̂

j
i (k)−

ŵ j−1
i+1 (n

J
i+1−n j−1

i+1 (k))

ĉ j−1
i (k)

n̂ j−1
i (k)v̂ j−1

i (k)≥

f out
i (ĉ j

i (k), n̂
j
i+1(k))− f out

i (ĉ j−1
i (k), n̂ j−1

i+1(k))≥ n̂ j
i (k)v̂

j
i (k)− n̂ j−1

i (k)v̂ j−1
i (k)

The result for this case is similar to the one given above.

Proof of Lemma 5.3.6

Proof. For any nodei,

Λi, j
1 > 0 =⇒ ĉ j

i−1(k) = max
(

cmin,min
(

ŵi(n
J
i − n̂ j

i (k)), ĉ
j−1
i−1 (k)+G1n̄ j

i (k+1)
))

Λi, j
2 > 0 =⇒

1

ĉ j
i (k)

= min

(

1

ŵ j
i+1(k)(n

J
i+1− n̂ j

i+1(k))
,max

(

1
cmax

,
1

ĉ j−1
i−1 (k)

−G2n̄ j
i (k+1)

))

Remember that, by construction, the a-priori mode is the same as the a-posteriori mode.

Λi, j
1 > 0 =⇒ ĉ j

i−1(k) = ĉ j−1
i−1 (k)+G1δ j ,1

i (k)n̄ j
i (k+1)

since ĉ j−1
i (k) ∈ [cmin, ŵi(n

J
i − n̂ j

i (k))]

Λi, j
2 > 0 =⇒

1

ĉ j
i (k)

=
1

ĉ j−1
i−1 (k)

−G2δ j ,2
i (k)n̄ j

i (k+1)

,since ĉ j−1
i−1 (k) ∈ [ŵ j

i+1(k)(n
J
i+1− n̂ j

i+1(k)),cmax]

where, n̄ j
i (k+1) =

ñ j ,o
i (k+1)

1+Λi, j
1 +Λi, j

2

and 0≤ δ j ,1
i (k),δ j ,2

i (k)≤ 1

Also,

n̂ j ,o
i (k+1) = n̂ j

i (k)+ f in
i (ĉ j−1

i−1 (k), n̂
j
i (k))− f out

i (ĉ j−1
i (k), n̂ j

i+1(k))
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n̂ j
i (k+1) = n̂ j

i (k)+ f in
i (ĉ j

i−1(k), n̂
j
i (k))− f out

i (ĉ j
i (k), n̂

j
i+1(k))

=⇒ n̂ j
i (k+1)− n̂ j ,o

i (k+1) = Ii−1(k)(1− Ḿ j
i (k))(ĉ

j
i−1(k)− ĉ j−1

i−1 (k))

+ Ii(k)Ḿ
j
i+1(k)ŵ

j
i+1(n

J
i+1−n j

i+1(k))n̂
j
i (k)v̂

j
i (k)

( 1

ĉ j
i (k)

−
1

ĉ j−1
i (k)

)

=⇒ ñ j ,o
i (k+1)− ñ j

i (k+1) = n̂ j
i (k+1)− n̂ j ,o

i (k+1)

= (δ j ,1
i (k)Λi, j

1 +δ j ,2
i (k)Λi, j

2 )
ñ j ,o

i (k+1)

1+Λi, j
1 +Λi, j

2

=⇒ ñ j
i (k+1) = ñ j ,o

i (k+1)
1+(1−δ j ,1

i (k))Λi, j
1 +(1−δ j ,2

i (k))Λi, j
2

1+Λi, j
1 +Λi, j

2

= n̄ j
i (k+1)

(

1+(1−δ j ,1
i (k))Λi, j

1 +(1−δ j ,2
i (k))Λi, j

2

)

=⇒ n̄ j
i (k+1) = ñ j

i (k+1)δ̄ j
i (k),

where, 0≤ δ̄ j
i (k) =

1

1+(1−δ j ,1
i (k))Λi, j

1 +(1−δ j ,2
i (k))Λi, j

2

≤ 1

Substituting for ¯n j
i (k+ 1) in the update equations, we prove the lemma. Additionally, we note

that when the updates do not hit the boundary, i.e.δ j ,1
i (k) = δ j ,2

i (k) = 0, we have ¯n j
i (k+1) =

ñ j
i (k+ 1). We can see that we are able to estimate the a-posteriori errors without using the a-

posteriori estimate ˆc j
i (k), directly from the a-priori errors and the update gains.
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Chapter 6

Optimal control of freeway networks

Traffic control is an important operational management strategy that can be used to relieve traffic
congestion in freeways. Ramp metering and variable speed limits are two commonly used con-
trol strategies to regulate traffic flow and delay the onset ofcongestion. The performance of any
controller is primarily judged by their ability to decreasethe traffic congestion, and this can be
usually captured by performance metrics like Total Travel Time (TTT), or the Total Congestion
Delay(TCD) of all the vehicles using the freeway system. Given one of these performance func-
tions, optimal control theory allows us to compute the statetrajectories as well as the control inputs
which minimize the performance objective. Optimal controllers require a model of the freeway to
compute these control laws. In this chapter, we present an optimal controller utilizing Link Node
Cell Transmission Model (LN-CTM) as its underlying model.

Macroscopic models, including first order models (eg. Cell Transmission Models) as well as
second order models (METANET - [29]) have been used in freeway optimal control formulations
reported in literature[29, 20, 25, 4]. While the formulation of these optimal control problems is
typically easy, the challenge remains in specifying a solution technique which can calculate good
quality solutions without being computationally intensive. This is because the optimization prob-
lems that arise in these optimal control formulations are large-scale in nature (typically involving
thousands of variables, at the least, for even a small freeway section), apart from being non-linear
and non-convex. Applying commonly available solution techniques lead to large computation
times [29] with no guarantees of global optimality of the solution. Optimal controller formulations
based on second order models like METANET suffer from these disadvantages.

In contrast, optimal controller formulations based on the Cell Transmission Model show more
promise in terms of computational efficiency and global optimality of the generated solution.
Gomes and Horowitz [20] present an optimal ramp metering controller based on the Asymmet-
ric Cell Transmission Model (ACTM) along with an efficient solution strategy. The underlying
freeway dynamics in the controller formulations is the ACTM, which is presented as a simplifica-
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tion to the CTM. The motivation for this simplification is to provide a higher quality and efficiently
computable solution as compared to the original optimal control problem. The authors presented a
relaxed version of this optimal ramp metering problem, and proved that the problems are equivalent
in terms of the optimal solution trajectory. The relaxed problem is a linear optimization problem,
which can be solved efficiently for large freeway networks with long time horizons.

Compared to the ACTM, the LN-CTM uses a more accurate model oflink merges which makes
it suitable for simulating on-ramp merges even when on-rampinflows are appreciable (eg. freeway-
freeway interconnections). However, this comes at an additional cost of added non-linearity, and
therefore the results and techniques presented in [20] cannot be translated for this case. As we will
see in this chapter and the next, the use of the LN-CTM to describe underlying dynamics results
in the optimal controller utilizing both variable speed limits and ramp metering. This is different
from the results and observations of Gomes and Horowitz thatshow the optimal controller using
only ramp metering as its control mechanism.

6.1 Problem formulation

Traffic model

The underlying model for the optimal control problem is the LN-CTM model, which was presented
in Section 3.1. This model captures the effect of ramp metering on the traffic dynamics on the
freeway. Additionally, we also need to model the effect of variable speed limits on the traffic state
evolution. Figure 6.1 shows the fundamental diagram (with free-flow speedVi , congestion wave
speedwi and Flow capacityFi) and the nominal demand and supply functions in solid lines.The
nominal demand and supply functions, without any application of variable speed limits (VSL) are
given by

D̄i(ni(k)) = min(ni(k)Vi,Fi)

S̄i(ni(k)) = min(Wi(n
J
i −ni(k)),Fi).

Variable speed limit controllers specify speed limitsvi(k) which are less than the nominal
speed limits posted in the freeway. We assume that these variable speed limits are followed with
full compliance. When variable speed limits are applied, the demand functions are modified while
the supply functions are left unchanged, as seen below

Di(ni(k)) = min(ni(k)vi(k),Fi)

Si(ni(k)) = min(Wi(n
J
i −ni(k)),Fi).

The dashed line in Figure 6.1 show the demand function when a non-maximum speed limit is used.
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Figure 6.1: (a)The nominal triangular fundamental diagram. (b) The nominal demand function
(solid line), and the demand function when a speed limit ofvi(k) is imposed (dashed line) (c) The
supply function, which does not depend on the speed limit.

The complete model, which incorporates the variable speed limits, described through a time
varying speed limit profilevi(k) is described below. This will form the model used inside the
optimal controller.

Density Update Equations : Mainline/Queue Conservation Equation

n0(k+1) = n0(k)+Q0(k)− f0(k)

ni(k+1) = ni(k)+ fi−1(k)(1−βi−1(k))+ r i−1(k)− fi(k) i = 1, · · · ,N

l i(k+1) = l i(k)+Qi(k)− r i(k) i = 1, · · · ,N (6.1)

Flow Update Equations

fN(k) = Dn(k)

fi(k) = Di(k)×
min(Ri(k),Si+1(k))

Ri(k)
i = 0, · · · ,N−1
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r i(k) = di(k)×
min(Ri(k),Si+1(k))

Ri(k)
i = 1, · · · ,N−1

si(k) = fi(k)(1−βi(k)) i = 1, · · · ,N−1

where

Di(k) = min(ni(k)vi(k),Fi) i = 0, · · · ,N

Ri(k) = Di(k)(1−βi(k))+di(k) i = 0, · · · ,N−1

Si+1(k) = min(Wi+1(n
J
i+1−ni+1(k)),Fi+1) i = 0, · · · ,N−1

di(k) = min(rc
i (k), l i(k)) i = 1, · · · ,N (6.2)

In the model, we can see that the flow out of linki ( fi(k)) is a non-decreasing function of the
speed limits. The reduction of speed, at any link, while keeping the downstream ramp metering
rates constant, leads to a decrease in flow out of the link. Finally, changes in speed limits do not
lead to increases in capacity of the freeway section.

Objective function

The objective function for the controller needs to directlyreflect the level of congestion in the
freeway. Total Travel Time (TTT) and Total Congestion Delay(TCD), captured in units of vehicle
hours, are good candidate objective functions that capturethe aggregate effect of traffic conges-
tion on all users in the freeway. For our optimal controller,we define the following generalized
objective function, based on the macroscopic variables defined in our model.

J =
K

∑
k=1

N

∑
i=0

(ni(k)+ l i(k)−αi(k) fi(k)− ᾱi(k)r i(k)) (6.3)

wherek = 1· · ·K denotes the time period andi = 0· · ·N denotes the link (ni(k)) or ramp (l i(k))
index. By choosing values for the parametersαi(k)≥ 0, ᾱi(k)≥ 0, we can represent the following
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commonly used objective functions.

Ja = TTT

Jb = TTT−κTTD

Jc = TCD

TTT= ∑
k,i

(ni(k)+ l i(k)) Total Travel Time

TTD= ∑
k,i

( fi(k)+ r i(k)) Total Travel Distance

TCD= ∑
k,i

(

ni(k)+ l i(k)−
1
Vi

fi(k)

)

Total Congestion Delay (6.4)

Control mechanisms and additional constraints

The optimal controller regulates the traffic using a speed limit profilevi(k) and a time varying ramp
metering raterc

i (k). The speed limit profile serves as an indirect control mechanism for regulating
flows that exit any particular link of the freeway to enter into the next downstream section. Ramp
metering rate serves to regulate the flow entering into the freeway through any particular ramp by
storing additional vehicles in the ramps.

We impose the following constraints on the control actions.

0≤ vi(k)≤Vi

0≤ rc
i (k)≤Ci (6.5)

As seen above, the variable speed limit controller is allowed to impose time varying speed limits
up to the maximum speed limit of the freeway section. The rampmetering controller specifies any
realizable flow rate up to the maximum flow capacity of the rampCi . Note that the ramp metering
raterc

i (k) can be zero, according to our constraints. This assumption will be useful to ensure the
validity of the solutions proposed in the next section. In practice, many ramp meters require a
minimum ramp metering rate to ensure that vehicles waiting in ramp queues get serviced without
excessive delay. Towards the end of this chapter, we will discuss ways to indirectly implement a
minimum ramp metering rate for all the ramps in the freeway.

Apart from the control constraints, we also introduce a maximum queue limit constraint. This
is necessary to ensure that queue lengths do not exceed the available storage space in the ramps. In
practice, presence of queue limit constraints prevent the ramp meters from affecting traffic at the
arterial streets which connect to the ramps. The queue constraints for our controller are.

l i(k)≤ Li (6.6)
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Initial conditions and model parameters

The following parameters and initial conditions must be specified for each link and on-ramp:

• Link i fundamental diagram parameters : CapacityFi , Free-flow speedVi and Congestion
wave speedWi .

• On-rampi parameters (Flow capacity and maximum queue length):Ci , Li

• Off-ramp i parameters (Split ratios):βi(k)k= 1, · · · ,K

• Initial Conditions :ni(0), l i(0) i = 0, · · · ,N

• Flow Demands :Qi(k) i = 0, · · · ,N , k= 0, · · · ,K

Optimal Control formulation

Combining the objective functions, the freeway dynamic model and the constraints, the final prob-
lem can be written as

min : J, given by Eq. (6.3)

S.t. : For k= 1, · · · ,K

Conservation equations

Equations (6.1)

Flow equations

Equations (6.2)

Constraint equations

Equations (6.6), (6.6)

ni(k), l i(k), fi(k), r i(k)≥ 0, ∀i

with given initial conditions/fundamental diagram parameters. (6.7)

We will present an efficient solution methodology for this problem in the next section.
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6.2 Efficient solutions

The goal of our optimal control problem is to specify ramp metering ratesrc
i (k) and variable speed

limit profilesvi(k) for all the links in the freeway such that our chosen objective is minimized. We
see that the original optimal control problem has constraints which are non-linear and non-convex.
We will present two optimization problems, whose solutionscan be used to derive the optimal state
and control trajectory for the original problem.

We now define two optimal control problems. The first, which wedenoteProblem A, is very
similar to the optimization problem corresponding to the optimal controller formulated above.
Its solution involves nonlinear optimization. The second problem, which we denoteProblem B
constitutes a relaxed optimization problem since its solution only involves linear programming.
Subsequently we prove that a solution ofProblem B can be extended to provide a solution of
Problem A.

For the first problem, which we will denoteProblem A, we absorb the ramp metering profile
variablesrc

i (k) in the constraints in the optimal controller formulation(Eq. (6.7)).
Problem A Original Problem

min : J, given by Eq. (6.3)

S.t. : For k= 1, · · · ,K

Conservation equations

Equations (6.1)

Flow equations

Equations (6.2)

Constraint equations

0≤ vi(k)≤Vi

0≤ di(k)≤ min(Ci , l i(k))

l i(k)≤ Li

ni(k), l i(k), fi(k), r i(k)≥ 0

with given initial conditions/parameters. (6.8)

Problem A is equivalent to the optimization problem corresponding tothe original optimal
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control formulation. The optimal controller defined inProblem A provides a ramp demand profile
(di(k)) for all ramps and a speed limit (vi(k)) profile for all links in the network. This ramp demand
profile can be used to extract the ramp metering rate profiles (rc

i (k)). Sincedi(k)=min(rc
i (k), l i(k))

(Eq. (6.2)), by choosingrc
i (k) = di(k) we can get a ramp metering rate profile that will be optimal

according to the original formulation. The optimal profilesfrom Problem A and the ramp metering
rate determined by choosingrc

i (k) = di(k) will be the optimal solution for the original optimal
control problem. Note that we are able to eliminate the variables corresponding to the ramp flow
constraints without introducing additional non-linear constraints since the lower bound of the ramp
metering rate is set to 0.

We now pose an alternate relaxed optimization problem with asolution that only involves a
linear program.

Problem B Relaxed Problem

min : J, given by Eq. (6.3)

S.t. : For k= 1, · · · ,K

Conservation equations

Equations (6.1)

Relaxed Flow equations

f̄i(k)≤ n̄i(k)Vi i = 0, · · · ,N

f̄i(k)≤ Fi i = 0, · · · ,N

f̄i(k)(1−βi(k))+ r̄ i(k)≤ Fi+1 i = 0, · · · ,N−1

f̄i(k)(1−βi(k))+ r̄ i(k)≤Wi+1(n
J
i+1− n̄i+1(k)) i = 0, · · · ,N−1

Constraint equations

0≤ r̄ i(k)≤ min(Ci, l̄ i(k)) i = 1, · · · ,N

l̄ i(k)≤ Li i = 1, · · · ,N

ni(k), l i(k), fi(k), r i(k)≥ 0 ∀i

with the same initial conditions/parameters. (6.9)

Notice that we have chosen to use an upper bar to denote the optimization variables inProblem
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B (e.g. n̄i(k), f̄i(k), r̄ i(k)) in order to distinguish them from their counterparts inProblem A. The
main differences between the two problems is that we do not explicitly consider the link velocity
variables (e.g ¯vi(k)) and the on-ramp demands (e.g.d̄i(k)) in Problem B. Next, we will outline the
methodology adopted to convert a solution ofProblem B to a solution ofProblem A.

Conversion algorithm

Let n̄∗i (k), f̄ ∗i (k), l̄
∗
i (k), r̄

∗
i (k) denote the optimal (or a feasible) solution ofProblem B. Algorithm

A given below generates outputsn∗i (k), f ∗i (k), l
∗
i (k), r

∗
i (k),v

∗
i (k),d

∗
i (k).

Algorithm A

For each time periodk and link 0≤ i ≤ N,

n∗i (k) = n̄∗i (k)

f ∗i (k) = f̄ ∗i (k)

l∗i (k) = l̄∗i (k)

r∗i (k) = r̄∗i (k)

For each time periodk and link 0≤ i < N−1,

i f f ∗i (k) = min(n∗i (k)Vi,Fi)

v∗i (k) =Vi

d∗
i (k) = r∗i (k)

else i f f∗i (k)(1−βi(k))+ r∗i (k)< S∗i+1(k)

d∗
i (k) = r∗i (k)

v∗i (k) = f ∗i (k)/n∗i (k)
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else i f
r∗i (k)

S∗i+1(k)
≤

min(Ci , l∗i (k))

min(n∗i (k)Vi,Fi)(1−βi(k))+min
(

Ci , l∗i (k)
)

v∗i (k) =Vi

d∗
i (k) = r∗i (k)×

min(n∗i (k)Vi ,Fi)(1−βi(k))
S∗i+1(k)− r∗i (k)

else

v∗i (k) =
min(Ci, l i(k))

n∗i (k)(1−βi(k))
×

(

S∗i+1(k)

r∗i (k)
−1

)

d∗
i (k) = min(Ci , l i(k))

where S∗i (k) = min
(

Wi(n
J
i − n̄∗i (k)),Fi(k)

)

and for each time periodk

i f f ∗N(k) = min(n̄N(k)VN,FN)

v∗N(k) =VN

else

v∗N(k) = f ∗N(k)/n∗N(k)

The conversion algorithm provides an optimal solution to the Problem A. The speed limit
variables can be directly applied as the control input, while the on-ramp demands are used to
obtain the ramp metering ratesrc

i (k) = di(k).

Proofs

The following results will help prove that the variablesn∗i (k), f ∗i (k), l
∗
i (k), r

∗
i (k),v

∗
i (k),d

∗
i (k) are

feasible and optimal forProblem A.

Lemma 6.2.1. Let A := {ni(k), fi(k), l i(k), r i(k),vi(k),di(k)} be the solution derived from B:=
{n̄i(k), f̄i(k), l̄ i(k), r̄ i(k)} usingAlgorithm A. Then A is a feasible solution forProblem A if B is a
feasible solution ofProblem B. A and B evaluate to identical costs for the respective optimization
problems.



100

Proof. The constraints corresponding to the conservation equations and the queue limits are identi-
cal for both problems. Thus,A satisfies the conservation equations and the queue constraints since
B satisfies the conservation equations/queue constraints. We need to prove thatA satisfies the flow
equations and other constraints ofProblem A, which are

fN(k) = Dn(k)

fi(k) = Di(k)×
min(Ri(k),Si+1(k))

Ri(k)

r i(k) = di(k)×
min(Ri(k),Si+1(k))

Ri(k)
i = 1, · · · ,N

0≤ vi(k)≤Vi

0≤ di(k)≤ min(Ci, l i(k)) (6.10)

As before, we define

Si+1 = min
(

Fi+1(k),Wi+1(n
J
i+1−ni+1(k))

)

Ri(k) = min(ni(k)vi(k),Fi)(1−βi(k))+di(k)

Di(k) = min(ni(k)vi(k),Fi)

The link densities and flows as well as the ramp flows and queue lengths are identical for both
the problems. Therefore, from the constraints ofProblem B we get,

fi(k)≤ min(ni(k)Vi,Fi) i = 0..N

fi(k)(1−βi(k))+ r i(k)≤ Si+1 i = 0..N−1

r i(k)≤ min(Ci, l i(k)) i = 1..N (6.11)

At each time instantk and for any linki = 0· · ·N−1, the ramp demands and speed limits are
obtained from one of the four different branches of the conditional algorithm. We analyze all the
four cases.

Case (a)fi(k) = min(ni(k)Vi,Fi) :

In this case, we have

vi(k) =Vi ,

r i(k) = di(k)≤ min(Ci , l i(k))
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Usingr i(k) = di(k) and fi(k) = min(ni(k)Vi,Fi) along with Eq. (6.11),

Ri(k) = min(ni(k)vi(k),Fi)(1−βi(k))+di(k) = fi(k)(1−βi(k))+ r i(k)≤ Si+1

⇒
min(Ri(k),Si+1(k))

Ri(k)
=

Ri(k)
Ri(k)

= 1

Therefore, min(ni(k)vi(k),Fi)×
min(Ri(k),Si+1(k))

Ri(k)
= fi(k)

and di(k)×
min(Ri(k),Si+1(k))

Ri(k)
= di(k) = r i(k)

This shows that the generated variables satisfy the constraints given in Eq. (6.10).

Case (b)fi(k)< min(ni(k)Vi,Fi) and fi(k)(1−βi(k))+ r i(k)< Si+1(k) :

In this case, we have

di(k) = r i(k)≤ min(Ci , l i(k)) ,

vi(k) = fi(k)/ni(k)≤ (ni(k)Vi)/ni(k) =Vi,

Using the expressions given above along with Eq. (6.11),

min(ni(k)vi(k),Fi) = min

(

ni(k)
fi(k)
ni(k)

,Fi

)

= min( fi(k),Fi) = fi(k) and

Ri(k) = min(ni(k)vi(k),Fi)(1−βi(k))+di(k) = fi(k)(1−βi(k))+ r i(k)≤ Si+1

⇒
min(Ri(k),Si+1(k))

Ri(k)
=

Ri(k)
Ri(k)

= 1

Therefore, min(ni(k)vi(k),Fi)×
min(Ri(k),Si+1(k))

Ri(k)
= fi(k)

and di(k)×
min(Ri(k),Si+1(k))

Ri(k)
= di(k) = r i(k)

Hence the new variables generated in this case satisfy the constraints given in Eq. (6.10).

Case (c)fi(k)< min(ni(k)Vi,Fi), fi(k)(1−βi(k))+ r i(k) = Si+1(k) and
r i(k)

Si+1(k)
≤

min(Ci ,l i(k))
min(ni(k)Vi ,Fi)(1−βi(k))+min(Ci ,l i(k))

:

In this case, we have

vi(k) =Vi

di(k) = r i(k)
min(ni(k)Vi,Fi)(1−βi(k))

Si+1(k)− r i(k)
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Therefore,

di(k)
r i(k)

=
min(ni(k)Vi,Fi)(1−βi(k))

Si+1(k)− r i(k)
=

[min(ni(k)Vi,Fi)(1−βi(k))]+ [di(k)]
[Si+1(k)− r i(k)]+ [r i(k)]

=
Ri(k)

Si+1(k)

=⇒ r i(k) = di(k)
Si+1(k)
Ri(k)

Since fi(k)(1−βi(k))+ r i(k) = Si+1(k) and fi(k)< min(ni(k)Vi,Fi),

Ri(k)
Si+1(k)

=
min(ni(k)Vi,Fi)(1−βi(k))

Si+1(k)− r i(k)
=

min(ni(k)Vi,Fi)

fi(k)
> 1

=⇒ Si+1(k)< Ri(k) and
min(Ri(k),Si+1(k))

Ri(k)
=

Si+1(k)
Ri(k)

Combining the results stated above,

r i(k) = di(k)
min(Ri(k),Si+1(k))

Ri(k)
, fi(k) = min(ni(k)vi(k),Fi)×

min(Ri(k),Si+1(k))
Ri(k)

Also
r i(k)

Si+1(k)
=

di(k)
min(ni(k)Vi,Fi)(1−βi(k))+di(k)

≤
min(Ci , l i(k))

min(ni(k)Vi,Fi)(1−βi(k))+min(Ci , l i(k))

=⇒ di(k)≤ min(Ci , l i(k))

In this case, we see that the new variables generated by the algorithm satisfy the constraints given
in Eq. (6.10).

Case (d)fi(k)< min(ni(k)Vi,Fi), fi(k)(1−βi(k))+ r i(k) = Si+1(k) and
r i(k)

Si+1(k)
>

min(Ci ,l i(k))
min(ni(k)Vi ,Fi)(1−βi(k))+min(Ci ,l i(k))

:

In this case, we have

di(k) = min(Ci , l i(k))≥ r i(k),

vi(k) =
min(Ci , l i(k))

ni(k)(1−βi(k))
×

(

Si+1(k)
r i(k)

−1

)

Using
r i(k)

Si+1(k)
>

min(Ci , l i(k))
min(ni(k)Vi,Fi)(1−βi(k))+min(Ci , l i(k))

,

vi(k)≤
min(Ci , l i(k))

ni(k)(1−βi(k))
×

(

min(ni(k)Vi,Fi)(1−βi(k))+min(Ci , l i(k))
min(Ci , l i(k))

−1

)

≤
min(ni(k)Vi,Fi)(1−βi(k))

ni(k)(1−βi(k))
=

min(ni(k)Vi,Fi)

ni(k)
≤Vi

and ni(k)vi(k) = min(ni(k)vi(k),Fi)≤ min(ni(k)Vi,Fi)
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Finally,
min(ni(k)vi(k),Fi)(1−βi(k))

min(Ci , l i(k))
=

(

Si+1(k)
r i(k)

−1

)

=
fi(k)(1−βi(k))

r i(k)

and fi(k)(1−βi(k))+ r i(k) = Si+1(k)

=⇒ fi(k) = ni(k)vi(k)×
Si+1(k)
Ri(k)

and ri(k) = di(k)×
Si+1(k)
Ri(k)

Moreover, r i(k)≤ di(k) =⇒ Si+1(k)≤ Ri(k) =⇒
Si+1(k)
Ri(k)

=
min(Ri(k),Si+1(k))

Ri(k)

The variables generated from this conditional branch also satisfy Eq. (6.10).

From the analysis of all the four cases, we see that the generated variables satisfy the flow
conditions ofProblem A. By construction, we see thatA andB evaluate to identical costs for the
respective optimization problems.

Lemma 6.2.2.Let A= {ni(k), fi(k), l i(k), r i(k),di(k),vi(k)} be a feasible solution ofProblem A,
then B= {ni(k), fi(k), l i(k), r i(k)} is a feasible solution forProblem B. Moreover, A and B evaluate
to identical costs for the respective optimization problems.

Proof. Clearly, B satisfies the constraints corresponding to the conservation equations and the
queue limits ofProblem B. We show below that B satisfies the relaxed flow constraints ofProblem
B.

Noticing that vi(k)≤Vi i = 0· · ·N

fN(k) = Dn(k) = min(nN(k)vN(k),Fi)≤ min(nN(k)VN,Fi)

=⇒ f̄N(k)≤ n̄N(k)VN, f̄N(k)≤ FN

For any linki = 0· · ·N−1

fi(k) = Di(k)×
min(Ri(k),Si+1(k))

Ri(k)
≤ Di(k)≤ min(ni(k)Vi,Fi)

=⇒ f̄i(k)≤ n̄i(k)Vi, f̄i(k)≤ Fi
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f̄i(k)(1−βi(k))+ r̄ i(k) = (Di(k)(1−βi(k))+di(k))×
min(Ri(k),Si+1(k))

Ri(k)

= min(Ri(k),Si+1(k))≤ Si+1(k)

=⇒ f̄i(k)(1−βi(k))+ r̄ i(k)≤ Fi+1 and f̄i(k)(1−βi(k))+ r̄ i(k)≤Wi+1(n
J
i+1− n̄i+1(k))

Also, for any on-rampi r̄ i(k) = di(k)
min(Ri(k),Si+1(k))

Ri(k)
≤ di(k)≤ min(Ci, l̄ i(k))

Hence, B is a feasible solution forProblem B. It is also easy to see thatA andB have identical
costs for the respective optimization problems.

Theorem 6.2.1.Let B= {n̄∗i (k), f̄ ∗i (k), l̄
∗
i (k), r̄

∗
i (k)} be an optimal solution ofProblem B and

A= {n∗i (k), f ∗i (k), l
∗
i (k), r

∗
i (k),v

∗
i (k),d

∗
i (k)} be the solution derived usingAlgorithm A. Then A is

an optimal solution forProblem A.

Proof. Lemma 6.2.1 shows that A is a feasible solution forProblem A. Suppose A is not optimal
for Problem A, i.e. there is another solution A’ which evaluates to a lowercost. Lemma 6.2.2
allows us to compute a new solution B’ which is feasible forProblem B, and also has a lower cost
than B (which has a cost equivalent to A). This contradicts the fact that B is optimal forProblem
B. ThusA, derived fromB is an optimal solution ofProblem A.

Extensions

As we will demonstrate in the next section, the optimal controller and the solution technique pre-
sented above can be used inside a model predictive controller. In this situation, it is beneficial
to modify the formulation presented above, by converting the hard constraints on queues to soft
constraints. In practice, when the on-ramp demands cannot be predicted accurately, queue con-
straints are expected to be frequently violated when an MPC incorporating hard constraints is
executed. Soft constraints on queues can help in maintaining feasibility even when queue con-
straints are violated. Letζi(k) be the new variable that captures the queue violation. Then,we
modify the cost function as̄J = J+C∑i,k ζi(k), and addl̄ i(k)− Li ≤ ζi(k) i = 1..N,k = 1..K,
and 0≤ ζi(k) i = 1..N,k = 1..K to the constraints. The presence of these new soft constraints
eliminate problems related to infeasibility.

The optimal controller presented here may specify very low ramp metering rates during certain
time periods, as we do not include constraints on minimum ramp metering rates. In many ramps,
minimum ramp metering rates (typically around 180 vphpl) are usually specified, to ensure that
vehicles in some ramps are not subjected to long wait times when ramp metering is active. As
specified in [19, 20], we could obtain metering rates from theoptimal controller, and replace
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metering rates below the accepted minimum by the minimum ramp metering rate. Another method
we could use to permit a fair service time is to ensure that ramp flows exceed a given proportion of
the current queue length, using the constraintr i(k)≥ l i(k)p, with 0≤ p≤ Ci

Li
, so as to ensure that

ramp flows do not exceed capacity. Suppose we wish to target a ramp flow rate ofCmin
i when ramp

queue reaches its limitLi , we can choosep=
Cmin

i
Li

. We typically convert this into a soft constraint,
using the same technique presented above.

Finally, we can also add constraints to limit the average wait time in different queues. The
average wait time accumulated for all vehicles between timeperiodsk= k1 to k= k2 is given by

∑k=k2
k=k1 l i(k)

l i(k1)+∑k=k2
k=k1 Qi(k)

Notice that the above definition does not include wait times accumulated by vehicles before the
start time periodk1 (i.e. it does not include the initial wait times of vehicles which were part of
the initial queue). Similarly, it does not include the complete wait times of vehicles which may
be still waiting at the end of time periodk2. Due to these limitations, this approximation may not
be suitable when short time periods are considered. Nonetheless, we can add linear constraints to
limit the average wait times during different periods. For example, letTmax

i , be the max wait time
specified for the controller, then the following linear inequality constraints are added to the optimal
controller.

k=k2

∑
k=k1

l i(k)≤ Tmax
i

(

l i(k1)+
k=k2

∑
k=k1

Qi(k)

)

To ensure that adding these constraints do not lead to infeasibility, we can also convert them into
soft constraints, and add a penalty term to the cost function.

In all of the three extensions presented above, we only add linear constraints to the optimal
controller formulation, and the solution techniques and the theoretical results presented above still
apply.

Remarks

In the solution methodology presented here, we have used a relaxation technique to map the non-
linear optimization problem to a linear optimization problem. The relaxation technique works
only when variable speed limits are applied to all links, andall ramps are metered. In the problem
formulation, we have also allowed the split ratio,βi(k) to be time-varying. However, one needs to
be careful while searching for an optimal speed control profile in case of time-varying split ratios.
For example, consider the case where the split ratios for thefirst cell increase with time. In this
case, an optimal speed control law might initially hold backvehicles (by decreasing the speed
limit), so that the vehicles catch a higher split ratio, and exit the freeway. This does not reflect
reality, since the vehicles are routed to the wrong destination. This effect is exacerbated whenJa
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is considered as the objective, since vehicles that exit do not contribute to the Total Travel Time in
the downstream links. In contrast, augmenting the objective with the flow terms (− fi(k)) serves to
alleviate this effect here, as vehicles exiting the freewaydo not contribute to the flow downstream.
In the case of decreasing split ratios, the roles of these terms are reversed. Hence we argue thatJb

or Jc is a better objective function to consider for the problem. In the case of constant split ratios,
this problem does not arise. This problem is not unique to a optimal control formulation using the
LN-CTM, but arises due to the use of a split-ratio based routing scheme adopted by this model.
This observation was hinted by the authors in [20].

6.3 Model Predictive ramp metering and speed control

We present a model predictive controller (MPC) based on the optimal control formulation pre-
sented in the previous section. The model predictive controller solves an open loop optimal control
problem online based on a plant model at each sampling time, using the state information measured
at the current sampling time. The controller implements thecontrol steps of the obtained optimal
control profile till the next sampling time, and then the process is repeated [3].

Let T and Np denote the model time step and prediction horizon used in theoptimization
problem respectively. We execute the MPC everyTc = Nc×T time instants (here we assume that
Np,Nc are natural numbers). In the model predictive controller, the split ratio is assumed to be
constant, equal to the split ratio observed at the instant the controller is initiated. This averts the
problem related to time varying split ratios detailed in theprevious section, and does not usually
lead to any appreciable decrease in the controller performance within the MPC framework. We also
adopt soft constraints for queues, as presented in the previous section. We choose total congestion
delay, as the controller optimization cost.

For the simulation experiments presented here, we use a calibrated model of the I-80E freeway
in the Bay area between the Bay Bridge and the Carquinez Bridge. The model was calibrated
to replicate the congestion patterns observed on September2nd, 2008. Figure 6.2 (Top) shows
the speed contours produced by the model without any controlmeasures activated. This freeway
experiences congestion during the evening commute periods, and we limit the temporal axis to
cover the evening congestion. We apply a model predictive controller withT = 10s, Np = 100 and
Nc = 9 to specify the ramp metering rates and variable speed profile for this freeway. A queue
limit of Li = 50∀i was imposed for this simulation. The actual demand profiles were assumed to
be known and used to specify the demands in the controller. Constant split ratios, equal to the
split ratios at the time period of controller actuation, were used. Figure 6.2 (middle) represents
the speed contour observed when the MPC is used, and Figure 6.2 (bottom) shows the speed limit
profile generated by the MPC. Given the limited queue size constraint imposed on the controller,
the controller did not completely eliminate the congestionpresent in the freeway. However, the
MPC succeeds in delaying the onset of congestion on the freeway. In this scenario, the controller
resulted in a delay reduction of 17.85%. In Figure 6.3, we show the resulting queues on all the
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Figure 6.2: Top : Speed contours in the uncontrolled case. Middle : Speed contours with ramp
metering and VSL. Bottom : VSL specified by the MPC.
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onramps. We see that the queue constraints are not adverselyviolated in this case (whenC = 5
was chosen), as the queues lengths are within the 50 veh/ramplimit.

Table 6.1: Role of demand and split ratio information

Demands Split ratio Delay reduction
Exact Exact 18.85%

Constant Exact 18.28%
Exact Constant 17.85%

Constant Constant 17.42%

Next, we explore the role of perfect demand and split ratio information on the performance
gains obtained using the MPC, as seen in Table 6.1. We choose the demand/split ratio information
to either be exact (ie. equal to the actual realized profiles in the simulation model), or constant
(equal to the realized value at the instant the controller isinitiated). We caution that the delay
reduction with exact split ratios (with/without exact demands) are just shown for comparison. In
this case, the optimal controller decreased the speeds to very low values during some periods, so
that vehicles can exit the freeway at a later time, when the split ratio values are higher, and this
might not reflect reality. Nonetheless, this study shows that we can expect a marginal decrease in
delay reduction when operating with constant splits. The effect of not knowing the exact demand
information also leads to a small decrease in the performance gains. We have observed that the
controller performance is more sensitive to the inaccuracyof demand information around the start
time of the prediction horizon. For example, if incorrect demand information is provided for the
first Nc steps, we observed a marked decrease in the controller performance. In contrast, decrease
in accuracy of the demands along the prediction horizon doesnot affect the controller performance,
as long as the demand information around the current time periods is accurate. In this case, when
the MPC is executed during the next time period, we get more accurate demands to base the future
control actions on. In fact, when constant demands (equal tothe realized value at the instant the
controller is initiated) are chosen, the demand information around the controller actuation period
is quite accurate, since our demand profiles are sufficientlysmooth.

We also explore the effect of various parameters on the performance of the model predictive
controller. In these parametric studies, we use exact demands and constant split ratios. Table 6.2
lists the performance of the MPC when the control horizon, prediction horizon and the maximum
queue limit, are varied. We have generally observed that thecontrol horizon is more critical than
the prediction horizon. In particular, we note that prediction horizons can be as short as 10 minutes
(Np = 60) in this case. It is expected that the prediction horizon can be decreased for shorter
freeway sections. In contrast, we see that the control horizon needs to be sufficiently small i.e
2 or 3 mins (Nc 12−18). Longer control horizons lead to a decrease in controller performance
(this was found to be the case irrespective of the predictionhorizon chosen). The main reason
for the need for shorter controller horizons is the use of constant split ratios in our models. In
the case of imperfect demand information, control horizonsfurther determine the performance of
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Figure 6.3: Queue lengths in the controlled case.

the controller, as short control horizons allow the controller to correct the demand estimates used
inside the MPC, as well as measure the queues and indirectly account for the faulty ramp demand
estimates. We observed a performance decrease of 2% as we changed theNc from 6 to 18, when
constant demands and constant split ratios were used. Shortcontrol horizons necessitate the use of
a fast optimization routine in the MPC. Finally, we also see that ramp queues limits have a major
effect on the efficiency gains that can be expected out of the controlled system.

Table 6.2: MPC Parameter study

Nc (Np = 120,Li = 50) 6 12 18 24 30
Delay reduction 17.91% 17.76% 17.55% 17.2% 15.96%

Np (Nc = 9,Li = 50) 30 60 90 120 150
Delay reduction 17.82% 17.85% 17.85% 17.85% 17.85%

Li (Np = 120,Nc = 9) 10 20 50 100 ∞
Delay reduction 7.6% 11.7% 17.86% 23.8% 25.65%

Finally, we explore the role of variable speed limits in the optimal control formulation. In the
scenario demonstrated in the first experiment, variable speed limits are important to ensure that
ramp queue limits are not violated. Generally, when the linkdownstream of a ramp starts getting
congested, the controller meters the ramp flows entering into the section, and the on-ramp queues
build up. However, once the queue reaches its limit, the optimal controller needs to maintain the
ramp flow to be equal to the demand entering the ramp, so that queues do not exceed the given
limits. When the link downstream gets congested, and the demand from the upstream freeway
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Figure 6.4: Queue lengths, when only the ramp metering portion of the optimal controller is used.

mainline is also high, these ramp flow rates cannot be realized only by specifying high ramp
metering rates (this corresponds to the fourth conditionalstatement inAlgorithm A ). Variable
speed limits help maintain the queue limits in this case. We carried out a simulation experiment
(with the same parameters as the first experiment explained above), where we only applied the
ramp metering portion of the control actions specified by theMPC, while discarding the variable
speed limits. This resulted in a delay reduction of 17.78 %, which is very similar to the performance
gains in the first simulation. However, the queues in some of the on-ramps were violated, as seen
in Figure 6.4. When ramp queue limits were not used, discarding the VSL and applying the ramp
metering portion of the control actions lead to a performance gain of 25.26 %, as compared to
the delay reduction of 25.34 %, when the complete controllerwas used. It is our conjecture that
variable speed limits do not contribute to significant performance improvements for the freeways,
if maintaining exact queue limits are not a priority. However, speed limits play a central role, when
capacity drop is present, as we will see in the next chapter.
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6.4 Summary

In this chapter, we presented a framework for optimal congestion control for freeway networks,
using ramp metering and variable speed limits. The model based predictive controller used the
LN-CTM as the underlying model to describe the traffic dynamics in the freeway network. The
optimization problem based on the LN-CTM had non-linear andnon-convex constraints. We pro-
posed a relaxed optimization problem, with only linear equalities and inequalities, and provided a
procedure to map the solution of the relaxed problem to a rampmetering and speed limit profile for
the original problem. We proved that the resulting control is also optimal for the original problem.

Given the large-scale nature of a typical centralized freeway optimal control problem, this
methodology enables us to solve the optimization problem inreal time to incorporate it in a model
predictive controller. Typically, a problem withNp = 100,T = 10s andn= 33 had around 35000
and 7000 inequality and equality constraints of around 17000 variables. This problem can be ef-
ficiently solved within 5 seconds using the MOSEK Linear program solver, which is a fraction
of the controller time horizon. Thus the controller presented here has a potential to be adopted
for real time traffic control. The approach taken in this paper has advantages over the approaches
presented in [29, 25] that use second order models; particularly with respect to global optimality
and computation speed. The global optimality guaranteed bythis approach ensures that optimal
controller (executed using a MPC) can be used to compare and evaluate other control methodolo-
gies applied to the same setup. We can also use the MPC setup toperform parametric studies. The
controller has been previously used within TOPL to study theeffects of queue limits, as well as
queue expansions, on the controller performance gains.
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Chapter 7

Predictive control of freeway networks

under weaving and capacity drop

In the last chapter, we presented an optimal controller based on the Link-Node Cell Transmission
Model (LN-CTM), along with an efficient methodology for solving the actual non-linear optimiza-
tion program presented by the optimal control problem. In this chapter, we extend the results when
capacity drop and weaving are present.

Capacity drop denotes the reduction in the (maximum) flow throughput of a freeway section
when traffic density at the section increases beyond a known threshold. Capacity drop is sometimes
observed in locations of geometric discontinuities like lane drops along the freeways. First order
models, like the Cell Transmission Models, do not model capacity drop. On the other hand, second
order models (for example, METANET [52]), are shown to exhibit a drop in capacity in bottleneck
locations. Even though capacity drop is not a universal phenomenon, the ability to include the
capacity drop in the model used within an optimal controllerformulation is expected to be useful
for capturing additional performance improvements in relevant situations. While optimal control
formulations based on second order models [29, 20, 25, 4] areuseful in this regard, the lack of
efficient solutions are definitely a drawback. The optimal control formulation presented in this
chapter will use a modified LN-CTM model, which includes the capacity drop, as the underlying
traffic model.

Another interesting feature that is not captured in the original LN-CTM model is traffic weav-
ing. Weaving is usually observed when two traffic streams cross each other, leading to frequent
lane change maneuvers. Weaving is usually accompanied by a reduction of the operational capac-
ity of the freeway section where it is observed. In this chapter, we introduce a simple model to
capture weaving/lane changing effects near the entrance ofon-ramps as well as in links preceding
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the off-ramps. This model will be used within the predictivecontrol formulation presented in this
chapter.

7.1 Modeling capacity drop and weaving

The Link-Node Cell Transmission Model presented in this section contains two additions to the
original model : (a) Ramp weaving and (b) Discontinuous capacity drop models. We will reuse all
the notation followed in Chapters 3,6. Additional terms specific to this chapter are given in Table
7.1

Symbol Name Unit
η r

i Weaving coefficient for flows entering from on-rampi dimensionless
ηs

i Weaving coefficient for flows exiting through off-ramp
i

dimensionless

F̄i Reduced flow capacity of linki veh/period
ncd

i Density beyond which capacity drop is observed in
link i

veh/section

Table 7.1: Model variables and parameters.

Ramp weaving

Weaving in freeways can occur at on-ramp merge locations as well as off-ramp diverge locations.
Weaving at on-ramp merges occur near the on-ramp junctions when vehicles entering the freeway
from the ramp execute lane change maneuvers to merge with thefreeway traffic. In contrast,
weaving near off-ramp diverges actually occur in the link preceding the off-ramp, as vehicles
change lanes to leave the freeway. More complicated weavingbehaviors can be seen in locations
where large freeways merge/diverge. For example, the MacArthur Maze [73], experiences intense
weaving during the commute periods. We present a simple model to capture on-ramp/off-ramp
weaving behavior, and this might not be applicable to complicated situations like the MacArthur
Maze.

During the lane changing operations, vehicles occupy multiple lanes and impact the operational
capacity of a freeway section. This can be captured by modifying the demand function to reflect
additional space occupied by the vehicles changing lanes. We defineη r

i ≥ 1 andηs
i ≥ 1 to denote

the weaving factor for on-rampi and off-rampi respectively. These variables capture the intensity
of lane change behavior exhibited by the vehicles as they enter/exit the freeway. Under nominal
conditions (i.e. under the absence of weaving), these factors are equal to 1.
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For on-ramp weaving, the modified demand function and the ramp flow are given by

di(k) = η r
i min(l i(k), r

c
i (k))

r i(k) =
di(k)
η r

i
×

min(Ri(k),Si+1(k))
Ri(k)

(7.1)

Ri(k),Si+1(k) are defined as before as

Ri(k) = Di(k)(1−βi(k))+di(k),

Si+1(k) = min(Wi+1(n
J
i+1−ni+1(k)),Fi+1) (7.2)

We see that the modified demand function is magnified by a factor of ηi compared to the nominal
model.The supplySi+1(k) (i.e. the amount of space available in the downstream link into which
the ramp flows are destined) is the same as compared to the nominal model. On the other hand, the
demand functionRi(k) increases by an amountdi(k)(η r

i −1), which is proportional to the ramp
demand. The total flow entering Linki +1 in the presence of weaving is given by

fi(k)(1−βi(k))+ r i(k) = (Di(k)(1−βi(k))+min(l i(k), r
c
i (k)))×

min(Ri(k),Si+1(k))
Ri(k)

=

{

(Di(k)(1−βi(k))+min(l i(k), rc
i (k))) if Ri(k)≤ Si+1(k)

Si+1(k)
Di(k)(1−βi(k))+min(l i(k),rc

i (k))
Ri(k)

= Si+1(k)− (η r
i −1)r i(k) otherwise

These equations show the impact of on-ramp weaving behavioron flow entering linki +1. We
now show that for the same available supply, the total flow entering the downstream linki +1 can
be lower when weaving is present. Defining the nominal demand(when weaving is absent) as
R̄i(k) = Di(k)(1−βi(k))+min(l i(k), rc

i (k)), and noting thatRi(k)> R̄i(k)

fi(k)(1−βi(k))+ r i(k) = (Di(k)(1−βi(k))+min(l i(k), r
c
i (k)))×

min(Ri(k),Si+1(k))
Ri(k)

=







R̄i(k)
min(Ri(k),Si+1(k))

Ri(k)
= R̄i(k)

min(R̄i(k),Si+1(k))
R̄i(k)

if Ri(k)≤ Si+1(k)

R̄i(k)
min(Ri(k),Si+1(k))

Ri(k)
< R̄i(k)

min(R̄i(k),Si+1(k))
R̄i(k)

otherwise

where the total flow entering linki +1 when weaving is absent is given bȳRi(k)
min(R̄i(k),Si+1(k))

R̄i(k)
.

We can also show that weaving decreases the operational capacity of the section. When the
downstream densities are under-critical, which leads toWi+1(nJ

i+1− ni+1(k)) > Fi+1, and under
sufficiently high demands,(Di(k)(1−βi(k))+min(l i(k), rc

i (k))) > Si+1(k) = Fi+1, the total flow
entering linki +1 is given by

Fi+1− (η r
i −1)r i(k)< Fi+1 when η r

i > 1, r i(k)> 0
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When ramp weaving factorη r
i = 1, the maximum downstream flow that can be sustained isFi+1,

while weaving decreases the flow of the downstream section. The flow reduction also increases as
higher flows merge onto the freeway.

Finally, we also see thatfi(k)(1−βi(k))+η r
i r i(k)= Si+1(k), when the node exhibits congested

conditions (i.e.Ri(k)>Si+1(k)). In this case, when we interpretSi+1(k) as the total space available
downstream, we can see that space occupied by the traffic merging from the on-ramp is inflated by
a factorη r

i . This reflects the increased space occupied by vehicles as they change lanes to merge
into the freeway traffic.

Traffic weaving can also be observed as vehicles change lanesto exit an off-ramp. We assume
that off-ramp weaving occurs in the freeway link that precedes the off-ramp diverge location.ηs

i ≥
1, captures the additional space occupied by the weaving traffic exiting the off-ramp. The effect of
off-ramp weaving corresponding to off-rampi can be captured by modifying the demand function
of link i. Under weaving, the new capacity of linki is given by

Fi

1+(ηs
i −1)βi(k)

and the new demand function is given by

Di(k) = min

(

ni(k)vi(k),
Fi

1+(ηs
i −1)βi(k)

)

(7.3)

To understand the effect of off-ramp weaving, we note that the total flow exiting the linkfi(k) is
composed of the flow exiting through the off-ramp (fi(k)βi(k)) and the flow continuing onto the
next freeway link (fi(k)(1− βi(k))). Weaving near off-ramp diverges leads to a decrease in the
effective capacity of the input link, as the traffic exiting the off-ramp change lanes and occupy
additional space. Interpretingηs

i as the inflation factor that captures the space occupied by the
weaving traffic, the capacity of the section imposes a restriction of total flow that can exit linki,
given by fi(k)(1−βi(k))+ fi(k)βi(k)ηs

i ≤ Fi . This is equivalent to replacing the capacity of the
section by an effective weaving capacity Fi

1+(ηs
i −1)βi(k)

.

The simple model presented above captures the main featuresexpected when traffic weaving
is observed, i.e. the reduction in operational capacity of asection. Moreover, the reduction in
operational capacity increases with the increase of flow in the traffic streams that contribute to
the weaving. This model differs from the model presented by Jin [28], which assumes a space
dependent weaving coefficient. The author considers a smallstretch of road with a space and
time dependent weaving factor. The weaving coefficient contributes to an increase in perceived
density, and the author also modifies the demand and supply functions, defined through a nominal
fundamental diagram, using a weaving factor. A simple modelis provided to calculate the weaving
coefficients as a function of ramp and mainline densities, when constant ramp flows are assumed.
The model cannot be easily extended to situations when ramp flows are varying, due to presence
of ramp controllers. TOPL simulator also incorporates a density based weaving model. For on-
ramp weaving, this model keeps track of downstream densities contributed by the different traffic
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streams, and modifies the demand and supply function depending on the amount of weaving traffic
(a reference for this model is not currently available, but it is expected to be posted in [67] when
ready). While this model can keep track of the effect of merging traffic, the presence of additional
state variables pose additional difficulties when used within an optimal controller. In contrast, the
model presented here is simple, and can be easily integratedinto the solution scheme presented in
the previous chapter, as we will show here.

Capacity drop model

In any freeway section, congestion originates at bottlenecks and propagates upstream. A passive
bottleneck exists when the capacity of the link upstream exceeds the capacity of a link down-
stream. Natural bottlenecks can occur due to lane drops, ramp merges and also less typically in
graded locations and turns. Bottlenecks are said to be activated when the demand feeding into the
bottleneck section (link) exceeds the capacity downstream. As a result, vehicle buildup occurs in
the link before the bottleneck and congestion propagates upstream.

The flow exiting a bottleneck in the presence of a vehicle queue upstream is equal to the flow
capacity. In normal sections, this flow capacity is given by the flow corresponding to the apex of
the fundamental diagram. In some locations, bottlenecks are characterized by a drop in capacity, as
vehicle queues build up, leading to higher densities in the bottleneck locations. Various researchers
[24, 6], have observed capacity drop at bottleneck locations. The empirical relationship between
capacity drop and the vehicle density at a bottleneck location has been investigated in [10].

The LN-CTM model is modified to simulate the capacity drop by incorporating a discontinuous
link demand function, defined as

D̄i(k) =

{

min(ni(k)Vi,Fi) if ni(k)≤ ncd
i ,

F̄i if ni(k)> ncd
i .

wherencd
i is the density above which capacity drop occurs andF̄i < Fi . The flow out of any

link is the minimum of its demand, and the supply imposed by the downstream link. Hence, to
derive the effective capacity drop, one needs to consider the capacity imposed by the downstream
supply, since the effective capacity of any junction is given by min(Fi,Fi+1). In case the current
link (link i) and the next downstream link (linki +1) do not have ramps in between, the effective
capacity drop (for linki) is defined as min(Fi ,Fi+1)−min(F̄i ,Fi+1), which is different fromFi − F̄i .
Clearly, even with a discontinuous demand function, unlessFi+1 > F̄i , the link will not experience
capacity drop. Figure 7.1 shows an example of a section with adiscontinuous demand function. In
this figure, we illustrate that capacity drop occurs at the density corresponding to the apex of the
fundamental diagram, i.e. the critical densitync

i . In general, the density used for the capacity drop
can be located beyond this value, and the definition naturally extends in the case of a trapezoidal
fundamental diagram. Finally, in case speed control is applied, the demand function is given by
Di(ni(k)) = min(ni(k)vi(k), D̄i(ni(k))).
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Figure 7.1: Demand (dashed line) and Supply (solid line) functions of two consecutive sections.
The first section (left) experiences a capacity drop

Complete model

Let I denote the indices of all sections (links) considered, while Id denote the freeway sections
where discontinuous capacity model is used. Capacity drop is usually observed in a subset of
locations corresponding to the locations of recurrent bottlenecks of the traffic system. The density
and flow update equations are given by

Mainline/Queue Conservation Equation

n0(k+1) = n0(k)+Q0(k)− f0(k)

ni(k+1) = ni(k)+ fi−1(k)(1−βi−1(k))+ r i−1(k)− fi(k)

l i(k+1) = l i(k)+Qi(k)− r i(k) i = 1, · · · ,N (7.4)

Flow Equations

fN(k) = Dn(k)

fi(k) = Di(k)×
min(Ri(k),Si+1(k))

Ri(k)

r i(k) =
di(k)
η r

i
×

min(Ri(k),Si+1(k))
Ri(k)

i = 1, · · · ,N

where

Di(k) = min(ni(k)vi(k), F̃i(k)),∀i ∈ I \ Id
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Di(k) =







min(ni(k)vi(k), F̃i(k)) if ni(k)≤ max
(

nc
i ,

F̄i
vi(k)(1+(ηs

i −1)βi(k))

)

F̄i
1+(ηs

i −1)βi(k)
otherwise

,

∀i ∈ Id

F̃i(k) =
Fi

1+(ηs
i −1)βi(k)

Ri(k) = Di(k)(1−βi(k))+di(k),

Si+1(k) = min(Wi+1(n
J
i+1−ni+1(k)),Fi+1)

di(k) = η r
i min(ci(k), l i(k)) i = 0, · · · ,N−1 (7.5)

The complete model combines the capacity drop and weaving models presented above. This
model will be used in our predictive controller formulationdetailed in the next section.

7.2 Optimal controller formulation

We first present an optimal controller formulation along thelines of the problem defined in Sec-
tion 6.1. The only difference is the traffic model used in the controller formulation. The control
constraints, initial conditions and the performance objective remains the same. The optimization
problem corresponding to the optimal control formulation is given below.

min : J, given by Eq. (6.3)

S.t. : For k= 1, · · · ,K

Conservation equations

Equations (7.4)

Flow equations

Equations (7.5)

Constraint equations

Equations (6.5), (6.6)
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ni(k), l i(k), fi(k), r i(k)≥ 0 ∀i

initial conditions/fundamental diagram parameters givenin List 6.1. (7.6)

This optimal controller with the modified model poses new challenges to the development of
an efficient solution methodology. This is due to the presence of a discontinuous capacity drop
function in the optimal controller formulation. The relaxation technique presented in the previous
chapter cannot be directly adopted to reduce this optimization problem to a linear program. In
the next section, we present some good heuristics which helpus formulate an efficient predictive
controller based on the optimal controller formulation.

7.3 Efficient predictive controller

The formulation in the previous chapter relied on absorbingthe speed limit/ramp demand vari-
ables, thereby relaxing the flow constraints. Under the new modified demand function, when the
same techniques are applied, the constraints corresponding to the flows in the links with the dis-
continuous capacity drop are no longer linear or even convex. In contrast, the weaving model can
be directly integrated without additional difficulties into the control specification presented in the
previous chapter.

To develop a computationally efficient controller, we employ a divide and conquer approach.
As noted in [21], given a set of (stationary) ramp demands, the freeway can be divided into re-
gions, with each region consisting of multiple sections/links. In this setup, the first link of each
region is in free-flow, while the most downstream section of aregion acts as a bottleneck. These
bottleneck regions are accompanied by congested conditions upstream while the downstream is in
free-flow. Therefore, the bottleneck discharge flows at its maximum flow capacity. Under time-
varying demands, we can expect that these bottleneck regions could possibly change as bottleneck
regions merge and new bottleneck regions are created. Whilein theory, every latent bottleneck can
be triggered by available demands, a few of these bottlenecks are recurrent. If we observe traffic
contours over multiple days, we usually find that a small number of these bottleneck locations are
triggered frequently (for example, [8] presents an automatic bottleneck identification algorithm),
even under the presence of time varying demands. The presence of capacity drop generally creates
a recurrent bottleneck. For example, locations with lane drops with sufficient demand acts as a
natural recurrent bottleneck.

To employ our approach, we separate the freeway into regions, with each region consisting
of only one bottleneck with a modified demand function at its most downstream link. Note that
inside each region, we may have multiple latent/active bottlenecks as long as they do not expe-
rience capacity drops. A controller based on an optimal control framework will be described for
each region, where the controller will prescribe ramp metering rates and speed limits for all links
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belonging to the section. The complete control of the entirefreeway will be managed by indepen-
dent controllers that act on each region. In this section, wewill describe the process of solving
the optimal control problem for each of these sections. Without loss of generality, we state the
following assumption.

Assumption 7.3.1.The freeway section considered has only one bottleneck described using the
modified demand function. This bottleneck with the capacitydrop will be located in the most
downstream section, ie. link N.

It is expected that the bottleneck locations usually experience free-flow conditions downstream.
However, congestion from another downstream bottleneck location can also impact the down-
stream boundary. First, we will develop our predictive controller under the assumption that the
location downstream of the bottleneck is in free-flow. Later, the controller will be modified to
account for congestion downstream.

We now define three optimal control problems.Problem P states the original non-linear op-
timal control problem for our individual region, andProblem Q poses additional restrictions on
the optimal trajectory and reduces the problem to a mixed integer program. Finally,Problem R
solves Problem Q through a sequence of relaxed linear programs.

Problem POriginal Problem

min : J, given by Eq. (6.3)

S.t. : For k= 1, · · · ,K

Conservation Equations

Equations (7.4)

Flow equations

Equations (7.5)

Constraint equations

0≤ vi(k)≤Vi
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0≤ di(k)≤ min(Ci , l i(k))

l i(k)≤ Li

ni(k), l i(k), fi(k), r i(k)≥ 0 i = 1· · ·N

with given initial conditions/parameters. (7.7)

As in the previous controller formulations, the optimal controller regulates freeway traffic using
the ramp metering ratesrc

i (k) for each ramp and the speed limit profilesvi(k) for each link. In
Problem P, we absorb the ramp metering variables (rc

i (k)) and retrieve it after solving the problem,
asrc

i (k) = di(k)/η r
i . In addition, we can also introduce a new variableµ(k) ∈ {0,1}, to capture

the “mode” of the final link. This “mode” can either correspond to free-flow or capacity drop,
depending on whether link density is less/greater thanncd

i . We can add the new variable toProblem
P to convert it into a mixed integer program. The constraints that replace the modified demand
function are

DN(k) = min(ni(k)vi(k),Fi +(F̄i −Fi)µ(k))
ni(k)≤ ncd

i (1−µ(k))+nJ
i µ(k)

ni(k)≥ ncd
i µ(k)

µ(k) ∈ {0,1} (7.8)

We can see thatµ(k) = 0 ⇔ ni(k) ≤ ncd
N , and µ(k) = 1 ⇔ ni(k) ≥ ncd

N . Under these new
constraints, the demand function can either take on the value Fi or F̄i when the density exactly
equalsni

cd. However, in our definition of the demand function with the capacity drop, we assumed
a discontinuity at this operation point, and defined the demand function to take on valuesFi at this
density. Even though the constraints are not an exact representation of this discontinuous demand
function, the solution of the optimal control problem will force the demand function to take the
valueFi at ni(k) = ncd

i . An intuitive explanation for this fact is to realize that wecan decrease the
performance objective by maximizing the output flow at the final link.

The addition of these new constraints instead of the discontinuous demand function does not
provide any computational advantage in solving the optimalcontrol problem. InProblem Q, we
replace the above mixed integer constraint for the modified demand function, and also make the
following assumption.

Assumption 7.3.2.For the freeway section considered, we restrict the system evolution such that
once the downstream link switches to the ”free-flow” mode, itremains in the free-flow mode.

This heuristic restriction is expected to produce an optimal cost almost similar toProblem P,
since the free-flow mode is more efficient as it allows vehicles to exit the region at a much faster
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rate. Hence, once the system switches into the free-flow mode, it is usually optimal for the con-
troller to maintain this mode for maximum throughput. Usingthis assumption we get,

Problem Q Modified Problem

min : J, given by Eq. (6.3)

S.t. : For k= 1, · · · ,K

Conservation equations

Equations (7.4)

Flow equations

Equations (7.5) with (7.8) replacing the modified demand function

Constraint equations

0≤ vi(k)≤Vi

0≤ di(k)≤ η r
i min(Ci, l i(k))

l i(k)≤ Li

ni(k), l i(k), fi(k), r i(k)≥ 0

µ(k) ≥ µ(k+1) k= 1, · · · ,K−1

µ(k) ∈ {0,1} k= 1, · · · ,K

with given initial conditions/parameters. (7.9)

In the above formulation, the constraintsµ(k) ≥ µ(k+1) k = 1, · · · ,K −1 is equivalent to∃ j ∈
{1· · ·K} s.t. µ(k) = 1, k = 1, · · · , j andµ(k) = 0, k = j +1, · · · ,K. This interpretation is used
to formulate Problem R. For a givenj, we can formulate an equivalent linear program by relax-
ing the flow constraints, as presented in the previous chapter. We convert the non-linear equality
constraints in the flow equations to a set of linear inequality constraints, by removing the variables
vi(k) anddi(k) from the formulation. The final optimal control problem solves a linear program
for eachj and computes the minimum cost and corresponding control action.
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Problem R Final Problem

min
j=0..K

: J∗j ,

where

J∗j = min J, given by Eq. (6.3)

S.t. For k= 1, · · · ,K

Conservation equations

Equations (6.1)

Relaxed flow equations

f̄i(k)≤ n̄i(k)Vi i = 1, · · · ,N

f̄i(k)(1+(ηs
i −1)∗βi(k))≤ Fi i = 1, · · · ,N

f̄i(k)(1−βi(k))+η r
i r̄ i(k)≤ Fi+1 i = 1, · · · ,N−1

f̄i(k)(1−βi(k))+η r
i r̄ i(k)≤Wi+1(n

J
i+1− n̄i+1(k)) i = 1, · · · ,N−1

Constraint equations

0≤ r̄ i(k)≤ min(Ci , l̄ i(k)) i = 1, · · · ,N

l̄ i(k)≤ Li

For k= 1, · · · , j

n̄N(k)≥ ncd
N

f̄N(k)(1+(ηs
N−1)∗βN(k))≤ F̄i

For k= j +1, · · · ,K

n̄N(k)≤ ncd
N

ni(k), l i(k), fi(k), r i(k)≥ 0 i = 1· · ·N

with the same initial conditions/parameters. (7.10)
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Consistent with the notation used in the previous chapter, we have chosen to use an upper bar
to denote the optimization variables in each subproblem ofProblem R (e.g. n̄i(k), f̄i(k), r̄ i(k)).
Each subproblem ofProblem R is a linear program. Thejth subproblem captures the situation
when the system is in the capacity drop mode for the firstj time instants and thereafter switches
to the free-flow mode. Letj∗ = argmin

j=0..K
J∗j , denote the subproblem that produces the optimal

cost. We denote the corresponding optimal trajectory as ¯n∗i (k), f̄ ∗i (k), l̄
∗
i (k), r̄

∗
i (k). Along the lines

of Algorithm A , we outline the methodology to extract ramp metering rates and speed limit pro-
files, along with the equivalent system trajectory corresponding toProblem Q usingAlgorithm
B. Let n∗i (k), f ∗i (k), l

∗
i (k), r

∗
i (k),v

∗
i (k),d

∗
i (k) represent the trajectory corresponding toProblem Q

from Algorithm B given below.

Algorithm B

For each time periodk and link 0≤ i ≤ N,

n∗i (k) = n̄∗i (k)

f ∗i (k) = f̄ ∗i (k)

l∗i (k) = l̄∗i (k)

r∗i (k) = r̄∗i (k)

F̃∗
i (k) =

Fi

1+(ηs
i −1)βi(k)

For each time periodk and link 0≤ i < N−1,

i f f ∗i (k) = min(n∗i (k)Vi , F̃
∗
i (k))

v∗i (k) =Vi

d∗
i (k) = η r

i r∗i (k)

else i f f∗i (k)(1−βi(k))+η r
i r∗i (k)< S∗i+1(k)

d∗
i (k) = r∗i (k)η

r
i

v∗i (k) = f ∗i (k)/n∗i (k)
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else i f
r∗i (k)η r

i

Si+1(k)
≤

min(Ci , l i(k))η r
i

min(n∗i (k)Vi, F̃∗
i (k))(1−βi(k))+η r

i min(Ci , l i(k))

v∗i (k) =Vi

d∗
i (k) = η r

i r∗i (k)×
min(n∗i (k)Vi, F̃∗

i (k))(1−βi(k))
S∗i+1(k)−η r

i r∗i (k)

else

v∗i (k) =
η r

i min(Ci, l i(k))
n∗i (k)(1−βi(k))

×

(

S∗i+1(k)

η r
i r∗i (k)

−1

)

d∗
i (k) = η r

i min(Ci , l i(k))

(7.11)

where S∗i (k) = min
(

Wi(n
J
i − n̄∗i (k)),Fi(k)

)

and for each time periodk

F̃N(k) =

{ FN
(1+(ηs

N−1)∗βN(k))
if nN(k)≤ ncd

N
F̄N

(1+(ηs
N−1)∗βN(k))

otherwise
,

i f f ∗N(k) = min(n∗N(k)VN, F̃N)

v∗N(k) =VN

else

v∗N(k) = f ∗N(k)/n∗N(k) (7.12)

Algorithm B is very similar toAlgorithm A , with some additional modifications added to
account for ramp weaving factors and the capacity drop in thefinal link.

Theorem 7.3.1.Let R= {n̄∗i (k), f̄ ∗i (k), l̄
∗
i (k), r̄

∗
i (k)} be an optimal solution ofProblem R and

Q= {n∗i (k), f ∗i (k), l
∗
i (k), r

∗
i (k),v

∗
i (k),d

∗
i (k)} be the solution derived usingAlgorithm B. Then Q is

an optimal solution forProblem Q.

Proof. The feasible sets ofProblem Q andProblem R are equivalent, as each subproblem of
Problem Q is mapped on to a feasible realization ofµ(k) k = 1, · · · ,K, by construction and any



126

feasibleµ(k) corresponds to one of the subproblems of the linear program.We can easily show that
Algorithm B maps a feasible solution ofProblem R to a feasible solution ofProblem Q, along
the lines of the results shown in Chapter 6. Since the feasible sets, and the objective functions
are identical, we can show thatQ, obtained fromR is optimal forProblem Q, with an argument
similar to the one given for Theorem 6.2.1.

Now we consider the effect of boundary conditions downstream of the bottleneck. We make
the following assumption.

Assumption 7.3.3.For the freeway section considered, the downstream boundary condition can
be represented using a constant boundary flow restriction Fd.

The boundary flow restriction means that flows from the most downstream location cannot ex-
ceedFd. When the boundary is in free-flow, we haveFd =FN. However, as the link downstream of
our downstream boundary begins to get congested, it restricts the flow that can exit the region and
Fd < FN. We assume that the downstream flow restriction is constant,even though the downstream
flow restriction will be usually time varying. In fact, the downstream boundary condition is a func-
tion of the upstream flows, and is usually indeterminate. However, when the optimal controller
is used as a part of a model predictive control strategy, we can use the current downstream flow
measurement to provide an estimate ofFd, which we can assume to be constant. This is updated
to a better estimate during the next controller update step.

WhenFN ≥ Fd > F̄, we can replaceFN by Fd, and solve the optimal control problem as before.
In this case, even whenFN > Fd, we recognize that maintaining the first link in the free-flowmode
would increase the current section throughput. However, when F̄N > Fd this is no longer true,
since both modes are equally efficient with respect to maximizing discharge from the particular
section. In fact, in this case, it is efficient to switch to thecongested mode, since this allows the
freeway section to store more vehicles in the freeway (due tothe increased density prevalent in the
capacity drop mode). This will release some of the congestion upstream, leading to large exit flows
in the blocked off-ramps. We replaceFN by Fd and solve the following linear program to obtain
the optimal solution in this case.

min J, given by Eq. (6.3)

S.t. For k= 1, · · · ,K

Conservation equations

Equations (6.1)
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Relaxed flow equations

f̄i(k)≤ n̄i(k)Vi i = 1, · · · ,N

f̄i(k)(1+(ηs
N−1)∗βN(k))≤ Fi i = 1, · · · ,N

f̄i(k)(1−βi(k))+η r
i r̄ i(k)≤ Fi+1 i = 1, · · · ,N−1

f̄i(k)(1−βi(k))+η r
i r̄ i(k)≤Wi+1(n

J
i+1− n̄i+1(k)) i = 1, · · · ,N−1

Constraint equations

0≤ r̄ i(k)≤ min(Ci , l̄ i(k)) i = 1, · · · ,N

l̄ i(k)≤ Li

ni(k), l i(k), fi(k), r i(k)≥ 0 i = 1· · ·N

with the same initial conditions/parameters. (7.13)

The optimal solution of the above linear program can be used to obtain speed limit profiles
and ramp metering rates usingAlgorithm B , with a slight modification. We need to replace the
calculations for determining the speed limit profile in the last section by

i f f ∗N(k) = min

(

n∗N(k)VN,
FN

(1+(ηs
N −1)∗βN(k))

)

v∗N(k) =VN

else

v∗N(k) = f ∗N(k)/n∗N(k) (7.14)

Generally, the optimal controller does not specify a restrictive speed limit profile for the last link
in any of the cases mentioned above, as these would increase the delay of vehicles in the freeway
region considered.

In our final optimal control problem, we do not explicitly consider traffic speed variables. At
any section, we can calculate the speed of the traffic asvs

i (k) = fi(k)/ni(k). One concern is to
ensure that the variable speed limits do not lead to sudden changes in speed at a particular section.
We adopt an indirect method to limit speed variations at any particular section. Let∆Vi denote
the nominally allowed speed variation within which we wouldlike to operate. Then we add the
following constraint

− ζ̄i −
∆Vi

2
(ni(k)+ni(k+1))≤ fi(k+1)− fi(k)≤ ζ̄i +

∆Vi

2
(ni(k)+ni(k+1))
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We will also add a penalty term̄C∑i,k ζ̄i(k) to our cost function. The above constraint indirectly
limits speed variations at a particular section by limitingflow variations across different time steps.

Characteristics of the solution

In this section, we study the characteristics of the solution of the optimal control problem, in the
case of constant split ratios. The presence of capacity dropin the model necessitates the use of
variable speed limits. In this section, we will show that these speed limits serve two purposes (a)
Throttling of the flow into the link with the capacity drop (b)Facilitating the optimal merging, as
well as limiting the queue on the on-ramps.

In order to investigate the properties of the solution, we consider the KKT conditions of the
optimal subproblem ofProblem R. Note that we do not consider any constraints corresponding
to speed limit variations described at the end of the previous section. Here we assume that there
is at least one subproblem which is feasible. Since we include hard queue constraints, this is
not always guaranteed since the demand might be exceedinglyhigh such that no feasible solution
exists. One way to relax on this is to include soft queue constraints, and add a corresponding
function to the objective penalizing excess queues. Note that the main results derived below do not
change even for the problem with soft queue constraints. Forclarity we write the constraints and
the corresponding dual variables.

min J, given by Eq. (6.3)

ni(k+1) = ni(k)+ fi−1(k)(1−βi−1(k))

+ r i−1(k)− fi(k) : ηi(k+1)

l i(k+1) = l i(k)+Qi(k)− r i(k) : η̄i(k+1) i = 1, · · · ,N

n0(k+1) = n0(k)+Q0(k)− f0(k) : η0(k+1)

f̄i(k)≤ n̄i(k)Vi : ν1
i (k) i = 1, · · · ,N

f̄i(k)≤
Fi

(1+(ηs
i −1)∗βi(k))

: ν2
i (k) i = 1, · · · ,N

f̄i(k)(1−βi(k))+η r
i r̄ i(k)≤ Fi+1 : ν3

i (k) i = 1, · · · ,N−1
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f̄i(k)(1−βi(k))+η r
i r̄ i(k)

≤Wi+1(n
J
i+1− n̄i+1(k)) : ν4

i (k) i = 1, · · · ,N−1

f̄i(k)≥ 0 : ν5
i (k) i = 1, · · · ,N

Constraint equations

r̄ i(k)≤ l̄ i(k) : ν̄1
i (k) i = 1, · · · ,N−1

r̄ i(k)≤Ci : ν̄2
i (k) i = 1, · · · ,N−1

r̄ i(k)≥ 0 : ν̄3
i (k) i = 1, · · · ,N−1

l̄ i(k)≤ Li : ζ̄i(k) i = 1, · · · ,N−1

For k= 1, · · · , j

n̄N(k)≥ ncd
N : ζN(k)

f̄N(k)≤
F̄N

(1+(ηs
N−1)∗βN(k))

: ν6
N(k)

For k= j +1, · · · ,K

n̄N(k)≤ ncd
N : ζN(k)

with the same initial conditions/parameters. (7.15)

The optimal solution satisfies the KKT conditions for the above linear program (assuming that
a feasible solution exists). We will present the stationarity condition for the LP given above. The
lagrangian is given by
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K

∑
k=1

[ N

∑
i=0

(

ni(k)+ l i(k)
)

−
N

∑
i=1

(

αi(k) fi(k)+ ᾱi(k)r i(k)
)

+
N

∑
i=0

(

( f̄i(k)− n̄i(k)Vi)ν1
i (k)+( f̄i(k)−Fi/(1+(ηs

i −1)∗βi(k)))ν2
i (k)+(− f̄i(k))ν5

i (k)
)

+

N−1

∑
i=0

(

( f̄i(k)(1−βi(k))+η r
i r̄ i(k)−Fi+1)ν3

i (k)+( f̄i(k)(1−βi(k))+η r
i r̄ i(k)

−Wi+1(n
J
i+1− n̄i+1(k)))ν4

i (k)
)

+

N

∑
i=1

(

(r̄ i(k)− l̄ i(k))ν̄1
i (k)+(r̄ i(k)−Ci)ν̄2

i (k)+(−r̄ i(k))ν̄3
i (k)+(l̄ i(k)−Li)ζ̄i(k)

)]

+

j

∑
k=0

(

(−n̄N(k)+ncd
N )ζN(k)+( f̄N(k)− F̄i/(1+(ηs

N−1)∗βN(k)))ν6
N(k)

)

+
K

∑
k= j+1

(

(n̄N(k)−ncd
N )ζN(k)

)

+
K

∑
k=1

[ N

∑
i=0

(

(l i(k+1)− l i(k)−Qi(k)+ r i(k))η̄i(k+1)
)]

K

∑
k=1

[ N

∑
i=0

(

(ni(k+1)−ni(k)− fi−1(k)(1−βi−1(k))− r i−1(k)+ fi(k))ηi(k+1)
)]

+
N

∑
i=0

(

(ni(1)−n0
i )ηi(1)

)

+
N

∑
i=1

(

(l i(1)− l0
i )η̄i(1)

)

From the lagrangian, we get the following stationarity conditions.

For i = 1· · ·N−1 and k = 1· · ·K

η̄i(k) =−1+ η̄i(k+1)+ ν̄1
i (k)− ζ̄i(k)

ηi(k) =−1+ηi(k+1)+ν1
i (k)Vi −ν4

i−1(k)Wi

with η̄i(K+1) = 0 andηi(K +1) = 0

For i = 0· · ·N−1 and k = 1· · ·K

α −ηi(k+1)+ηi+1(k+1)(1−βi)

= ν1
i (k)+ν2

i (k)+ν3
i (k)(1−βi)+ν4

i (k)(1−βi)−ν5
i (k)

For i = 1· · ·N and k= 1· · ·K

ᾱ − η̄i(k+1)+ηi+1(k+1) = ν̄1
i (k)+ ν̄2

i (k)+ν3
i (k)η

r
i +ν4

i (k)η
r
i − ν̄3

i (k)
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For k = 1· · · j

ηN(k) =−1+ηN(k+1)+ν1
N(k)VN +ζN(k)

α −ηN(k+1) = ν1
N(k)+ν2

N(k)−ν5
N(k)+ν6

N(k)

For k = j +1· · ·K −1

ηN(k) =−1+ηN(k+1)+ν1
N(k)VN −ζN(k)

α −ηN(k+1) = ν1
i (k)+ν2

i (k)−ν5
i (k)

The optimal trajectory also satisfies the primary and dual constraints. The dual feasibility
constraints are given by

ν1
i (k), . . .ν

6
i (k)≥ 0

ν̄1
i (k), . . . ν̄3

i (k)≥ 0

ζ̄i(k),ζN(k)≥ 0

The usual complementary slackness conditions apply, and they are not explicitly stated here.

Lemma 7.3.1.When the optimal trajectory satisfiesη r
i r̄ i(k)< min

(

Fi+1,Wi+1(nJ
i+1− n̄i+1(k))

)

,
∀ k and i= 1...N−2, we haveα −ηi(k)+ηi(k+1)(1−βi)≥ 0 ∀ k and i= 1...N−2 and at least
one ofν1

i (k),ν2
i (k),ν3

i (k),ν4
i (k) is strictly positive. Moreover,ν5

i (k) = 0 ∀ k

Proof. For anyi = 1, · · · ,N−2, we proveα−ηi(k)+ηi(k+1)(1−βi)≥ 0 by backward induction.
Clearly, fork = K +1, we haveα −ηi(K +1)+ηi+1(K +1)(1−βi) = α > 0. Assume that the
statement is true fork+1, then

α −ηi(k+1)+ηi+1(k+1)(1−βi)

= ν1
i (k)+ν2

i (k)+ν3
i (k)(1−βi)+ν4

i (k)(1−βi)−ν5
i (k)> 0

It can be easily shown that the optimal trajectories satisfyn̄i(k) > 0, givenn̄i(0) > 0. When we
consider the complimentary slackness conditions, we see that ν1

i (k)> 0 or ν2
i (k)> 0 implies that

ν5
i (k) = 0. Also, we are given thatη r

i r̄ i(k) < min
(

Fi+1,Wi+1(nJ
i+1− n̄i+1(k))

)

for the optimal
trajectory. Using this fact along with the complementary slackness conditions, we also get that
ν3

i (k) > 0 or ν4
i (k) > 0 implies thatν5

i (k) = 0. Sinceα − ηi(k+ 1) + ηi+1(k+ 1)(1− βi) is
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positive, at least one ofν1
i (k),ν2

i (k),ν3
i (k), or ν4

i (k) is non-zero. Thusν5
i (k) = 0. Now,

α −ηi(k)+ηi+1(k)(1−βi)

= α −
[

−1+ηi(k+1)+ν1
i (k)Vi −ν4

i−1(k)Wi

]

+(1−βi)
[

−1+ηi+1(k+1)+ν1
i+1(k)Vi+1−ν4

i (k)Wi+1

]

= [α −ηi(k+1)+ηi+1(k+1)(1−βi)]+1− (1−βi)

+ν1
i+1(k)Vi+1(1−βi)+ν4

i−1(k)Wi −ν4
i (k)Wi+1(1−βi)−ν1

i (k)Vi

> [α −ηi(k+1)+ηi+1(k+1)(1−βi)]−ν4
i (k)Wi+1(1−βi)−ν1

i (k)Vi

> 0

Since ν4
i (k)(1−βi)+ν1

i (k)≤ α −ηi(k+1)+ηi+1(k+1)(1−βi)

Hence, by induction, we prove the lemma stated above.

The lemma presented here applies to all links which are not upstream of a link with a modified
capacity drop function. The optimal controller specifies a speed limit and a ramp metering rate.
For any link discharging its output to a “normal” link (i.e. without a capacity drop), the optimal
controller does not throttle the flow by means of a speed limit, i.e.

fi(k) = min

(

n̄i(k)Vi,Fi ,
min(Fi+1,Wi+1(nJ

i+1− n̄i+1(k)))−η r
i r̄ i(k)

1−βi

)

.

Particularly, when the next link has no ramp flows, we see thatoutflow follows the LN-CTM equa-
tions with nominal speed limits. However, when the ramp has non-zero flow and the downstream
link is congested (i.e. the third term in the equation statedbefore is active), a speed limit may still
be applied to ensure optimal merging. Even in this case, the total inflow into the next link will
be the same as the flow in the no speed limit case, but in the caseof the optimal trajectory the
total outflow may be arbitrarily divided between the ramp andthe previous link. In some cases,
this will correspond to the application of a speed limit. Forexample, when ramp flows satisfy
the third conditional statements inAlgorithm A/B , speed limits are not necessary, while speed
limits need to be specified when the fourth conditional statement is active. The most common
reason for this is that in cases when queue limits are specified, in order to maintain the queue
within its limit, the controller will try to assign more preference to the ramp flow, by means of
reduced speed limits to the link. Even when queue limits are not specified, the optimal controller
may still specify a variable speed limit, as we saw in the previous chapter. In cases of extreme
congestion/excessive ramp demands, ¯r i(k)<Wi+1(nJ

i+1− n̄i+1(k)) may not apply and the optimal
controller might lead to additional throttling to ensure that sufficient space is available for ramp
demand. In the case of on-ramps which are not freeway interconnects, this condition is not vio-
lated whenη r

i Ci < Wi+1(nJ
i+1− n̄i+1(k)) for the optimal trajectories. During nominal operation,

freeways do not generally get very congested as to violate this condition. We also expect the same
when the freeway is under the effect of the optimal controller.
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The results of this lemma do not apply for the link feeding into a section which experiences
capacity drop. Mathematically, this is due of the termζN(k) in the recursive equation forα −
ηN−1(k)+ηN(k)(1−βN−1). We can see that depending on the sign of this term, the flows feeding
into the link with the capacity drop can be zero (i.e.ν5

i (k) = 0). We will see an example of this
in the next section. The results for this lemma also apply when the optimal solution of the original
optimal control problem is considered.

7.4 Simulation examples

We demonstrate the application of a model predictive controller based on the optimal control for-
mulation presented in the previous section. Given the modeltime stepT, the prediction horizon
Np (in units of number of periods), and the control horizonNc, we can create a model predictive
controller that is executed everyTc = Nc×T time instants. We demonstrate the application of our
controller in the presence of weaving and capacity drop.

Link 6

Link 13Link 7 Link 11

On-ramp 2 Off-ramp

Link 0

On-ramp 1

Section with 
Capacity drop

On-ramp 3

Figure 7.2: Freeway geometry with location of on-ramps and off-ramps.

Figure 7.2 represents the geometry of the freeway section (3.2 mile length) which is considered
for our simulation studies. The geometry is artificially constructed to demonstrate the application
of our controllers. In this portion of the freeway, link 11 isthe only link which experiences a
capacity drop. The fundamental diagram parameters are listed in Table 7.2. We can see that the
maximum throughput of link 11 is 7600vph in free-flow conditions. This decreases to 7300vph
once the density in link 11 exceeds the critical density of 121vpm. This represents a capacity drop
of around 4% which is representative of the nominal capacitydrop generally reported in literature.
We assign our optimal controller to operate on links 0 to 11. The optimal controller can specify
variable speed limits for these links, in addition to the ramp metering rates for the on-ramps 1-3.
A constant split factorβ = 0.15 is chosen for the three off-ramps during the entire time period
considered. For all the on-ramps, we assume a weaving ratioηr = 1.3. We do not consider any
off-ramp weaving in the examples shown here. Figure 7.3 shows the on-ramp demands we use
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Figure 7.3: On-ramp input flows for all ramps.

for the simulation. The on-ramp demands are chosen such thatthe freeway is congested between
T=1hr to T=2hr. We use a constant flow of 7000vph as the input flow into the first link on the
freeway (link 0).

Table 7.2: Link parameters

Links V W F F̄
0,1 65mph 20mph 8500vph n.a
2,3 65mph 20mph 8900vph n.a

4-10 65mph 20mph 10500vph n.a
11 65mph 20mph 7900vph 7300vph

12,13 65mph 20mph 7600vph n.a

We use the LN-CTM with the capacity drop/weaving model to perform our simulations. In the
first simulation, we assume that the boundary downstream of link 13 is in free-flow. Figure 7.4
(top) shows the velocity contours that result when no control action is applied. In this simulation,
the freeway starts to get congested around T=1hr. We can see two bottlenecks in the simulation,
at link 3 and link 11 respectively. The bottleneck in link 11 is attributed to the capacity drop,
while the bottleneck in link 3 is due to the on-ramp merge and weaving (this bottleneck disappears
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Figure 7.4: Top : Simulated Velocity contours [mph] - no control scenario. Middle : Simulated
Velocity contours [mph] - optimal controller. Bottom : Optimal speed limit profile [mph].
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when weaving factor equals 1 for the demands in the simulation example). Next, we simulate
the freeway, with the model predictive controller specifying the metering rates and speed limits.
The controller is initially inactive, and we start applyingthe controller at T=1.11hr, when link 11
already experiences capacity drop. We chooseNp = 30, T = 10s, Nc = 6 for our controller. The
queue limits in both the ramps are chosen to be 75 vehicles. Wechoose∆Vi to correspond to
5mph to limit the variations in speed in the link preceding the bottleneck section. In this case, the
controller has to solve at most 30 (and in most cases, less) linear programs. Figure 7.4 (middle),
shows results of the simulation in which our model predictive controller is used. In this case, the
severity and the extent of congestion is reduced. Figure 7.4(bottom) shows the variable speed limit
profiles specified by our optimal controller. The optimal controller specifies a speed limit profile
for link 10, and this helps decrease the density of link 11 to below critical density. Thereafter,
it still maintains the speed limit which enables link 11 to stay in free-flow. Thus, the optimal
controller creates a new bottleneck, through controlled congestion, at link 10 to prevent link 11
from experiencing a drop in capacity. This controlled congestion helps in increasing the throughput
of link 11, which limits the extent of congestion, even though it is not completely eliminated.
Finally, we see from Figure. 7.5 that the optimal controllermaintains the ramp queue limits. The
most downstream ramp meter corresponding to on-ramp 3 is used to control the congestion arising
out of the bottleneck at link 13. In contrast, the flows in on-ramp 2 are controlled to alleviate the
effects of weaving. Decreasing the on-ramp flows (until queue constraints are violated) increases
the operational capacity of the section. For every additional vehicle stored in the on-ramp,ηr = 1.3
vehicles are discharged from the previous section. In caseswhen the congestion spills back to block
other off-ramps, this increase in operational capacity canfurther help delay congestion. The total
travel time and the delay experienced by all users in the no-control scenario are 1358vh (vehicle-
hours) and 245vh respectively. In contrast, these reduce to1256vh and 143vh respectively when
the controller is used. This leads to a substantial delay reduction of 41.5%.

In the second simulation, we assume that the boundary downstream of link 13 is initially in
free-flow. At 1.4hr, the boundary (link 13) begins to get congested and this congestion propagates
back onto link 11 soon after. At 1.6hr, the boundary becomes free-flowing. All other parameters
and demands are same as the first simulation. Figure 7.6 (top)shows the velocity contours under
the no-control scenario. The congestion is more widespreadas compared to the simulation with the
optimal controller (Figure 7.6 (middle)). From Figure 7.6 (bottom), we note the speed limit profiles
specified by the controller. In this case, we see that the controller specifies a speed limit profile until
the boundary congestion reaches the location downstream oflink 11. Thereafter, the predictive
controller only resumes the speed limit control when the congestion due to the downstream section
has dissipated. The total travel time and the delay experienced by all users in the no-control
scenario are 1364 (vehicle-hours) and 252vh respectively.In contrast, these reduce to 1284vh and
172vh respectively when the controller is applied. This leads to a delay reduction of 31.8%.
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Figure 7.5: On-ramp queues for simulation 1 with optimal controller. Each ramp has a maximum
queue size of 75veh.

7.5 Summary

In this chapter, we extended the predictive congestion controller presented in the previous chap-
ter, by augmenting the traffic model used within the controller to include weaving and capacity
drop phenomena. The modified model adds additional complexity to the optimization problem
corresponding to the actual optimal control problem, and wepresent various assumptions that are
needed to allow us to solve the optimal control problem efficiently. First, we divide the freeway
into regions and assume that each region is controlled usingan independent controller which con-
trols all sections within that region. One drawback to this approach is that we cannot completely
co-ordinate all controller actions, and this might limit the total performance improvements in some
cases. When the downstream boundary of each region always remains in free-flow, lack of co-
ordination is not expected to limit the controller performance. However, during periods when the
region boundary transitions into congestion, better co-ordination can help manage and delay it.
Next, we also assume that the optimal trajectory does not switch back from the free-flow mode to
the capacity drop mode. When the downstream boundary is always in free-flow, this assumption
is generally valid, since the free-flow mode is generally more efficient in discharging traffic out
of the region. Finally, we assume that congestion in the downstream boundary can be represented
by a constant flow capacity restriction for flows exiting the final link. This provides us a tractable
method to calculate an predictive control strategy when thedownstream boundary is congested.

All of these assumptions allows us to specify an efficient predictive controller used when sec-
tions of the freeway exhibit capacity drop. We highlight that when only weaving is present, these
assumptions are not necessary, and we can solve the final optimal control problem exactly. With
our approach, the optimization problem corresponding to each predictive controller step can be
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Figure 7.6: Top : Simulated Velocity contours [mph] - no control scenario. Middle : Simulated
Velocity contours [mph] - optimal controller. Bottom : Optimal speed limit profile [mph].



139

solved within 5 seconds for our scenario, when we use the MOSEK linear program solver. This is
a fraction of the controller time horizon. We also see that our sequence of linear programs can be
solved completely in parallel. One single iteration of the controller can be executed within 10-20s
for a realistic sized freeway, even for longer time horizons(though that may not be necessary) like
the one shown in previous chapter when we exploit the inherent parallelism.

In this chapter, we also presented some details of the characteristics of the solution. Particularly,
we investigated the role of variable speed limits within ourcontroller. Variable speed limits are
useful in two cases : (a) to ensure optimal merging in on-rampjunctions and (b) to limit the
feeding flows into the section that experiences capacity drop. VSL application corresponding to
(a) is generally useful in maintaining queue limits, as we had demonstrated with simulation results
in Chapter 6. We expect that the performance gains with the application of VSL in this case may
be limited, as shown by our simulations. In contrast, VSL specified in case (b) is necessary to
increase the efficiency of the capacity drop section. We expect that an optimal controller that only
uses ramp metering to prevent capacity drop might be more inefficient and less robust.

Finally, we presented simulation results where we comparedthe freeway characteristics with
and without the application of our model predictive controller. In both scenarios, our controller
leads to a substantial reduction of delay experienced by alltravelers in the freeway, even though
we only had one section with a modest capacity drop. From our experience of simulating freeway
sections with and without capacity drop, we determine that capacity drop is usually the single
most important factor that contributes to delay in the freeway, if present. Accounting for capacity
drop in ramp metering and variable speed limit controllers,whenever they are present, can help us
significantly improve traveler experience on the controlled freeways.
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Chapter 8

Conclusions

In this dissertation, we have investigated specific aspectsof traffic flow modeling and control of
freeway networks. We presented an imputation algorithm, used as a part of a data driven model
calibration process to build a model of a chosen freeway section. We also presented an efficient
optimal controller, that can be used for congestion controlof the given freeway system.

In Chapter 2, we reviewed concepts and previous work relatedto the development of this
dissertation. We discussed the current state of traffic detection, the usually observed detection
problems and commonly adopted solutions to impute missing data in freeway mainlines. This was
followed by a review of the popular models commonly used to model freeway traffic dynamics.
We also presented a detailed account on the control methodologies commonly adopted to combat
congestion in freeways, along with a review of previous efforts in the area of model based optimal
congestion control. We presented the Link-Node Cell Transmission Model (LN-CTM), a first order
model used for simulating traffic dynamics in traffic networks, in Chapter 3. This chapter also
discussed the steps taken by a user to create the freeway geometry and automatically calibrate a
model. We identified the necessity of imputation of ramp flow data to complete the model creation
process. In fact, to completely calibrate the model, we use the imputation algorithm presented in
Chapter 5. Finally, we present a model created using the model creation and calibration process.

Chapters 4 and 5 described two imputation algorithms that can be used to estimate the missing
ramp flow data. First, we developed a link-wise imputation algorithm based on the Asymmetric
Cell Transmission Model (ACTM), along with the proof of convergence of the algorithm. The
ACTM, being a simplified piecewise affine model, lent to easy analysis and design of the first
model based ramp imputation algorithm. We were able to provethat ramp estimates converged
to the actual values (assuming that the freeway dynamics is well approximated by the ACTM)
in most cases. Even though in some cases, we might not be able to uniquely identify the on-
ramp and off-ramp flows, the errors do not propagate and affect the imputed estimates of the
ramp flows in the downstream links. We showed that the imputation algorithm results in zero
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density and flow errors in the steady state. Thus, a lack of convergence of the density or the
flow errors usually imply that some of the measurements supplied may be erroneous/faulty. This
forms the basis of fault detection algorithms, that have been developed by other members of the
TOPL group for detecting bad detectors [18]. In Chapter 5, wepresented an imputation algorithm
based on the LN-CTM. The LN-CTM was more accurate for modeling on-ramp merge dynamics
especially when the ramp flows are large. This algorithm simultaneously imputed all the ramp
flows in two steps, first matching the observed mainline densities before matching the available
mainline flows. We also demonstrated the convergence of the algorithm, and discussed various
properties of the algorithm. We have observed that the LN-CTM algorithm provides better imputed
estimates for simulation, since it simultaneously imputesall the ramp flows together. The presence
of noisy/faulty measurements at any interior section does not impact the LN-CTM algorithm like
in the case of the ACTM imputation algorithm. Both these algorithms are computationally fast,
being able to impute the 24 hour ramp flow profiles for most freeways within 5 minutes.

The imputation algorithm forms an essential piece of the model creation process. With the
imputation algorithm in place, under the presence of no adverse/faulty detection, a mildly expe-
rienced user can build freeway models for an entire freeway within 1 day. In some cases, faulty
detectors present extend the effort to almost a week, if the faults are to be identified and the data
discarded manually. A recently developed fault detection algorithm, based on the ACTM, can
automate the process to reduce the model creation effort to half the week[18]. Once the initial
model geometry along with the faulty detectors are identified, the imputation algorithms can be
run autonomously to estimate daily ramp demands and split ratios for multiple days. This allows
the user to build models for different days of the week, so that various operational strategies can be
tested across multiple days before deployment. In contrast, transportation planners currently use
microsimulation models, and their calibration is known to take around 3-6 months of user efforts.
Moreover, micro simulation model based studies are usuallylimited to a single “nominal” day of
operation, due to limited time and project budgets.

Once a validated freeway model is available from our calibration procedure, we can apply and
test various operational management strategies. One of thepopular strategies is the congestion
control using ramp metering and variable speed limits. Chapter 6 presents an optimal controller
based on the LN-CTM. The controller optimizes a parametric performance objective, which can
be chosen to represent two commonly used congestion indicators - the total travel time or total
congestion delay of all vehicles using the freeway network.This controller prescribes time varying
ramp metering rates for each on-ramp link as well as time varying speed limit profiles for the
freeway mainline. We demonstrate that, though the actual optimization problem corresponding to
the optimal controller is non-linear and non-convex, we areable to absorb some variables and relax
some constraints to present a linear program. We presented an algorithm to convert the optimal
control/state trajectory prescribed by the relaxed linearprogram into an optimal solution of the
actual optimal control problem. We also demonstrated a Model Predictive Controller, utilizing
this optimal control formulation and established its efficiency in obtaining a solution. The optimal
controller, used on a calibrated model, allows us to get an estimate of the best performance benefits
that can be obtained by implementing ramp metering and variable speed limits in the field, since
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we obtain a globally optimal solution to the optimal controlproblem. Within TOPL, the optimal
controller can be used to compare and certify (and possibly tune) other commonly deployed ramp
metering controllers. Being computationally efficient, this controller can also be possibly deployed
in the field in the future.

In Chapter 7, we extended the predictive control formulation, by modifying the underlying traf-
fic model. The original LN-CTM model does not model the effectof on-ramp/ off-ramp weaving
and capacity drop, when they are present. When these effectsare significant, inclusion of these
models can allow a predictive controller to obtain increased performance gains. We present an
augmented LN-CTM model, with additional modifications to capture on-ramp/off-ramp weaving
as well as the capacity drop. When this model is used within the optimal controller, it can no longer
be efficiently solved using the techniques given in Chapter 6, due to the presence of a discontin-
uous demand function modeling the capacity drop. Hence, we divide the freeway into regions,
with each region containing a capacity drop location at its most downstream section, and assign an
independent controller to co-ordinate the ramp metering and variable speed limits in each section.
With additional heuristic assumptions, which are not expected to significantly degrade the quality
of the solutions, we demonstrate the optimal control problem can be solved using a sequence of
linear programs, by using a relaxation technique similar tothe one presented in Chapter 6. In this
case, the optimal solution can be mapped back using an algorithm similar to the one presented
before.

Future Work

There are multiple avenues of future work related to the material developed in this dissertation.
First, our model creation procedure and the imputation algorithm should be extended to include
weaving and capacity drop. When all ramp measurements are available, it is possible to directly
extend the calibration process to include capacity drop andweaving. We also need to validate
the weaving model, and ascertain its ability to replicate the traffic flow characteristics in ramp
junctions. Multiple sites, with working mainline and ramp detectors, should be used to validate the
model, and compare it with the other models discussed before. The extension of the imputation
algorithm in the presence of capacity drop might not be an easy task, since the current imputation
algorithm takes advantage of the monotonicity of the flow entering and exiting the link. Though
the update equations for the ramps adjoining the capacity drop locations might need to be modified,
it is expected that the imputation algorithm might remain the same for other ramps.

The LN-CTM imputation algorithm could also be extended to include statistical models of
ramp inputs, as a part of the imputation process. As we arguedbefore, even with ramp detector
data is available, a purely statistical imputation algorithm is not expected to produce good quality
imputed data for our simulation models. However, a hybrid approach, utilizing statistical models of
ramp flow data along with the model based imputation scheme would be useful, particularly when
some of the mainline measurements are noisy/missing. Whilethe current imputation algorithm
could be extended to impute ramp demand estimates in real-time, a hybrid approach holds more
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promise in providing better quality estimates.

The predictive control methods, which are specified in Chapter 7, define separate controllers for
each region. This does not lead to any appreciable drop in performance, as long as the bottleneck
downstream remains un-congested. However, in case the bottleneck downstream gets congested
during the controller operation, the lack of coordination between the controllers acting in different
regions limit the performance improvements that can be obtained from the controllers. One pos-
sible extension is to embed these controllers within a hierarchical control scheme, where a meta
controller provides commands to coordinate the control actions of these controllers. In this case,
we need to identify the set of control actions that can be specified by the meta controller, while
also extending the individual region controllers to incorporate these control commands.
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