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Abstract

In this article, we propose a new analytical traffic flow model for traffic dynamics at
signalized intersections. During each cycle, both the arrival and the departure traffic
are approximated by three distinct traffic streams with uniform density. Because of
the similar representation of the arrival and the departure traffic, the results from a
single intersection can easily be extended to a series of intersections. The number of
parameters of the model is tractable, leading to analytical solutions of the problem.
We prove that the total delay of one-way traffic is a quasi-convex function in the offset
between consecutive traffic cycles and derive analytically the optimal signal control
corresponding to different profiles of arrival densities. This allows timely adjustments
of the control as congestion evolves throughout the day. We also study how different
density profiles evolve in a corridor, from one intersection to the downstream one, if
there is no traffic from/to side streets. We find that all density profiles eventually lead
to one profile after a few intersections. This corresponds to a green wave, in agreement
with physical intuition. Finally, we test the model against data from microsimulation
using CORSIM. Vehicle delay predicted by the model is shown to be close to that from
the microsimulation.
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1 INTRODUCTION AND RELATED WORK1

Urban transportation systems are the source of numerous inefficiencies and negative2

externalities. It is estimated that the amount of gasoline wasted in 2007 due to traffic3

congestion is 3.9 billion gallons and the time lost because of delays is 4.2 billion hours4

[31]. For an average car, congestion cost is estimated to be about 0.13 US$ per vehicle5

mile [22].6

To reduce externalities and improve efficiency, it is important to understand traffic7

dynamics in a controlled environment and to identify optimal control strategies which8

could help alleviate the problem. For example, continuum models [21, 27] and later9

cell transmission models [8, 9, 20] have been proposed to model traffic dynamics on10

highways. Control strategies including ramp metering [18, 3] and variable speed limits11

[32, 24] have also been studied extensively.12

This article focuses on the case of arterial traffic, which is more difficult to study13

than highway traffic because of frequent interventions of traffic signals and cross traf-14

fic. The majority of the studies on arterial traffic use numerical algorithms for signal15

optimization [25, 23, 15, 12], or rely on simulation. These methods can handle scenario16

analysis of complex systems and can generate the desired signal control numerically.17

However, the complexity of the solution process grows rapidly with the size of the18

problem [6], in addition to the fact that the amount of information needed for the19

optimization is large and tedious to obtain for large networks. In addition, numerical20

solutions might not provide physical insight on the traffic patterns controlled by such21

schemes. Analytical solutions provide a deeper understanding of traffic flow dynamics.22

The purpose of analytical methods is generally not to provide detailed solutions to23

specific problems, but to generate general principles to solve the problem, by making24

specific assumptions to reduce the number of parameters and the complexity of the25

problem. For example, [33] derives expressions for delays at signalized intersections26

assuming platoon inflow. The present article considers platoon traffic and ignores sec-27

ondary traffic. This is complemented by [30] which considers both platoon traffic and28

secondary traffic.29

In this article, we focus on analytical methods, but propose a different model, relying30

on hydrodynamic traffic models [4]. In the present model, the arrival and departure of31

traffic flows at each signalized intersection are represented by three streams of traffic32

during each cycle. Each traffic stream is characterized by its flow and duration (the33

time it takes for all the traffic within the stream to go through a point in space). This34

is realistic if one inspects the downstream of an intersection, where there are mainly35

three streams of traffic: no traffic during the red time, saturation flow during the36

beginning of the green time (as the queue dissipates), and less than saturation flow (if37

undersaturated) during the end of the green time, once the queue is fully dissipated.38

The present model approximates the third traffic stream with a constant flow. When39

both the arrival and the departure traffic are modeled in this way, the results from40

a single signalized intersection are automatically applicable to a corridor including41

multiple signalized intersections. In addition, the number of parameters is limited and42

only grows linearly with the size of the network, facilitating analytical solutions.43

The rest of the article is organized as follows. Section 2 presents the model, which44

characterizes the departure traffic streams based on the arrival traffic streams. In45

Section 3, a single signalized intersection is studied. We prove that total delay is46

a quasi-convex function in the traffic light offset and derive the optimal offset under47
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different scenarios. The spatial evolution of these scenarios is also studied. The model is48

compared against microsimulation data in Section 4. Section 5 discusses the generality49

of the model and provides conclusion about the benefits of the method.50

2 MODELING TRAFFIC FLOWS THROUGH51

A SINGLE SIGNALIZED INTERSECTION52

In this section, we develop a model of traffic dynamics through a single intersection.53

The model treats the arrival traffic as inputs and the departure traffic as outputs. The54

model describes traffic flow at each intersection with a limited number of parameters,55

which does not grow with the complexity of the network. This property, referred to as56

parameter efficiency, facilitates analytical solutions. The model is structured so that57

results from a single intersection can easily be extended to a series of intersections.58

2.1 Three-Stream Model59

Vehicular flow is modeled as a continuum and represented with macroscopic variables of60

flow q(x, t) (veh/s), density k(x, t) (veh/m) and velocity v(x, t) (m/s). The definition of61

flow implies the following relation between these three variables: q(x, t) = k(x, t) v(x, t).62

We assume that flow and density are linked by the fundamental diagram, as commonly63

done in traffic modeling [21, 27]. For arterial traffic, it is common to assume that this64

dependency is piecewise linear, leading to the assumption of a triangular fundamen-65

tal diagram [10, 23]. The triangular fundamental diagram is fully characterized by66

three parameters: vf , the free flow speed (m/s); kmax, the jam (or maximum) density67

(veh/m); and qmax, the capacity (veh/s). We denote by kc the critical density. It is68

the boundary density value between (i) free flowing conditions for which cars have the69

same velocity and do not interact and (ii) saturated conditions for which the density70

of vehicles forces them to slow down and the flow to decrease.71

Definition 1 (Stream of vehicles of density k and duration T ). A stream of72

vehicle of density k and duration T is a group of vehicles characterized by a uniform73

density k. As the arrival or departure streams always travel at free flow speed vf , the74

flow within the stream is also uniform. The duration T of the stream is the time it75

takes for all vehicles within the stream to go through a point in space.76

Definition 2 (Undersaturated/saturated regime). The presence of traffic signals77

leads to the formation of queues during the red time which start to dissipate as the78

signal turns green. If the queue fully dissipates before the end of the green time, we79

say the the traffic conditions are undersaturated. Otherwise, we say that the regime is80

saturated.81

Definition 3 (Residual green time). In an undersaturated arterial link, the resid-82

ual green time is the period of time between the end of the queue dissipation and the83

beginning of the red time.84

With a triangular fundamental diagram and uniform arrival of traffic, we can con-85

struct the time-space diagram, as shown in Figure 1. Note the three distinct streams86

of the departure flow in this figure: (1) the red time with flow zero and duration R, (2)87
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the queue dissipation time with flow at capacity qmax = kcvf and duration Gq, and (3)88

the residual green time with flow equal to the arrival flow and duration C − R − Gq,89

where C is the cycle length. Note that in the saturated regime, the duration of the90

third state is zero since there is no residual green time. Also note that the speed of91

the back propagating wave for queue dissipation is denoted by w, and that for queue92

formation is denoted by wa.93

Figure 1. Space time diagram of vehicles trajectories under uniform arrivals of density
ka for an undersaturated regime.

As the departure streams of a link correspond to the arrival streams of its down-94

stream link, we propose to also model the arrival traffic as three streams, characterized95

by their density ki and their duration Ti, i ∈ {1, 2, 3}. However, if the arrival traffic96

includes three streams, the departure traffic is not necessarily three streams, as shown97

in the Figure 2d. The density of traffic during the residual green time may come from98

different streams and may not be uniform. To reduce the number of parameters to de-99

scribe the system and make the model tractable, we assume that the density of traffic100

during the residual green time is uniform, with the average density derived next. This101

assumption is appropriate if street segments are long and vehicle streams of different102

densities merge into one stream with uniform density [28, 14].103

The conservation of vehicles yields the following equation for the average density104

kf of the last departure stream (of duration C −R−Gq):105
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3∑
i=1

vfkiTi︸ ︷︷ ︸
Arrival streams

= 0 ·R︸︷︷︸
Red time

+ vfkcGq︸ ︷︷ ︸
Queue dissipation time

+ vfkf (C −R−Gq)︸ ︷︷ ︸
Residual green time

.

Note that the triangular fundamental diagram yields a simple relation between the flow106

q and the density k as q = vfk. We obtain the following expression for kf107

kf =

3∑
i=1

kiTi − kcGq

C −R−Gq
. (1)

Note that, the density kf depends on the duration of the queue dissipation Gq. In108

the following section, we derive the expression of Gq as a function of the arrival streams109

(ki, Ti)i=1:3.110

2.2 Dynamics of a Stream Through an Intersection111

Given an arrival stream of density ki and duration Ti, its dynamics through the inter-112

section follows one of the four cases:113

Case 1. No vehicle of the stream stops in the queue. There is one departure stream114

with the same characteristics as the arrival stream, (ki, Ti).115

Case 2. The first vehicles of the stream go through the intersection without stopping116

but some vehicles at the end of the stream stop in the queue. We denote by α117

the fraction of vehicles arriving in stream i that go through the link without118

stopping. Note that at most one arrival stream follow this case during a cycle.119

Downstream of the traffic signal, there are three departure streams: the non-120

stopping vehicles (ki, αTi), the red time stream (0, R) and the stopping vehicles121

released at capacity during the queue dissipation (kc, (1− α)Ti
ki
kc

). This case122

is illustrated in Figure 2b.123

Case 3. All the vehicles of the stream stop at the red light. There is one departure124

stream corresponding to the queue dissipation of these vehicles. It has char-125

acteristics (kc, Ti
ki
kc

).126

Case 4. The first vehicles of the stream stop in the queue but the last ones go through127

the intersection without stopping. As for Case 2, we denote by α the fraction128

of vehicles of the stream that do not stop in the queue. The derivation of129

the departure streams is similar to Case 2: the stopping vehicles released at130

capacity during the queue dissipation (kc, (1 − α)Ti
ki
kc

) and the non stopping131

stream (ki, αTi). This case is illustrated in Figure 2d.132

We denote by ∆i the delay experienced by the first vehicle of stream i, where133

∆1 = R, the duration of the red light. If the arrival flow is uniform, the speed of queue134

formation is constant and is denoted wi. The speed of queue dissipation, w, is also135

constant. They can be derived from the Rankine-Hugoniot [26] jump conditions as136

wi =
kivf

kmax − ki
and w =

kcvf
kmax − kc

(2)
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Ti

Ti
space, x

time, t

(a)

Ti

Ti
ki
kc∆i

∆i+1

space, x

time, t

(b)

Ti

Ti
ki
kc

space, x

time, t

(c)

Ti

∆i Gq

space, x

time, t

(d)

Figure 2. Dynamic of streams of vehicles through an intersection. Figure 2a: All
the vehicles of the stream go through the intersection without stopping. Figure 2b:
The first few vehicles of the stream do not stop at the intersection, they represent a
fraction α of the vehicles of the stream. Figure 2c: All the vehicles of the stream stop
at the intersection. Figure 2d: The last few vehicles of the stream do not stop at the
intersection, they represent a fraction α of the vehicles of the stream.
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We have w ≥ wi and thus the delay decreases linearly among the vehicles of the137

stream. If the queue does not fully dissipates as the last vehicle in stream i arrives138

(Cases 2 and 3), this last vehicle will experience a delay ∆i+1 = ∆i − Ti(1 − ki
kc

) (see139

Figure 2b). This expression is valid if and only if ∆i ≥ Ti(1 − ki
kc

). If this condition140

is not satisfied (Case 4, Figure 2d), the queue dissipates before the end of stream i141

and the last vehicles of the stream do not experience delay. The general expression for142

∆i+1 is143

∆i+1 = max

(
0,∆i − Ti

(
1− ki

kc

))
. (3)

We introduce τi such that τi/Ti represents the fraction of stream i which stops at144

the intersection and have145

τi = min

(
∆i

kc
kc − ki

, Tiw

)
. (4)

2.3 Characterization of the Departure Streams146

We now extend the discussion to the entire cycle, and derive analytical expressions for147

the densities and durations of the departure streams, parameterized by the characteris-148

tics of the arrival streams. Without loss of generality, we assume that the signal turns149

red at t = 0, and stream 1 hits the red light at the beginning of the cycle.150

A fraction 1−α of the vehicles of stream 1 reaches the intersection after the signal151

turns red whereas the remaining vehicles reach the intersection before the signal turns152

red. As we consider the signal dynamics as periodic, we can also consider that the153

remaining vehicles reach the intersection at the end of the cycle. To simplify the154

notations in the derivation, we choose this second representation, the arrival streams155

are thus modeled as four streams with densities ki and duration T̃i with T̃1 = (1 −156

α)T1, T̃2 = T2, T̃3 = T3, T̃4 = αT1 and k4 = k1.157

In a corridor with several signalized intersections, α is determined by the offset158

between consecutive signals. The delay experienced by the first vehicle that stops at159

the signal is ∆1 = R.160

The expressions of (∆i)i=1:5 and (τi)i=1:4 are computed for the four streams ac-161

cording to equations (3) and (4), with the initialization ∆1 = R (see Figure 3). We162

have163

∆1 = R

∆2 = max
(

0, R− T̃1(1− k1
kc

)
)

∆3 = max
(

0, R− T̃1(1− k1
kc

)− T̃2(1− k2
kc

)
)

∆4 = max
(

0, R− T̃1(1− k1
kc

)− T̃2(1− k2
kc

)− T̃3(1− k3
kc

)
)

∆5 = max
(

0, R− T̃1(1− k1
kc

)− T̃2(1− k2
kc

)− T̃3(1− k3
kc

)− T̃4(1− k4
kc

)
)

(5)

and164
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τ1 = R
kc

kc − k1
τ2 = max

(
0, R− T̃1(1− k1

kc
)
) kc
kc − k2

τ3 = max
(

0, R− T̃1(1− k1
kc

)− T̃2(1− k2
kc

)
) kc
kc − k3

τ4 = max
(

0, R− T̃1(1− k1
kc

)− T̃2(1− k2
kc

)− T̃3(1− k3
kc

)
) kc
kc − k1

(6)

The intersection modifies the structure of the three arrival streams into several165

departure streams as follows:166

Arrival streams︷ ︸︸ ︷
(k1, T1)

(k2, T2)

(k3, T3)

 7−→

Departure streams︷ ︸︸ ︷

(
0, R

)(
kc,min(T̃1, τ1)

k1
kc

)(
k1,max(0, T̃1 − τ1)

)(
kc,min(T̃2, τ2)

k2
kc

)(
k2,max(0, T̃2 − τ2)

)(
kc,min(T̃3, τ3)

k3
kc

)(
k3,max(0, T̃3 − τ3)

)(
kc,min(T̃4, τ4)

k1
kc

)(
k1,max(0, T̃4 − τ4)

)



(7)

In this article, we assume that the traffic from/to the side streets does not affect167

the dynamic of the corridor. The present derivations may be generalized to take into168

account the effect of side street traffic. The analysis of the effect of side street traffic169

is out of the scope of this article but we discuss how it could be integrated to the170

present approach. For example, one may consider that side street traffic has a constant171

arrival density kiss at intersection i and that the turn ratio of the main stream traffic is172

εi ∈ [0, 1]. With these considerations, the density of the first departure stream would173

then be modified from 0 to kiss and all the densities of the following streams would174

be multiplied by (1 − εi). In Section 3, we show that side traffic does not perturb175

the optimization of a single intersection but may be relevant for corridor optimization176

when side streets traffic has important interactions with the traffic on the corridor.177

As seen in (7), the number of departure streams can be more than three. Indeed,178

each stream i, i ∈ {1, . . . , 4} leads to up to two streams: a stream representing the179

queue discharge if ∆i > 0 (otherwise this stream has duration zero) and a stream180

representing the vehicles which do not stop if ∆i+1 = 0 (otherwise this stream has181

duration zero). This leads to up to eight streams to which we add the red phase of the182

signal which creates a ninth stream of density 0 and duration R. To limit the number183

of parameters and control the complexity of the model, we approximate the departure184

streams listed above by three departure streams, corresponding to the red time, the185

queue dissipation time, and the residual green time. The red time leads to a stream of186

density 0 and duration R. The queue dissipation leads to a stream of density kc and187
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∆1

∆2

∆3

∆4

∆5

(1− α)T1T2 T3 αT1

space, x

time, t

(0, R)

(k1, T1) (k2, T2) (k3, T3)

(k3, T3)

(k2, T2 − τ2)space, x

time, t

(kc, τ2
k2
kc

)

(kc, T1
k1
kc

)

Figure 3. Top: Arrival streams of vehicles. The stream that reaches the signal as the
traffic light turns red is split between two streams denoted stream 1 and stream 4.
Stream 1 has duration (1 − α)T1 = T̃1. It reaches the intersection as the signal turns

red. Stream 4 has duration αT1 = T̃4. It reaches the intersection at the end of the
cycle. The waiting times of the first and last vehicles of stream i are denoted ∆i and
∆i+1. Note that the ∆i can be null. In particular, in an undersaturated regime, we
have ∆5 = 0 since the queue fully dissipates as the signal turns red. Bottom: Dynamic
of three arrival streams through a signalized intersection, illustrating equation (7)
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duration Gq and we approximate the multiple streams of the residual green time as a188

single stream of density kf and duration C− (R+Gq), as derived in (1). The densities189

and durations of the three departure streams are given by190

Arrival streams︷ ︸︸ ︷
(k1, T1)

(k2, T2)

(k3, T3)

 7−→
Averaged departure streams︷ ︸︸ ︷

(
0, R

)(
kc, Gq

)(
kf , C −R−Gq

)
 (8)

with191

• Gq = min(αT1, τ1)
k1
kc

+ min(T2, τ2)
k2
kc

+ min(T3, τ3)
k3
kc

+ min((1 − α)T1, τ4)
k1
kc

the192

duration of the queue dissipation,193

• kf the merging density which only depends on Gq and the parameters of the194

intersection as computed in (1).195

3 APPLICATION TO THE OPTIMIZATION196

OF TRAFFIC SIGNALS197

The model described in Section 2 provides a framework to analyze the dynamics of198

traffic flows through an arterial corridor. The assumptions lead to analytical derivations199

and a better understanding of the dynamics, providing insight for the control of arterial200

networks. In this section, we use this framework to analyze the well studied problem of201

one way corridor signal optimization. We provide analytical optimal control strategies202

for different scenarios of the arrival streams. This allows for timely adjustments of the203

control strategy in real time as congestion changes throughout the day.204

3.1 Problem Setting205

We choose to minimize the total delay D experienced at an intersection, given by206

D =

∫ C

0
W (t)q(t)dt =

∫ C

0
W (t)vfk(t)dt, (9)

where W (t) is the delay experienced by the flow entering at time t, q(t) and k(t) are207

the flow and the density of the stream that enters at time t. C is the cycle length208

assumed to have the same value for all signals.209

We consider the optimization of the total delay because it finds a compromise be-210

tween the duration of the delay experienced by the stopping vehicles and the proportion211

of vehicles that go through the intersection without stopping. Other choices of opti-212

mization problems are possible such as the maximization of the number of vehicles213

going through the intersection without stopping or the minimization of the maximal214

delay.215

We derive the analytical expression of the objective function, assuming that vehicles216

arrive from an upstream intersection with a three-stream structure. We notice that217
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the cost function is additive and that we can compute the contribution of each stream218

independently.219

As derived in Section 2.2, the delay decreases linearly among the stopping vehicles220

of a stream i (from the first stopping vehicle with delay ∆i to the last stopping vehicle221

with delay ∆i+1). The total delay experienced by the vehicles of a stream is the average222

delay of the stopping vehicles times the number of stopping vehicles. According to the223

definition of τi, the number of vehicles stopping in the queue is kivfτi and the minimum224

and maximum delays of the stopping vehicles of stream i are given by ∆i+1 and ∆i225

respectively (see Figure 3).226

Remark (Control variables). In traffic signal optimization, we control the duration227

of the red light and the offset between the two traffic signals. In a one way corridor, it228

is not relevant to minimize according to the duration of the red time because, without229

any constraints, the optimal value of the objective function is zero, corresponding to230

a red time equal to zero. We only control the actual offset Θ between the two traffic231

signals. We introduce the standardized offset t0 = Θ− L
vf

, which takes into account the232

free flow travel time of vehicles along the link. Here, L represents the length of the link233

between the two intersections.234

We notice that the standardized offset t0 is related to α by t0 = (1−α)T1. This gives235

the explicit expression of the total delay as a function of t0, denoted D(t0). Moreover,236

the offset t0 determines which stream hits the signal first. This leads to an implicit237

dependence represented by the cyclic permutation between the streams, so that the238

stream that reaches the intersection as the signal turns red is denoted 1. We derive239

the analytical expression of the total delay D(t0) by summing the contributions of the240

three arrival streams, using the previous derivations:241

D = vf

[
k1 min(τ1, T1 − t0)

∆1 + ∆2

2
+ k2 min(τ2, T2)

∆2 + ∆3

2

+k3 min(τ3, T3)
∆3 + ∆4

2
+ k1 min(τ4, t0)

∆4 + ∆5

2

]
(10)

In the case of a saturated regime, all vehicles experience some delay. Let ∆min242

represent the minimum delay experienced by the vehicles on the link, then the total243

delay is given by Dsat = D+∆minvf
∑3

i=1 kiTi. Noticing that only the first term of the244

sum, D, depends on t0, it is equivalent to minimize D or Dsat and thus equation (10)245

is used to minimize the total delay in a saturated regime.246

3.2 Convexity of the Cost Function247

We notice from (6) that ∀i, τi 6 τi−1. In particular, if there exists j such that τj = 0,248

then τm = 0 for m ≥ j. We also have ∆m = 0 for m ≥ j since τm =
kc

kc − km
∆m.249

Proposition 1 (Analytical expression of D). In an undersaturated regime, ∀t0,250

∃ !m ∈ {1, . . . , 4} such that 0 < τm ≤ T̃m and we can simplify the expression of the cost251

function as follows:252

D = vf

m−1∑
i=1

kiT̃i
∆i + ∆i+1

2
+ km

kc
kc − km

∆2
m

2
(11)
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Proof. Intuitively, the index m represents the stream of vehicle from Case 4, for which253

the last vehicles of the stream do not stop on the queue. We will prove formally the254

existence and uniqueness of this index m, beginning by two first intermediate results255

(Lemma 1 and 2).256

Lemma 1. ∀i ≥ 2, τi > 0⇔ τi−1 > T̃i−1.257

Proof. Replacing τi by its expression (Equation (4)), multiplying the strict inequality,
τi > 0, by the positive term kc−ki

kc
and rearranging the sum, we have

R−
i−2∑
n=1

T̃n(1− kn
kc

) > T̃i−1(1−
ki−1

kc
).

Multiplying this inequality by kc
kc−ki−1

, we haveR− i−2∑
n=1

T̃n(1− kn
kc

)

 kc
kc − ki−1

> T̃i−1

and in particular τi−1 > T̃i−1 > 0.258

Lemma 2. ∀i ≤ 3, τi ≤ T̃i ⇔ τi+1 ≤ 0.259

Proof. Replacing τi by its expression (Equation (4)) and multiplying the inequality,
τi ≤ T̃i, by the positive term kc−ki

kc
, we have

R−
i∑

n=1

T̃n(1− kn
kc

) ≤ 0

We multiply the inequality by kc
kc−ki+1

and recognize the expression of τi+1 from (4).260

In addition, τi+1 is defined as being non negative and thus τi+1 = 0, and in particular261

τi+1 ≤ T̃i+1.262

We prove the existence and uniqueness of m: we prove that if such an m exists, it263

is necessarily unique and we then prove its existence264

• Uniqueness. Let m be an index such that 0 < τm ≤ T̃m. By induction, Lemma 1265

and 2 imply that ∀ j < m, τj > T̃j > 0 and ∀ j > m, τj = 0 ≤ T̃j . This proves that266

if m exists, it is unique.267

• Existence. We define j = max{n ∈ {0, . . . , 4}|τn > T̃n}, where τ0 and T̃0 are chosen268

arbitrarily such that τ0 > T̃0 and show that m = j + 1.269

In an undersaturated regime, τ4 6 t0, so j ≤ 3. The condition τ0 > T̃0 implies that270

j ≥ 0 and thus the definition of j is proper (j is not infinite). The maximality of j271

implies that τj+1 ≤ T̃j+1. Using Lemma 2, we have ∀ i ≥ j + 2, τi = 0. It remains272

to prove that τj+1 > 0. Reasoning by contradiction, we assume that τj+1 = 0.273

• If j = 0, this implies that ∀n ∈ {1, . . . 4}, τn = 0 which means that no vehicle274

experiences delay and contradicts the assumption τj+1 = 0 as long as the red time275

is positive. and thus ∀ i ≥ j + 2, τi = 0.276

• If j ≥ 1, then Lemma 2 implies that τj ≤ T̃j , which contradicts the maximality of277

j.278
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We conclude that τj+1 > 0 and thus m = j + 1 is the unique index such that279

0 ≤ τm ≤ T̃m.280

281

Remark. The index m is piecewise constant in t0 and thus the expression of D holds on282

each of these intervals. Physically, m represents the index of the first stream in which283

some vehicles go through the intersection without stopping. Moreover, the expression284

holds in the case of a saturated regime, with m = 5 and the convention k5 = 0.285

Proposition 2 (Property of D). The function t0 7→ D(t0) is piecewise quadratic.286

Proof. We study the cost function D(·) over an interval in which m is constant and use287

the expression of D(t0) computed in Proposition 1. Both the ∆is and T̃1 are linear in288

t0. All the terms of the sum from i = 2 to m− 1 are linear in t0. The first term of the289

sum is quadratic in t0. Therefore, D is the sum of a quadratic term and of linear terms290

and is quadratic on each interval in which m is constant. On each of these intervals,291

we have D(t0) = at20 + bt0 + c with292

a =
(kc − k1)(km − k1)

2(kc − km)
(12)

293

b = −
Rkc(k1 − km)−

∑k−1
i=1 Ti(kc − k1)(ki − km)

kc − km
(13)

and the optimum (either a minimum or a maximum according to the sign of a) is294

reached in:295

− b

2a
=

m−1∑
i=1

Ti
km − ki
km − k1

−R kc
kc − k1

(14)

296

Since D is piecewise quadratic, we study its monotony on each interval where m is297

constant in order to determine where the global optimum is. Such a study leads to the298

following property.299

Definition 4 (Quasi-convex function [7]). A function f : Df → R is called quasi-300

convex if its domain Df and all its sublevel sets Sfα = {x ∈ Df : f(x) ≤ α} for α ∈ R301

are convex. In particular, a function is quasi-convex if one of the following conditions302

hold: (1) f is non decreasing, (2) f is non increasing, (3) ∃c ∈ Df such that for t ≤ c303

(and t ∈ Df ), f is nonincreasing, and for t ≥ c (and t ∈ Df ), f is nondecreasing.304

Proposition 3 (Quasi-convexity property). If we choose the time initialization305

such that t = 0 as the beginning of the stream with the highest density enters the link,306

t0 7→ D(t0) is a quasi-convex function on [0, C].307

Proof. Sketch of the proof, the full proof is available in [5].308

We study the monotonicity of D over each interval corresponding to the three arrival309

streams - i.e. over [0, T1], [T1, T1 + T2], [T1 + T2, C] and prove that there exists tc such310

that the function t0 7→ D(t0) is non increasing for t0 ∈ [0, tc] and non decreasing311

for t0 ∈ [tc, C]. The cost function is nonincreasing over the interval corresponding312

to the arrival stream with the highest density, it is nondecreasing over the interval313

corresponding to arrival stream with the lowest density and the behavior over the314
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last interval is such that the minimum is either reached over this interval or at the315

bounds of this interval. It may be reached outside of this interval if the interval over316

which the cost function is nonincreasing and the interval over which the cost function317

is nondecreasing are consecutive. Eventually, after enumerating all possible cases, we318

prove the quasi-convexity of the function.319

3.3 Optimization of a One-Way Corridor320

Given the variations of D(·) on [0, C], derived in the proof of Proposition 3, we can321

compute the optimal control (choice of the offset t0) analytically. We define two families322

of control solutions: (1) the corner solutions in which t0 corresponds to the beginning323

of a stream and (2) the solutions in which t0 lies inside the arrival time of a stream.324

The latter solutions only exist if the optimal t0 is such that the first stream which stops325

at the signal is the one with the intermediate density, (see [5] for details). We index326

this intermediate density by 1. In the following, we use the convention k2 ≤ k1 ≤ k3.327

The optimal t0 is denoted t∗0.328

In corridor optimization, we optimize the offset of traffic signals over several con-329

secutive intersections. Optimizing the sum of the total delays at each intersection over330

each offset is a difficult problem to solve analytically. Instead, we solve an optimization331

problem for each intersection. Given the departure streams resulting from the optimal332

control at intersection i (arrival streams of the downstream intersection i+1), we com-333

pute the optimal control to be applied at intersection i + 1. We define a scenario as334

a class of arrival streams leading to a specific choice of t∗0, denoted control strategy. A335

scenario s is unstable if it leads to a different scenario at the downstream intersection.336

The scenario of intersection i is unstable if either the structure of the arrival streams337

or the optimal control strategy of intersection i + 1 is different from the structure of338

the arrival streams or the optimal control of intersection i. On the contrary, a scenario339

is stationary if, once this scenario occurs at an intersection, it will occur at all the340

downstream intersections. In the following, we identify the conditions, on the arrival341

streams, for each control strategy to be the optimal one. We also summarize condi-342

tions for these conditions to hold at the downstream intersection, making this scenario343

stationary. The details of the derivations can be found in [5] and we focus on the344

interpretation of these results.345

3.3.1 The Optimal Control Is a Corner Solution346

The optimal control t∗0 is either 0, T1, or T1+T2. One of the three streams is coordinated347

such that its first car reaches the signal at the beginning of the red time. Intuitively,348

this stream should have the lowest density. However, the following stream, which may349

have a density close to kc, can join the queue before it fully dissipates, causing a rapid350

increase in the queue length and thus in the total delay. Depending on the densities of351

the streams and on how many streams join the queue, the corner solution can be either352

of the three possibilities. Figure 4 summarizes the different scenarios representing an353

optimal control strategy associated with a class of arrival streams.354
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3.3.2 The Optimal Control Is Not a Corner Solution355

There is only one scenario in which the optimal control is not a corner solution, then356

t∗0 = T1+T2
k3 − k2
k3 − k1

−R kc
kc − k1

. In this scenario, the first stream, with the intermediate357

density, is split into: a stream which does not stop in the queue (stream 4) and a358

stream which reaches the intersection as the signal turns red (stream 1). As the offset359

increases, additional vehicles from the first stream experience long delays. These long360

delays are not compensated by the smaller number of vehicles from the third stream361

(with the highest density) which experience short delays. As the offset decreases, fewer362

vehicles from the first stream (intermediate density) experience delay. This reduction363

in the total delay for the first stream is overcompensated by the significant increase364

in the total delay experienced by the vehicles from the third stream (with the highest365

density). This illustrates a trade-off between having a few cars with long delays and a366

lot of cars with short delays.367

3.4 Relations between the scenarios and convergence to-368

wards a unique stationary optimal control369

Now that we have identified all the possible scenarios, we study the interactions between370

them and the transitions from one to another (Figure 4).371

The green dotted arrows illustrate that different paths are possible from a sce-372

nario. This means that once this scenario occurs, different scenarios are possible at373

the downstream intersection. The scenario at the downstream intersection depends on374

the parameters of the arrival streams. The solid red arrows illustrate that only one375

path is possible from the scenario. This means that once the scenario occurs, there376

is a unique scenario possible at the downstream intersection. We notice that all the377

scenarios converge after a finite number of iterations towards the unique stationary378

scenario (bottom left of the figure).379

Physically, this scenario corresponds to what is called a green wave [13]. A green380

wave is a flow of vehicles going through a series of intersections without stopping at381

any red light. This result is intuitive. Indeed, at each intersection, one of the departure382

stream has no vehicles, corresponding to the red light. Because of the conservation of383

vehicles, the two other streams have a higher density after each intersection, until it384

reaches the critical density kc.385

In a green wave, vehicles are clustered in a single stream of critical density. They386

arrive at the intersection during the green time and do not experience any delay. This387

is possible as long as the regime is undersaturated, since the duration of the single388

stream, at critical density, must be inferior to the duration of the green time. This389

minimum, expected to be local because we only optimize each intersection individually390

and not the entire set of intersections at once, is actually a global minimum because391

the cost function is null, it is not possible to do better. If the regime is saturated, it392

is still optimal to do a green wave from a local point of view, but it is not sure if we393

optimize globally.394

However, a green wave is not the ideal solution for synchronizing traffic lights395

because it is very sensitive to external factors. At critical density, the traffic dynamics396

may be unstable (showing the limits of the modeling of traffic flow with a fundamental397

diagram). A single incident on the network (jaywalking, parallel parking) or small398
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Congested regime
ρ2 6 ρ1 6 ρ̄ 6 ρ3

t∗0 /∈ [0;T1]

t∗0 ∈ (0;T1)

t∗0 = 0

ρ2 > ρ1 > ρ3

t∗0 = T1

Undersaturated regime
ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 6 R
ρc

ρc − ρ2
R

C
>

(ρ3 − ρ̄)(ρc − ρ1)
ρc(ρ3 − ρ1)

ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 > R
ρc

ρc − ρ2
ρ2 6 ρ̄ 6 ρ1 6 ρ3

Undersaturated regime
ρ2 6 ρ1 6 ρ̄ 6 ρ3

T2 6 R
ρc

ρc − ρ2
R

C
6

(ρ3 − ρ̄)(ρc − ρ1)
ρc(ρ3 − ρ1)

Figure 4. The figure represents the different control scenarios (optimal control strategy
and corresponding class of arrival streams). It also shows the dynamics of the scenario
in a corridor leading to a unique stationary scenario which corresponds to a green wave.
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calibration errors may cause significant delays and the formation of queues.399

To improve this situation, we can choose to apply the optimal control in real-400

time. Given the traffic conditions at the downstream intersection (from sensors for401

instance), we apply the optimal control and thus anticipate an incident which would402

have disrupted the green wave. This idea of real-time control traffic has already been403

studied with real-time computations [19, 2, 29]. Here, all computations can be done404

off-line and analytically, reducing the online computations to comparisons between405

parameters, which are quasi-instantaneous.406

The presence of significant side traffic changes the values of the densities of the407

streams and makes the conservation of the number of vehicles not hold anymore. The408

value of ρ̄ is not conserved along the corridor and this brings perturbations in the409

model described above and uncertainty in the evolution of the control scenarios. At410

the intersections where the side traffic is significant, the control scenario might go back411

instead of following the arrows of Figure 4, slowing the process of reaching the station-412

ary control scenario. Although the details of the evolution of the control scenarios when413

the side traffic become too significant are not the purpose of this article, a real-time414

control using sensors could be implemented in such a case, because it would measure415

the departure streams of an intersection and transmit to the downstream intersection416

information on the arrival streams. Given the arrival streams, the traffic light applies417

the optimal control using the diagram of Figure 4. A limit for this is possible delays418

in the optimal control leading to unexpected feedback dynamics. Indeed, the control419

is applied once the last vehicle of the upstream link leaves the link. However, it is420

possible to consider piecewise constant controls which average the information of the421

upstream links for a given interval before applying the control, leading to a smoother422

feedback which integrates the past dynamics.423

4 NUMERICAL ANALYSIS ANDVALIDATION424

In this section, we validate our model with microsimulation. Results predicted by the425

model are compared with results from CORSIM [11], and we find that the two results426

are very similar.427

We use CORSIM to simulate an arterial corridor equipped with four signalized428

intersections. To compare with the model, we focus on only one way of the traffic,429

heading east. As our model does not take into account traffic from/to side streets, the430

traffic flow is set in the simulation to be through only. Traffic from the side streets is431

through only as well. We denote the intersections by the indices 1 to 4 from West to432

East. The settings of the simulation are the following:433

• The distance between two consecutive intersections is 500 feet (152.4 meters)434

• The cycle has the same duration for every signal and lasts 60 seconds435

• Every link is assumed to have one lane only436

• Arrival flow upstream of the first intersection is 300 vehicles/hour437

• Saturation flow is 2000 vehicles/hour438

The arterial corridor is simulated for a range of values of the red time and the439

offset. For every simulation, the red time is common to every signal and the offset440

between two consecutive traffic lights is the same on each link. Each simulation is run441
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10 times for every set of values of the parameters and each simulation lasts 20 cycles.442

The comparison variable between the simulation and the model is the total delay of443

all the vehicles, experienced at an intersection, during a cycle. To avoid the effects of444

initialization, the total delays are averaged over the last 10 cycles of each simulation.445

We will compare the total delay per cycle over the three links between the intersection446

1 and 4.447

In the model, we consider that the arrival flow upstream of intersection 1 is uni-448

form. Departure streams of each intersection are computed according to (8). The449

departure streams of intersection i are the arrival streams of intersection i+1. At each450

intersection, we compute the total delay per cycle using equation (10).451

We compare the total delays per cycle from the simulation and from the model in452

Figure 5. The left column represents the results computed between intersections 1 and453

2. From top to bottom, the figure represents the total delay per cycle computed by454

the model, the microsimulation and the difference between the microsimulation and455

the model. The results are presented as functions of the red time R and the offset456

t0. The model underestimates the total delay by about 20% on average. We notice457

that the two surfaces have extremely similar shapes. The total delays computed by458

the simulation and by the model exhibit a similar dependency on the parameters (red459

time and offset), which implies that the assumptions of the models are reasonable for460

signal control.461

The model is relevant to obtain better understanding of traffic flow dynamics and462

study problems where absolute values are not as important as intuition on the response463

of a corridor to a change in the parameter values. The traffic signal optimization464

problem is a good application of our model because the key point of this problem is465

to obtain the value of the optimal control and not the one of the minimal total delay.466

Even though the minimal value of the total delay is underestimated by about 20% by467

our model, the optimal control derived by our model and by the simulation are close468

due to the similar shapes of the curves of the total delay.469

In Figure 5, the right column represents the results computed between intersections470

3 and 4. The model again underestimates the total delay by about 40% on average. The471

two surfaces remain very similar, though the difference is more notable compared with472

the delay between intersections 1 and 2. This result is expected, due to our approxi-473

mation of the third stream made at each intersection. The error is thus increasing each474

time an approximation is made, corresponding to another intersection gone through.475

From a hydrodynamical theory point of view, if we consider an intersection with476

uniform arrivals (a single stream of density k and duration C), there are exactly three477

streams downstream of the intersection (red time with density zero and duration R,478

queue discharge with density kc and duration Gq and residual green time with den-479

sity k and duration C − (R + Gq)). The differences in the computation of the total480

delay between the model and the microsimulation do not result from the three-stream481

approximation. We estimate the error of 20% to be due to the triangular shape of482

the fundamental diagram and to the deterministic trajectories of the vehicles. We can483

consider this difference of 20% as a baseline error. The approximation of the model484

as a three-stream traffic flow lead to an underestimation of 40% of the total delay at485

intersection 4. To be used for delay or travel time estimation, the model needs to be486

improved to model traffic flows after several intersections.487
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Figure 5. Comparison of the total delay computed by the microsimulation and by the
model. Top: Total delay per cycle computed by the model between intersections 1
and 2 (left) and between intersections 3 and 4 (right). Center: Total delay per cycle
computed by the microsimulation between intersections 1 and 2 (left) and between
intersections 3 and 4 (right). Bottom: Difference between the total delay per cycle
computed by the microsimulation and by the model. The results are presented for
the total delay between intersections 1 and 2 (left) and between intersections 3 and 4
(right).
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5 DISCUSSION AND CONCLUSIONS488

This work presents the derivations of a model of arterial traffic flow through signalized489

intersections. This model allows the traffic flow to be characterized by a small number490

of parameters. Moreover, the study of a corridor is made easier and analytical by the491

similar structure of the arrival and the departure flows at each intersection.492

This model provides an analytical solution to the classic problem of traffic light493

coordination. We notice that the total waiting time of the vehicles during a cycle is494

a quasi-convex function of the offset between successive traffic signals. We use this495

quasi-convexity property to derive the optimal control analytically. For a corridor with496

multiple intersections, this analysis provides optimal control for the traffic signal at an497

intersection as a function of the departure streams of the upstream intersection. We498

analyze how the optimal control strategies evolve throughout the multiple intersections.499

After a few intersections, our analysis shows that the choice of the optimal offset500

leads to a green wave, an intuitive optimization of the offset on a corridor. The results501

go beyond recalling that the formation of a green wave is the optimal control strategy502

on a corridor. They provide analytical optimal control strategies for the choice of the503

offsets, as a function of the arrival streams. This provides valuable information for504

a real-time implementation with timely adaptation of the control strategies as traffic505

conditions change, since it does not require additional computation. Given flow mea-506

surements from sensors, the traffic signals can compute the optimal offset from the507

analytical expressions derived in this article. In particular, no online optimization is508

necessary which is crucial to implement real-time control strategies. The implemen-509

tation of such algorithms have become a realistic approach to real-time traffic signal510

control in the recent years, with the emergence of novel sensing technologies available511

for online control [1].512

This model is not limited to the one-way synchronization problem and could be513

applied to model the flow in numerous arterial traffic situations. The two-way corridor514

can be studied with the same method and preliminary results are available in [5]. In515

a saturated regime, it is optimal to optimize the direction of traffic with the longer516

red light duration. This result does not hold under an undersaturated regime but it517

provides some model of the system behavior which can be adapted to further studies518

of the two-way problem. In addition to traffic lights synchronization, this model has519

potential applications to model the probability distribution of travel times on arte-520

rial corridor. In particular, we are interested in the additional accuracy provided by521

the three-stream approach compared to models which do not take into account light522

synchronization and assume constant arrival rates [17, 16].523
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