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Freeway traffic smulations must account for the probabilistic natur e of
model par ameter sto captur eobserved variationsin traffic behavior.. Fun-
damental diagrams specify freeway section parameters describing the
flow—density relationship in macr oscopic simulation models. A triangular
fundamental diagram—specified with the free-flow speed, congestion
wave speed, and capacity—iscommonly adopted in first-order cell trans-
mission models. Capacity (defined as the maximum flow observed in a
given freeway section over a particular day) exhibits significant day-to-
day variation, and capacity variationsacr ossdiffer ent sectionsof thefree-
way aresignificantly correlated. Free-flow speedsdo not exhibit significant
variation, but congestion wave speedsexhibit variation uncorrelated with
section capacities or parametersfrom other sections. A probabilistic
graphical approach ispresented to model theprobabilistic distribution of
fundamental diagram par ameter sof an entirefreeway section chosen for
simulation. Morethan 1 year of data from dozens of loop detectorsalong
a 25-mi section of the [-210 freeway westbound in Los Angeles, Califor-
nia, are used for demonstration. The parameters of the distribution are
estimated with the expectation—-maximization algorithm to account for
missing obser vations. M odel selection from among plausiblemodelsindi-
catesthat afirst-order spatial M arkov model isappropriateto capturethe
capacity distribution, which isthejoint probability distribution of free-
way section capacities. Stochastic simulations with sampled parameters
demonstratethat capacity variationscan lead to significant variationsin
congestion patternsand freeway performance.

Traffic flow simulations offer a cost-effective solution for studying
the effects of operational strategies such as ramp metering and the
management of traffic demand and incidents (e.g., accidentsand lane
closures). Macroscopic models simul ate aggregate traffic behavior
and offer reliable, fast simulations suitable for integration into a
real-time management system. Modelsare calibrated with measured
datato specify the parameters and inputsthat will replicate observed
flow and speed contours as well as performance measures such as
vehicle miles traveled (VMT) and vehicle hours traveled (VHT).
These models typically are calibrated to replicate 1 specific day of
traffic flow. This deterministic method of modeling fails to capture
the rich day-to-day variations in traffic flow behavior that can be
attributed to the stochasticity of calibration parameters and inputs.
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Probabilistic models of these parameters used in stochastic simula-
tions provide an enhanced framework for the eval uation of proposed
improvement strategies.

The cell transmission model (CTM) is a first-order macroscopic
simulation model suitable for smulating freeway traffic (1). Con-
struction of the freeway model and its calibration are specified by
well-defined steps (2). The freeway is modeled as a set of sequential
segments, and on- and off-ramps are represented by input and output
links. A fundamental diagram (the empirical curve relating observed
densitiesto observed flows) is used to specify the parameters of each
segment. Density and flow measurements obtained from loop detec-
tors along the freeways are used to cdibrate these empirical curves.
Input flowsinto the on-ramps and split ratios (routing parameters) for
the of f-ramps compl ete the model specification. Ramp flows, if miss-
ing, can be obtained by using a model-based imputation technique.
The Performance Measurement System (PeM S), an onlinerepository
of traffic datathat also containslinksto related publications, provides
arich archive of loop detector data for freewaysin Caifornia(3).

Most stochastic simulations that model traffic flow are based on
microsimulation models, and their stochastic nature is based on the
randomness of demand and driver behavior. In comparison, stochas-
ticity must beintroduced in the demands and model parameters (e.g.,
fundamental diagram parameters) in macroscopic models. The study
presented here focuses on the stochastic nature of fundamental dia-
gram parameters with an emphasis on the capacity parameter of free-
way sections, which are essentia inputs to the CTM and must be
calibrated on the basis of available observations. As defined in the
Highway Capacity Manual, the theoretical capacity (design capacity)
of afreeway section is the maximum flow that can possibly traverse
the cross-section of that section in acertain period (4). However, this
theoretical capacity can be reached in practice only when the section
isin bottleneck flow conditions(i.e., no active downstream effectson
the analyzed section). In contrast, the operational capacity of a sec-
tion, defined as maximum flow across the section observed over a
chosen period, can be estimated for all sections (5). This capacity
value can beinfluenced by both queues forming upstream of the sec-
tion (6) and downstream congestion spilling into the section (7-9).
Moreover, operational capacity can be affected by external conditions
such as weather, driver behavior, and so on. All of these factorslead
to ahigh variability in operational capacity over different days (10).

In some studies, capacity has been modeled as arandom variable;
capacity is replaced by the notion of breakdown flow, which is
defined astheflow acrossasectionin freeflow just beforeit switches
to congested-flow conditions. Several studies model the capacity as
a continuous random variable (11-14). Of these, Ozbay and Ozgu-
ven (14) perform a Bayesian nonparametric estimation, Brilon et a.
(12) suggest a Weibull distribution, and Polus and Pollatschek (13)
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FIGURE 1 Speed contours (mph) observed on (a) May 11, (b) May 12,
(c) May 27, and (d) July 23, 2009 [x-axis = milepost; y-axis = time (h)].

use ashifted-gammadistribution to fit capacity datagathered on var-
ious days and locations. Wu et a. model the capacity as anormally
distributed random variable and use this probabilistic capacity to
formulate a chance-constrained ramp metering strategy (15).

However, the notion of capacity defined in literature cannot be
adapted for usein macroscopic simulation modelssuch asthe CTM.
Capacity is one of the fundamental diagram parameters calibrated
from loop detector measurements over a chosen time horizon (10).
Inthis paper, the stochastic variations of capacities (calibrated using
afundamental diagram) are model ed across days observed in almost
1 year of data. Thejoint probability model (modeled with a proba-
bilistic graphical model approach) estimated from the observed data
will bedirectly applicable for stochastic simulations with the CTM.
Tothe authors’ best knowledge, probabilistic models of this notion
of capacity are not availablein literature.

The paper isorganized asfollows. First, the diverse nature of con-
gestion patterns and freeway performance observed in practice is
summarized, highlighting the observed variations in fundamental
diagram parameters calibrated from data and establishing the need
tomodel joint capacity distributions. Next, aprobabilistic graphical
model approach to represent the joint probability distributions is
described. Then, the effect of parameter variationsis demonstrated
by detailed studieswith stochastic simulations. Finally, conclusions
of the study are presented.

STOCHASTIC NATURE OF TRAFFIC

Traffic exhibitsday-to-day variationsthat result in different observed
congestion patterns, performance measures (VHT, VMT, and soon),
and observed flow—density relationships. These variations can be
attributed to the stochastic nature of demand aswell as other param-
eters such as section capacity. In this paper, a 25-mi section
(Milepost 51 to Milepost 26) of the [-210 freeway westbound in
LosAngeles, California, is used for demonstration. Figure 1illus-
trates the speed contours (with traffic flowing from right to left)
observed for 4 typical days; the extent as well as the time of con-
gestion varies. Figure 2 is a scatter plot of VHT versus VMT that
highlights significant variations in freeway traffic performance.

Inparticular, VHT (which measures amount of time spent by all vehi-
cles on the freeway) varies significantly for similar levels of VMT
(which measures the usage level of the freeway facility).
Fundamental diagrams, which capture the flow—density relation-
ship, also exhibit significant variations. The commonly used trian-
gular fundamental diagram (Figure 3) is determined by a bimodal
constrained |east-squares algorithm that separates the datainto con-
gested and free-flow modes by speed (<60 mph is deemed con-
gested), sets the maximum observed flow value as the apex of the
diagram, and performs constrained | east-squaresfits on the free-flow
and congested parts of the datato estimate free-flow speed and con-
gestion wave speed. Dervisoglu et a. present a similar calibration
scheme based on data from multiple days, applying an approximate
quantile regression scheme for the estimation of congestion wave
speed (rather than the direct | east-squaresfit used in this paper) (10).
Figure 4 is abox plot of capacities observed during 1 year, from
April 2009 to April 2010. The vehicle detector stations correspond-
ing to some of the bottleneck |ocations are marked; locations ¢ and

x 10°
2

N
©
*
¥
¥
+

VMT [veh-miles]
N
o
+
+
*** *
#
;’2#* ﬁ* "
% * %%
 Shwe 13
%o *
M A
*%ﬂ;*; E
*%.
S
+

* + *
24 + . * ¥
2.2 * *. * L L ! L L
3 35 4 4.5 5 5.5 6 6.5
VHT [veh-hr] x 10*

FIGURE 2 VMT versus VHT for I-210W freeway from April 2009
to April 2010 (colors represent different days of week).
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FIGURE 3 Triangular fundamental
diagram characterized by free-flow speed
(v), congestion wave speed (w), and
capacity (@) (n° and n’ are critical density
and jam density, respectively).

d are frequent bottlenecks, whereas others are less frequent. To
exclude the effect of downstream congestion spillback and lack of
demand in the capacity determination, data points corresponding to
these cases were excluded from the plots. The daily maximum flow
varies substantially, and the variation depends on location.
Fundamental diagrams during 40 days of data are plotted in
Figure 5a; the free-flow speed shows negligible variations. A scat-
ter plot of capacities in adjacent sections indicates a strong corre-
lation between capacities in adjacent sections, and this feature is
typical to other section pairs (not necessarily adjacent) on thefree-
way (Figure 5b). Figure 5c is a scatter plot of congestion wave
speed w and capacity of afreeway section Q. Congestion wave
speed (W), restricted to the range of 5 to 20 mph in the calibration
procedure, exhibits weak correlation with the capacity of the sec-
tion aswell as parameters from the adjacent section. These obser-
vationsindicate that the capacity distribution of the entire freeway
must be modeled as a multidimensional joint distribution, while
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independent distributions can be used to model the congestion wave
speed distribution.

PROBABILISTIC GRAPHICAL MODEL

A probabilistic graphical model is a graph-based representation of
the conditional independence propertiesin the probability distribu-
tion. In this paper, undirected graphical models (also known as
Markov random fields) represent the joint distribution of capacities
along the freeway. Koller and Friedman provide a detailed view of
the theory of probabilistic graphical models (16). The candidate
graphical models for the joint distribution of section capacities are
presented in Figure 6. Each node in the graphical model of freeway
capacity distribution corresponds to section capacity. Undirected
edges between nodes highlight direct dependence between vari-
ables. Variables in the graphs are conditionally independent if no
path exists between them after the observed variables and their
corresponding edges are deleted.

ModelsA, B, and C (Figure 6) represent first-, second-, and third-
order (spatial) Markov distributions, respectively. Individua section
capacities are separated into five equally sized bins, and the result-
ing discrete probability distribution is modeled. Discretization cir-
cumventsthe problem of identifying good candidate distributions of
continuous capacity for the section as well as joint probabilities,
becausethey do not correspond to well-known candidate distributions.
However, discretization resultsin aloss of accuracy in modeling the
distribution.

The data set used for parameter estimation consisted of 216
N-dimensional points, where N is equal to 27 sections. These data
points correspond to weekday capacities and exclude dayswhen data
were not available. A section capacity is considered unobserved or
missing during aparticular day when the detector malfunctionsor the
section does not get congested. It dsoisclassified asmissing if max-
imum section flow is observed when the downstream is congested in
an effort to exclude the effect of downstream spillback on the capac-
ity estimation. However, missing capacity is restricted to be more
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FIGURE 4 Original box plot showing capacity [in vehicles/hour/lane (vphpl)1 variation in successive freeway sections, with labels
indicating vehicle detector stations (VDSs) corresponding to bottleneck locations: (g) 767986 (Milepost 50.29), (b) 767898
(Milepost 47.79), () 717675 (Milepost 38.21), (d) 717663 (Milepost 30.78), and (e) 717642 (Milepost 28.03).



Muralidharan, Dervisoglu, and Horowitz

2000

81

1500

1000

Flow [vphpl]

500

2200
D' 2000 "o
& + {t“Qf
c'; + *1*‘
~ 1800 f& S
2] + +
[a] *‘*
= + ++
& 1600 | "+

*
1400
1500 2000 2500

Q (VDS 767986)
(b)

2400
2200 -
2 . %
(<] *
R 2000 1 . NG
5 + t‘*f&‘; f * :: :‘# :
0 1800 1 e F St R ey
S + +* +
9 1600 . , 1
1400 - - '
5 10 15 20
w (VDS 767986)
(0

FIGURE 5 (a) Calibrated fundamental diagrams across different days at VDS 717637 [where
density is measured in vehicles/mile/lane (vpmpl)], (b) scatter plot of capacities in adjacent sections,
and (c) scatter plot of capacity and congestion wave speed in a freeway section.
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FIGURE 6 Candidate graphical models for joint probability
distribution: (a) Model A, (b) Model B, and (c) Model C.

than the maximum observed flow for the day. Most data points con-
tained multiple missing observations for section capacity. To elimi-
nate outliers (dueto accidentsor specia unknown events), capacities
outside the range of median plus 1.5 times the interquartile range
were denoted as missing. Theinterquartile range corresponds to the
distance between the 25th and 75th percentiles of the data.

Let C=(Cy, C,, ..., Cy) represent the random variable corre-
sponding to section capacities, whereC, € (1, . . ., n,) representsthe
set of plausible values and the number of binsn, isequal to 5. The
probability distribution is factorized as

1
p© == 1 wi,(C.C)

(i.j)eE

where

E = set of edgesin the graph,
Z = normalization constant, and
yi; = potential functions.

The general factorization places potential functions on all cliques
(maximally connected subgraphs) in the graph, but giventhedatasize
and the high rate of missing data, potential functions are placed at the
edges to reduce overfitting. For the proposed discrete factorization,
each potentia functionisan n, x n, table.

With complete observations, parameter learning can be carried
out with the iterative proportional fitting (IPF) algorithm (16, 17);
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with missing observations, the expectation—maximization algorithm
must be used (17). Missing data are assumed to be missing at ran-
dom. The expectation—maximization algorithm is a two-step hill-
climbing algorithm. The E Step can be interpreted as filling the
probability of occurrence of different plausible missing values in
the observations with the model, and the M Step uses the output of
the E Step to learn the new parameters with the IPF algorithm. The
IPF algorithm requires empirical marginals to learn the parameters
of the distribution, which are provided in the E Step.

Let m; be the dimensional table corresponding to the empirical
marginals. The learning algorithm is given as follows.

Givendata{c” pe {1,...,Nq}}
Initialize all elements of , s to nonzero initial values.
Repesat.

E STEP
Set all elements of m; to O
forp=1toNp

m; (i17 j1)= m (i1’ j1)+ P(Ci = il'Cj = j1|C= va\l’r,s)
v(i,j)e Eandi, j, €(L,...,n,)

rqmpm=fﬁgﬂﬁ v(i,j)e Eandi, j, e(L,...,n,)

NP
M STEP (IPF)
Initialize yotoy, ¢
Repeatt=1, 2, ..., until sufficient convergence

Chooseanedge(r,s) € E
Calculatemti(p, q) = P(C, =p, Cs=qlyt
vp,ge (4,...,ny)

ifmyp,a=0
. y m,(p. q)
s (P ) =yis (p )X —5————
v v ms(p. q)
otherwise
Vis(p,g)=0

LOG LIKELIHOOD CALCULATION

Caculate L = zlog(P(Cp|Wr,s)

P
Until L converges.

The agorithm (E Step and M Step) isiterated until L converges.
Indicesr, s, i, and j indicate the sections considered. The term
P(C =i, C= j.lc=cr, V., ¢) involves calculation of probabilities
given the model parameters from the previous step. In the case that
both section capacities are observed as (C; =i, C; = j ), then the
abovetermisequal to Lifi; =i, j; =] and 0 otherwise. In the case
that the section capacitiesindicated by the indices (one or both) are
missing, then the model from the previous M Step is used to calcu-
late these probabilities, given other observed section capacities.
When the capacity of any particular section corresponds to down-
stream congestion spillback or lack of demand, then the missing data
arealowed to take on only val ues above these recorded maximums.
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TABLE 1 Predictive Log
Likelihood for Model Selection

Median Predictive
Model Log Likelihood
A -24.12
B -39.23
C —60.91
Independent -24.97

distributions

Theterm mt2(p, q) corresponds to model marginals. The probabil-
ities mentioned above are easily calculated with the elimination
algorithm, whichisone of theinference algorithms commonly used
in practice.

The expectation—maximization algorithm presented above can
be used to learn the parameters for Models A, B, and C and the
independent distribution model. Model selection can be performed
by using a10-fold cross-validation. Data are randomly partitioned
into 10 subpartitions of equal size, and the model is learned from
nine partitionsin rotation and eval uated on the other partition. The
log likelihood function was chosen for eval uation; results are sum-
marized in Table 1 (higher values indicate better fit). The median
predictivelog likelihood values for Model A and the model corre-
sponding to independent distributions are similar, but evidence of
high correlation between capacities (e.g., Figure 5b) suggests that
Model A best represents the joint probability distribution of the
capacity function. In addition, sampling from independent distribu-
tions for performing simulations might trigger “false” bottlenecks
not observed in practice.

STOCHASTIC SIMULATIONS

Thefirst-order spatial Markov capacity distribution islearned from
the entire capacity data set using the algorithm presented in the pre-
vious section. The free-flow speed v is modeled as a deterministic
variable because it shows little day-to-day variation. The conges-
tion wave speed w of each section is modeled as an independent
variable. Theramp demands and split ratios were obtained for four
days. May 11, 12, 26, and 27, 2009. The imputation algorithm
described by Muralidharan and Horowitz was used to obtain ramp
demands and split ratios for ramps for which datawereincorrect or
missing (18).

Capacity and congestion wave speed were sampled from their
respective distributions and used for stochastic simulations. The
sample from the capacity distribution corresponds to the bins used.
Actual capacities can be obtained by sampling an (assumed) uniform
distribution of capacities within the bin capacity range. Because a
stochastic model for demands and split ratios was not available,
three stochastic simulations were performed with each of the four
demand profiles. Each simulation corresponded to a single sample
from the capacity and congestion wave speed distributions.

The velocity contours of 12 stochastic simulations are shown in
Figure 7 (where rows from top to bottom correspond to demand-split
ratio datafor May 11, 12, 26, and 27, 2009). These contour plotshigh-
light the fact that capacity variations can lead to appreciable differ-
ences in congestion patterns observed on the freeways. The velocity
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FIGURE 7 Velocity contours (in mph) from stochastic simulations for (a) May 11, (b) May 12, (c) May 26, and

(d) May 27, 2009.

contoursfrom April 2009 to April 2010 (excluding weekendsand hol-
idays) in PeM Sindicate that some simulations can replicate observed
congestion patterns, whereas others lead to congestion patterns not
observed in practice. Thisfinding is expected because other stochas-
tic parameters (e.g., demand) are not modeled here. Notably, the bot-
tlenecks triggered in the simulations corresponded to the common
recurring bottlenecks observed in the measured vel ocity contours, but
some were less common.

Figure 8 shows the variation of VMT versus VHT for stochastic
simulations with capacity and congestion wave speed samples.
These scatter plots indicate that stochastic variations of fundamen-
tal diagram parameters can have asignificant effect on freeway per-
formance. The plot consists of disjointed groups of points because
the model did not account for the stochasticity of demand data.

The VHT-VMT scatter plotsare shown in Figure 9; demand and
split ratio datafromMay 11, 2009, were used for al three cases. The
plotsindicatethat congestion wave speed variations havelittle effect
on freeway performance compared with capacity variations. Also,
capacity variations produce large variations in vehicle hours spent
on the freeway (VHT) for similar numbers of vehicles serviced
(VMT).
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CONCLUSIONS Finaly, the framework used for introducing stochasticity in thetri-

The objective of this paper was to take afirst step toward modeling
the stochasticity of fundamental diagram parameters, with a view
toward integrating them into simulation tools. A probabilistic graph-
ical model was presented to represent the joint probability distri-
bution of section capacities located along a freeway. Significant
correlationsin capacities observed in different sections along the
freeway were highlighted. First-, second-, and third-order spatial
Markov modelswere chosen as candidate distributions, and parame-
ters of the distribution were learned with the expectation—maximiza-
tion al gorithm because the datawere missing a significant number of
observations. Cross-validation was used to conclude that afirst-order
spatial Markov model was the most appropriate model among the
selection pool.

Congestion wave speed, which is another parameter in the funda
mental diagram, exhibited independent variations. The congestion
wave speed variations had arelatively insignificant effect on freeway
performance compared with variationsin capacity because although
capacity directly affects the service rate of the freeway, the conges-
tion wave speed has only an indirect effect. For example, consider a
region of freeway upstream of a bottleneck. If congestion hits a sec-
tion wave alittle later (because of different congestion wave speed),
the difference in service rate can be approximately attributed to the
additional vehicles that have |eft the freeway through the upstream
off-ramps because of free-flow conditionsthat existed during theextra
timethe sectionwasin freeflow. Thiseffect isrelatively insignificant
compared with the effect of capacity on the service rate, given the
range of capacity variations observed.

In this paper, maximum flow data points were excluded in sec-
tionswhen they were observed as aresult of congestion spillback or
obvious lack of demand (i.e., the section did not get congested dur-
ing the day) because the CTM automatically models these situa-
tions. If the stochastic model is used for short-term prediction with
modelsthat do not capture these effects, the user may include these
data pointsin the model learning procedure.

A binning and discretization approach also was used to model the
distributions because candidate distributions did not conform to known
probability distributions. However, the graphical model approach and
the method applied here can be adapted even if one choosesto fit a
continuous candidate function.

angular fundamental diagrams can be applied when other types of
fundamental diagramsare considered. These modelsare not restricted
to usein stochastic simulations. In the event that section capacitiesare
missing, the capacity distribution model can estimate the most prob-
able capacity. It can be used to compl etely specify deterministic mod-
els, replicating traffic measurements during a chosen day, even when
some section capacities are not observed. These models also can be
used for short-term prediction and ramp metering.
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