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ABSTRACT1

This article considers the dynamic user equilibrium (DUE) problem for parallel networks. The network2

dynamics are modeled using a Godunov discretization of the Lighthill-Williams-Richards partial differential3

equation with a trapezoidal flux function. The model is augmented with an additional constraint that prevents4

vehicle holding which is a flaw in the discretization. The departure rates are assumed to be fixed. Under5

these assumptions, we show that the future allocation of the demand among the different paths at the origin6

has no effect on the travel time of the vehicles already in the network. This enables us to show that the DUE7

for a fixed time steps horizon can be decomposed into a series of static UE problems and solved sequentially.8

Thus, the DUE problem can be solved as a sequence of convex optimization problems.9
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INTRODUCTION10

Dynamic traffic assignment (DTA) models have been studied since the seminal works of Merchant and11

Nemhauser in 1978 (1, 2). The principle of the user equilibrium (UE) (or Wardrop equilibrium) alloca-12

tion, in which all travelers with the same origin-destination pair see the same travel time, was introduced13

by Wardrop (3) in the context of static traffic assignment and has been expanded to dynamic models by14

Beckman (4). The system optimal (SO), also introduced by Wardrop, corresponds to the minimization of15

the total travel time of all agents. Both the UE and the SO have many applications in traffic planning and16

intelligent transportation systems (ITS). The UE is used to represent the behavior of selfish agents and the17

SO is an upper bound in terms of network efficiency.18

The static user equilibrium has been studied extensively in game theory (5), since it is a particular19

case of the Nash equilibrium concept. Several algorithms give arbitrarily good approximations of the static20

UE. Blum (6) presents a class of no-regret algorithms that give a strategy that, if applied by all agents,21

converges to a Nash equilibrium in static games, when latency functions are increasing, continuous and22

have bounded slopes. Fischer (7) presents another algorithm based on a replication-exploration protocol.23

The dynamic user equilibrium (DUE) has been formulated using different hypothesis for the de-24

cision variables (route and/or departure time) and different models for the dynamics. Huang and Lam (8)25

study the simultaneous route and departure time choice problem using vertical queues to model the traffic.26

Lo and Stezo (9) formulate the DUE as a finite dimensional variational inequality problem and propose an27

alternating direction method to solve it. They also extend their model to handle elastic travel demand (10).28

Friesz and al. (11) present a continuous-time network loading procedure based on the Lighthill-Williams-29

Richards (LWR) model, formulate the DUE as a variational inequality problem and solve it using a fixed30

point algorithm. All of these methods are computationally complex even in simple networks.31

We consider a macroscopic model (i.e. traffic flows and numbers of agents have continuous values.32

It is based on the assumption that one agent represents a negligible fraction of the overall traffic) based on33

the LWR partial differential equation (12, 13). Specifically, we use a Godunov discretization (14) of this34

equation, also known as the Cell Transmission Model (CTM) (15, 16) in transportation literature. We assume35

that the relationship between flow and density can be approximated to a first order using the trapezoidal36

fundamental diagram as seen in empirical studies (17).37

We focus on the single source, single destination DUE problem with parallel paths, where the desti-38

nation is not capacity restricted. As depicted in Fig. 1, each path is composed of an initial buffer of infinite39

capacity linked to a road network. Each path has its own buffer and the travel times of paths are independent40

from each other.41

Single origin Single destination

Buffer Sink

Buffer Sink

Buffer Sink

FIGURE 1 : An example of a parallel network with a single source and destination.
The contribution of the article is to show that the DUE problem can be solved as a sequence of42

static UE problems under the trapezoidal fundamental diagram hypothesis and a particular condition on the43

Godunov discretization of the road network. This reduces solving the DUE problem to a sequence of convex44

problems. A computationally efficient algorithm using any black box static UE allocation solver is given.45

We first present the model of the traffic dynamics in section 3. Then, we prove that the UE assign-46

ment at a given time step does not depend on future demand, and thus describe a greedy algorithm to solve47

the DUE problem. Finally, section 5 gives implementation details and shows how the algorithm works on a48
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simple three road parallel network.49

PRELIMINARIES50

Notations51

Constants52

∆t, T Time discretization and number of time steps
π(i) The predecessor of cell i ∈A \B
π−1(i) The successor of cell i ∈A \S
D(k) Demand rate at the source for time step k
Fmax

i Maximum inflow and outflow of cell i
Li Length of cell i
vi Free flow speed of cell i
wi Congestion wave speed of cell i
ρ

jam
i Jam density of cell i

ρ0
i Initial density of cell i

Sets53

A Set of cells (including buffers and sinks)
Ap Set of cells in path p
B Set of buffer cells
S Set of sink cells
P Set of parallel paths

Variables54

f in
i (k) Total inflow of cell i at time step k

f out
i (k) Total outflow of cell i at time step k

ρi(k) Density in cell i at time step k
σi (k) Supply of cell i at time step k
δi (k) Demand of cell i at time step k
γp(k) The split ratio for path p at time step k

For notational convenience, both sinks and buffers are considered as cells of unit length and infinite55

capacity. Thus, the density in a sink or in a buffer is equal to the number of agents in the cell. We also use56

[[0,T −1]] = {0, . . . ,T −1}.57

Dynamics model58

The dynamics of the system govern the evolution of traffic over time and space. Each path has its own sink59

to be able to discriminate the number of agents that have reached the destination using that path. This article60

only considers the DUE problem for a parallel network. See (18) for a discussion of the general network61

problem.62

Assumption 3.1 (First-in first-out (FIFO) property) We assume that no agents leaving the origin at a63

time step t > t ′ will overtake the agents that have left the origin at time step t ′.64

Assumption 3.2 The flux function defining the relationship between density and flow is given by the trape-65

zoidal fundamental diagram shown in Fig. 2. This is a first order approximation of the empirical relationship66

between flow and density (17).67
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ρ jam

Fmax

FIGURE 2 : Trapezoidal fundamental diagram.

Definition 3.1 (Supply and demand) The supply of a cell i at time step k, denoted σi (k), is the flow it can
accept from its predecessor cell, while the demand δi (k) is the flow that is trying to leave the cell. Following
the trapezoidal fundamental diagram and considering that both sinks and buffers are considered as cells of
unit length, they are defined as:

σi (k) = min(Fmax
i ,viρi(k)) , ∀i ∈A \ (B∪S ) (1)

σi (k) = Fmax
i , ∀i ∈S (2)

δi (k) = min
(

Fmax
i ,wi(ρ

jam
i −ρi(k))

)
,

∀i ∈A \ (B∪S ) (3)

δi (k) =
ρi(k)

∆t
, ∀i ∈B (4)

Note that buffers have no supply and the sinks have no demand.68

Definition 3.2 (Split ratio) The split ratio γp(k) for path p at time step k is the fraction of the demand rate69

D(k) that is taking path p at time step k.70

Definition 3.3 (Initial conditions) The initial conditions for time step k = 0 are defined as:

ρi(0) = ρ
0
i , ∀i ∈A \ (B∪S ) (5)

ρi(0) = D(0)γi(0)∆t, ∀i ∈B (6)

ρi(0) = 0, ∀i ∈S (7)

Definition 3.4 (Inflow and outflow) Having all the densities at time step k, we compute the flows at time
step k with:

f out
i (k) = f in

π−1(i) (k) = min
(

δi (k) ,σπ−1(i) (k)
)
,

∀i ∈A \S (8)

Note that buffers have no inflow and sinks have no outflow.71

Definition 3.5 (Forward system) The state of the network at time step k is defined by all the densities of the
cells. Having the state at time step k, the state at time step k+1 is computed using the following relations:

ρi(k+1) = ρi(k)+
∆t
Li

(
f in
i (k)− f out

i (k)
)
,

∀i ∈A \ (B∪S ) (9)

ρi(k+1) =
∆t
Li

(
D(k+1)γi(k+1)− f out

i (k)
)

+ρi(k), ∀i ∈B (10)

ρi(k+1) = ρi(k)+
∆t
Li

f in
i (k) , ∀i ∈S (11)
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To ensure the convergence of the solution of the discretized model to the solution of the continuous72

LWR equation when ∆t converges to zero, the network must satisfy the Courant–Friedrichs–Lewy (CFL)73

conditions, which are standard requirements in numerical analysis (14, 19).74

Requirement 3.1 (CFL conditions)

vi ≤
Li

∆t
, ∀i ∈A \S (CFL 1)

wi ≤
Li

∆t
, ∀i ∈A \ (B∪S ) (CFL 2)

We also introduce an additional requirement that guarantees that the space discretization does not result in a75

degenerate dynamics model where some agents might never leave the network.76

Requirement 3.2 (Non-exponential decrease condition)

vi =
Li

∆t
, ∀i ∈A \S

Interpretation: If vi <
Li
∆t , we can have an exponential decrease of the density in cell i when it should be77

emptied in a finite number of time steps. Indeed, taking the case of a cell in free-flow (the demand is limiting78

the outflow) without inflow, we have ρi(k+1) = ρi(k)− ∆t
Li

ρi(k)vi which gives ρi(k+ t) = ρi(k)(1− vi∆t
Li

)t .79

Thus, cell i never empties, and this is a model limitation. Requirement 3.2 prevents this degenerate case.80

Remark 3.1 The requirement vi =
Li
∆t for all cells i adds some rigidity in the framework proposed here.81

Indeed, for a given road segment, one has to divide it into cells of exact length vi∆t, but in most cases a final82

cell of length l ∈]vi∆t,2vi∆t[ will remain. One can accept to round the length of the road to a multiple of83

vi∆t or focus on fixing the behavior of the last cell by modifying the dynamics to ensure that if the cell can84

be emptied in only dLi
vi
e steps, it does so. See remark 5.1 for more details.85

Definition of the travel time86

Definition 3.6 (Demand rate) The demand rate D(k) at time step k is the rate of agents leaving the origin87

between time k∆t and (k+1)∆t. The demand rate at time step k on path p is Dp(k) = γp(k)D(k).88

Definition 3.7 (Cumulative departure curve (CDC)) The cumulative departure curve (CDC) at time step
k for path p is the count of agents, having left the origin at some time step preceding time step k (included).
It is defined as:

CDCp(k) = ∆t
k

∑
t=0

Dp(t) (12)

If no path is specified, it refers to the total cumulative count on all paths CDC(k) = ∑p∈P CDCp(k). Let89

CDCp(−1) = 0 for notational convenience.90

Definition 3.8 (Cumulative arrival curve (CAC)) The cumulative arrival curve (CAC) at time step k on
path p is the total count of agents that have arrived at the sink of path p by time k and have left the origin at
a time step t ≥ 0. We use the notation f out

i (k) for the outflow of cell i at time step k. Then, with s being the
sink at the end of path p and considering the fact that buffers are cells of unit length, the CAC is defined as:

CACp(k) =− ∑
i∈Ap

ρi(0)+
k−1

∑
t=0

f out
π(s) (t)∆t

=− ∑
i∈Ap

ρi(0)+ρs(k) (13)
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The notational simplification of the double summation into ρs(k) is obtained using the fact that sinks are91

modeled as cells of unit length (see equation (11)). If no path is specified, it refers to the total cumulative92

count on all paths CAC(k) = ∑p∈P CACp(k).93

This method of using cumulative arrival and departure curves to determine the average travel time94

is also discussed by Han (20).95

Definition 3.9 (Aggregate and average travel time) The aggregate travel time AT Tp,k of the agents en-
tering path p at time step k is the shaded area depicted in Fig. 3. This area is delimited by the x = k
vertical line, the y = CDCp(k) and y = CDCp(k− 1) horizontal lines, and the CACp(·) curve. Denoting
tfirst(p, t) = min{t |CACp(t)>CDCp(k−1)} and tlast(p, t) = min{t |CACp(t)≥CDCp(k)} we have:

AT Tp,k = (CDCp(k)−CDCp(k−1))(tlast(p, t)− k)

−
tlast(p,t)−1

∑
t=tfirst(p,t)

(CACp(t)−CDCp(k−1)) (14)

The average travel time T Tp,k of agents leaving the origin at time step k and taking path p is computed as96

the aggregate travel time of these agents divided by the total number of agents γp(k)D(k)∆t entering path p97

at time step k. Both AT Tp,k and T Tp,k are functions of the initial densities and split ratios, but for notational98

convenience, only the dependence with respect to Dp(k) will be explicit (i.e. we use AT Tp,k (Dp(k)) and99

T Tp,k (Dp(k))). If Dp(k) = 0 we define the travel time T Tp,k(0) = lim
η→0+

T Tp,k (η).100

Note that this average travel time is the average number of time steps it takes to reach the sink. To101

get the actual time, one has to multiply the here above defined average travel time by ∆t.102

Cumulative values

Time stepsk−1 k tfirst tlast

CDCp(k)

CDCp(k−1)

CDCp CACp

FIGURE 3 : The shaded area is the aggregate travel time of the agents leaving at time step k and taking
path p.

Problem definition103

The allocation problem can be solved under different information models. Two such models are:104

1. Only the current network state and demand at the current time step are known by the agents. In105

this approach, referred to as reactive assignment, agents leaving at time step k, knowing only the106

state of the network at that time step, take the path which optimizes their instantaneous travel107

time. Their instantaneous travel time may differ from the effective travel time that they will108

experience (the effective travel time is defined as the travel time experienced by the agents upon109

arriving.).110

2. The agents have perfect knowledge of the variables of the problem (present and future) and will111

determine the user equilibrium split ratios using that perfect knowledge. In this case, referred112
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to as predictive assignment, agents leaving at time step k have absolute knowledge (in particular113

they know the present and future characteristics of the network and the present and future de-114

mand) and their predicted travel time is what they will experience. Thus, in a UE, agents will115

allocate themselves among the paths in a manner that they will have the same effective travel116

time.117

We will prove in Section 4.1 that both approaches give the same result in the case of independent parallel118

paths, due to the fact that future flow does not affect the travel time of agents already in the network.119

Definition 3.10 (User Equilibrium) In a user equilibrium (3), no agent has an incentive to change his or
her strategy (i.e. path) unilaterally. It is equivalent to a Nash equilibrium in nonatomic selfish routing, see
Definition 18.1 in (21). In a macroscopic model, in which one agent represents a negligible fraction of the
overall traffic, an agent changing its path does not modify any path travel time. Thus, a UE is an allocation
in which at each time step k, all the paths with non zero flow (γp(k)> 0) must have the same travel time to
the destination, and the unused paths (γp(k) = 0) must have a travel time higher than or equal to the travel
time of the used paths:

∀k ∈ [[0,T −1]],∃vk,∀p ∈P,

{
γp(k)> 0⇒ T Tp,k = vk

γp(k) = 0⇒ T Tp,k ≥ vk
(15)

Definition 3.11 (Physical split ratio) A set of physical split ratios satisfies:

γp(k)≥ 0 ∀k ∈ [[0,T −1]], ∀p ∈P (16)

∑
p∈P

γp(k) = 1 ∀k ∈ [[0,T −1]] (17)

120

PROBLEM STATEMENT: Compute a set of physical split ratios (γp(k))p∈P, k∈[[0,T−1]] that result in a user121

equilibrium allocation of the agents.122

SPLIT RATIO OPTIMIZATION123

Time decoupling of the UE split ratio optimization124

Theorem 4.1 Under assumption 3.2 and requirement 3.2, the travel time of the agents leaving the origin125

at some time step k does not depend on the agents leaving at future time steps. While this fact might seem126

intuitive in the case of traffic, a proof needs to be made that it is indeed true given the mathematical model127

(1) to (11).128

We first introduce some notations. For a given time step k ∈ [[0,T − 1]] and a path p ∈P , let
Ep,k ⊂ (R+)

T defined as:

Ep,k =
{(

D′p(t
′)
)

t ′∈[[0,T−1]] | D
′
p(t) = Dp(t), ∀t ≤ k

}
(18)

be the set of demand profiles for path p that contain the current demand history (t ≤ k) and all possible
future demands (k < t ≤ T −1). Let DNF

k ∈ Ep,k (No Future demand) be defined as:

DNF
p,k(t) =

{
Dp(t) if t ≤ k
0 otherwise

(19)
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For any d ∈ Ep,k, we denote by ρd
i (k) (respectively σd

i (k), f out, d
i (k) and f in, d

i (k)) the density129

(respectively supply, outflow and inflow) of cell i at time step k in the state profile (i.e. values of the130

densities and flows for all time steps and all cells due to the dynamics of the system) due to the demand131

profile d. The individual departure times of all the agents in cell i at time step t can be determined explicitly132

due to the FIFO property. Thus, let ρd
i,t ′(t) be the contribution of the vehicles left at time step t ′ to the total133

density ρd
i (t) of cell i at time step t in the state profile using the sequence of demand d.134

For any d ∈ Ep,k′ and for any cell i ∈Ap \S , we define

td
min(k

′, i) = min{t | ρd
i,k′(t) 6= 0} (20)

td
max(k

′, i) = max{t | ρd
i,k′(t) 6= 0} (21)

The value td
min(k

′, i) (respectively td
max(k

′, i)) can be interpreted as the first (respectively last) time step when135

a portion of the vehicles left at time step k′ is in cell i in the state profile due to the demand profile d.136

Proof of Theorem 4.1: Let k ∈ [[0,T −1]] be a time step and p ∈P be a path. We want to prove that137

the future demands on path p (i.e. Dp(t), ∀t > k) do not modify the travel time of the agents leaving the138

origin at time step k.139

Let d ∈ Ep,k be a fixed demand profile for path p. For notational convenience, we will refer to DNF
p,k140

as NF in the exponents (e.g ρ
DNF

p,k
i (t) = ρNF

i (t)).141

We prove the following properties using induction over the cells from the buffer to the last non-sink
cell of path p:

tNF
min(k, i) = td

min(k, i) (22)

tNF
max(k, i) = td

max(k, i) (23)

f out, NF
i (t) = f out, d

i (t), ∀t < tNF
max(k, i) (24)

f out, NF
i

(
tNF
max(k, i)

)
≤ f out, d

i

(
tNF
max(k, i)

)
(25)

a) Initialization (i = buffer)rProof of (22): Cell i is now the buffer for path p. Since both the sequences of the demand share
the same past history until time step k (i.e. DNF

p,k(t) = d(t), ∀t ≤ k) we have:

tNF
min(k, i) = td

min(k, i) = k (26)

f out, NF
i (t) = f out, d

i (t), ∀t < tNF
min(k, i) = k (27)

σ
NF
π−1(i)(t) = σ

d
π−1(i)(t), ∀t < tNF

min(k, i) = k (28)

r Proof of (24): In the state profile with respect to DNF
p,k, if the agents that entered the network

at time step k pass through cell i in at least more than one time step (i.e. tNF
max(k, i) 6= tNF

min(k, i)) we have
for t ∈ [[tNF

min(k, i), t
NF
max(k, i)− 1]] that the outflow is supply or capacity limited (i.e. σNF

π−1(i)(t) < δi (t) or
Fmax

i < δi (t)):

f out, NF
i (t) = min

(
Fmax

i ,σNF
π−1(i)(t)

)
(29)

Indeed, if this were not the case, there would exist t ∈ [[tNF
min(k, i), t

NF
max(k, i)−1]] such that f out, NF

i (t) =142

δi (t) < min
(

Fmax
i ,σNF

π−1(i)(t)
)

. However, because of Requirement 3.2, this means that the cell will be143

emptied in one time step and then we have t = tNF
max(k, i), which is a contradiction. Note that requirement 3.2144

is essential for this theorem to hold.145
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Equation (28) gives that the supply in the two state profiles up to (and excluding) tNF
min(k, i) are equal.

Due to equation (29), the ouflow only depends on the downstream cell and the outflow will be the same until
tNF
max(k, i)−1 (i.e. equation (30)) which also proves (31).

f out, NF
i (t) = f out, d

i (t), ∀t < tNF
max(k, i) (30)

tNF
max(k, i)≤ td

max(k, i) (31)

rProof of (23) and (25): At time step tNF
max(k, i), in the state profile using the demand profile d, since

the outflow is an increasing function of the density, we have the following implication:

ρ
NF
i
(
tNF
max(k, i)

)
≤ ρ

d
i
(
tNF
max(k, i)

)
⇒

f out, NF
i

(
tNF
max(k, i)

)
≤ f out, d

i

(
tNF
max(k, i)

)
(32)

The first assumption is true because DNF
p,k(t) = 0 for t > k. Due to the FIFO property, it follows that146

tNF
max(k, i) = td

max(k, i).147

148

b) Induction: Let i ∈ A \ (B∪S ). We assume the properties (22) to (25) for cell π(i).149 rProof of (22): Let tπ(i) = tNF
min(k,π(i)) for notational convenience. Due to the FIFO property, the

number of agents at time step tπ(i) in cell π(i) who are ahead of the agents that left the origin at time step k
is m = Lπ(i) ∑t ′<k ρNF

π(i),t ′
(
tπ(i)
)
. This value is the same for the state profile using d because of (24) for cell

π(i). Then because of equations (24) and (25) for cell π(i) we have:

tNF
min(k, i) = td

min(k, i)

= 1+min

t ≥ tπ(i) |
t

∑
t ′=tπ(i)

f out, NF
π(i) (t ′)>

m
∆t

 (33)

Since at time step tNF
max(k,π(i)), there are still agents that left the origin at time step k in π(i), for any

t > k we have ρd
i,t(t
′) = 0, ∀t ′ ≤ tNF

max(k,π(i)). Thus, we have the following equations that are analogous to
(27) and (28):

f out, NF
i (t) = f out, d

i (t), ∀t < tNF
max(k,π(i))+1 (34)

σ
NF
π−1(i)(t) = σ

d
π−1(i)(t), ∀t < tNF

max(k,π(i))+1 (35)

rProof of (23), (24), (25): The rest of the proof follows directly from the proof for the base case (i150

= buffer), by replacing tNF
min(k, i) with tNF

max(k,π(i))+1.151

152

c) Application of the result to the last cell prior to the sink Let s be the sink of path p. Let tmax = tNF
max(k,π(s))

for notational convenience. Applying the inductive proof for all cells except for the sink, we have:

f out, NF
π(s) (t) = f out, d

π(s) (t), ∀t < tNF
max(k,π(s)) (36)

f out, NF
π(s) (tmax)≤ f out, d

π(s) (tmax) (37)

Thus, the travel time of the agents leaving the origin at time step k, computed using (12) and (13), are equal153

in the state profiles due to d or NF. The geometrical interpretation is that any modification of the demand154

profile after time step k does not modify the CDCp and CACp curves below the line y =CDCp(k).155

Theorem 4.2 (Decoupling of the UE optimization) The DUE for k ∈ [[0,T − 1]] can be solved as T se-156

quential static UE problems.157
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Proof (by induction): Let t ∈ [[0,T − 1]] be an arbitrary time step. We suppose that the split ratios for
the time steps k ∈ [[0, t−1]] correspond to a user equilibrium:

∀k ∈ [[0, t−1]],∃vk,∀p ∈P,

{
γp(k)> 0⇒ T Tp,k = vk

γp(k) = 0⇒ T Tp,k ≥ vk
(38)

Given the split ratios for time steps k ∈ [[0, t−1]], we want to find some user equilibrium split ratios for time
steps k ∈ [[0, t]]. There exists vt such that:

∀p ∈P,

{
γp(t)> 0⇒ T Tp,t = vt

γp(t) = 0⇒ T Tp,t ≥ vt
(39)

Then, because of Theorem 4.1, as the future will not modify the already computed travel times, (38) will158

still hold. Equations (38) and (39) prove that we have a UE for time steps k ∈ [[0, t]].159

Thus, we can obtain a user equilibrium allocation for time steps k ∈ [[0,T − 1]] by solving T static160

user equilibrium problems.161

Theorem 4.3 (Uniqueness of the average travel time) There can be several allocations resulting in a user162

equilibrium. However, under assumption 3.2 and requirement 3.2 there is only one average travel time for163

all paths with non zero flow at each departure time, in the case of the single source, single destination164

parallel network.165

Proof: Because of Theorem 4.2, the optimization of one step is equivalent to the Nash equilibrium in166

a Nonatomic Selfish Routing game (21). Theorem 18.8 of that chapter proves that the cost of the roads for167

any static UE split ratios is the same.168

Continuity of the travel time169

Theorem 4.4 (Continuity of the average travel time) For any time step k and path p, the average travel170

time T Tp,k (D(k)γp(k)) is continuous with respect to γp(k).171

Proof: Equations (1) to (11) are continuous with respect to the variables of the problems (i.e. f in
i (t),

f out
i (t), ρi(t), σi (t), δi (t) and γp′(t) for all i ∈A , t ∈ [[0,T −1]] and p′ ∈P). Let ρi,t ′(t) be the contribution

of the vehicles left at time step t ′ to the total density ρi(t) of cell i at time step t. Then, for i ∈Ap \S , we
can explicitly give the value of ρi,t ′(t) because of the FIFO property:

ρi,t ′(t) =


0 if ∑

t ′−1
t ′′=0 f in

i (t ′′)≤CDCp(t−1)
0 if ∑

t ′−1
t ′′=0 f out

i (t ′′)≥CDCp(t)
CDCp(t)− ∆t

Li
∑

t ′−1
t ′′=0 f out

i (t ′′) otherwise

(40)

which proves that ρi,t ′(t) is continuous with respect to γp(k). Note that, for the buffer b of path p, we note172

f in
b (t ′′) = γp(t ′′)D(t ′′).173

The aggregate travel time computed from (14) is equivalent to (see Equation 2.5,page 28, in (22)
for the proof):

AT Tp,k = ∆t
T−1

∑
t=0

∑
i∈A \S

ρi,k(t)Li (41)

This proves that AT Tp,k is continuous with respect to γp(k). The average travel time is computed as T Tp,k =174

AT Tp,k(γp(k))
Dp(k)∆t , as long at the denominator is non zero.175
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rIf D(k) 6= 0: we first prove the continuity for γp(k) ∈ ]0,1]. The continuity of T Tp,k at D(k)γp(k)176

is trivial as the ratio of two continuous functions, in which the denominator converges to a non zero value.177

We now prove continuity at γp(k) = 0. We use D(k)γp(k) = v > 0 for the number of agents. In178

that case, because of requirement 3.2, the network empties in a finite number of time steps. Among the179

agents leaving the origin at time step k and taking path p, some amount C experiences the smallest travel180

time T Tmin(p,k) = min{t |CACp(t)>CDCp(k−1)}− k. Theorem 4.1 proves that if we use γp(k) such181

that D(k)γp(k)≤ C
D(k)∆t , all agents leaving at time step k and taking path p will still experience T Tmin(p,k)182

(i.e. the area in Fig. 3 is a rectangle). This means that there exist some C′ and m such that AT Tp,k (η) =183

mη∆t, ∀η ∈]0,C′]. This proves that lim
η→0+

AT Tp,k (η) = lim
γ→0+

AT Tp,k (Dp(k)γ) exists.184 r If D(k) = 0: then we have that AT Tp,k (Dp(k)) = AT Tp,k (0) ,∀γp(k) which proves that AT Tp,k is185

continuous with respect to γp(k).186

Corollary 4.1 In this context, the DUE is a sequence of convex problems.187

Proof: For a given time step k, the travel time functions
(
T Tp,k

)
p being continuous and increasing188

with respect to the split ratio γp(k), the static problem is convex by (23).189

IMPLEMENTATION190

Computation of the travel time191

The average travel time is computed using Algorithm 1. The function computeDynamics(p, k) computes192

both the flows at time step k and the densities at time step (k+ 1), for a given path p, given the densities193

at time k (see equations (8) to (11)). The function ComputeShadedArea(p, k) computes the aggregate194

travel time represented in Fig. 3 by formula (14).195

If no agents are allocated to path p at time step k, we approximate the average travel time by adding196

an artificial infinitesimal demand rate η .197

Remark 5.1 If requirement 3.2 does not hold, the exponential decrease of the density in some cells may198

prevent some agents from reaching the destination. To mitigate this phenomenon, we can add more demand199

at the time step without counting it in CDCp(k).200

Algorithm 1 Computes T Tp,k (γp)

Input: A time step k, a path p and split ratio γp(k)
Output: T Tp,k (γp)

if γp = 0 then
γp = η % Used to avoid division by 0

end if
CDCp(k) =CDCp(k−1)+D(k)γp(k)∆t
tlast = k
while CACp(tlast)<CDCp(k) do
computeDynamics(p, tlast)
tlast = tlast +1

end while
T T = ComputeShadedArea(p,k)/(Dp(k)∆t)
return TT
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Greedy algorithm201

There are many algorithms for computing a static user equilibrium allocation, such as no-regret algo-202

rithms (6) and adaptive sampling methods (7).203

In our implementation (an open source implementation is available at https://github.com/204

calpath/DTA-Simulator.), we opted for an exponentially weighted average forecaster (24) (a no-regret205

algorithm). In this case, an ε-UE is a solution such that ∑p∈P γp(k)T Tp,k ≤ ε +min
(
T Tp,k

)
p∈P . The func-206

tion isOptimalSplitRatio() in Algorithm 2 returns true if this stopping criterion is satisfied. For this207

algorithm to converge, the travel time functions must be increasing, continuous and have bounded slopes.208

These conditions are verified in our model (see Theorem 4.4 for the continuity).209

Algorithm 2 Optimizes split ratios at time step k to get an ε-UE

Input: Optimal values of the split ratios for the steps s ∈ [[0,k−1]]
Output: Optimal split ratios for the steps s ∈ [[0,k]]

Initialize arbitrarily (γp(k))p∈P such that γp(k) 6= 0 for all p ∈ P and ∑p∈P γp(k) = 1
Define ∀p ∈P, βp(1) = γp(k)
n = 1
while not isOptimalSplitRatio() do

βp(n+1) = βp(n)exp
(
−εT Tp,k(γp(k))

)
, ∀p ∈P

γp(k) =
∑1≥t≥n+1 βp(t)

n+1 , ∀p ∈P

γp(k) =
γp(k)

∑p′∈P γp′ (k)
, ∀p ∈P % Normalization

n = n+1
end while

Example210

The algorithm is tested on the simple three paths parallel network depicted in Fig. 1. The time horizon is211

T = 11 with a discretization of ∆t = 1, and the cells share the same characteristics: L = 1, w = 0.4, ρ jam = 8212

and Fmax = 2. The details are given in the tables 1, 2 and 3. The maximum flow of a path is the maximum213

inflow of the sink at the end of the road. Fig. 4 gives the results from solving the DUE with ε = 10−2.214

TABLE 1 : Description of the roads.

Path Number of cells Maximum inflow of the sink
1 5 2
2 4 1.5
3 4 1

TABLE 2 : Description of the demand.

Time step 0 1 2 3 4 5 6 7 8 9 10
D(k) 1 2 3 4 5 6 5 4 3 2 1

TABLE 3 : Number of iterations necessary to get convergence.

Time step 0 1 2 3 4 5 6 7 8 9 10
Iterations 6 6 7 8 8 5 6 6 5 2 6
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FIGURE 4 : Optimized travel times and split ratios.

CONCLUSION215

We have showed that the dynamic user equilibrium problem for parallel independent networks can be solved216

as a sequence of static UE problems, when the dynamics are given by a Godunov discretization of the217

Lighthill-Williams-Richards partial differential equation with a trapezoidal fundamental diagram. An in-218

creasing demand function at the cell level and the non-exponential decrease condition are also required to219

decouple the dynamic UE into static problems. This decomposition proof extends to any fundamental di-220

agram with an increasing demand function. The parallel network requirement can also be relaxed to more221

general networks where future demands do not interact with the travel time of the agents already in the222

network, but the types of networks that satisfy this requirement are still very limited.223
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