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Abstract

Data-Driven Methods for Improved Estimation and Control of an Urban Arterial Traffic
Network

by

Leah Adrian Anderson

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Alexandre M. Bayen, Chair

Transportation is a field which is universal in our society: people from every country,
culture or background are familiar with the challenges of getting around in our built envi-
ronment. Yet what is not always so obvious to the average traveler is how the techniques
and tools of designing, observing, and controlling our modern transportation networks are
derived. In fact, the theory of traffic engineering has many gaps and unknowns that are the
topic of ongoing research efforts in the academic community. This work presents a collection
of theoretical and practical methodologies to advance the study of traffic flow modeling, state
estimation, and control of signalized roadways in particular. It uses theory from traditional
transportation engineering, but also demonstrates the application of new tools from control
theory and computer science to the specific application of signalized traffic networks.

First, two numerical modeling dynamics representing traffic flows on signalized arteri-
als are presented: the well-known Cell Transmission Model, a discretization of the physical
hydrodynamic laws believed to govern vehicle flows, and a new Vertical Cell Model which
resembles classical “store-and-forward” models with the addition of transit delays and finite
buffer capacities. Each of these models is implemented in a common software framework,
which provides an ideal experimental platform for direct comparison of the competing dy-
namics. A chapter in this dissertation contributes a validation and comparison of the two
models against real vehicle trajectory data on an existing signalized road network.

Accuracy and confidence in such traffic models requires complimentary methods of ob-
serving true traffic conditions to provide initial conditions and real-time state estimates. Yet
there are many technological deficiencies in existing urban roadway detection systems that
prevent the acquisition of a real-time estimate of arterial link state (or queue length) at sig-
nalized intersections. Hence this thesis also contains methodology to improve the estimates
obtained from existing hardware by combining data from typical infrastructure sensors with
new sources of Lagrangian probe measurements. These are then assimilated into a detailed
model of flow dynamics. This technique was previously proposed for continuous-flow (free-
way) networks, but required novel adaptions to be applied to an interrupted-flow setting.
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This dissertation next explores advancements in theoretically optimal control algorithms
for statistically-modeled signalized queueing networks. In the context of a large body of pre-
vious work on flow-impeding control for vertical queueing networks, the practical challenges
of traffic signal control are highlighted. Some of these challenges are tackled in the specific
case of the max pressure controller, an algorithm derived from the field of communications
networks that has been shown to optimize through-flow in an idealized network model.

The lack of adequate measurements or demand-volume data has historically been a major
limitation in advancing research on signalized arterial road networks. Yet the current revo-
lution of inexpensive storage and processing of “big data” shows promise for improving daily
operations of existing roadways without the need for expensive new hardware systems. One
example of this potential appears is the case of traffic signal control. Existing traffic signals
are capable of operating more efficiently by changing signal plans based on real-time demand
measurements through a traffic responsive plan selection (TRPS) mode of operation (rather
than depending on a rigid schedule for plan changes). However, this mode is rarely used in
practice because its calibration process is not accessible or intuitive to traffic technicians.
This dissertation presents an application of statistical learning techniques to improve the
process of calibrating and implementing an existing TRPS mechanism. A proof-of-concept
implementation using historical sensor data from a busy urban intersection demonstrates
that real operational improvements may be immediately achievable using existing sensing
infrastructure.
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Chapter 1

Introduction

1.1 Motivation

Traffic congestion is a growing problem in modern urban areas, causing an annual loss in
productivity and fuel of over $120 billion in recent years [182]. While there has been a
recent emphasis put on reducing traffic jams on our freeways, the operations of signalized
roadways has not been given as much attention—even when approximately two-thirds of all
miles driven in the United States are on non-freeway roads with traffic signals [64].

Today, there are more than 311,000 traffic signals in the United States [150]. A single
busy intersection could easily serve more than 100,000 vehicles each day; in California a
full ten percent of urban intersections see total volumes of over 60,000 vehicles per day
[94]. Hence existing inefficiencies in signal control could impact the daily commutes of a
significant number of travelers. Recent efforts to improve regional traffic signal management
and operations have demonstrated benefit-cost ratios exceeding 40-to-1 [151]. This is an
incredible economic efficiency compared to that expected from infrastructure projects aimed
solely at expanding capacity without addressing other operational needs.

This work presents a collection of theoretical and practical methodologies to advance the
state of traffic flow modeling, state estimation, and control of signalized roadways from a
network-wide perspective. It uses theory from traditional transportation engineering, but
also demonstrates the application of new tools from control theory and computer science to
the specific application of signalized traffic networks.

Integrated corridor management

Integrated corridor management (ICM) refers to a comprehensive initiative by the United
States Department of Transportation (USDOT) to find novel ways to make use of any un-
derutilized capacity available in a regional transportation network with the objective of
optimizing its throughput and reducing overall congestion.

A typical corridor to be managed in an ICM project involves multiple local traffic ju-
risdictions which all have varying technical standards and modes of operation, but share a
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Figure 1.1: The I-210 corridor involves multiple freeways/major arterials as well as a com-
muter rail and transit system connecting at least nine independently-operated traffic juris-
dictions. During morning and evening peak periods, this area suffers from major congestion
on all East-West freeways. Dense urban development and geographical barriers prevent
significant expansion of the existing road network.

significant portion of traffic going across or within a relatively small geographic region.
Figure 1.1, for example, illustrates a highly congested commuter corridor along Interstate

210 in the eastern suburbs of Los Angeles, California. The depicted area surrounding the
I-210 is a prime example of an urban region with prominent peak-hour congestion on major
throughways, yet no land available to expand the capacity of the existing road network. An
ongoing ICM project sponsored by the California Department of Transportation (Caltrans)
and the relevant local municipalities aims to coordinate the control mechanisms of the state-
operated freeways and locally-operated arterials to shift demand patterns in a way that
better utilizes the existing physical network capacities. This is believed to be achievable via
development of a Decision Support System (DSS) which integrates active management with
technical strategies such as predictive traffic modeling, intelligent controller design, novel
monitoring strategies, advanced traveller information systems, and an increased emphasis
on transit alternatives.

This dissertation develops a set of solutions for one specific aspect of an ICM project:
the management of signalized road networks.

In the traffic community, high-capacity signalized roadways which serve as major thor-
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oughfares in urban areas are referred to as arterials (in the sense that they are arteries of the
mainline freeway flow). Both technological and theoretical advancement on the operations
of arterials has lagged behind those being made on the modeling and control of freeways.
One reason is that it is more difficult to extract meaningful observations of performance
from point sensor measurements on arterials than on freeways because of the typical dense
platooning that occurs downstream of signals [31]. This expected behavior also makes the
dynamics of traffic on signalized roads much more difficult to represent mathematically than
those of the uninterrupted freeway flows. Furthermore, intersection signal control involves
many more parameters and degrees of freedom than single-stream ramp metering that is
used to mitigate freeway congestion. These complexities have left significant room for ad-
vancement in the field of arterial traffic. Enterprising ICM initiatives then provide a clear
opportunity to develop and test new arterial monitoring and control options that can con-
tribute to network-wide performance improvements.

Arterial traffic management: modeling, estimation, and control

A comprehensive arterial management system addresses three main objectives:

1. analyze and model the dynamic characteristics of demands and queues on a network
where flows are artificially impeded by signals,

2. obtain a real-time or near real-time estimate of the current traffic state to inform this
model given existing (limited) sensing capabilities, and

3. use knowledge gained from the state observations and modeled predictions to limit
queues and minimize unnecessary congestion via informed signal control.

The relationship between these components is presented in Figure 1.2. Effective control
requires a dependable model of traffic dynamics, which in turn relies on an accurate estimate
of traffic state.

Ideally, predictive modeling, estimation, and responsive control all operate using the same
assumptions on network dynamics and a single underlying mathematical model. For example,
freeway operators can use the Cell Transmission Model, (CTM) a numerical approximation
of the kinematic wave model typically used to represent continuous flow, for an accurate
representation of traffic queueing behaviors on freeways [48, 49]. CTM is attractive to
researchers because of its ability to efficiently calculate the dynamics of macroscopic or large-
scale flow behaviors that are observed at different vehicle densities. A large body of research
has developed advanced estimation [132, 148, 28] and control [78, 79] capabilities which
operate on CTM dynamics. Yet inherent characteristics of signalized roadways challenge the
theoretical assumptions and validity of CTM for use on arterials.

First, CTM divides a continuous road into discrete lengths called “cells” where vehicle
density can be considered uniform. However on signalized roads, periodic red signals gen-
erate rapid “stop-and-go” behaviors that can only be captured by extremely fine spatial
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Figure 1.2: An ideal traffic management system shares a common modeling framework among
three components.

discretization (and a correspondingly small temporal discretization) in a CTM implementa-
tion. This sharp queueing and de-queuing can have profound impacts on upstream discharge
characteristics, and therefore must be included for an accurate representation of secondary
congestion effects. Yet excessive discretization prevents the computational efficiency which
makes CTM such an attractive modeling solution.

Second, traffic on arterial roadways does not necessarily follow the principle of first-in-
first-out or FIFO : the first vehicle to arrive on the upstream end of a link will not necessarily
be the first vehicle to leave the downstream end of the link because of the presence of
parallel movement queues and differences in signalized queue release times. For example,
a vehicle intending to turn right may leave a road link before or after a simultaneously-
entering vehicle that intends to continue straight. Or in another instance, a left-turning
vehicle that is waiting for a permissible gap in oncoming flow may impede the progression of
an upstream through-bound vehicle. Yet CTM represents a continuous span of road between
two consecutive freeway interchanges as a single stream of flow and makes the assumption
that no “overtaking” or violation of FIFO occurs. While it is possible to divide individual
movement queues into parallel CTM streams on a numerical representation of a signalized
road network, it is difficult to model these types of interactions that realistically occur
between distinct movement-based queues.

Hence traffic researchers (and managers) are left without a dominant methodology to
analytically study queueing behaviors on signalized road networks. Simplified stochastic
queueing models such as those used in the fields of logistics and communications can often
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Figure 1.3: Many aspects of the queueing dynamics observed on signalized roadways make
accurate modeling difficult. Sharp queueing shockwaves on signalized roadways would require
excessive spatial discretization for accurate representation via CTM. Furthermore, a basic
CTM is unable to model the interactions between movement-specific queues which form
immediately upstream of a signalized intersection.



CHAPTER 1. INTRODUCTION 6

be used to predict equilibrium queueing conditions, but they are generally unable to re-create
the congestion effects of phenomena such as spill-back due to queuing that exceeds a fixed
storage capacity. When a more detailed or realistic representation is required, researchers
typically use microscopic models to simulate arterial dynamics. These representations, often
called car-following models, depend on detailed stochastic equations dictating the dynamics
of individual vehicles. An overview of the modeling equations commonly used in these
microscopic simulations is provided in [33]. Because of the level of detail and number of
parameters involved in tracking distinct vehicle dynamics, microscopic models require a
significant amount of calibration and tuning for accurate results. This in turn implies a
large investment from local traffic agencies when building a custom simulation for each
corridor that they wish to study. Researchers are also impeded by the fact that no closed-
form expression is provided to describe the macroscopic traffic dynamics resulting from the
aggregated interactions between the vehicles, and therefore network-level flows cannot be
studied or controlled analytically using microscopic traffic simulations.

Therefore while modern innovations in estimation and control of signalized networks
can be tested in microsimulation environments, they are largely lacking rigorous analytical
guarantees. The work presented in this dissertation attempts to change this trend. Given the
lack of a single comprehensive modeling framework, we present a collection of mathematical
models and techniques that can be used to analytically derive novel solutions to each of the
components illustrated in Figure 1.2. We ultimately propose that the techniques presented
here can be used as a basis for a comprehensive arterial management system in an ICM
project or in any general mode of operations.

1.2 Organization and overview of the contributions of

this work

This dissertation proposes novel contributions to each of the three major components of the
arterial management system depicted in Figure 1.2. The remainder of the work is organized
as follows:

Chapter 2 provides background information on the challenges associated with each of these
system components.

Chapter 3 details two theoretical modeling dynamics which can be used to represent traf-
fic flows on signalized arterials: the well-known Cell Transmission Model (CTM), a direct
discretization of the physical hydrodynamic laws believed to govern vehicle flows, and a new
Vertical Cell Model (VCM) which resembles classical “store-and-forward” models with the
addition of transit delays and finite buffer capacities. Each of these models is then imple-
mented in a common software framework, which provides an ideal experimental platform for
direct comparison of the competing dynamics. Specific contributions of this chapter are as
follows:
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• A derivation of a coherent, application-ready framework for a discrete-time vertical
queuing model with finite link buffers that is compatible (interchangeable) with CTM
link dynamics in implementation.

• An introduction of a link-state variable to facilitate the representation of spatial ca-
pacity without the need for explicit spatial discretization in link representation.

• A compatible implementation of both CTM and VCM on a shared network repre-
sentation, and validation of each model against a high-fidelity ground truth data set
[10].

Chapter 4 describes a methodology to overcome the technological deficiencies in existing
urban roadway detection systems to achieve a real-time estimate of arterial link states/queue
lengths. This technique was previously proposed for continuous-flow (freeway) networks, but
required novel adaptions to be applied to interrupted-flow networks such as signalized road
networks. The following contributions are presented:

• An explicit demonstration of the challenges associated with previously proposed esti-
mation algorithms.

• A formulation of constraints on the set of feasible PDE boundary conditions that must
satisfy observed measurements of point-to-point travel-times.

• An adaptation of a PDE-based state estimation procedure which achieves fusion of
multiple different types of measurements (including aggregated counts/volumes, densi-
ties, trajectories, and point-to-point travel times) and the possibility of near-real-time
queue estimation.

• An implementation of this algorithm and validation of resulting estimates against link
states extracted from high-fidelity ground truth data [11].

Chapter 5 explores advancements in theoretically-optimizing control algorithms for statistically-
modeled signalized queueing networks. In the context of a large body of previous work on
flow-impeding control for vertical queueing networks, the practical challenges of traffic sig-
nal control are highlighted. Some of these challenges are tackled in the specific case of the
max pressure controller, an existing algorithm derived from the field of communications net-
works that has been shown to optimize through-flow in an idealized network model. Specific
contributions to this topic include:

• A formulation of a cycle-based max pressure (Cb-MP) extension to the max pressure
controller that is motivated by practical hardware and safety constraints on realistic
traffic signals

• an extension of the guarantee of network stability given applications of the Cn-MP
controller [171].
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• An implementation of Cb-MP on a calibrated model in the Aimsun micro-simulation
platform.

• An experimental finding that, during periods of high congestion, a “naive” cycle-based
max pressure controller could out-perform the existing highly-tuned actuated con-
trollers in terms of various delay metrics [12].

Chapter 6 describes an application of statistical learning techniques to improve the oper-
ations of an existing Traffic Responsive Plan Selection (TRPS) mechanism. Many modern
signal controllers are capable of operating in a mode in which the choice of operational signal
plan is responsive to detected changes in demands rather then solely dependent on a fixed
operation schedule. However this mode is rarely implemented. It is believed that this is
largely due to the fact that the existing plan selection mechanism is rigid and complex, and
thus unintuitive to calibrate properly. In this chapter we present the following solutions to
facilitate the adoption of TRPS operations:

• An analysis of sub-optimal performance due to rigidity in plan switching schedules
using real data at an intersection in the I-210 corridor.

• A data-driven methodology for designing the detector weights and plan selection table
used by a generic TRPS mechanism.

• A comprehensive calibration procedure for implementing a TRPS system without the
need for designing and tuning new signal timing plans.

• A proof-of-concept implementation of a TRPS controller designed using the proposed
calibration procedure, and an analysis of the delays resulting from its use (compared
to optimal and current scheduled operations).

Ultimately, a comprehensive conclusion to the entire body of work is given in Chapter 7.
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Chapter 2

Arterial traffic network management
technologies: state of practice

We begin by introducing the features and terminology relevant to a signalized road network
and reviewing the existing work that has contributed to the current state of practical arterial
management.

2.1 Fundamental features of a signalized road network

Intersection design

Classical operations typically assume that traffic signals placed at intersections operate in
a cyclical nature, where a signal cycle is composed of multiple phases of traffic flow. Each
phase (φ) consists of a set of movements or streams of flow that can be simultaneously
permitted to flow through an intersection without causing collisions. For example, a typical
intersection of two bidirectional roadways has four approaches, and each approach has three
movements: left, through, and right (ignoring U-turns for simplicity). These movements are
illustrated in Figure 2.1.

Signal controllers

To specify control parameters, the set of signal phases are often visually illustrated in a
ring-and-barrier diagram, as in Figure 2.2. The organization of this diagram is originally
accredited to a standard developed by the National Electrical Manufacturer’s Association
(NEMA) [154], and is thus the described phases are sometimes referred to as the “NEMA
phases”.

Each box of this diagram contains a distinct signal phase. By convention, phases 1-4 are
assigned to the top row (or ring) and 5-8 are on the bottom row (ring). Horizontal barriers
separate φ1, φ2, φ5, andφ6 from φ3, φ4, φ7, and φ8. Within a barrier, a signal may safely
actuate one of the two phases from the top ring and one of the two phases from the bottom



CHAPTER 2. ARTERIAL TRAFFIC NETWORK MANAGEMENT TECHNOLOGIES:
STATE OF PRACTICE 10

Figure 2.1: An example intersection of two bidirectional roadways has twelve distinct possible
movements, which can be divided into eight standard phases φ1 − φ8.

ring simultaneously. For example, φ1 can be shown a green light at the same time as either
φ5 or φ6, but not both. While phase transitions on each ring within a barrier can happen
asynchronously, transitions across barriers must occur simultaneously on both rings.

Figure 2.2: Eight phases are placed in a ring-and-barrier diagram to illustrate possible
combinations of simultaneously actuated movements. Movements represented with a dashed
arrow are potentially permissive movements, which must yield to conflicting traffic. By
convention, the phases originating from a major street are in the left side barrier, and those
involving the minor street are in the right barrier.
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Figure 2.2 is only an example of a possible set of phases; the combination and order of
movements selected for each phase may vary by design of the traffic operator.

Variables

Define the following variables which will be used throughout this chapter (with subscripts
referring to phase-specific or approach-specific values where denoted):

φk := signal phase k

d := average delay per vehicle (seconds)

C := intersection signal cycle time (seconds)

gk (rk) := the green (red) time allocated to φk

λk := green split (proportion of cycle, or gk/C) for φk

q := demand volume (vehicles per hour)

s := saturation flow (assume 1800-1900 vehicles per hour)

x = q
λs
∈ [0, 1] := volume-to-capacity ratio, also called the degree of saturation for a phase

n := number of phases in a cycle,

L = nl+R := total lost time or non-actuated time per cycle; the sum of startup and yellow
time per each phase (nl) plus the all-red time (R, about 10 seconds per cycle)

y = q/s := the ratio of demand flow to saturation flow for an approach or phase (as specified
where applicable)

Y =
∑

k yk := sum of demand-to-saturation-flow ratios for each phase in a cycle

Q := a measure of queue length or number of vehicles waiting for an approach or phase

ν := the number of lanes associated with a specific queue or approach

Terminology

The terminology we will use to describe traffic conditions on signalized networks is as for-
malized in [169]:

• If no significant queues are observed at the end of a green signal period, the intersection
is uncongested.

• If significant queues persist at the end of a green period, the intersection is congested.
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• Congested intersections are then further classified as saturated if the observed queues
are small such that the excess delay and stoppage is only observed locally on the link
in consideration. Typically this implies that the degree of saturation (x) is close to or
slightly exceeding 1 for one or more phases in the intersection.

• If queues build to the point where the operation of one or more of the adjacent upstream
intersections are affected, the intersection is oversaturated. In this case, x > 1 for a
significant period of time. Oversaturation is also referred to in terms of cycle failures,
or cycles in which queues for one or more movements were not completely serviced.

2.2 Development of traffic flow models in literature

Many aspects of traffic engineering, from the economics of planning and pricing to the
operations of control and traveler information, would benefit from a comprehensive model of
road dynamics. Researchers have therefore sought a robust mathematical theory of vehicle
traffic flow for over a century. The earliest published work in the field of traffic modeling was
done by economists seeking to explain the social costs of road building and usage [170, 108,
211]. While these early efforts produced only idealized models of equilibrium demands, they
sparked an interest in producing more detailed models of local and transient traffic dynamics
for analysis purposes.

The complicated interrupted-flow dynamics of signalized traffic networks are particularly
difficult to model accurately. The following paragraphs trace the academic developments
that are specifically related to modeling the characteristics of signalized intersections and
that motivate the work described in this dissertation. For a more comprehensive review of
many historical and modern approaches to traffic modeling in general and a description of
their use cases, see [97].

Stochastic equilibrium delay models

In 1956, Beckmann, McGuire, and Winsten were the first to rigorously formulate the equi-
librium flow concepts that had been previously described by economists such as Wardrop
with the inclusion of the effects of congestion on journey time [20]. The work in their book
is considered a seminal contribution to the theory of traffic flow. It was also among the first
to utilize newly developed concepts in optimization and mathematical economics, includ-
ing the now widely-known nonlinear programming framework of Kuhn and Tucker [111]. A
discussions of their specific innovations is available in [32]. In their analysis of signalized
roadways in particular, Beckmann, McGuire and Winsten proposed a simple queuing model
that could be used to derive a relationship between average delay per vehicle and the average
length of an approach queue at the beginning of a red phase [20]. This is believed to be the
first quantified model of the expected delay caused by fixed-time signal settings at a traffic
intersection.
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Beckman’s model assumes discrete Bernoulli arrivals: at any fixed time period, a car
arrives into the queue with probability α, and this probability is independent of previous
arrivals at each time period. Departures are assumed deterministic and constant (one per
time period) upon green and disallowed during red. Thus queue length state Q(t) is modeled
as a Markov chain with simple transition probabilities corresponding to queue growth during
a red period or queue shrinkage during a green period. The length of a queue at approach
a just before the first red of the kth cycle can also be written as a Markov equation:

Qa(k + 1) = max{Qa(k) + aa(k)− ga, 0} (2.1)

where arrivals aa(k) in a cycle of length C = ra + ga has a binomial distribution:

P{a(k) = m} =

(
C
m

)
(1− α)C−mαm (2.2)

Beckmann et al. then derived a formulation for the average waiting time (delay) per vehicle
in an approach a in terms of green splits and the (expected) end-of-green queue length:

da(k) =
ra

C(1− αa)

[
E(Qa(k))

αa
+

(ra + 1)

2

]
(2.3)

The usefulness of this and other derivative delay models (such as [138]) is ultimately
limited by the presence of the expected overflow queue term and the strong assumption of
binomial arrivals. This spawned a search for a more universal formula using more approxi-
mate queueing dynamics and incorporating heuristic adjustments. The most well-known of
the models generated by this effort is one credited to Webster [212]. According Webster’s
delay formula, the average delay experienced by a vehicle at an intersection approach a is
written as:

da =
C(1− λa)2

2(1− λkxa)2
+

x2
a

2qa(1− xa)
− 0.65

(
C

q2
a

) 1
3

x(2+5λa)
a (2.4)

The first term in (2.4) originates from a derivation of delay when traffic arrives at a uniform
rate corresponding to degree of saturation x. The second term accounts for randomness in
arrivals: it assumes a Poisson arrival distribution and constant departures at a rate equal to
the signal capacity. This departure rate is obviously non-realistic, as departures actually only
occur upon green and can achieve a rate up to the saturation flow of the approach. Finally,
the third term is an empirical adjustment factor that typically evaluates to approximately
5-15% of the value of the first two terms.

Webster also provided a formula to approximate the average queues at the beginning of
a green period:

Qa = max
{(qara

2
+ qada

)
, qara

}
(2.5)

Empirical adjustments to this estimate (again of 5-10%) imply a revision to the following
expression:

Qa = max

{
qa

(ra
2

+ da

)(
1 +

qaj

νav

)
, qara

(
1 +

qaj

νav

)}
(2.6)
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where j is the average spacing between queued vehicles and v is the free-flow speed.
Furthermore, according to these assumed dynamics, he proportion of vehicles which stop

at least once is given by:

P =
1− λ
1− ya

(2.7)

and the average number of stops and starts per vehicle in each cycle is given by:

N =

{
Qa

qaC(1−ya)
if undersaturated, so ga >

Qa
s−qa

Qa
qaC

+ λa if saturated/oversaturated, so ga <
Qa
s−qa

(2.8)

The concept utilized by Webster of dividing delay estimations to uniform and random
components persists today in the practical delay-calculation methodology suggested by the
Highway Capacity Manual (HCM). The 2010 HCM suggests an intersection delay formula
with substantially the same uniform delay term as (2.4), but a significantly modified random
delay term and a third adjustment term that involves analysis of the impacts of adjustments
due to actuation the level of coordination in neighboring signals. The resulting delay equation
is ultimately suggested as the basis for determining Level of Service (LOS) of a signal, a
primary metric for evaluating intersection performance on existing roadways.

A few years after the work of Webster, Miller developed a competing delay model in which
arrivals can be considered any stationary point process with a finite variance for periods of
approximately 30 seconds and departures are (as in previous models) considered uniform
during green phases [144]. To account for the assumptions of instantaneous acceleration
and departure, he also adds additional “lost time” to the beginning of green periods and
introduces the concept of an “effective green phase” which includes the remainder of the
green and the following yellow period. According to this work, the expected vehicle-delay
over a given red phase (of length C − ga) is calculated as:

E{da} = E
{∫ C−ga

0

Qa(t)dt

}
=

∫ C−ga

0

E {Qa(t)} dt

=

∫ C−ga

0

(Qa(k) + qat)dt

= (C − ga)
[
Qa(k) + 1

2
qa(C − ga)

]
(2.9)

where Qa(k) represents the number of vehicles in the queue for approach a at the end of the
kth effective green and Qa(t) is the number of vehicles in the queue at time t seconds after
the end of an effective green.

To calculate (2.9), Miller uses the same principle as Beckmann et al.: first, calculate
the total delay as if the effective green time were infinite and thus the queue is eventually
exhausted. Then limit the green phase to end up with just the delay incurred during the
(known) finite time g. This results in the following formula for average delay per cycle per
arriving vehicle:

da =
1− ga/C
2(s− qa)

{
2s

qa
E(Qa(k)) + s(C − ga) + Ia − 1 +

qa
s

}
(2.10)
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where Ia is the variance-to-mean ratio of the distribution of vehicle arrivals. He then uses a
simple modeling assumption (similar to (2.1)) to determine an expression for E{Q(k)}:

Qa(k + 1) = Qa(k) + aa(k + 1)− sg + δx+1 (2.11)

where δx+1 is a compensating function to ensure that q(x + 1) is never negative (such that
it is always true that qx+1 · δx+1 = 0). This ultimately results in the approximation

E(Qa(k)) ≈ (2x− 1)

2(1− x)
· Ia and E(Qa(k)) = 0 when x ≤ 1

2
, (2.12)

The expression for average delay per vehicle (on approach a) becomes:

da =
1− λa

2(s− qa)

{
yaIa

(2x− 1)

(1− x)
+ s(C − ga) + Ia − 1 + ya

}
(2.13)

Subsequent efforts to increase the practical value of the formulation of (2.13) noted that
the first two terms typically dominated the valuation, and thus Miller later suggests the
following simplification [143]:

da =
1− λa
s(1− ya)

[
C(1− λa) +

2Q0
a

q

]
(2.14)

where the initial overflow queue Q0
a is calculated assuming Poisson arrivals and fixed green-

time service rate:

Q0
a =

exp
[
−1.33

√
sga(1− xa)/xa

]
2(1− xa)

(2.15)

There have been a handful of attempts at validating and comparing delay models such as
(2.3), (2.4), and (2.14). Experimental validation is made challenging by the lack of ability to
measure actual vehicle delays in practice. Historically, researchers have had to develop their
own metrics for comparison against approximate observations [212, 9, 102, 159, 45]. More
recent attempts have made use of microsimulation tools to validate delay models [59].

It is universally recognized that most delay models produce effectively identical results
in under-saturated conditions (x < 0.8). But as demand approaches capacity, steady-state
models differ in performance. For example, Webster’s delay formula approaches infinity
as the degree of saturation (x) approaches 1. This is obviously an undesirable behavior.
Hence the primary usefulness of these types of intersection delay models is for planning and
efficient estimation of aggregated delays in normal operating conditions; evaluating controller
performance in congested conditions requires the use of a time-dependent model.

Time-dependent dynamic queueing models

As queues grow to saturate (and then oversaturate) intersections, the desired objective of
a network operator shifts from minimizing local delay and number of stops to maximizing
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network throughput by reducing the spatial extent and rate of spread of congestion [169].
Such an objective requires the use of a dynamic intersection model to represent growth and
dissipation of large queues.

Fundamental store-and-forward models

The first introduction of a dynamic model for a network of signalized roadways appears to
have come from Gazis et al. [74, 73], which introduces a discrete-time store-and-forward
model of flows between controlled intersections for the purposes of delay-minimizing optimal
control. This form of vertical queueing model introduces a representation of an intersection
as a graphical “node” served by road “links” with time-varying demands. In a vertical
queueing model, vehicles waiting to be served by an intersection are stored in an (infinite)
queue on the upstream link, and the effects of intra-link congestion on transit times are not
considered.

The characteristics of Gazis’ original modeling framework were highly limiting: flows
were only unidirectional and unconstrained by downstream congestion, transit delays were
ignored, and representations of controller switching behaviors were highly simplified. Yet ex-
tensions quickly introduced networks of many coupled intersections with more realistic repre-
sentations of intersections and constraints on flows [72, 189, 52, 166]. Notably, Michalopou-
los and Stephanopoulos [141] made the model more applicable to flows in congested regimes
by introducing node-to-node transit delays and intersection transmission limitations due to
downstream congestion.

Kinematic wave model

A major shift in the traffic modeling community occurred with efforts to explicitly define
road capacity. Researchers and practitioners observed that an excessive increase in vehicle
concentration leads to a reduction in mean speed, and thus a decrease in the overall vehicle
flow rate. Two distinct domains of traffic dynamics were proposed: a free-flow domain,
where peak velocity is attained over a range of lower densities, and a high-density congested
domain where velocity (and thus flow) drops with every additional increase in density.

Many researchers have suggested explicit definitions for the relationship between vehicle
density and flow that can draw distinctions between these two regimes. Such an equation is
commonly known as the flux function or fundamental diagram of traffic flow. It is typically
assumed to be a concave function where flow monotonically increases with density up to a
point called the critical density, after which flow begins to decrease with increasing density.
The critical density therefore defines the boundary between the aforementioned free-flow
regime and the higher-density congested regime. If density approaches a maximum jam
density, flow approaches zero because vehicles are stuck in slow-moving queues.

The earliest documented form for a fundamental diagram was implied in the 1935 work of
Greenshields [81], in which the following relationship between observed speed v and vehicle



CHAPTER 2. ARTERIAL TRAFFIC NETWORK MANAGEMENT TECHNOLOGIES:
STATE OF PRACTICE 17

Greenshields
(quadratic)

Greenberg
(logarithmic)

Newell-Daganzo
(piecewise-linear)

Figure 2.3: Various flux functions or fundamental diagrams for traffic flow have been pro-
posed and justified with experimental data. The linear analytical expression of the Newell-
Daganzo fundamental diagram has contributed to its widespread adoption in recent modeling
efforts.

density ρ was experimentally postulated:

v = V

(
1− ρ

ρmax

)
(2.16)

for maximum road velocity (speed limit) V and maximum (jam) density ρmax. Given that
flow is equal to density times velocity, the resulting Greenshields flux function is parabolic:

ψ(ρ) = Vρ

(
1− ρ

ρmax

)
(2.17)

A later study by Greenberg used principles from fluid dynamics to propose a logarithmic
relationship between velocity and density, leading to a logarithmic flow-density relation [80]:

v = V ln

(
ρmax

ρ

)
=⇒ ψ(ρ) = Vρ ln

(
ρmax

ρ

)
(2.18)

Recently a simplified piecewise-linear flux model known as the Newell-Daganzo flux func-
tion has gained popularity in traffic literature. This is due largely to its relative simplicity
and beneficial analytical properties [156, 48]. Explicitly, it is written as

ψ(ρ) = min
{

Vρ, c, W
(
ρmax − ρ

)}
(2.19)

where c is the capacity or maximum possible flow rate, ρc is the critical density (corresponding
to that maximum flow rate), and W = c

ρmax−ρc .
A visual comparison of these three fundamental diagrams is portrayed in Figure 2.3.
The work of Lighthill and Whitham [116] (and concurrent work of Richards [174]) was

the first to introduce a dynamic traffic model in which traffic flows at freeway bottlenecks
are modeled as hydrodynamic waves that were governed (in equilibrium) by one of these flux
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functions. Their work used the method of characteristics to derive an explicit solution for the
observed shockwaves that define the boundaries between free-flow and congested regimes.

Define ρ(t, x) to be the density of vehicles at spatial location x and time t, and ψ(ρ(t, x))
to be some chosen convex flux function. The Lighthill-Whitham-Richards (LWR) model is
defined by the following flow-conserving partial differential equation (PDE):

∂ρ(t, x)

∂t
+
∂ψ(ρ(t, x))

∂x
= 0 (2.20)

This first-order model is simply derived by applying the principle of mass conservation to
the flow of traffic across a finite region: the change in point density in time is inherently
equal to the net vehicle flows at that point in space-time.

While Lighthill and Whitham discussed challenges to the application of his theory to
signalized junctions in their original work [116], it was generally believed that this step
towards horizontal queueing models would lead to improvements in signalized traffic models
over vertical queueing variants (such as the store-and-forward technique) because it could
represent the backwards-propagating shockwaves caused by dissipation delays after a signal
releases a stationary queue. Detailed derivations of the specific shockwave characteristics
observed on signalized roadways were later presented in [177, 198, 142].

Cell Transmission Model (CTM)

Hyperbolic conservation laws such as the LWR PDE (2.20) have discontinuous solutions,
evidenced in this case by the queue formation and dissipation shockwaves visible in continu-
ous traffic flows. The application of standard finite difference methods to generate numerical
solutions to the LWR PDE would generate instabilities or inaccuracies at these shock bound-
aries. However it has been shown that the Godunov difference scheme [77] provides a stable
first-order numerical approximation of the shock propagations in a conservation law with
concave flux function ψ(·).

The Godunov scheme is applied by discretizing the temporal variable (t) into short in-
tervals of length ∆t and dividing the spatial component (x) into finite-length cells within
which the system state ρ can be considered uniform. Define a cell i = [x′, x′+ ∆x] and time
step k = [t′, t′ + ∆t]. Given a constant initial state ρ(x̃, t′) = ρi(k) for all x̃ ∈ [x′, x′ + ∆x],
the approximate state ρi(k + 1) assigned to cell i at time step (k + 1) is equal to the spatial
average of the explicit solution ρ(x̃, t′ + ∆t):

ρi(k + 1) =
1

∆x

∫ x′+∆x

x′
ρ(y, t′ + ∆t)dy (2.21)

= ρi(k) +
∆t

∆x
(fi−1(k)− fi(k)) (2.22)

where

fi(k) =
1

∆t

∫ t′+∆t

t′
ψ
(
ρ(x′, s)

)
ds (2.23)
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The application of the Godunov approximation scheme to the LWR PDE with a Newell-
Daganzo (triangular) fundamental diagram results in a convergent numerical approximation
known as the Cell Transmission Model (CTM) [48, 49, 115]. The mathematical details of
CTM are further described in Section 3.2.

Field data suggests that CTM closely fits observations of flows on freeways or highways
with few interruptions [193, 194], yet validation of CTM on real arterial networks with short
signalized intersections is very limited to our knowledge. One existing numerical comparison
of CTM to a vertical queueing model on an artificial grid network is presented in [223].

In recent years, CTM has been considered by many researchers to be the standard in
macroscopic modeling of traffic flows. It has been used to directly design traffic controllers for
freeways [78], and has even been adopted in version 13 of the widely-used traffic optimization
package TRANSYT [132]. An analysis of the dynamic properties of CTM for use in control
is provided in [79].

More recently, there have been many algorithms proposed for optimal intersection signal
control schemes based on the analytical dynamics of CTM [6, 55, 126, 120, 19]. It is still
argued, however, that the complexity and high computational requirements of these CTM-
based control schemes on detailed urban networks make them impractical for the real-time
application for which they were designed [4].

2.3 Arterial monitoring and detection

While it is easy for a driver sitting in a traffic jam to see that the roadway that he is traveling
on is congested, remote observation of all of the roadways influencing global congestion
patterns on a spatially-distributed road network is technologically challenging. According to
a survey conducted for the National Transportation Operations Coalition’s 2012 National
Signal Report Card, about half of all traffic management agencies have “little to no regular,
ongoing program for performance monitoring to assess operational objectives”, and when
data is collected there is seldom a methodology in place to assess the quality of that data
[150]. Yet most (if not all) of the primary objectives of a traffic manager require reliable
estimation of current traffic conditions. Dynamic traffic models (and applications of these
models) require an estimate of the initial state of traffic to accurately predict future dynamics,
and traffic-responsive or adaptive arterial signalization schemes by definition rely on a sensor
feedback mechanism to provide some measure of current congestion.

This section details the current state of traffic monitoring at signalized intersections.

Common detector layouts

At a typical signalized intersection that is equipped for actuated control, sensors are placed
at the locations illustrated in Figure 2.4. These sensors are designed with the following
objectives:

1. to determine vehicle presence in a queue at a specific movement,
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2. to determine flow continuity for phase extensions, and

3. to detect queues beyond a certain threshold for left turn movements.

The selection of sensor type and placement is dependent on the specific objective desired.
There are two general categories of sensors used at signalized intersections: presence sen-

sors and passage sensors. The names are fairly descriptive of their functionalities: presence
sensors indicate the presence of a vehicle when it is slow-moving (such as in a stationary
queue at a signal), and passage sensors detect vehicles passing a point in space at a speed
of more than 3 to 5 mph [107]. Intuitively, presence sensors are most often placed at or
near the stop line, or the front of an expected queue, while passage detectors are placed at
a reasonable distance upstream from the stop line.

The primary function of this type of detector layout is local actuated signal control, which
will be described in detail in Section 2.4. Measurements are most often only transmitted
to the local logic unit that is housed in a nearby controller cabinet, and are not typically
returned to a central operations center for network-wide monitoring.

Existing sensor technologies

Inductive loops are the most common type of sensing technology deployed at signalized
intersections in the United States. These sensors are composed of a wire loop installed
directly into the pavement, which is supplied with power from a detector unit in a local
controller cabinet. Current running through the wire creates a magnetic field within the
loop. When no vehicles are present on the pavement above the loop, the detector receives
a signal at a known baseline resonant frequency. However as a vehicle (or any large metal
object) passes over the point of installation, the loop induces a current in this object which
in turn increases the resonance of the loop. This ultimately causes a change in the frequency
of the signal received by the detector unit [107].

Loop sensors are most often configured to be presence detectors for signal-actuation
purposes, but smaller loops can also be used to count passing vehicles. The inductive loop is
favored for its robustness to weather conditions and wear (compared to other alternatives)
[31].

Image-processing based video detection systems have risen in popularity in recent decades
as an alternative to the standard loop detectors. They claim the ability to simultaneously
collect information about vehicle counts, vehicle presence, lane occupancy, and speed—and
even break down these measurements by vehicle class (i.e. cars, trucks, and motorcycles)
[107]. Yet their accuracy has been called into question by multiple studies [31].

Other less-commonly deployed intersection sensor technologies include radar or microwave
sensors for speed measurements, magnetometers which serve largely the same purpose as
loops, and closed-circuit television (CCTV) networks for incident detection and manual
monitoring of operations.

None of these common detectors are particularly good at providing one of the most useful
estimates of arterial link-state: the instantaneous link vehicle-count, or the number of vehicles
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advance detector (passage)

stop line detector (presence)

advance detector (passage)

fully/semi-actuated control:
advance detector (passage)

stop line detector (presence)

advance detector (passage)

fully-actuated control only:

100-200 ft

Figure 2.4: Stop line (or stop bar) detectors indicate the presence of a vehicle at a movement
queue. This information can be used to invoke or prevent the actuation of the relevant
movement in a signal cycle. Advance detectors are typically passage detectors that are located
between 100 and 200 feet upstream of the stop line for a queue. They detect approaching
flow profiles to signal the need for green extensions to satisfy immediate demands. All
sensor actuations are communicated to local controller hardware that is encoded with the
parameters and logic necessary to implement actuated signal control. See Section 2.4 for an
overview of actuated signal control logic.
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currently waiting for a signal-constrained movement [162]. If both advance and stop line
count measurements are centralized for processing, the corresponding arrival and departure
flow profiles can also be used to provide a rough estimate of queue length via input-output
techniques. Yet these techniques are imprecise and error-prone (see Chapter 4 for more
details). Furthermore, long queues that extend beyond the position of the advance detector
cannot be estimated. If a video detection system is present, more robust queue estimation
procedures may be available. A series of sequential video feeds positioned in each approaching
movement can report a precise position of the back of a queue by observing the most upstream
stopped vehicle. This queue length estimate can be updated at a rate of once per every 10
seconds, and can then be immediately used to estimate experienced control delays [31]. Yet
video detectors are far from universal: the expense and maintenance requirements of video
detection systems are barriers for many traffic agencies [162]. Furthermore, the range of
video cameras is small and can easily be obscured by environmental obstacles.

The following observations on the state of urban traffic sensing are based on a survey of
US state and city traffic agencies in the mid-2000s [31]:

• Surveillance is mostly being conducted using loops, video detection systems, and closed-
circuit television (CCTV) networks. Less than half of the intersections governed by
the surveyed agencies have loop of video detections that provide real-time data collec-
tion capabilities. Only about 4% of the arterial miles governed by these agencies are
monitored by CCTV in 2002.

• Agencies use inductive loops or video detection for about 85% of intersection control
operations; approximately 75% loops and 10% video detection was documented in
2005.

• Data from passive toll tags (radio-frequency transponders) are being collected and used
by less than 1% of large cities.

• Even if sensors are installed, real-time communication capabilities typically do not
exist—and hence measured data is very rarely centralized and stored.

Attempts to pursue field data to complete the present work has supported these observations.

Emerging sensors for arterial traffic

Modern innovations are bringing new functionalities to intersection sensing. For example,
advanced magnetometers promise the ability to measure presence and counts at a higher
reliability than traditional loop detectors [83, 113]. They can also be used to estimate inter-
section split ratios and delays by matching the magnetic signatures of vehicles at intersection
approaches and egresses [112, 181, 106]. Wireless capabilities of these sensors facilitate com-
munication for centralized data archival.

Other new data sources break the traditional concept of sensing infrastructure, most
notably the aggregation of trajectory data from the global positioning system (GPS) sensors
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on the mobile phones of travelers [222, 17, 91]. Researchers have proposed using mobile
phone data for applications such as acquiring travel time estimates [88, 27], calibrating
the parameters of dynamic models [93, 25], estimating queue lengths [16, 40], and building
network origin-destination demand matrices [197], among others. While most of the proposed
procedures require accuracy and sampling rate higher than those that are currently available
from cell phones on US roads [51, 41], the concepts have drawn attention from the community
developing connected vehicles, which upon deployment will improve the revalence of probe
sensing.

2.4 Traffic signal controllers: capabilities and

challenges

It is estimated that there are 311,000 traffic signals operating in the United States as of
2012, representing an $82.7 billion dollar public investment in the seemingly fundamental
task of assigning right-of-way to vehicles and pedestrians at road intersections [150]. The
control policies imposed by these signals vary widely in effectiveness. The NTOC’s 2012
National Traffic Signal Report Card assigns an overall grade of D+ to the observed state of
signal control operations, and indicates several areas where improvements could be made in
management, monitoring, maintenance, and control [150].

In the following paragraphs we explain the fundamental capabilities of existing traffic
signal controllers and provide insight into how control policies are currently designed.

Signal control parameters

Traditional traffic signal operations are generally governed by three control parameters: cycle
length, green splits, and offset. Cycle length is the length of a signal cycle, or the period of
time in which all phases are actuated in sequence. Green splits dictate the amount of time
in a cycle allocated to actuation of each phase. Offset is a parameter governing the relative
starting time of the cycles of adjacent intersections.

The simplest control policy is a fixed-time policy in which all three of these parameters
are pre-determined and cannot be changed during operations. While there is no universal
“standard” concerning how to choose fixed-time signal parameters, a few widely-accepted
methodologies from traffic literature are often used as guidelines for manual design of signal
timings.

One classical pre-timed policy is called the Equal Degree of Saturation Policy, also known
as the Webster Policy [212]. It is based on minimizing average vehicle delay per phase
calculated by some variation of Webster’s delay formula (2.4). Recall that ya = qa/s is the
ratio of demand flow to the saturation flow for an intersection approach. In practice, yk for
a signal phase φk is considered to be the maximum of {ya} for all approaches a included in
φk. A green division proportional to the relative y values of each cycle phase approximates
the controller which minimizes d in equation (2.4). Assuming this method is used to allocate
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green times within a cycle, the optimal cycle length is defined as

co =
1.5L+ 5

1− Y
(2.24)

The procedure for setting green splits using the Webster Policy is then as follows:

1. Estimate flow and saturation flow for each approach.

2. Evaluate y (the ratio of flow to saturation flow, or q/s) for each approach. Select the
y value for each phase as the maximum of that for each included approach.

3. Decide on all-red periods R (i.e. for pedestrians, turns, etc) and estimate total lost
time L.

4. Calculate optimal cycle time from equation (2.24).

5. Subtract the total lost time L from the cycle time giving the available green time and
divide this in the ratio of y values:

gk =
yk
Y

(co − L) ∀ phases k (2.25)

6. Add l seconds to each effective green time and subtract the amber periods (3 seconds)
to give the controller setting of green time.

Many of the signal timing optimization packages used by modern traffic engineers (which
will be described in more detail in Section 2.5) are informed by this classical procedure. It
is also still used as a heuristic for control design when software tools are not available [89].

Another possible methodology is called the Greenshields-Poisson Method, which uses the
assumption that vehicles arrive at a queue in a Poisson distribution to derive the following
optimal phase time:

λkC = 3.8 + 2.1Qk (2.26)

where λkC is the total green time allocated to φk and Qk is the number of vehicles in the
queue for the critical movement of φk, which is calculated via the measured mean arrival
rate [89]. A standard cycle length is assumed, for example 60 seconds for an intersection
with two critical phases or 100 seconds for an intersection with four critical phases.

Once cycle length and green splits are fixed by a procedure like (2.25) or (2.26), relative
offsets of coordinated controllers are optimized to maximize the amount of time per cycle
in which vehicles may travel through a predefined series of signals without encountering
a red light. This is achieved by fixing the ending time of a predefined phase (or set of
phases) within each signal’s cycle to a specific relative time stamp on a synchronized clock.
Convention dictates that the through movements of the major roadway are assigned to phases
2 and 6, and thus these are typically chosen as the coordination phases. This concept is called
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Figure 2.5: The maximization of a progression bandwidth (or green-wave) is achieved via
calibration of relative signal cycle offsets to coordinate green signals in the desired move-
ments, usually through-bound flows on a major arterial. Traffic is assumed to travel at a
constant rate. Assuming that green splits are previously fixed, the calculation of bandwidth
is completely independent of expected demands—it is only a function of expected velocity
and the distances between successive signals. Multi-directional bandwidth maximization is
still widely discussed in the literature today; traffic managers typically decide on one pri-
mary direction to prioritize and adjust timings heuristically to give a secondary direction an
increased bandwidth.

bandwidth or green-wave maximization. A green-wave which persists over many signals is
sometimes also called a progression.

Bandwidth optimization has been widely studied in literature. While maximizing green
bandwidth in one direction is intuitive, design for simultaneous maximization of bandwidth
in both directions of a bidirectional roadway, as illustrated in Figure 2.5, is not as trivial.

The absolute maximization of bi-directional bandwidth is a mixed-integer linear problem
(MILP) as first formulated in [121]. Many solution methodologies for this specific problem
have since been proposed [139, 122]. In practice, traffic engineers unaided by software typ-
ically either choose a single direction to prioritize or use some kind of simplifying heuristic
on relative bandwidths to transform the MILP into an efficient linear program or simple
geometric exercise [147, 89].
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Actuated control

When signals are designated to operate in an actuated mode, the timings of specified green-
yellow-red sequences are not predetermined. Instead, each interval is “called” on demand and
extended in response to the measurements acquired by local intersection detectors, which are
typically installed in some configuration similar to that portrayed in Figure 2.4. While the
costs of required sensing infrastructure are not insignificant, actuated control greatly reduces
delay relative to fixed-time control due to its reduction of wasted green and its capabilities
to promote progression “on-the-fly” [109].

An actuated intersection controller that is unconstrained by coordination parameters does
not necessarily operate on a fixed cycle length or phase ordering. Timings of phase changes
depend fully on detected vehicle presence or passage events, and are constrained only by
certain pre-defined maximum or minimum timing parameters. This type of operation can
be designed in either a fully-actuated sense or a semi-actuated sense. In a fully-actuated
setting, detection is provided on all approaches. This level of detection is typically used in
locations where speed is relatively high or the roads intersecting are both major arterials.
Semi-actuated systems are installed where is it clear that one road should be given priority
over the other, such as in the case where a major through-way intersects with a more minor
road. In this instance, the major through movements are not instrumented with detectors,
rather the right-of-way is given to these approaches by default (or when conflicting demand
is not detected).

A phase is served as soon as possible after a “call” is placed on that phase by the cor-
responding vehicle detector (limited of course by the termination of the conflicting phase(s)
being served at the time of the call). The phase is then terminated in one of the following
manners:

1. The phase has been green for its designed minimum green time and no additional
vehicles have been detected to be served. Minimum green time is typically equal to
the expected amount of time that it would take for a vehicle sensed by the movement
detector to pass through the intersection, and can vary greatly by the geometry of the
specific sensor installation and the expectations of the traffic engineer who designs the
system.

2. When a call is detected on a conflicting phase, a currently green phase can only retain
service for an additional amount of time equal to its fixed maximum green time. This
parameter is typically dependent on the expected demand and the amount of service
given to this phase in the previous cycle. It is designed so that any accumulated queue
will completely dissipate when possible. Note that because this limitation is only
enforced on the green time permitted after a competing call, total green times may
(and often do) exceed their so-called maximum green parameter: the name “maximum
green” is misleading because it it does not bound the green time of a given phase, but
rather serves as an upper-bound on the amount of time that a vehicle detected on a
competing phase will have to wait before its movement is serviced.
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3. A phase may gap out after no activity has been detected on the relevant approach for
an amount of time specified by the gap time parameter.

4. Where appropriately instrumented, actuated phases can also be terminated due to
preemption by transit or emergency vehicles.

An example of phase termination due to a conflicting detector call is illustrated in Figure
2.6. Note that yellow clearance and red clearance times are often fixed for each phase, and
depend mostly on features of intersection geometry such as size, grade, maximum speed,
turn movement type, and number of lanes.

Figure 2.6: After the minimum green time, additional calls on a green phase trigger finite
extensions. If a subsequent call on this phase is not detected within the time of the last
extension, the phase will gap out. In the case illustrated in this diagram, a call on a competing
phase was detected before the current green phase gapped out. The green phase was therefore
terminated only after a period of time equal to the phase’s maximum green length parameter
after the competing call.

Semi-actuated deployments are often selected over fully-actuated systems because they
are less expensive to install and maintain. The partially instrumented intersections are also
appropriate for settings where coordination of subsequent signals along a major arterial
is desired. Actuated-coordinated control is used to achieve such coordination. The set of
coordinated signals are all designed with a common fixed cycle length and a synchronized
clock. A traffic engineer designates an offset parameter for each controller to specify the
relative timings of the major through phases to enforce the desired progression. Actuation
is then only used to dictate the precise distribution of green time within the cycle.

Figure 2.7 depicts an example of an actuated-coordinated cycle. The offset parameter
dictates the yield point of a controller, which can be considered a “local” 0-time index
for the signal’s cycle. It explicitly denotes the force-off or forced termination time for
the coordinated major through phases, usually phases 2 and 6 by convention. After fixed
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Actuated-Coordinated Control Parameters: An Example Plan

Figure 2.7: This figure illustrates an example timing plan for a actuated-coordinated con-
troller. The yield point corresponds to the force-off of coordination phases (φ2 and φ6).
Phase splits are defined as the period of time between the force-offs of adjacent plans, but
actualized splits may vary as phases are terminated early due to competing calls or inac-
tivity. Note that simultaneous phases from the two rings do not necessarily share the same
parameters. More information can be found in [109].

yellow and red clearance periods, the following phases (3 and 7) are given the green. The
termination of these phases may occur any time between their minimum green time and
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their specified force-off parameter, as dictated by rules similar to those listed above for non-
coordinated actuated controllers. Note that the force-off point preempts a maximum green
time parameter when detection is continuous. Each subsequent set of phases follows the
same pattern, with phase ordering specified by the controller’s ring-barrier diagram. Some
systems have the flexibility to skip minor phases such as protected left turns when no demand
is present.

The rigid force-off parameters only leave certain permissive periods of the cycle where
the green phase is not predetermined. These parameters are usually designed by a traffic
engineer such that the coordination phases (i.e. 2 and 6) can receive a significant amount of
the permissive time (when calls are not detected on the prior phases) to generate maximum
progression bandwidth.

For further description of the capabilities of actuated controllers, see [54] or [109].

Plan-switching modes

Typical traffic signals can operate in either of two plan-switching modes:

1. time-of-day (TOD) mode, in which signal plans are selected to operate during
pre-defined time intervals during the day, and

2. traffic-responsive (TRPS) mode, in which signal plans are selected based on feed-
back from local traffic conditions.

For either of these modes, the plans that are chosen to switch between can theoretically be
any combination of fixed-time, actuated, actuated-coordinated, or free plans.

While TRPS mode can potentially provide more optimal performance than rigid TOD
plan switches, this mode is highly underutilized in the United States. It has been suggested
that this due to a lack of formal guidelines for robust configuration of the many necessary
parameters and thresholds [3].

Hence TOD operations are currently implemented almost universally. There are a hand-
ful of existing theoretical algorithms to determine optimal TOD switching times based on
predicted demand patterns [196, 210], but most often in practice these are chosen heuris-
tically based on observed characteristics of the deployment location. When a predictable
prominent peak time occurs, such as during a special event or a road closure leading to
reduced capacity, normal operating schedules can be manually adjusted.

Performance metrics

The performance of traffic signals is measured by various metrics (often called Measures of
Effectiveness, or MOEs), including:

• experienced travel times

• average vehicle-delay
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• Level of Service (LOS), as in Table 2.1

• number of stops

• average speed

• average/maximum queue length

The LOS criteria in Table 2.1, as defined in Chapter 18 of the 2010 Highway Capacity
Manual (HCM), provide an indication of the vehicle-delays expected in ideal signal operations
[85]. Note that any intersection for which the degree of saturation exceeds 1 is automatically
assigned a LOS of F : saturation is considered an unstable and thus undesirable state in all
cases.

Table 2.1: HCM Level-of-Service (LOS) criteria [85]

LOS, by vol-to-cap ratio

control delay (sec/veh) x ≤ 1.0 x > 1.0
≤ 10 A F

10− 20 B F
20− 35 C F
35− 55 D F
55− 80 E F
> 80 F F

The HCM2010 also suggests standard methods of calculating vehicle-delay and other
MOEs using measurable volumes and knowledge of intended signal timings. The most recent
HCM formula for delay at an individual intersection movement consists of three terms:

• uniform delay (d1), which is derived from Webster’s delay formula 2.4 and estimates
the delay caused by the signal assuming uniform queue arrivals;

• incremental delay (d2), which theoretically accounts for non-uniform arrivals and oc-
casional random instances of temporary saturation (cycle failure) or sustained period
of oversaturation; and

• initial queue delay (d3), which accounts for any initial or queue present before the
analysis period (and is equal to 0 if no queues are present on the approach).
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where

• C is the cycle length,

• x is the volume-to-capacity ratio (degree of saturation) of the movement,

• q is the flow on the movement,

• c = λs
C

is the capacity of the movement,

• T is the length of the period of analysis over which all other variables are measured
(typically 15 minutes or 1 hour),

• t is the amount of time during which unmet demand is observed during time period T ,

• k is a incremental delay calibration factor, which is a function of x and the green
extension parameter of an actuated signal that accounts for the effect of controller
type on delay,

• I is an upstream filtering or metering adjustment factor to account for the effect of
platooned arrivals from coordination with upstream intersections,

• Qb is the initial movement queue at the beginning of the analysis period,

• Qe = Qb + t(q− c) is the number of vehicles present in any queue remaining at the end
of the analysis period, and

• Qeo is the number of vehicles present in any queue remaining at the end of the analysis
period when q ≥ c and Qb = 0: if q ≥ c, then Qeo = T (q − c) and t = T ; if q < c, then
Qeo = 0 and t = Qb

(c−q) ≤ T .

2.5 Existing signal timing methodologies

The Federal Highway Administration believes that the existing delay at many signals in US
cities could be reduced significantly by adjusting or updating timing plans [109]. Indeed,
it has been estimated that delays at traffic signals contribute 5-10% of all traffic delay, or
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295 million vehicle-hours of delay, just on major roadways alone—and that improving traffic
signal management could reduce this delay with a benefit-cost ratio exceeding 40:1 [42].
However, the process of timing (or re-timing) traffic signals is typically undertaken with
minimal formal guidelines [187].

The first step in calculating appropriate timings for a traffic signal system is the collection
of volume data to predict demands at the relevant intersections. As previously mentioned,
existing sensors do a poor job at providing an accurate estimate of turning volume counts
or queue lengths. Therefore, technical consultants are typically hired to perform lengthy
data collection procedures at each intersection, at a cost of well over $1,000 per intersection
[187]. While these studies may show in detail how demands vary significantly throughout
the day, practitioners often only make use of one or two highly averaged measurements of
morning and evening “peak” volumes. This is because plans are initially designed using
out-of-the-box timing optimization software packages that only require these static peak
volumes as inputs [187]. Some commonly used packages will be described in the following
subsection. Finally, technicians will make heuristic adjustments to the modeled timings
when translating them into the necessary control parameters and encoding these parameters
onto signal firmware. Such an adjustment process may lead to improved performance, but
it is typically very dependent on the experience and expertise of the specific technician who
may make decisions with very little oversight [187].

Overall, automating the signal timing process in a verifiable manner would save a great
deal of resources and likely significantly improve the performance of arterial traffic networks.
A very small number of municipalities have adopted small-scale deployments of advanced
adaptive traffic control systems, which will also be discussed at the end of this section. A less
radical (and less expensive) solution would be to facilitate the implementation of existing
traffic responsive control functionalities, as we propose in Chapter 6.

Off-line plan design tools

Off-line bandwidth maximization packages are “one-shot” design tools that suggest optimal
green splits and corresponding progression offsets, or relative cycle-start timings for a con-
tinuous series of consecutive traffic signals that maximizes the amount of time in which flow
is permitted to travel uninterrupted along the roadway without signal impediment. This
concept is explained in Section 2.4. Some commonly used bandwidth maximization tools are
listed below.

• PASSER II (Progression Analysis and Signal System Evaluation Routine)
was developed by the Texas Transportation Institute in 1974 (and has been updated
since then). It can select phase sequences and splits, cycle lengths, and offsets for a
network of up to 20 intersections. This is often considered the best bandwidth-based
tool and continues to be maintained, updated and improved.

• MAXBAND suggests cycle lengths, offsets, speeds, and phase sequences to maximize
a weighted sum of relevant bandwidths [122]. PASSER IV implements this program,
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and can handle a maximum of 20 arteries and 25 intersections [187]. It may have slight
performance improvements over PASSER II, but its higher computational requirements
have prevented similarly widespread adoption.

• TSPP/Draft is a time-space and platoon progression diagram tool which provides
visual tools for planners to heuristically choose appropriate signal timings [187].

• TSDWIN is another graphical tool for manually “fine-tuning” signal timing plans on
a single arterial or small contiguous network [187].

Off-line model-based optimization tools take a more comprehensive approach to network-
level optimization of many performance criteria including progression but also average delay,
number of stops, or HCM LOS. Below we describe the most popular model-based tools.

• TRANSYT (TRAffic Network StudY Tool) is an off-line software package which
determines the optimal fixed-time traffic signal settings to minimize some chosen bal-
ance between total delay and number of stops on the network. It originally used some
kind of gradient descent algorithm to reach optimal signal offsets and green splits on
networks up to 50 intersections [176]. A newer version (TRANSYT 7-F) uses a genetic
algorithm to optimize cycle length, phasing sequence, splits, and offsets at either an
arterial or network level [208]. It runs a detailed macroscopic model which simulates
platoon dispersion, horizontal queues, and fully-actuated intersection control on larger
networks. It can optimize a performance index that is a user-defined combination of
delay and stops, fuel consumption, queue length, operating costs, or progression op-
portunities. TRANSYT 7-F is distributed in the Highway Capacity Software 2010
(HCS2010) package that was developed by the Federal Highway Administration to im-
plement the procedures of the HCM2010 on urban streets and signalized intersections
as well as on freeway elements. It features limited modeling of fully-actuated controllers
(Synchro is better for this). But it is considered the most flexible and comprehensive
modeling package available today.

• Synchro is the most widely deployed signal optimization package (as of 2003), and is
considered the current “state of the art” [187]. It can be used for generating off-line
timing plans for either isolated intersections or coordinated networks. This compre-
hensive software package can estimate the effects of a fully-actuated NEMA controller,
including force-offs and permissive movements, and can even suggest which controllers
should be coordinated and which should be actuated independently. It provides an
analysis of average approach delay, intersection delay, volume-to-capacity ratio, LOS,
50th and 95th percentile queue lengths, total stops, travel time, emissions, and fuel
consumption for each intersection in a network.

• The Signal Operations Analysis Package (SOAP) is a macroscopic optimization
tool that suggests control plans for individual isolated intersections based on inputs of
demands, truck/bus usage, left turn data, saturation flow, and signal constraints. It
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can only optimize a single performance criteria, but it handles up to 48 time periods
with various input data.

• PASSER III (Progression Analysis and Signal System Evaluation Routine)
can minimize intersection delays for an isolated intersection or maximize bandwidth of
a small, one-way linear network.

A 2000 survey of members of the Institute of Traffic Engineers (ITE) in the United States
suggests that Synchro is the most commonly used signal optimization tool (54%), followed
by TRANSYT-7F (25%) and Passer II (23%). Other significant responses included Passer
III (9%), SOAP (4%), and Passer IV (4%) [187].

Adaptive traffic control systems

While conventional signal control algorithms run with pre-programmed timing parameters
(i.e. a fixed cycle length, green splits, and offsets), attention has recently been turned
to adaptive traffic control systems (ATCS). These technologies often break the traditional
notions of cyclical signal operations, and instead allow for more flexible “on the fly” signal
switching in response to local sensor feedback.

While they have demonstrated great capability to enhance flow continuity and reduce
delay/fuel consumption, ATCSs have not been widely adopted in practice in the United
States. In 2010 there were only about 25 ATCS deployments country-wide [199]. This
hesitance to adopt ATCS is partly because of unfamiliarity with the new “black-box” systems
and uncertainty over their benefits and reliability. But it is also largely due to the perceived
costs of the specialized hardware and infrastructure required for their operation. ATCSs
can range in cost from $20,000 to $128,000 per intersection and and average of 41 hours of
training time per person to maintain operation [54]. ATCS proponents, however, argue that
because adaptive algorithms continuously adjust to observed conditions, their infrastructure
investments are recovered by preventing the need for lengthy and expensive signal re-timing
processes. Cost-to-benefit studies have not yet shown conclusive long-term results on existing
deployments [216].

Many algorithms for adaptive signal control have been proposed with various motivations
and approaches. While none have gained entirely universal acceptance, a list and description
of the systems deployed in the United States is available in Appendix A.

2.6 Data available to study arterial traffic

One of the barriers to improving current arterial management practice is the lack of data
available to study the realistic dynamics that exist on signalized roadways. Here we review
the data sources that do exist, and explain how they have been used in the work described
in this dissertation.
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Sensor data

Our experience attempting to acquire data from sensors at signalized intersections reinforces
the conclusions we introduced in Section 2.3 regarding the collection of arterial detector data:
while small subsets of historical sensor data is occasionally available from local transportation
authorities, a persistent and complete observation of a large network is rarely existent.

In Chapter 6 of this dissertation, we make use of volume detector data from existing
detectors at a real intersection on Huntington Boulevard, a major arterial the I-210 corridor
portrayed in Figure 1.1. This data was made available to us directly by the relevant traffic
authority, but was not easily accessed. Because the data was not permanently archived by
the local traffic authority, we were required to manually download and store each week’s
worth of data before it’s bi-weekly deletion from the local database.

System documentation revealed that each installed video-based detector was capable of
returning count (volume) and occupancy data at five-minute time aggregations. Yet upon
analysis of the downloaded data, it was found that only about half of the sensors present
on a typical intersection were designated to transmit to the central server. Not all signal
movements at an intersection were represented by this data, and thus an accurate estimation
of turn ratios was not possible. Some intersections did not even record a minimum of one
sensor on each approach. Furthermore, there was no reliable indicator of the functionality
of the sensors being recorded; faulty or missing data was extremely common.

It is important to note that there are active efforts to address this lack of data within the
traffic community. For example, the recently prototyped SMART-SIGNAL system has been
designed to interface with existing actuated signal sensors and cabinet hardware to extract
and archive event-based detector data for operational performance monitoring purposes [125].

NGSIM trajectory data

The most complete set of arterial field data known to this author is the vehicle trajectory data
acquired by the US Federal Highway Administration’s (FHWA) Next Generation SIMulation
(NGSIM) program [157]. In an effort to advance algorithms for modeling microscopic-level
driver behaviors, NGSIM researchers mounted high-definition video cameras atop a building
neighboring a major arterial roadway, Lankershim Boulevard in the Universal City neigh-
borhood of Los Angeles, California (shown in Figure 2.8). Recorded video was processed to
transcribe the detailed trajectories of each individual vehicle that traveled along 1,600 feet
(5 blocks) of Lankersim Blvd for approximately 30 minutes during a morning peak period
(8:28 am to 9:02 am on June 16, 2005).

In total, 2,442 vehicles were detected and tracked during the observation period. Trajec-
tories were recorded at a time resolution of 10 samples per second, and location points
are believed to be accurate within a four foot radius. A visual inspection of the data
in the form of an animated compilation of vehicle trajectories, available online at http:

//youtu.be/jJen2ybNr34, reveals that flows were typically constrained only by signal con-

http://youtu.be/jJen2ybNr34
http://youtu.be/jJen2ybNr34
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Figure 1.  The schematic drawing shows the lane directions, traffic signals, cross streets, and 
intersection configurations within the study area of Lankershim Boulevard. 
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James Colyar, Federal Highway Administration, (202) 493-3282, James.Colyar@fhwa.dot.gov  
John Halkias, Federal Highway Administration, (202) 366-2183, John.Halkias@fhwa.dot.gov 
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Figure 2.8: High-resolution vehicle trajectories are available for 5 blocks of Lankershim
Blvd, capturing queueing behaviors at 3 internal intersections. This diagram and video
screenshot was provided as part of the dataset documentation, which is available online at
http://ngsim-community.org/. [158]

trollers: vehicles did not suffer severe delays due to pedestrians or other uncontrolled obsta-
cles.

The NGSIM data gathering techniques were replicated for an arterial site on Peachtree
Street in Atlanta, Georgia—although data from this site is limited to 15 minutes of con-

http://ngsim-community.org/
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tinuous data as opposed to 30. These datasets, which are available online at http://

ngsim-community.org/, have proven to be highly valuable within the traffic community.
Not only have they been used for their original purpose of developing microscopic driver be-
havioral models, but they have also been widely used to simulate and validate macroscopic
algorithms such as queue estimation [114], travel time estimation [95, 172], control [110],
and even models of the performance of connected vehicles [14]. In this dissertation, we use
the Lankershim data set for validation of macroscopic modeling techniques (Chapter 3) and
arterial state estimation procedures (Chapter 4).

GPS trajectory data

With the spread of cellular telephones equipped with highly-accurate Global Positioning
System (GPS) sensors, it has been increasingly common for various entities to aggregate and
make use of this data for monitoring traffic conditions [91, 209]. On urban arterial roadways
specifically, GPS data has been used for measuring travel times [87, 25, 26, 27], estimating
queue lengths [41, 16, 40], and re-constructing traffic signal patterns [96]. Accurate analysis
of cell phone data requires significant pre-processing (such as map-matching and filtering
data from parked vehicles) before such estimation algorithms can be achieved. Research on
techniques to perform the required pre-processing is ongoing amongst computer scientists
and traffic engineers alike [213, 92, 137, 101].

In Section 4.3 of this dissertation, we suggest a method of integrating sampled GPS
trajectories into an estimate of arterial link state.

Microsimulation data

Largely due to lack of a more realistic alternative, researchers have largely relied on dynami-
cal data from microscopic simulation models (referred to here as microsim) for validation of
estimation or control algorithms on signalized roadways. Microsim models use detailed repre-
sentations of individual vehicle dynamics to numerically reconstruct the aggregate behaviors
and traffic metrics that are ultimately important to modelers. These equations typically
involve a large number of tunable parameters or stochastic random variables to govern the
many sub-models of vehicle behaviors such as acceleration/spacing, lane-changing, platoon
dispersion, and routing, amongst others. A review of some of the mathematical models
commonly used in microsimulation packages is provided in [33].

Popular microsim models include Aimsun [204], CORSIM [43], MATSim [134], VISSIM
[65], and Paramics [164]. We use vehicle delay metrics calculated in Aimsun to validate the
effectiveness of a novel signal control algorithm in Chapter 5.

The enormous effort required to build and calibrate microsim models is the main barrier
to using this type of data. The complicated interactions of these sub-models require a massive
amount of parameter tuning to achieve results that correspond to realistic observations with
high probability. A study of recent model-building projects revealed that a “small” model
of 18 miles of freeway (154 nodes and 174 links) required 540 hours of design and calibration

http://ngsim-community.org/
http://ngsim-community.org/
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Figure 2.9: A microsimulation like Aimsun (from which this screenshot was generated)
generates models of individual vehicles. Macroscopic flows are not explicitly represented,
however one can analyze aggregate traffic dynamics after the simulation is complete.

work, while a “large” model on the scale of a 30-mile corridor (659 nodes and 796 links)
required 10,080 hours. This effort translates into a significant economic investment for a
typical traffic management agency [8].
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Chapter 3

Validation of numerical queuing
models for signalized traffic networks

Both researchers and traffic managers typically rely on microscopic simulation for describing
arterial state dynamics. This is undesirable for two major reasons: first, it requires significant
investment in time and expertise for model development and calibration, and second, it fails
to provide an analytical expression for the macroscopic behaviors that an operator would
desire to analyze and control.

Microsimulation is difficult to use in an ICM project in particular because it cannot be
integrated with macroscopic freeway models such as CTM. This deficiency provides motiva-
tion to develop an efficient time-discretized model of arterial traffic networks which avoids
the pitfalls of CTM, but provides a superior representation of signal-constrained vehicle
queueing dynamics than that of existing vertical queueing models. Because such a model
could be interfaced with a CTM freeway implementation, it would achieve a crucially-needed
representation of the boundaries between mainline and arterial networks where congestion
would likely aggregate due to oversaturated freeway approaches or excessive use of freeway
ramp meters.

In the following sections we contribute developments towards the implementation of such
a model.

3.1 A cell-based modeling framework for signalized

traffic networks

Consider a set of short urban roads separated by signalized intersections. As previously
described, we model this network as a graph G = (N ,L) where the set of links L correspond
unidirectional roadways and the set of nodes N represent intersections or general points of
flow division.

More specifically, each individual link l ∈ L represents a unidirectional path between two
nodes in the network with a physical capacity for vehicles to be stored. Define In(l) to be
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Figure 3.1: A road network is represented by a graph containing internal links, entry links,
exit links, intersection nodes, and intermediate nodes.

the set of all links immediately upstream of l in the network such that they can pass flow
directly into l (through the node between them), and define Out(l) as the set of all links
which receive a non-trivial flow directly from l.

Physical roads are typically divided into a set of movements corresponding to each imme-
diate downstream destination. A movement contains to all vehicular flow on a single roadway
that intends to subsequently enter the same downstream roadway at the next intersection.
In this work, we consider each movement to be represented as a distinct link that is parallel
to the links representing all other movements on the same roadway. These parallel links can
span the entire block from upstream intersection to downstream intersection, or they can
originate somewhere in between two subsequent intersections at a position corresponding to
the location at which a road forks into a turn pocket. This mid-link split allows for modeling
of shared lanes or turn bays which can result in partial output blocking for one or more
movements sharing common upstream resources.

The set of all links L is divided into three subsets: entry links Lentry, exit links Lexit,
and internal links Lint. Internal links must be bounded on either side by a network node
connecting them to a non-trivial set of neighboring network links. They each have finite
length Ll with corresponding finite storage capacity. Therefore, the inflows and outflows
of an internal link are inherently constrained by the number of vehicles on the link at any
given time. Entry links originate from outside of the network and terminate at an internal
network node. Because In(l) = ∅ ∀ l ∈ Lentry, demand on these links is exogenous to
the network – entry links are in fact the only point of entry for external demand. For the
purposes of this work, consider all time-dependent exogenous demands to be known. While
there is a rate limitation on the flow exiting entry links, there is no bound on link storage;
any expected demand can be stored on these links indefinitely until service is available. In
the same manner, exit links serve as an infinite repository for flow exiting the network. These
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links have no departing flow, and by definition Out(l) = ∅ ∀ l ∈ Lexit. Yet due to an infinite
storage capacity, the presence of congestion on exit links will never limit overall network
outflow.

Nodes are storage-less “gateways” that govern flow between neighboring links. A node
n ∈ N is defined geometrically by its set of incoming links In and its set of outgoing links
On. It is parameterized by a split ratio matrix βn of dimension |In| × |On| that defines the
proportion of vehicles in each incoming link that are waiting to enter each outgoing link
m ∈ Out(l). Elements βl,mn of feasible split matrices must obey the following characteristics:

0 ≤ βl,mn ≤ 1 ∀ l ∈ In, m ∈ On, n ∈ N (3.1)∑
m∈On

βl,mn = 1 ∀ l ∈ In, n ∈ N (3.2)

Each node in the network represents either a simple splitting of a single upstream link
into many “movement” links or a point of flow exchange between two or more intersecting
roadways. The topological differences between intermediate nodes and intersection nodes
are illustrated in Figure 3.1. The operation of the intermediate nodes is straightforward: a
single demand flow is consistently divided into many downstream supply flows as specified
by a fixed split ratio parameter. Intersection nodes similarly split flows according to dictated
split ratios, but furthermore must resolve conflicts between multiple input flows which require
the use of shared physical resources.

We therefore define a phase as a set of incoming links which can flow simultaneously
through the node without causing resource conflicts. Each phase ψ for a node n is encoded
as a sparse binary matrix of dimension |In| × |On|, where element ψl,m = 1 if link l is
permitted to flow into link m as part of that phase (and otherwise 0). The set of all possible
feasible phases for node n is denoted Ψn.

A flow-impeding signal controller is placed on each intersection node to ensure safe oper-
ation of the modeled junction by restricting concurrent flows across the node to those input
links encoded in an element of Gn ⊂ Ψn. Note that Gn is generally limited to some subset of
Ψn because practical signal controllers typically only actuate a limited number of phases due
to hardware limitations or safety regulations. A controller on node n must alternate between
actions G ∈ Gn at an update rate dictated by management constraints or objectives.

Assume for now that all turn directions of a “shared movement” link are actuated si-
multaneously: if a node’s input link l is permitted to flow into any one of its downstream
neighboring links m ∈ Out(l), it is also permitted to flow into any of its other downstream
neighbors. Then define Gl ∈ {0, 1} to be the indicator that link l is permitted to discharge
according to its fixed expected split ratios.

Because links are defined to have finite storage capacity, nodes must also enforce phys-
ical limitations in flow due to congestion on their neighboring links. Flow through a node
is therefore furthermore limited by two additional factors: the sending constraints of its
upstream links, and the receiving constraints of its downstream links. Intuitively, the set
{Sl(t), l ∈ In} of upstream sending constraints imposed on node n considers the number of
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vehicles currently available to be serviced by the node on each of it’s incoming links. The
relevant downstream receiving constraints {Rm(t), m ∈ On} are limitations in the service
rate of the node due to lack of space downstream to receive the transmitted flow.

Figure 3.2: A node enforces downstream space limitations on flows departing upstream links(
dl(t), l ∈ {1, 2}

)
and distributes flows arriving into downstream links

(
al(t), l ∈ {3, 4}

)
according to pre-defined split ratios.

The specific forms of S(t) and R(t) will vary according to the link dynamics being mod-
eled. But in terms of these generalized constraints, the flow departing each upstream link
l ∈ In can be defined as follows:

dl(t) = Gl(t) min

{
Sl(t), min

z∈Out(l)

{
1

βl,zn
Rz(t)

}}
(3.3)

where n is the terminal node of link l. Notice that this is designed to enforce that vehicles
follow a first in, first out (FIFO) principle: queue discharge is limited by the most restrictive
downstream demand function so that downstream queue capacities are not exceeded while
discharge remains consistent with the specified static split ratios. The flow arriving into
downstream queues m ∈ On must then balance this departing flow:

am(t) =
∑
k∈In

βk,mn dk(t) (3.4)

3.2 The cell transmission model

As introduced in Section 2.2, the cell transmission model (CTM) is a stable numerical ap-
proximation of the LWR conservation model of traffic flow (2.20). While it was first derived
independently by Daganzo in [48, 49], it was later shown by Lebacque [115] to be exactly
equivalent to a Godunov difference scheme of the LWR PDE.

CTM specifically defines a piecewise-linear relationship between flow q and density ρ,
as illustrated in Figure 3.3. For a modeled link l, this fundamental diagram relationship is
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parameterized by free-flow velocity Vl, maximum (capacity) flow cl, queue dissipation speed
Wl, and maximum (jam) density ρmax

l :

ql(ρl(x, t)) = min
{

Vlρ(x, t), cl,W
(
ρmax
l − ρl(x, t)

)}
(3.5)

Figure 3.3: The discretization scheme of CTM enforces a piecewise-linear relationship be-
tween the spatial density of vehicles on a link and the flow of vehicles through the link. A
triangular variety in which ρmax = c

(
1
V

+ 1
W

)
is also widely employed.

Consider a temporal discretization with uniform time steps of length that is small relative
to typical actuation times for a signal control phases in the network being modeled (on the
order of 1-5 seconds). In CTM, a road is spatially discretized into a series of homogenous cells
of uniform length which is equal to the distance traveled by free-flowing traffic in a single
model time interval ∆t. Each network link l is therefore divided into a series of τl = b Ll

Vl·∆t
c

cells. An illustration of this cell division is presented in Figure 3.4.

Figure 3.4: At each CTM time step, cell state ni(t) is increased by inflow yi(t) and decreased
by outflow yi+1(t). The state update equation for this cell is therefore a function of both the
state of cell i and the state of the downstream cell i+ 1. A link’s receiving constraint Rl(t)
is a function of only the first cell’s state n1

l (t), and its sending constraint Sl(t) is a function
of only the last cell’s state nτll (t).
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Also define the following cell-normalized fundamental diagram parameters:

Ṽl = Vl ·
∆tτl
Ll

W̃l = Wl ·
∆tτl
Ll

c̃l = cl∆t

Ñl = ρmax
l

Ll
τl

The state of each network link l can then be represented by a vector nl with elements
{nil, i = 1, . . . , τl} representing the vehicle-count in each of these sequential cells. These
scaled density states evolve according to the vehicle conservation relationship

nil(t+ 1) = nil(t) + yil(t)− yi+1
l (t) (3.6)

where yi(t) represents the number of vehicles entering cell i during each time interval, defined
as follows:

yi(t) =


al(t), i = 1

min
{

Ṽln
i−1(t), cl, W̃l

[
Ñl − nil(t)

]}
νl ·∆t, i = 2, . . . , τl

dl(t), i = τl + 1

(3.7)

with νl equal to the number of lanes on link l. The receiving constraint put on the upstream
node of a CTM link is a function of the state of only the first cell in a link, n1

l (t):

Rl(t) = νl min

{
cl, W̃l

[
Ñl − n1

l (t)
]}

(∆t) (3.8)

Similarly, the sending constraint put on a downstream node is a function of only the last
cell’s state nτl (t):

Sl(t) = νl min

{
cl, Ṽln

τ
l (t)

}
(∆t) (3.9)

3.3 The vertical cell model

Concern over the impracticality for large-scale implementation of CTM has spawned a second
look at using less detailed vertical queueing dynamics to analyze global flow patterns and
design model-based control [105, 53, 161].

Bolstered by similar research in the field of communications and mechanical service net-
works, modern vertical queueing models have introduced a variety of transit delay and con-
gestion propagation improvements which have made them more widely applicable than those
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of the 1960’s and 1970’s. Recent work yields promising results for practical network-wide
control algorithms based on vertical queueing models [215, 57, 22, 118, 5, 218, 205].

The vertical cell model (VCM) is a new approach to a vertical queueing model which
largely approximates the behavior of a point-queue model in the same cell-based context
as CTM. Unlike most vertical queueing model formulations, it maintains a well-defined
representation of both link travel delay and finite queue capacity. In this way, VCM may be
classified as what some call a spatial queueing model.

Upon entering a VCM link, flows propagate at each step (without constraint) through a
sequence of (τl − 1) transit cells, after which they enter a terminal queueing cell. Therefore
τl = b Ll

Vl·∆t
c state variables are required to represent the state of each link l in VCM (as in

CTM):

• vil(t), i = 1, . . . , (τl−1) are non-negative values representing the amount of vehicle-flow
that has entered the link at time t− i, but has not yet traveled the length of the link
to become eligible to exit, and

• ql(t) represents the amount of vehicle-flow which has traversed the entire link length
and is therefore queued to immediately exit the link.

Figure 3.5: VCM passes link input flows a constant rate between non-physical “transit
cells” until they reach a vertical “exit queue”. To enforce finite queue storage capacity, link
receiving constants are a function of the number of vehicles in all “cells” of the network.
Sending constraints, however, only depend on the number of vehicles that are explicitly in
the exit queue.

Explicitly, the transit queue states vil(t) and exit queue state ql(t) evolve as follows:

v1
l (t+ 1)
v2
l (t+ 1)
v3
l (t+ 1)

...

vτl−2
l (t+ 1)

vτl−1
l (t+ 1)
ql(t+ 1)


=



0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
. . . . . .

...
...

...
0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 1





v1
l (t)
v2
l (t)
v3
l (t)
...

vτl−2
l (t)

vτl−1
l (t)
ql(t)


+



1 0
0 0
0 0
...

...
0 0
0 0
0 −1


[
al(t)
dl(t)

]
(3.10)

This progression of vehicles across a VCM link is also illustrated in Figure 3.5.
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Each VCM link is parameterized by a free flow travel velocity Vl, a maximum flow rate
(capacity) cl, and a fixed queue capacity (per lane) κl. Notably, however, VCM links do
not enforce a fundamental relationship between spatial density and flow rate. Unlike the
independent cell supply limitation of CTM, receiving constraints in VCM are a function of
the state of all link cells:

Rl(t) = νl min
{
cl ·∆t, κl − ql(t)−

∑
i=1...(τl−1)

vil(t)
}

(3.11)

VCM sending constraints, however, depend only on vehicles that are explicitly in the exit
queue:

Sl(t) = νl min
{
cl ·∆t, ql(t)

}
(3.12)

3.4 Physical interpretation of the differences in

vertical and horizontal cell models

The independent storage capacity constraints of cells within a CTM link propagates the spa-
tial location of high-density flows within a road link. This characterizes a horizontal queueing
model. Such spatial differentiation is a theoretically desirable characteristic, especially for
representing freeways or major highways with long spans where flow is not artificially inter-
rupted. While CTM should be able to propagate the effects of the theoretical “stop and go”
shockwaves created by frequent stopping due to signal controllers, accurate representation
of these types of behaviors would necessitate extremely high spatial resolution and therefore
high temporal discretization in a CTM implementation (recall that τl = b Ll

Vl·∆t
c).

Meanwhile, network cells on an arterial road corresponding to a model time step of 1-5
seconds typically represent very small portions of roadway where the relationship between
flow and density is not always as well-defined. As can be seen in a visualization of observed ve-
hicle trajectories on an urban network (available online at http://youtu.be/jJen2ybNr34),
queue aggregation and dissipation behaviors can vary significantly from link to link. Hence
tuning the required fundamental diagram parameters to precisely represent observed condi-
tions is a challenge—especially the backwards shockwave speed W, which is even difficult
to measure will full knowledge of system state. Furthermore, queues do not always dissi-
pate as would be predicted by a rigid fundamental diagram relationship. This is perhaps
because un-modeled factors such as varying driver response and vehicle acceleration times
are dominant in practical urban traffic dynamics.

Unlike the horizontal queue of CTM, VCM models a vertical queue or “stack” which is not
assigned to any physical distance along the link. It can be interpreted as modeling vehicles
that can only either travel at maximum velocity (V) or be completely stopped. These
vehicles traverse the entire distance of a link, unconstrained by downstream congestion,
before stopping in a queue. Hence flow across a VCM link is less constrained by the presence
of congestion. Furthermore, queue dissipation is not limited by shockwave speed W in VCM

http://youtu.be/jJen2ybNr34
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as it is in CTM. Instead, link flow capacity is the only constraint on queue discharge. It is
therefore expected that link queues may empty more quickly in VCM than in CTM.

Another effect of the vertical queueing approach is the difference in upstream receiving (or
supply) constraints. A downstream departure will immediately yield effects on link receiving
constraints in VCM, while the effect of departures will take at least τ time steps to impact
receiving constraints in CTM. The physical representativeness of this behavior remains to
be examined, but it will depend on the synchronization of a link’s service periods to demand
patterns caused by upstream signals.

These two simplifications of VCM (as compared to CTM) result in the linear model
for link dynamics shown in equation (3.10). In fact, the only non-linearities in VCM are
contained within the network node model. The linear link model yields potential benefits
for the derivation of link-state estimation and model-based control procedures.

3.5 Validation and comparison of model

implementations

We built an experimental network to simulate the flows on five blocks of Lankershim Blvd.
in Los Angeles, California, USA. The selection of this simulation area was motivated by the
availability of a set of high resolution ground-truth vehicle trajectory data that was collected
at this location by the Next Generation Simulation Community (NGSIM). See section 2.6
for a detailed description of this data set.

To specifically evaluate both VCM and CTM, we compared the output densities and flows
output by each model to the observed density and flow patterns generated by aggregating
the positions documented in the tracked trajectories over time and space. Both models
were implemented using the Berkeley Advanced Traffic Simulation (BeATS) platform with
a model discretization of ∆t = 1 second. They shared a common graphical network (shown
in Figure 3.6) and were initialized with the same geometric information, input flows, split
ratios, and signal timings.

Geometry data such as link length and lane count was compiled from a satellite map
image and various NGSIM documentation. The network graph used in this procedure is
illustrated in Figure 3.6. Incoming boundary flows were collected by aggregating the initial
appearances of tracked vehicles at each entry link with a five second resolution. Split ratios
were considered static over the entire simulation period. They were estimated by comparing
the vehicle counts corresponding to each intersection approach aggregated over the entire
observation period. Signal parameters were documented in the NGSIM data package, but we
synchronized the precise offsets to correspond to trajectory data timestamps via the initiation
of observed outflows in links corresponding to the major approaches for each intersection.
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Figure 3.6: High-resolution vehicle trajectories are available for five blocks of Lankershim
Blvd. The graphical representation to the right (not drawn to scale) was used to model
link flows for independent movements. The four larger intersection nodes represent the four
major signalized intersections on Lankershim Blvd. Each internal road is represented by
1-4 parallel links in each direction indicating the independently actuated movement queues.
Five smaller intermediate nodes represent locations where spill-back from turning bays which
could potentially cause partial blocking of the neighboring through movement. Network links
are labeled with the corresponding lane counts used in simulation.

Comparison of VCM and CTM

Both VCM and CTM were able to accurately predict the general levels of congestion observed
on the Lankershim Blvd network during the 30 minute observation period with minimal
parameter tuning. In fact, we found only minute differences in the modeled link outflows
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for the entire period of available data. Both models seemed to smooth “spikes” in the true
link outflows, which were most likely physically caused by unpredictable variations in driver
acceleration behaviors. When differences in modeled outflows did exist, the most common
observation was that CTM seemed to attenuate the observed outflows at a slightly higher
magnitude, as seen in the example in Figure 3.7. This could be caused by the delay on
queue dissipation imposed by the dissipation wave speed W in CTM’s flow-density relation:
modeled flows are constrained in a queue slightly longer and at a location further upstream
in CTM than in VCM, where the exit queue is only limited by link flow capacity and it is
assumed that the travel time of de-queuing vehicles has already been incurred.

Figure 3.7: Modeled and observed flows exiting the through movement of Link 3 in the
southbound direction illustrate typical outflow variations in this analysis. Both models
seemed to smooth the true outflows, but reached approximated capacity flows at similar
times.

The errors observed in all modeled link outflows, as shown in Figure 3.8, reveal little vari-
ation between the errors in outflows predicted by the two link dynamics. But by analyzing
cumulative modeled link outflows, it becomes apparent that both models have a slight ten-
dency to overestimate links outflows. The percent of cumulative error in outflow estimates
for all through-movements on Lankershim Blvd. links over the entire simulation period are
tabulated in Table 3.1. The similarity between the cumulative outflow estimation errors of
the two models suggests that this error was more likely caused by unpredictable flow imped-
iments, parameter mistuning, or a common misrepresentation in the network geometry than
by differences in fundamental modeling assumptions.
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Figure 3.8: Differences in link outflow error between CTM and VCM (relative to observation)
were minimal.

Table 3.1: Cumulative outflow model error.

Model Type Link 2NB Link 3NB Link 4NB Link 4SB Link 3SB Link 2SB
CTM 0.93% 4.53% 1.69% 0.79% 9.25% 6.74%
VCM 0.84% 4.29% 1.27% 0.76% 9.09% 6.53%

As expected given the similarities between link flow transfers, CTM and VCM yielded
very similar link-vehicle counts aggregated over a 5-second time period. The modeled and
observed states of all internal network links representing through movements are depicted in
Figure 3.9. While VCM typically resulted in slightly larger link densities than CTM, it was
not necessarily more representative of true link state. Neither model seemed to have a clear
advantage over the other in correctly estimating link state.

Our results serve to validate the use of a vertical queueing model such as VCM in the case
of the studied network. In fact, in our analysis (which was limited to a single model run by the
lack of appropriate data), VCM appears to have performed slightly better than CTM in terms
of cumulative link flow error. This work may help justify the relative analytical simplicity of
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Figure 3.9: The modeled flow differences resulted in minor variations in link density states
in the internal links, but neither model consistently resulted in a better representation of
link state.

using a similar point queue dynamics for applications of model-based arterial estimation and
signal control—especially in cases where the measurements available for controller feedback
is of very low resolution.

Because the links on Lankershim Blvd remained in the undersaturated regime for the
entire observation period, we were notably not able to investigate model performance in the
high-congestion conditions where CTM is expected to out-perform a vertical model. Likely
due to this lack of over-saturation, we also found very little output sensitivity to backwards
shockwave speed W in the CTM model—which is the critical difference in the assumptions
of CTM and VCM. This unfortunately prevented conclusive results on the relative benefits
of a horizontal queueing model. Yet further analysis is limited by the lack of quality ground
truth data on an appropriate urban network.

While VCM is analytically simpler than a horizontal queueing model and results in
different queue dissipation behaviors, it does not provide any computational benefit over a
CTM that is run at the same time discretization. Future work could include the development
of a generalized analytical point queue model which could be implemented on a simplified
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arterial graphical network. For example, great benefit could be derived from a link dynamics
which eliminates the need for explicit representation of parallel “movement” links in the
underlying network structure. Instead, separate capacities on co-located movement queues
could be tracked within the mathematical structure of the vertical queuing model. This would
greatly simplify the process of building an appropriate representative network structure–
which is a significant obstacle to a practical implementation of such a queueing model.
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Chapter 4

Estimation of predictable queueing
behaviors using existing
measurements

Many of the tools that are theoretically available to arterial traffic managers (including, by
definition, any type of “traffic-responsive” arterial signalization scheme) rely on the accurate
estimation of real-time or near-real-time vehicle queue lengths and turning ratios [163, 100,
205]. Yet as discussed in Chapter 2, there is currently no reliable and cost-effective method of
measuring the most useful indicator of congestion on signalized roadways: the instantaneous
length of vehicle queues. Furthermore, there are significant mathematical challenges of
performing classical estimation techniques to derive queue state from the limited sensor
measurements that do exist.

In this chapter we introduce a novel technique which can fuse multiple existing sources
of data into a single arterial link-state estimate in a manner that is consistent with the
kinematic-wave type models introduced in Chapters 2-3.

4.1 Background: previous approaches to arterial state

estimation

The traffic engineering community does not currently possess a reliable and cost-effective
methodology to estimate or predict the queue length on an arterial roadway or highway
on-ramp. The following paragraphs explain the successes and limitations of the approaches
commonly explored in relevant literature.

Input-output methods

By simple mass conservation, the number of vehicles currently in a queue must be the differ-
ence between entered vehicles and exited vehicles (plus the initial queue). Therefore several
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proposed queue estimation schemes rely on counting the vehicles entering the queue (or up-
stream end of the link) and those leaving the queue (or downstream end of the link). These
algorithms vary according to how and where they propose the counting to take place, but
are generally referred to as Input-Output methods. They are known to introduce significant
errors into queue estimates primarily for two reasons: an inability to correct for offsets intro-
duced by vehicle miscounts, and incorrect estimates of the queue’s initial length [123, 221,
206].

Work has been done to improve the performance of this queue estimation approach by
incorporating occupancy measurements [206, 220], by introducing heuristic volume adjust-
ment mechanisms [123, 221] or by using statistical analyses to correct for drifting count errors
[207]. Multiple lines of research have suggested using statistical Kalman filtering techniques
on a simple input-output queueing model to correct accumulating count errors and fuse data
from existing types of arterial link detectors [44, 206]. While these methods have demon-
strated improvements over simpler input-output techniques, such improvements often require
more sensors than typically exist on a single arterial link. An experimental comparison of
the Kalman filtering algorithm proposed in [206] and a simpler conservation-based procedure
suggests that the relative benefits of the previous approach are often outweighed by the costs
of the additional calibration procedures required for the underlying dynamical model [221].

Improvements in sensing technologies

Advanced magnetic sensors with vehicle re-identification capabilities can improve the results
of input-output methods by occasionally “resetting” the initial queue estimates via tracking
individual vehicles at each end of a queue [112, 180]. The re-identification algorithm is
subsequently modified in order to improve the re-identification accuracy of slowly-moving
vehicles, and was experimentally shown to provide adequate on-ramp queues estimates [179].
Unfortunately, most successful re-identification techniques rely on the use of specialized
magnetometer arrays that are not yet widely available.

Comprehensive video detection systems provide queue lengths estimates via video pro-
cessing techniques. But accuracy degrades with increasing distance from the video camera.
Presence can only be detected within 400 feet, so longer queues are difficult to distinguish.
Furthermore, these systems are also expensive to install and maintain—especially given their
known sensitivity to weather conditions and various physical obstacles that could easily dis-
rupt line-of-sight.

Reconstructing kinematic wave behaviors

After initial introduction of the LWR model of traffic flow, the study of kinematic waves on
signalized roadways produced various theoretical estimates of queue length as a function of
demand [177, 198, 142]. Yet all of these models assumed that input demand was uniform
or otherwise predictably distributed. More recent work has applied these principles to real-
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Figure 4.1: The temporal-spatial presence of queued vehicles forms a polygon with bound-
aries that can be estimated using knowledge of signal timings and arrival flows. Geometric
principles can be used to calculate the presumed spatial extent of a vehicle queue. While the
rate of queue formation depends on arrival rate, queue dissipation is assumed to be constant.
A uniform arrival rate would create a triangular queueing polygon like the one shown here.

time sensor measurements in an attempt to reconstruct the back-of-queue behavior based
on observed inflow profiles[191, 124].

With precise knowledge of signal timing switches, saturation headways and outflow counts
from a stop line detector, and inflow measurements from advance detector actuations, it is
possible to reconstruct the “queueing polygon” experienced on a movement approach at each
signal cycle (see Figure 4.1). This provides an estimation of the position of the “back of the
queue” with high spatial and temporal precision.

To further improve results, automated processes to estimate the maximum discharge
rates (and thus dissipation shockwave speeds) used in the kinematic wave model have been
proposed in [68, 185].

Limitations of this technique include the inability to estimate queues that extend beyond
the advance detector in real-time (though it is possible to estimate maximum queue length
after complete discharge [124, 192]), and more fundamentally, the lack of access to the high-
frequency event-based (or even cycle-by-cycle) data required to implement the procedures.

Recent work has suggested the incorporation of information gathered from probe vehicles
to estimate the shockwaves defining the queueing polygon. In [16], sparse travel time esti-
mates are combined with signal information to reconstruct a probable queueing pattern that
would have caused the observed delay. The algorithm presented in [173] uses GPS trajec-
tories alone (without any knowledge of signal timings) to estimate the position of queueing
shockwaves. This algorithm may become applicable once probe positioning data is more
accurate (as to detect lane positioning), higher frequency (to receive multiple data points
per link), and less sparse (to detect multiple vehicles per queue)—which may happen in the
near future with the advent of connected vehicle systems.
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4.2 An alternate representation of hydrodynamic

traffic flows: cumulative number of vehicles

In section 2.2 we introduced the Lighthill-Whitham-Richards (LWR) model relating traffic
density ρ(t, x) and flow f(t, x) [116, 174] . We restate it here for convenience:

∂ρ(t, x)

∂t
+
∂ψ(ρ(t, x))

∂x
= 0 (4.1)

This PDE has been widely used to predict arterial traffic; see for example [192, 75]. How-
ever, it is difficult to use this model for state estimation on short arterial links because its
representation of density as a continuous aggregated quantity presents mathematical bar-
riers for assimilating individual measurements of internal link flows or artificially-impeded
vehicle trajectories. In addition, the non-smoothness of the solution of this PDE creates
mathematical challenges for estimation [219, 28].

An alternate description of traffic state dynamics can be generated using an intuitive
transformation of the conservations of vehicles principle [155, 46, 47]. Consider a function
M(t, x) defined such that its spatial derivative is equal to the negative of the equation
defining spatial density on a road link, and its temporal derivative is equivalent to the
equation describing the resulting traffic flow:

∂M(t, x)

∂x
= −ρ(t, x) (4.2)

∂M(t, x)

∂t
= f(t, x) = ψ(ρ(t, x)) (4.3)

Equation (4.1) can be rewritten in terms of M(t, x) to formulate what we refer to as the
Moskowitz PDE [39, 15]:

∂M(t, x)

∂t
+ ψ

(
−∂M(t, x)

∂x

)
= 0 (4.4)

The solution M(t, x) of the Moskowitz PDE is called the cumulative number-of-vehicles
function. Physically, it is an absolute measure of the total mass (number of vehicles) to have
passed point x by time t. Another interpretation can be to consider assigning consecutive
integer labels to vehicles entering a link at x = ξ and tracing the trajectory of those vehicles
over time, then if the vehicle labeled n is at location x′ at time t′, bM(t′, x′)c = n. This
concept is illustrated in Figure 4.2.

An additional benefit of this representation is the ease of calculating delay and queue
length metrics. Consider plotting M(t, x′) for multiple values of x′ as a function of time on a
single graph, as in Figure 4.3. The vertical distance between two neighboring curves is equal
to the number of vehicles (queue length) present between the two corresponding x-values,
and the horizontal distance between these curves is the travel time experienced by a vehicle
traveling between the points.
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Figure 4.2: The level sets of the the cumulative number of vehicles function M(t, x) could be
constructed by assigning integer labels to consecutive vehicles and tracing the trajectories
of these vehicles through the entire domain being modeled, as illustrated in this example.

4.3 Developing boundary conditions from

heterogeneous data sources on a signalized

network

In this section we present a new method for queue length estimation on arterial links based
on a macroscopic horizontal queuing model. Because it only depends on aggregate measure-
ments and a macroscopic flow model to determine a “best fit” of link state given a known
bound on measurement error, it is less sensitive to imprecise or erroneous measurements
than some other queue estimation techniques. While our method can utilize measurements
from traditional in-road sensors, it can also integrate measurements from advanced sensing
systems such as re-identification or travel time monitors when they are available. In related
work, the same techniques have been used with trajectory or position data on freeways, for
example from GPS-enabled smartphones [37].

Our desired function is obtained by solving the Moskowitz model (4.4). Importantly,
observe that (4.4) takes the form of a Hamilton-Jacobi partial differential equation (HJ-
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Figure 4.3: In this graph, M(t, x′) is plotted for various fixed values of x′. Experienced
transit time is portrayed as the horizontal distance between two consecutive curves. The
vertical distance between two lines is a measure of instantaneous queue length, or the number
of vehicles between two points on the road.

PDE) with the flux function ψ(ρ) serving as the Hamiltonian. This specific model has been
well-studied in the traffic community, in part because there are several known methodologies
for finding explicit weak solutions to HJ-PDEs. In the present work we chose to use a class of
weak solutions known as the Barron-Jensen/Frankowska (B-J/F) solutions [18, 67]. Because
we are able to find an explicit analytical solution for traffic state, we can operate on any
spatial or temporal resolution of sensor data without the need for mapping measurements
to a discretized grid.

Measurements are incorporated into our solutions via choice of initial and/or boundary
conditions to be input into the HJ-PDE. As previously presented in the context of freeways
in [37], we choose boundary flows that optimize some desired convex function of the unknown
value conditions within constraints imposed both by the kinematic dynamics of the LWR
PDE and the available measurements. The objective of this algorithm is therefore to generate
a realistic estimation of the aggregate traffic flow behaviors over the measured time horizon
which could feasibly generate the included observations–fulfilling both an estimation and
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data reconciliation functionality. Yet our work varies from classical approaches to estimation
such as the Kalman filter: instead of iteratively finding the state estimate that minimizes
least square measurement error, we seek a one-shot solution which does satisfy all available
measurements but primarily optimizes an objective function designed to represent the most
likely link dynamics that are “unknown” or left unconstrained by existing measurements.

We would like to emphasize that our objective is to reconstruct a general “averaged”
measure of queuing behaviors and demands for the purposes of immediate estimation and
control actuation. While others have studied means of adjusting macroscopic modeling
to account for behavioral and higher-order dynamic effects [201], we do not attempt to
reconstruct microscopic or even lane-specific behaviors.

Mathematical formulation

Consider an arterial road link defined between spatial locations ξ and χ. This link is uni-
directional, has a constant number of lanes l along its entire domain, and traffic can only
enter or exit at the upstream and downstream link boundaries (respectively).

We define the state of this link ρ(t, x) to be the evolution of spatial density of the link
for all locations x ∈ [ξ, χ] at all times t ∈ [tmin, tmax]. For known link parameters freeflow
velocity v, shockwave (or queue dissipation) speed w, and critical density ρc, the flow f(t, x)
of vehicles across a single point x is described by the following piece-wise linear flux function:

f(t, x) = ψ(ρ(t, x) =

{
vρ if ρ ≤ ρc

w(ρ− ρc) otherwise
(4.5)

The road segment is bounded downstream (at x = χ) by a traffic signal which can influ-
ence link state by impeding link outflow for fixed time durations. The time tred at which
downstream flow is artificially restricted by a red signal is known (f(χ, tred) = 0).

As with any PDE, a specific solution M(t, x) to (4.4) requires a pre-defined set of initial
and/or boundary conditions to satisfy. Here we define the concept of a value condition to
encompass the common notions of initial, boundary, and internal conditions. A value con-
dition c(·, ·) is defined as a lower semicontinuous function defined on some subset of domain
[0, tmax]× [ξ, χ]. Any solution to the PDE being investigated must satisfy all associated value
conditions on their respective domains.

In this work, the value conditions cj are not known specifically but rather must be es-
timated before attempting to solve for M(t, x). Chosen conditions must not only satisfy
the physical limitations imposed by the model, but also permit the feasibility of any avail-
able measurements of network state. We therefore use the following framework to develop
constraints on the set of feasible value conditions.

Format of initial and boundary conditions

This work specifically employs a class of weak solutions to HJ-PDEs known as the Barron-
Jensen/Frankowska (B-J/F) solutions [18, 67]. These solutions are represented by the Lax-
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Hopf formula [15, 38].

Definition 4.1 (Lax-Hopf formula). For value condition cj(·, ·),

Mc(t, x) = inf
(u,T )∈Dom (ϕ∗)×R+

(c(t− T, x+ Tu) + Tϕ∗(u)) (4.6)

where ϕ∗(·) is the Legendre-Fenchel transform of Hamiltonian ψ(·).

Definition 4.2 (Legendre-Fenchel transform).

ϕ∗(u) := sup
p∈Dom(ψ)

[p · u+ ψ(p)] (4.7)

Assume the following affine (generalized) initial and upstream/downstream boundary
conditions, defined for discrete spatial blocks k of length X and discrete time blocks n of
length T :

initial condition:

Mk(t, x) =

{
−
∑k−1

i=0 ρ(i)X − ρ(k)(x− kX) if t = 0 and x ∈ [kX, (k + 1)X]

+∞ otherwise
(4.8)

upstream condition:

γn(t, x) =

{∑n−1
i=0 fin(i)T + fin(n)(t− nT ) if x = ξ and t ∈ [nT, (n+ 1)T ]

+∞ otherwise
(4.9)

downstream condition:

β(t, x) =


∑n−1

i=0 fout(i)T + fout(n)(t− nT )

−
∑kmax

k=0 ρ(k)(x− kX) if x = χ and t ∈ [nT, (n+ 1)T ]

+∞ otherwise

(4.10)

A direct application of (4.6) on (4.8)-(4.10) yields the following solutions (via the approach
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of [38]):

MMk
=



+∞ if x ≤ kX + wt or x ≥ (k + 1)X + vt

−
∑k−1

i=0 ρ(i)X + ρc(tv + kX − x) if kX + tw ≤ x ≤ kX + tv

−
∑k−1

i=0 ρ(i)X + ρ(k)(tv + kX − x) if kX + tv ≤ x ≤ (k + 1)X + tv

−
∑k

i=0 ρ(i)X + ρc(tw + (k + 1)X − x)− ρmtw if (k + 1)X + tw ≤ x ≤ (k + 1)X + tw

−
∑k−1

i=0 ρ(i)X + ρ(k)(tw + kX − x)− ρmtw if kX + tw ≤ x ≤ (k + 1)X + tv

(4.11)

Mγn =


+∞ if t ≤ nT + x−ξ

v∑n−1
i=0 fin(i)T + fin(n)(t− x−ξ

v − nT ) if nT + x−ξ
v ≤ t ≤ (n+ 1)T + x−ξ

v∑n−1
i=0 fin(i)T + ρcv(t− (n+ 1)T − x−ξ

v ) otherwise
(
if t > (n+ 1)T + x−ξ

v

) (4.12)

Mβn =



+∞ if t ≤ nT + x−χ
w∑n−1

i=0 fout(i)T + fout(n)(t− x−χ
w − nT )

−
∑kmax

k=0 ρ(k)X − ρm(x− χ) if nT + x−χ
w ≤ t ≤ (n+ 1)T + x−χ

w∑n
i=0 fout(i)T −

∑kmax
k=0 ρ(k)X

+ρcv
(
t− (n+ 1)T − x−χ

w

)
otherwise

(
if t > (n+ 1)T + x−χ

w

)
(4.13)

Model constraints

Note that while (4.6) implies that Mc(·, ·) exists for any c, this solution is not guaranteed to
be compatible with the corresponding value condition. In other words, it is not necessarily
true that ∀(t, x) ∈ Dom(c), Mc(t, x) = c(t, x).

To account for this, note that the structure of equation (4.6) implies the inf-morphism
property:

Definition 4.3 (Inf-Morphism Property). Let c(·, ·) be a minimum of a finite number
of lower semicontinuous functions,

∀(t, x) ∈ [0, tmax]× [ξ, χ] , c(t, x) := min
j∈J

cj(t, x) (4.14)

Then Mc can be decomposed as

∀(t, x) ∈ [0, tmax]× [ξ, χ] , Mc(t, x) = min
j∈J

Mcj(t, x) (4.15)

For reference on the inf-morphism property, see [38].
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Define decision variable associated with the value conditions in (4.8), (4.9), and (4.10) as

y := (ρ(1), . . . , ρ(kmax), fin(1), . . . , fin(nmax), fout(1), . . . , fout(nmax)) (4.16)

and denote by Y the vector space of these decision variables y. In this work, we use the inf-
morphism property to ensure that all value conditions used to find a final solution for M(t, x)
will apply in the strong sense by defining a set of physical constraints on Y that are implied
by the explicit solutions (4.11), (4.12), and (4.13): value condition c(·, ·) = minj∈J cj(·, ·)
satisfies ∀(t, x) ∈ Dom(c), Mc(t, x) = c(t, x) if and only if

Mcj(t, x) ≥ ci(t, x) ∀(t, x) ∈ Dom(ci), ∀(i, j) ∈ J2 (4.17)

Explicitly, (4.17) implies the following model constraints on y:

MMk
(0, xp) ≥Mp(0, xp) ∀(k, p) ∈ K2

MMk
(pT, χ) ≥ βp(pT, χ) ∀k ∈ K,∀p ∈ N

MMk
(χ−xk+1

v
, χ) ≥ βp(

χ−xk+1

v
, χ) ∀k ∈ K,∀p ∈ N s.t χ−xk+1

v
∈ [pT, (p+ 1)T ]

MMk
(pT, ξ) ≥ γp(pT, ξ) ∀k ∈ K,∀p ∈ N

MMk
( ξ−xk

w
, ξ) ≥ γp(

ξ−xk
w
, ξ) ∀k ∈ K,∀p ∈ N s.t ξ−xk

w
∈ [pT, (p+ 1)T ]

(4.18)


Mγn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2

Mγn(pT, χ) ≥ βp(pT, χ) ∀(n, p) ∈ N2

Mγn(nT + χ−ξ
v
, χ) ≥ βp(nT + χ−ξ

v
, χ) ∀(n, p) ∈ N2 s.t nT + χ−ξ

v
∈ [pT, (p+ 1)T ]

(4.19)
Mβn(pT, ξ) ≥ γp(pT, ξ) ∀(n, p) ∈ N2

Mβn(nT + χ−ξ
w
, ξ) ≥ γp(nT + χ−ξ

w
, ξ) ∀(n, p) ∈ N2 s.t nT + χ−ξ

w
∈ [pT, (p+ 1)T ]

Mβn(pT, χ) ≥ βp(pT, χ) ∀(n, p) ∈ N2

(4.20)

For a full derivation of these inequalities, refer to [37].
Notice that because the solutions described by (4.8)-(4.10) associated with the given

value conditions are all linear in y, all of these constraints described by (4.18)-(4.20) are also
linear in y. We can therefore represent the model constraints in the matrix form

Amodely ≤ bmodel (4.21)

Data constraints

While the model constraints (4.18)-(4.20) encode the limitations due to the physics of traffic
flow, they do not add any new information about the existing state of a system. To estimate
boundary conditions such that all known measurements will be satisfied by the derived
solution, we must define a separate set of data constraints. This requires explicit formulation
of the sensor data in terms of decision variable y.
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To preserve convexity in the resulting optimization problem, data constraints can often be
represented as convex inequalities which account for errors inherent in practical measurement
techniques. Here we will furthermore assume that all data constraints are linear; they are
therefore represented in general as

Cdatay ≤ ddata (4.22)

C

C
I.) 

x = ⇠ �

ID C+ID 

C+ID 
III.) 

ID 

x = ⇠ �

C+ID ID 

ID 
II.) 

C+ID 

x = ⇠ �

S

S

Figure 4.4: Sensor configurations investigated in this work. C denotes an available count
measurement; ID denotes a sensor with vehicle identification capabilities for travel time
measurements.

For example, we specifically investigate the following realistic infrastructural sensor con-
figuration scenarios that are illustrated in Figure 4.4:

Scenario I: Detectors providing vehicle counts are placed at the upstream boundary
of the link, providing vehicle count measurements that can be aggregated into flow esti-
mates f̄k(T, ξ) for a fixed time step T . These measured flows have known error percentage
ēf . Because signal timings are known, partial information about link outflow is also available.

Relevant Data Constraints:

• fout(tred) = 0

• (1− ēf )f̄k(tk, ξ) ≤ fin(k) ≤ (1 + ēf )f̄
k(tk, ξ) ∀ tk ∈ [k · T, (k + 1) · T ]

Scenario II: Flow measurements as in Scenario I are given. Additionally, re-identification
sensors placed at the upstream and downstream ends of the link provide point-to-point travel
times t̄ with maximum error ēt, corresponding to exit time stamps t̄f for 5-15% of the vehi-
cles traveling across the link.

Relevant Data Constraints:
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• fout(tred) = 0

• (1− ēf )f̂k(tk, ξ) ≤ fin(k) ≤ (1 + ēf )f̄
k(tk, ξ) ∀ tk ∈ [k · T, (k + 1) · T ]

• M(t̄f − t̄− ēt, ξ) ≤M(tf , χ) ≤M(t̄f − t̄+ ēt, ξ) for t̄, t̄f sampled from 5-15% of exiting
vehicles

Estimation of unobservable boundary flows

To estimate the unknown or uncertain boundary conditions, we formulate an objective prob-
lem over space Y with the model constraints (4.18)-(4.20) and data constraints corresponding
to any available measurements:

minimize: g(y) (4.23)

subject to:

{
Amodely ≤ bmodel

Cdatay ≤ ddata

The objective g(y) can be any convex piecewise affine function of the decision variable. How-
ever if limited availability of data suggests a highly underdetermined problem, the objective
should be crafted to ensure realism in the resulting solution.

For example, the scenarios investigated in this work do not include full constraints on out-
flows via measurements; they only assume zero outflow when impeded by a signal. Therefore
many feasible solutions y with various exiting flow profiles can satisfy the existing constraints.
But because drivers usually act to maximize their velocity whenever possible, we should pre-
fer solutions where rapid outflow is encouraged. This is achieved by maximizing the sum of
outflows weighted by a small, decreasing function µ(n):

max
y∈Y

∑
n

µ(n)fout(n) (4.24)

subject to:


Amodely ≤ bmodel

fout(tred) = 0

[other data constraints ]

Queue calculation

Ultimately, the optimal initial/boundary conditions y∗ = arg max(g(y)) are used to deter-
mine the solution of the Moskowitz function explicitly via equations (4.11) - (4.13). The
integer level-sets of the resulting piecewise linear function M(t, x) represents “modeled”
vehicle trajectories. Multiple link performance metrics can be estimated from this result,
including queue lengths. Two criteria will identify queues:

• Point density is maximized: ρ(t, x) =
∣∣∣∂M(t,x)

∂x

∣∣∣ = ρj ± δ
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• Point flow is zero: f(t, x) = ∂M(t,x)
∂t

≈ 0

The first criterion (maximum density) is a more reliable indicator of queued state than zero
flow, as the latter may also occur when the link is entirely empty. We therefore define the
instantaneous queue length as the location of the boundary between areas of jam density
and areas of lesser density at each time t.

4.4 Experimental results

This algorithm was validated on the NGSIM vehicle trajectory data set captured on Lanker-
shim Blvd. in Los Angeles, California. A detailed description of this data set is provided in
Section 2.6 of this work.

We simulated count sensors at the immediate upstream end of each link by extracting
all timestamps at which a vehicle enters the link from the adjacent intersection. Flow
measurements were then estimated by aggregating these “counts” within every five-second
time period. We extracted travel time measurements from randomly sampled trajectories,
where entry and exit times correspond to the timestamps at which the sampled vehicles were
first and last detected on the relevant link. Note that the time a vehicle spent within the
surrounding intersections is not included in the travel time samples. Red signal times were
extracted from the signal timing plans provided in the NGSIM database.

For demonstration of our algorithm, we chose to analyze data from the four links high-
lighted in Figure 4.5:

• link 2 southbound, a 3-lane link between a busy cross-street and a signalized intersec-
tion with no possible turn movements;

• link 2 northbound, a 3-lane link that expands to 5 lanes downstream with one desig-
nated left-turn lane and two permissive right-turn lanes;

• link 3 southbound, a link with three through-lanes, two left-turn lanes, and a right-turn
pocket;

• link 4 northbound, a 4-lane link with an intermediate entry-exit point and a small
left-turn pocket at the downstream end.

These links were chosen to be representative of a variety of physical features, such as both
specialized and shared turn lanes, and intermediate entry/exit points.

Calibration of the fundamental diagram parameters v, w, and fc was performed via visual
inspection of the trajectories. The following values were used for all links:

• free-flow velocity, v = 15.64 meters/sec (35 miles/hour)

• shockwave velocity, w = -6.70 meters/sec (-15 miles/hour)
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Figure 4.5: High-resolution vehicle trajectories are available for 5 blocks of Lankershim Blvd.
We tested our queue estimation algorithm on the highlighted links, which are representative
of multiple typical link geometries: 2 northbound, 2 southbound, 3 southbound, and 4
northbound.

• critical density, ρc = 0.375 vehs/meter (60 vehs/mile)

• jam density, ρj = ρc(1 + v
w

) = 0.125 vehs/meter (200 vehs/mile)

These parameters correspond to the dynamics of a single lane. To ensure that the “measured”
input flows are treated consistently, the calculated flows were scaled by the inverse of the
number of lanes at link entry. Results are therefore intended to represent an “average”
queuing behavior on each of the links, and not expected to exactly match the behavior
observed on any one lane.
We also chose common values for measurement error:

• Count sensors are accurate within 5%.

• Travel time estimates have a maximum error of 0.5 seconds.

We solved the relevant linear programs using a MATLAB-based optimization software
package. We then used a separate MATLAB toolbox to generate the desired B-J/F solu-
tions to the Moskowitz HJ-PDE [136]. This LWR toolbox is available at http://traffic.

berkeley.edu/project/downloads/lwrsolver.
We ran this code on each of the four link-directions shown in Figure 4.5 for all sensor

configuration scenarios. Specifically, we compared the time-resolved queue length estimates

http://traffic.berkeley.edu/project/downloads/lwrsolver
http://traffic.berkeley.edu/project/downloads/lwrsolver
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generated from the calculated Moskowitz solutions to those detected in the data. In the
data, we define the back of a queue as the location of the car with the highest entry index
that is stopped on a link at a given time. Because vehicles tended to “drift” slightly when
in a queue, this detection method was not always accurate; discontinuities in detected queue
lengths sometimes caused unrealistic noise in the resulting queue length error calculations.

Scenario I: observing upstream flows and signals
Figure 4.6 illustrates a sample of the results of our estimation algorithm on Link 2 SB, a

3-lane link with simple geometry with no possible downstream turn movements.
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Figure 4.6: Modeled and ground-truth trajectories for a sample time period. Inflows and con-
strained (zero) outflows were imposed. For visual comparison, the queue lengths estimated
by the PDE model are shown on all data plots.

With this basic lane geometry and low demands, we see that the modeled trajectory
behavior closely follows an “average” of the three exiting lanes. However it fails to replicate
the excessive queueing (and possible spillover) seen on lane 3 at 1300 seconds. Replication
of such extreme queuing occurring only in a single lane is not expected given the lane-
averaged flows input into the model. To achieve a more accurate representation of true
behavior, one may need to access lane-specific flow sensors and run this model on each lane
independently. This procedure, however, would likely be sensitive to lane-changing behaviors
and inaccuracies in turn ratio estimation.
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Figure 4.7: Top: Algorithm demonstrated on Link 2NB with turning lanes present and no
inflow adjustments. Bottom: Model performance on Link 2NB with inflow reduced by 24%,
to be representative of through movements only.
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Achieving similarly accurate queue length results on links with complicated geometries
and downstream turn movements requires additional processing. Link 2 NB, for example, is
a link with two through-only lanes, one shared through-right turn lane, one right turn only
lane, and one left turn only lane, as seen in Figure 4.5. We used aggregate inflows from
the three lanes present at the upstream end of the link, and restricted modeled outflows
according to signal timings which restricted through movement at the downstream end. We
also assumed that flows were evenly divided between the three through movement lanes, and
therefore divided inflows by three before modeling.

However the resulting trajectories, such as those shown in Figure 4.7, tended to overes-
timate the queues in all of the through lanes. These results suggested that it was necessary
to further reduce the inflow measurements used in the modeling process to account for the
turning flows, which not only entered downstream queues disproportionately but also were
restricted by different signal timings than those of the through-flows. We therefore reduced
the measured inflows by the estimated percentage of turning vehicles before processing data
constraints.

For example, in the case of link 2 NB we determined that over the entire 30-minute
study period, approximately 4% of vehicles exiting the link in this direction turned left
and 20% turned right. Hence we reduced inflows by 24%, and re-ran the optimization
and PDE solution procedures. The trajectories modeled using the lesser inflows were more
representative of the average behavior seen on all through-only lanes, as can be seen in Figure
4.7. Note that while we were able to “predict” turn ratios fairly accurately in this work via
analysis of our detailed data set, similar procedure can be followed in practice using turning
ratio estimates determined by previous local surveying or OD-estimation techniques.

Figure 4.8 demonstrates similarly successful results on the through-only lanes of Link 3
southbound, a block with two dedicated left-turn lanes and a third dedicated right-turn lane.

The estimation error function, illustrated in Figure 4.9, reveals that while the accuracy of
the queue length estimate varies significantly between lanes, link-average error remains very
low–within ±16 meters, or two car lengths at maximum density ρj = 0.125 vehicles/meter.
These results were typical of instances where there was no abnormal disturbances such as
a long truck or turn lane spillover on any lanes of the link. There is no evidence that
queues are systematically over-estimated or underestimated, or that the estimated lengths
are consistently less accurate at either the beginning or end of a queueing cycle using this
technique.

In our study of Link 4 NB, we expected that the intermediate entry/exit point would
cause error in both modeled queue lengths because this comprised an obvious violation in the
mass conservation assumption of the underlying LWR model. Yet the level of flows exiting
and entering the link did not constitute a significant percentage of link flows in the samples
we studied, and thus the results were not notably affected by such violation.

Scenario II: observing upstream flows, signals, and travel times
The additional constraints due to travel time measurements as described in Scenario II
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Figure 4.8: Model performance on through lanes of Link 3 SB. Inflow was reduced by 36%
to account for turning vehicles. Modeled queues are represented in bold lines on all plots.

initially caused the boundary condition optimization function to become over-constrained
and thus infeasible. This is due to the flow and queue aggregation assumed in our imple-
mentation. For example, Figure 4.6 illustrates a situation where a vehicle entering Lane 3 of
Link 2 at 1300 seconds would encounter a dramatically different queue (and thus experience
a significantly different travel time) than a vehicle concurrently entering Lane 2 of the same
link. If conflicting travel times were sampled, the corresponding conflicting constraints would
cause the problem to become unsolvable.

Without studying individual lane behaviors, we were therefore constrained to using very
small penetration rates which did not contain samples which conflicted outside the range of
permissible error. We also made a further adjustment in the solution procedure: in addition
to the 0.5 second error permitted in travel time measurements, we added a 0.25-vehicle error
on the solution of the Moskowitz function directly. This effectively modified a travel time
constraint to the following:

M(t̄f − t̄− ēt, ξ)− 0.25 ≤M(t̄f , χ) ≤M(t̄f − t̄+ ēt, ξ) + 0.25 (4.25)

While these adjustments to the boundary condition algorithm allowed for the identifi-
cation of feasible solutions, they also minimized the impact of travel time measurements
on the resulting trajectories and queue lengths. We found that with realistic penetration
rates of 5-15%, the addition of travel time estimates did little to improve the accuracy of
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Figure 4.9: A comparison of modeled queues to detected queues. Average queue length error
remains under 16 meters, or < 2 vehicles at jam density ρj = 0.125 vehicles/meter.

modeled queue lengths. In most common congestion patterns with well-distributed flow, the
additional constraints were already satisfied by the solution found in Scenario I and thus did
not have any impact on the resulting trajectories. When additional active constraints were
imposed by travel time samples, they did not typically improve the lane-averaged error in
queue length estimates. See for example the trajectories on Link 3SB shown in Figures 4.10
- 4.11.

From the comparison of the error resulting from estimates of the two sensor scenarios in
Table 4.1 below, it is clear that travel time measurements do not consistently provide useful
information beyond that available with just inflow and signal timing information.

Table 4.1: Average Absolute Error in Queue Length Estimates

Link Scenario 1 Scenario 2 (15%)
2 SB 9.88 m 9.88 m
2 NB 14.73 m 19.30 m* (w/ 5%)

3 SB 13.69 m 15.53 m
4 NB 11.67 m 11.67 m

The best results for both scenario were observed in Link 2SB, the link with no turn
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Figure 4.10: The trajectories from which travel times were sampled are highlighted with an
arrow at time of entry. Several “outlier” trajectories from the end of the queues on Lanes
2 and 3 caused an adjustment in the modeled queue for the first, second, and fourth light
cycles.

movements to cause differentiation in lane behaviors. In contrast, Link 2NB is a short link
with both left and right turn movements; it is likely that the rapid lane changing and queue
blocking of the turning vehicles cause the exaggerated error seen in our model results. Note
that because of this significant variance between queues on the three through lanes of this
link, we were unable to find ten queue cycles where it was feasible to satisfy the constraints
of a 15% travel time sample. Hence the value listed in Table 4.1 represents results for a 5%
travel time penetration rate.
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Figure 4.11: Travel time samples decreased the error for some lanes as they “tuned” the
output to those lanes for specific queue cycles. However, the estimates were often made
worse for the other lanes, causing increased error in the average length estimates for the
affected cycles.
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Chapter 5

Towards a practical signal controller
with global flow objectives

Fixed-time signal controllers are typically designed with the objective of optimal local per-
formance, considering coordination of at most a handful of neighboring intersections. Ad-
vanced adaptive systems promise more globally-beneficial performance, but almost always
require the installation and upkeep of expensive communications networks to transmit high-
frequency measurements and control commands back and forth between a distributed net-
work of signals and a centralized processing unit. An ideal responsive controller would
provide improvements in network-wide performance metrics without the need for central
control—a distributed controller with global guarantees.

Recent theoretical research on the control of networks in various fields has derived such a
controller, which goes by many names including backpressure, MaxWeight, or max pressure.
Tassiulas and Ephremides [203] introduced this algorithm and used the theory of Lyapunov
drift to prove that it stabilized a vertical queueing system in the context of controlling a
multi-hop communications network. It has since been applied to various fields, including
traffic signal control in [218] and [205]. While the theoretical benefits of a backpressure
controller are appealing, practical signal controllers have hardware and safety limitations
that prevent ideal application.

In this chapter, we introduce the historical advances in theoretical network-wide signal
control from the traffic community. The modeling assumptions and control constraints com-
monly adopted by this community differ significantly from the requirements of a theoretical
max pressure signal controller. We aim to begin rectifying these differences by extending the
max pressure control algorithm to a cycle-based implementation which can take into account
the green time and service rate constraints of practical arterial traffic signals.
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5.1 Background: flow-impeding control on a traffic

network

Section 2.2 explores the literature surrounding historical development of queueing models to
represent signalized traffic flows, and mentions that many of these models were developed in
the context of advancing signal control algorithms. A more detailed investigation into the
relationship between theoretical control algorithms and traffic model development follows.

Control of an congested intersections

Webster’s intuitive equal degree of saturation policy [212] was inherently developed with the
assumption that queues at signaled intersection could be adequately serviced in their entirety
with finite green periods within a reasonable cycle length. Researchers quickly recognized a
need for addressing the optimal control of saturated intersections, where the fulfillment of
delay objectives under cycle length and other service constraints were much less intuitive.

The work of Gazis [74, 73] appears to be the first discussion of the optimal control an
intersection during a period of excessive congestion. A simple intersection model is derived
with two competing streams governed by a signal which must split its fixed cycle length
between serving each of the two streams with constraints on the minimum (and maximum)
service time for each. It is concluded that the control policy which minimizes the total
duration of congestion is to operate cycles which allocate maximum time to the higher
demand stream at the beginning of the rush period, up to an explicitly derived “switching
point” at which the lower demand stream should be given maximum in the signal cycles.

The author later expands his approach by discretizing a network of coupled (congested)
intersections in a store-and-forward model [72, 52]. He formulates a problem to solve for
the optimal allocation of time between “policies” representing different extremum (min/max
green) service rates for each competing stream given a set of known (constant) rush-period
demand. The objective is to minimize the duration of the rush period, with the ordering
of the policies then selected to minimize vehicle-delay (effectively a generalization of the
single-intersection case described above).

Many subsequent extensions improved the realism of Gazis’ model. Singh and Tamura
[189] and Lim et al. [117] extended the model to the case of oversaturated networks, where
queues are constrained by a maximum storage capacity and the majority of the queues in
the network are expected to be non-empty at the end of their respective service periods.
Optimal signalization of this model is formulated as a linear-quadratic problem. Park et al.
[166] presented optimization of a network model that is appropriate for both oversaturated
and undersaturated conditions appearing on the same network.

Michalopoulos and Stephanopoulos [140, 141] additionally include constant transit delays
between the intersections. As opposed to the previous analytical approach, this work presents
a numerical algorithm for practically computing optimal policies—but ultimately suggests
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that if too many intersections are considered, or if queues on all approaches reach or exceed
the physical capacity constraint, minimization of total delay becomes infeasible.

All of the theoretical formulations mentioned up to this point were derived for single-
directional links and two phase signals. They also assume a uniform “average” demand flow,
and do not address the need to deal with“bursty” step-like demands that are observed at a
real intersection due to the influences of upstream controllers. Furthermore, they generate
pre-timed (fixed-time) signal timing plans that do not make use of the actuation and net-
working equipment that were becoming available during the 1960’s and 1970’s. In fact, the
introduction of networked controllers opened a new approach to designing “on-line” coordi-
nated signal controllers which could respond to realistic demands using closed-loop feedback
control.

Dunne and Potts [60] therefore provided an early framework for actuated signal switching
which enforces minimum and maximum green time constraints and minimizes some objective
function which is a linear combination of intersection queue lengths. They prove that this
controller is stabilizing for undersaturated intersections and provide a bound on queue length
under this control (assuming approximately uniform demand).

In response, Longley [129] suggested that while the work of Gazis or Dunne and Potts
is adequate for the end of a period of congestion (where demand will soon return to a
undersaturated rate), it is not appropriate to deal with consistent congestion of unknown
duration. He identifies two types of congestion caused by congestion:

1. primary congestion caused by queues at the immediate junctions being controlled

2. secondary congestion due to blockage of upstream junctions by primary queues

Primary congestion is unavoidable in saturated conditions, so priority should be given to
minimizing the onset and effects of secondary congestion. But because the impacts of sec-
ondary congestion are beyond the jurisdiction governed by the originally congested controller,
a network-aware formation of control algorithm is required. Longley then derives a controller
to enforce a desired ratio of approach queues that is dependent on the geometry of potential
upstream blockages. The objective of this algorithm is to minimize “queue un-balance” at
a given intersection using a centralized controller where neighboring signals are coupled to
minimize instabilities due to untimely platoon arrivals. A comparison of the expected aver-
age delay suggests that Longley’s algorithm will outperform an “optimal” fixed time policy
derived by the approach of Gazis at high degrees of saturation (in the sense of Webster) [169].
However even today, the requirement for on-line measurement of queues restricts practical
applicability.

Control of networked queues

More detailed models of capacitated networks of queues arose from the mathematical and
early computational sciences fields in the 1960’s and 1970’s [66, 24, 99]. Rather than minimiz-
ing congested periods, this literature focuses on solving for ways for maximize steady-state
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flow through intersections in highly coupled networks where demands could be predicted
from upstream service rates to better anticipate and compensate for the effects of secondary
congestion. To apply these principles to practical signal control where frequent stop-and-go
behaviors influence instantaneous link flows, the traffic community pressed for the inclusion
of the kinematic wave principles of Lighthill and Whitham [116] into the network flow models
being optimized [198]. It appears that little advancement was made in this direction until the
end of the century, when a rise in computational power and methodologies to solve discrete
integer programming problems prompted a renewed interest in model-based networkwide
optimization of signals [6, 55, 215, 214].

Lo et al. [127, 126, 128] explicitly formulate a delay-minimizing signal optimization
problem as an mixed-integer linear program to control a CTM representation of signalized
arterials with simplified 2-phase intersections. Lin and Wang [120] optimized a signalized
CTM that allows variable lengths for cycles and splits. Beard and Ziliaskopoulos contributes
an explicit representation of turn movements (with permissive phases) and even more flexible
timing parameters [19].

While these recent CTM-based algorithms provide solutions that are consistent with
the principles of kinematic wave models and are usually tractable for off-line analysis of
controllers, they still are not sufficiently efficient for informing traffic operations in real-
time. Thus some researcher in the traffic community have returned to “oversimplified” ver-
tical queueing representations, which promise optimization and control with (optimistically)
polynomial-time complexity (in the number of links modeled).

A research effort led by Papageorgiou and Diakaki returned to the simplified store-and-
forward models of Gazis to derive a linear-quadratic optimal feedback controller strategy for
urban traffic signals known as TUC (traffic-responsive urban control) [161, 58, 57]. Later
work by this group produced a model-predictive controller based on a similar simplified
model [4].

Newer spatial-queue models such as [23] and [223] explicitly incorporate transit delays
and capacitated queues. The use of these models for model-predictive control has also been
proposed [22, 119].

Because communications typically limit the practical deployment of model-predictive
algorithms, decentralized network-optimizing approaches to control based on the dynamics
of vertical queueing models have also recently been considered [53, 218, 205]. We will discuss
and extend one of these controllers, known as the MaxWeight or Max Pressure controller
[205], in the remainder of this chapter.

5.2 Max pressure: a theoretical flow-maximizing

controller for simple vertical queuing networks

Max pressure is a distributed network control policy derived from the concept of a “back-
pressure” or “MaxWeight” controller, which was first studied in the context of routing packets



CHAPTER 5. TOWARDS A PRACTICAL SIGNAL CONTROLLER WITH GLOBAL
FLOW OBJECTIVES 78

through a multi-hop communications network [203]. It has since been introduced to many
other networked applications including process scheduling [50], manufacturing [202], wireless
networks [13] and general stochastic networks [200]. The idea was applied to road traffic
management more recently by [205] as well as [218].

The concept is intuitive: at each intersection, priority is given to the signal phase which
will be able to service the most traffic given knowledge of both available upstream demand
and the subsequent feasibility of downstream queues. It is a particularly attractive concept
for control of a signalized urban traffic network because it can be operated in a distributed
manner on local controller hardware but still provides theoretical guarantees on network-wide
performance. Therefore unlike existing adaptive signal control systems such as SCOOT [100]
or SCATS [188], max pressure does not require centralized communications or operations.
Also, max pressure is a universal algorithm which does not require site-specific tuning for
a given network geometry or expected demand set. In fact it operates with no a-priori
knowledge of demand beyond a basic requirement of serviceability. This presents a huge
benefit over most existing traffic control systems which require a timely and expensive re-
timing process in the event of changes in demand patterns. Max pressure is also attractive
to the academic community because of it’s theoretical guarantee of ensuring stability in a
network with simple vertical queueing dynamics. This property will be discussed in detail
below.

An infinite-capacity vertical queueing framework

The properties of a theoretical max pressure traffic signal controller were originally derived
in [205] on a simplified vertical queueing model in which a finite set of non-conflicting turning
movements (or phases) can be permitted to flow simultaneously across each network node.

Consider a network of arterial roads with infinite storage capacity, modeled topologically
as a graph with road links being edges and intersections being vertices. An individual link
l ∈ L can be either at the entry of the network (l ∈ Lent) or in the interior of the network
(l ∈ L\Lent). The inflow on entry links is a defined entirely by a random demand dl,
while the input flows of all other links depend on queues on upstream links and the relevant
set of physical flow constraints are defined within the network. We require that each link
has an exit path, or a continuous set of connected links on which vehicles can travel from
the original link to eventually exit the network. Each link in the network model can have
multiple queues corresponding to individual movements : all vehicles in a given queue on
any link are intending to advance onto the same subsequent link (though not necessarily
the same subsequent queue). We describe the dynamics of these queues as a discrete time
dynamical model using the following notation:

• A movement (l,m) distinguishes an intention to travel from link l to link m such that
m ∈ Out(l) where Out(l) is the set of links immediately downstream of l;

• A queue x(l,m)(t) is the number of vehicles on link l waiting to enter link m at timestep
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t, and X(t) is the set (vector or matrix) of all the queue lengths on the network at
timestep t;

• A capacity c(l,m) is the expected number of vehicles that can travel from link l to link
m per time step given maximum demand for the queue x(l,m), and C(l,m)(t) is the
realized saturation flow at time t;

• The turn ratio r(l,m) is the expected proportion of vehicles that are leaving l which
are intending to enter m, and R(l,m)(t) is the realized turn proportion at t;

• The demand vector d of dimension |Lent| specifies demands at network entry links;

• The flow vector f of dimension |L| denotes flows on all links of the network such that
fl is the flow in link l.

Note that flow on an entry link is dependent only on demand dl, and flow on internal
links is dependent on routing proportions and the flow on upstream links:

fl =

{
dl l ∈ Lent∑

m fmr(m, l) l ∈ L\Lent
(5.1)

Hence there is necessarily a linear relationship between the observed link flows f and the
boundary demand d:

f = dP (5.2)

where matrix P depends only on observed routing proportions within the network (but is
not necessarily unique).

In this framework, a road intersection is modeled as a node. Controllers (traffic signals)
are placed at every node to limit the set of queues permitted to discharge at any given time.
A set of movements that can be simultaneously actuated without flow conflicts is called a
phase. Each permissible phase for a given intersection can be represented as a binary control
matrix S that is defined as follows:

S(l,m) =

{
1 if movement (l,m) is activated

0 otherwise
(5.3)

Denote Un as the known finite set of permissible control matrices for node n. (Note that the
subscript n is often dropped for ease of notation.)

Practically, only one phase can be actuated at any point in time: at each model time
step t, a single control matrix S(t) encodes which set of queues approaching the intersection
are permitted to discharge during that time step. The selection of such a controller can be
based on feedback representing the queue state of the network queues at a previous time
step.
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The evolution of network queue lengths X(t) contained at the nodes of this network can
be seen as a Markov chain: the state at time (t+ 1) is a function of only the state at time t
and external demand d,

X(t+ 1) = F (X(t), d) (5.4)

Define [ a∧ b ] := min{a, b}. To describe queue dynamics explicitly, we must make a distinc-
tion between entry links and internal links:
if l ∈ Lent,

x(l,m)(t+ 1) = x(l,m)(t) + dl(t+ 1)− [C(l,m)(t+ 1)S(l,m)(t+ 1) ∧ x(l,m)(t)] (5.5)

and if l ∈ L\Lent,

x(l,m)(t+ 1) = x(l,m)(t) +
∑
k

[C(k, l)(t+ 1)S(k, l)(t+ 1) ∧ x(k, l)(t)]R(l,m)(t+ 1)

− [C(l,m)(t+ 1)S(l,m)(t+ 1) ∧ x(l,m)(t)] (5.6)

We focus on networks for which the boundary inflow demands d = (dl)(l∈Le) are feasi-
ble—that is, the network is servicing a distribution of inflows for which it is possible to find
a controller that allows in average more departures than arrivals at each link.

Define conv(U) to be the convex hull of the set of permissible control matrices U . The
following properties are then shown in [205]:

Property 5.1. A matrix M is in conv(U) iff ∃ a sequence of control matrices

S = {S(1), S(2), ..., S(t), ...|S(·) ∈ U}

such that ∀(l,m)

M(l,m) = lim inf
T

1

T

T∑
t=1

S(l,m)(t) (5.7)

The element M(l,m) in (5.7) can be interpreted as the long-term average proportion
of intersection capacity given to movement (l,m). Then define MS to be the specific long-
term control proportion matrix constructed as in (5.7) using the specific control sequence
S = {S(1), S(2), ..., S(t), ...}.

Property 5.2. A demand d is feasible if and only if ∃MS ∈ conv(U) and ε > 0 such that

c(l,m)MS(l,m) > flr(l,m) + ε. (5.8)

where f = dP as in (5.2).

Define D0 to be the set of all average demand vectors d = {dl} that satisfy (5.8) and are
therefore feasible.
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Mathematical formulation of the max pressure controller

Consider a weight assigned to each queue (l,m) as a function of all network queue lengths
X:

w(l,m)(X(t)) = x(l,m)(t)−
∑

p∈Out(m)

r(m, p)x(m, p)(t) (5.9)

where Out(m) is the set of all links receiving flow from link m. The pressure γ(S) that is
potentially alleviated by a control action S at time step t is defined as follows:

γ(S)(X(t)) =
∑
l,m

c(l,m)w(l,m)(X(t))S(l,m)(t) (5.10)

At each time step t, the standard max pressure controller u∗(X(t)) explicitly choses the
phase S∗ ∈ U that maximizes γ(S)(X(t)):

S∗(t) = u∗(X(t)) = arg max{γ(S)(X(t))|S ∈ U} (5.11)

Network stability

A network controller is defined to be stabilizing if its application ensures that the mean
length of all queues in the network remain bounded for any arbitrary time horizon T .

Definition 5.1 (Network stability). A network is stable if the following quantity is
bounded:

1

T

T∑
t=1

E
{
|X(t)|1

}
(5.12)

where |X|1 =
∑

l,m |x(l,m)|.

This concept is relevant to many applications such as communications networks [76, 152,
160] or industrial systems [62, 36, 103]. In traffic networks, excessive or rapidly accumulating
queues imply oversaturation and the associated impacts of secondary congestion.

The following stability result for the standard max pressure controller has been proven
in [205]:

Theorem 5.3. The max pressure control u∗ is stabilizing in a network with state dynamics
described by (5.5)-(5.6) whenever the average demand vector d = {dl} is within the set of
feasible demands D0.

This theoretical guarantee is one of the many attractive qualities of max pressure for
controlling vehicular traffic in urban road networks. A proof of Theorem 5.3 was originally
published in [205]; it is re-written in Appendix B of this thesis for reference.
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5.3 The cycle-based max pressure controller (Cb-MP)

The max pressure controller as originally formulated is not practical for application on a
signalized traffic network for three reasons:

1) it does not account for capacity reductions (lost time) due to excessive signal switching,

2) it cannot enforce coordination between subsequent intersections for purposes of maximiz-
ing flow continuity, and

3) it does not provide guarantees that low-demand queues will be served within a finite time
period.

These limitations motivate a new extension of the max pressure algorithm which bounds
signal switches and can maintain timed cyclical behaviors for signal coordination and queue
service equity. While a similar concept was suggested in [205], the current work further
extends a simple proportional phase controller to allow model dynamics to explicitly act at
a faster rate than the controller update period. We then extend the stability proof of [205]
to prove that our cycle-based max pressure (Cb-MP) controller still provides the desired
guarantee of queue stability with a penalty to the theoretical bound on queue lengths due
to the decreased rate of controller update.

In the following section, we define a new cycle-based max pressure (Cb-MP) controller
which bounds the number of signal switches per fixed time period, provides capacity for
standard signal coordination methods, and can easily guarantee a minimum service rate for
all intersection phases.

For safety reasons, an intersection controller cannot switch signal phase actuation imme-
diately. Instead, it must incorporate a pause of R ≈ 2.5 seconds in which all signal phases
have a red light. This clearance time allows all vehicles in the previously actuated phase
to clear the intersection before a conflicting phase can be permitted to use the intersection.
In the standard formulation of max pressure, the controller chooses an appropriate action
based feedback received at every time step of the modeled dynamics. To accurately capture
queuing behaviors observed on arterial roadways, a model would need to operate with a
time discretization of ∆t < 10 seconds. A signal switch at every time step could therefore
result in more than 25% loss of intersection service capacity, which is not considered in the
theoretical examination presented in [205].

Selection of cycle length

In this new formulation we explicitly specify the number of signal switches that occur in a
fixed number of model time steps using the familiar concept of a signal cycle. As typical with
modern traffic lights, a signal operating the Cb-MP algorithm rotates through all available
signal phases within a small fixed time period. We define cycle time τ as a predefined
number of model time steps and require that each controller phase S must be green for some
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proportion λS ≥ κS of the τ steps, where the minimum green splits κS ∈ (0, 1) ∀ S ∈ U are
parameters selected by a network manager to enforce equity in movement actuation.

The selection of a cycle length τ intuitively affects intersection capacity. Our proof of
network stability in the following sections relies on the fact that road links are undersaturated :
that is, the expected demand is served (on average) within a signal cycle. To avoid link
saturation, we pose the following convex optimization problem (extended from that in [9])
to determine minimum constrained feasible actuation time Λ∗:

Λ∗ = min
λ={λS}

∑
S∈U

λS

subject to λS ≥ κS ∀ S ∈ U

flr(l,m) <
∑
S

λSc(l,m)S(l,m)

(5.13)

where κS ∈ [0, 1] ∀S ∈ U and
∑

S κS < 1. If Λ∗ > 1, the demand is not feasible under the set
of {κS} for any cycle length. If Λ∗ < 1, then we can define a cycle length for which flow is
admissible without link saturation. However, this cycle length τ must be significantly greater
than Λ∗ to account for clearance times. If we define L = d( R

∆t
· |U |)e to be the total number

of lost time steps per cycle, a feasible cycle length τ must satisfy the following condition:

τ >
L

1− Λ∗
(5.14)

A relaxed signal controller

Furthermore, define a relaxed controller as a matrix Sr with each element Sr(l,m) repre-
senting the fraction of the operational time steps that are allocated to the movement {l,m}:

Sr(l,m) = λl,m ∈ [0, 1] (5.15)

Such a relaxed controller can be seen as a convex combination of all possible control matrices,
Sr =

∑
S∈U λSS.

Given an appropriate τ which satisfies (5.14), the cycle-based max pressure controller is
a relaxed control matrix that is constructed as follows:

Sr∗(t) = uc∗(X(t)) =
∑
S∈U

λ∗SS, where (5.16)

{λ∗S} = arg max
λ1,...,λ|U|

∑
S∈U

λSγ(S)
(
X(bt/τc)

)
(5.17)

subject to λS ≥ κs,
∑
S

λS ≤ 1− L
τ

At time step t = nτ for integer n, the controller uc∗ uses feedback measurements x(t) to
select a relaxed control matrix Sr∗ with components λ∗S that satisfy (5.17). This relaxed
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controller is then applied for the subsequent τ time steps {t, t+ 1, . . . , t+ τ − 1} before the
controller is updated.

Note that this controller is modeled such that all phases in an intersection are simultane-
ously actuated at some proportion of their maximum flow capacity. This is not possible in
practice, as many phases will have to make conflicting use of the same intersection resources.
Hence individual phases S will have to be actuated in series, with each having a duration
corresponding to a number of “time units” that are equal to cycle proportions (λSτ · ∆t).
Feedback measurements will then be a measure of “average” cycle queue length acquired over
a set of measurements spanning the previous cycle. If the solution for (5.17) is not unique,
one of the optimal solutions is chosen at random using a uniform probability distribution
(or according to some practical actuation priority criteria chosen by the network manager).
Because it can be implemented such that phases occur in a predictable order, a controller
running Cb-MP can be synchronized with neighboring controllers to enforce a “green-wave
progression” as is standard practice in existing traffic signal control design.

Stability of Cb-MP

The Cb-MP controller formulated in (5.16)-(5.17) is fundamentally different from the stan-
dard max pressure formulation in [205] in two ways: first, it only updates the controller once
every signal cycle (or τ model time steps); second, it applies a relaxed phase actuation (which
is some convex combination of standard phase actuations). In this section, we address how
each of these modifications impact the resulting network dynamics, and ultimately show that
the application of Cb-MP yields a similar stability guarantee to that shown by Varaiya for
the standard max pressure controller given slightly weaker conditions on demand flow.

Define convκ as the set of convex combinations of control matrices with coefficients larger
than κ:

convκ =
{∑

S

λSS
∣∣ λS > κS ∀S ∈ U

}
(5.18)

Also define a set of undersaturated admissible demands Dκ with elements d such that f = dP
and

flr(l,m) < c(l,m)Sr(l,m) (5.19)

This condition (also seen in (5.13)) ensures that a demand d ∈ Dκ can in average be served
within a single cycle by a relaxed control matrix that maintains a specified minimum time
allocation for each phase.

Theorem 5.4. The cycle-based max pressure controller defined in (5.16)-(5.17) stabilizes a
network whenever the demand is within a set of feasible undersaturated demands Dκ.

The remainder of this section proves Theorem 5.4 by finding a bound on (5.12) given a
cycle-based max pressure controller. The structure of this proof is as follows:
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1) First, we introduce the concept of a τ -updated controller and we show that switching con-
trol only once every τ time steps does not impact summarize the mathematical structure
used in [205] to derive a bound for the expected network state (5.12).

2) Next we define an intermediate “relaxed max pressure” formulation to demonstrate the
impacts of expanding the domain of control actions to relaxed controllers which are convex
combinations of allowable phase matrices.

3) We then demonstrate the intra-cycle queue dynamics given a τ -updated relaxed controller.

4) We combine the above steps to show that queue stability holds given a Cb-MP controller
with both relaxed actuation and τ -updating.

5) Finally, we compare the our Cb-MP queue length bounds to those originally derived in
[205] to illustrate the increase due to cycle-updating.

Properties of a τ-updated controller

Suppose that we impose that the control actuation S∗(t) can only be updated every τ model
time steps. A resulting τ -updated control sequence is composed of a single control matrix
repeated for τ time steps of the model dynamics:

S(nτ + 1) = S(nτ + 2) = . . . = S
(
(n+ 1)τ

)
(5.20)

First, we prove that the set of demands that can be accommodated using τ -updated control
sequences is the same set of feasible flows as in (5.8). This equivalence becomes intuitive
when one considers that our definition of feasible flows considers only the long-term (more
precisely, infinite-term) average of both demand and service rates, and any infinite control
sequence with limited admissible phases can be re-arranged to form a τ -updated sequence
for some τ .

Lemma 5.5. All flows which satisfy Property 5.2 given a controller u updated at every model
time step will also satisfy Property 5.2 with a τ -updated controller for some τ .

Proof. Given the set admissible phases U , define:

• U is the set of control sequences with distinct elements:

U = {S(1), S(2) . . . S(t) . . . |S(·) ∈ U}

• Uτ is the set of τ -updated control sequences:

U = {S(1), S(1), . . . , S(τ + 1), S(τ + 1), . . . , S(nτ + 1), S(nτ + 1), . . . |S(·) ∈ U}
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Also define the following sets of long-term control proportion matrices, which are similar to
the formulation in (5.7):

MU =
{

lim inf
T

1

T

T∑
t=1

S(t)
∣∣∣{S(1), S(2), . . . , S(t), . . .} ∈ U

}
MUτ =

{
lim inf

T

1

T

T∑
t=1

S(t) ·
∣∣∣{S(1), S(1), . . . , S(τ + 1), S(τ + 1), . . .} ∈ Uτ

}
By Property 5.2, a demand d is only feasible if there exists a control sequence S such that
the corresponding long-term control proportion matrix MS satisfies (5.8). Here we show
MU = MUτ , and therefore any flows that are admissible given an unrestricted controller in
U can also be accommodated using a τ -updated controller in Uτ .

Obviously, MUτ ⊂ MU . To show equality, we must also demonstrate that MU ⊂ MUτ .
Suppose there exists a control sequence Ŝ = {S(1), S(2), . . .} ∈ U . By definition,

MŜ = lim inf
T

1

T

T∑
t=1

S(t) = lim inf
T

1

τT

τT∑
t=1

S̃(t) where S̃ = {S(1), S(1), . . . , S(t), S(t), . . .}

= lim inf
T

1

T

T∑
t=1

S̃(t) ∈MUτ

=⇒ MU ⊂MUτ

As will be shown in the subsequent proof, occasional updating will also lead to an in-
creased bound on queue lengths relative to the standard max pressure setting.

Formulating a queue bound

Our ultimate goal is to derive a bound for the average expected queue state (5.12). The
approach taken in this work follows that of [205]: we bound the incremental model-step
queue increase |X(t + 1) − X(t)| and then recursively compute a bound on average queue
lengths

∑
t∈[0,T ] E{|X(t)} for an arbitrary time horizon T .

Begin by considering the expectation of the following function of queue state perturbation
conditioned on the past queue state:

|X(t+ 1)|2 − |X(t)|2 = |X(t) + δ(t)|2 − |X(t)|2 = 2X(t)T δ(t) + |δ(t)|2 (5.21)

= 2α(t) + β(t)

with δ(t) = X(t+1)−X(t), α(t) = X(t)T δ(t), and β(t) = |δ(t)|2. We continue by addressing
bounds on β(t) and α(t) separately.

First we consider β(t) = |δ(t)|2.
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Lemma 5.6.
β(t) =

∣∣δ(t)∣∣2 ≤ NB2 (5.22)

where B = max
{
C(l,m),

∑
k C(k, l), d(l,m)

}
, N is the number of queues in the network,

C(l,m) is the maximum value of the random service rate C(l,m)(t), and d(l,m) is the
maximum value of random demand d(l,m).

The proof of Lemma 5.6 is exactly the same as the bound on β(t) presented in Appendix
B and will therefore not be repeated here. Note that because these bounds hold for any

arbitrary S(l,m)(t) ∈ [0, 1], the original bound on E
{
β(t)

}
is trivially extended to any

convex combination of control matrices; hence it is still valid in our extension.
Now we examine a bound on α(t) = X(t)T δ(t). Again following [205], we define additional

sub-terms:

E{α(t)|X(t)} (5.23)

=
∑
l∈L,m

w(l,m)(t)

[
flr(l,m)− E

{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣X(t)
}]

= α1(t) + α2(t)

with

α1(t) =
∑
l∈L,m

[flr(l,m)− c(l,m)S(l,m)(t)]w(l,m)(t) (5.24)

and

α2(t) =
∑
l∈L,m

S(l,m)(t)w(l,m)(t)
[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]

(5.25)

Lemma 5.7. For all l, m, t,

α2(t) ≤
∑
l∈L,m

c(l,m)C(l,m) (5.26)

The proof of Lemma 5.7 again directly follows that presented in Appendix B; an extension
from a binary controller S ∈ {0, 1} to a relaxed controller Sr ∈ [0, 1] is trivial.

In fact, the extension made here only affects the α1(t) term. To demonstrate a bound
on α1(t) given application of a cycle-based max pressure controller uc∗, we first examine the
stability of a standard max pressure controller using relaxed controllers with minimum phase
proportion constraints and a stricter limitation on network demands. We will then show that
a τ -updated cycle-based max pressure controller also stabilizes a network, but results in an
increase in queue length bounds that is proportional to cycle length τ .
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Impact of a relaxed controller

Define an intermediate “relaxed max pressure” policy in which relaxed controllers are applied
at the standard max pressure update rate (once per time step of the model dynamics). This
situation was suggested in [205] to simulate enforcing minimum phase proportions in a cycle
formulation of max pressure. Yet this proposal unrealistically models “cycle” updates at the
same rate as the model of queueing and discharging behaviors (hence the introduction of the
τ -updated formulation in this work). Nonetheless, we use this intermediate formulation to
demonstrate that queue stability is still achieved upon use of a relaxed controller.

Lemma 5.8. If a “relaxed” max pressure control policy Sr∗ is updated and applied at each
time step t and the demand d is in the set of feasible undersaturated demands Dκ, then there
exists an ε > 0, η > 0 such that

α1(t) ≤ −εη
∣∣X(t)

∣∣ (5.27)

Proof. Consider the relaxed max pressure control matrix Sr∗ defined in (5.16) for τ = 1. By
construction, ∀ Sr ∈ convκ∑

l,m

c(l,m)w(l,m)(X(t))Sr(l,m) ≤
∑
l,m

c(l,m)w(l,m)(X(t))Sr∗(l,m) (5.28)

with equality only if Sr = Sr∗. Thus ∀ (Sr ∈ convκ) 6= Sr∗,∑
l,m

[
flr(l,m)− c(l,m)Sr∗(l,m)(t)

]
w(l,m)(X(t))

<
∑
l,m

[
flr(l,m)− c(l,m)Sr(l,m)

]
w(l,m)(X(t)) (5.29)

If the demand flow is admissible according to (5.19), then ∃ Ŝ ∈ convκ and some small ε > 0
such that

c(l,m)Ŝ(l,m) =

{
flr(l,m) + ε if w(l,m)(X(t)) > 0

0 otherwise

Therefore,

α1(t) =
∑
l,m

[flr(l,m)− c(l,m)Sr∗(l,m)(t)]w(l,m)(X(t))

<
∑
l,m

[
flr(l,m)− c(l,m)Ŝ(l,m)(t)

]
w(l,m)(X(t))

= −ε
∑
l∈L,m

max{w(l,m)(X(t)), 0}+
∑
l∈L,m

flr(l,m) min{w(l,m)(X(t)), 0} (5.30)

We assume that by our choice of Ŝ, flr(l,m) > ε. Hence α1(t) < −ε
∑

l,mw(l,m)(t).
Given the linearity of (5.9) and the known properties of r(l,m)(t), it can be show that∑

l,mw(l,m)(t) ≥ η|X(t)| for some η > 0. This completes the derivation of (5.27).
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For ease of notation, now combine (5.22), (5.26) and (5.27) to obtain the following ex-
pression given application of the “relaxed max pressure” controller:

E
{
|X(t+ 1)|2 − |X(t)|2|X(t)

}
= E

{
2α(t) + β(t)

}
< −2εη |X(t)|+ 2

∑
l∈L,m

[c(l,m)C(l,m)] +NB2 (5.31)

where N and B are as in (5.22).

Intra-cycle queue bound

Next we establish a bound on queue growth in a single time step between controller updates.

Lemma 5.9. Assuming a cycle-based max pressure controller with an cycle steps τ beginning
at time t, the following bound on state perturbation holds for all steps since update p ∈
[0, τ − 1]:

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2

∣∣X(t) . . . X(t+ p)
}
< Y + h(p)− 2εη|X(t+ p)| (5.32)

for Y = 2
∑
l,m

c(l,m)C(l,m) +NB2 and (5.33)

h(p) = 2pNB
(
εη +

∑
l,m

[
flr(l,m) + c(l,m)

])
(5.34)

Proof. As in Lemmas 5.6-5.8 above, begin by dividing the argument of (5.32) into three
parts: |X(t + p + 1)|2 − |X(t + p)|2 = 2(α1(t + p) + α2(t + p)) + β(t + p), where β, α1 and
α2 are quantities that depend on the controller applied at (t+ p):

β(t+ p) = |X(t+ p+ 1)−X(t+ p)|2 (5.35)

α1(t+ p) = w(l,m)(X(t+ p)) ·
∑
l,m

(
flr(l,m)− c(l,m)S(l,m)(t)

)
(5.36)

α2(t+ p) = w(l,m)(X(t+ p))· (5.37)∑
l,m

(
c(l,m)S(l,m)(t)− E

{[
C(l,m)(t+ p+ 1) ∧ x(l,m)(t+ p)

]∣∣X(t+ p)
})

Bounds on the expectations of β(·) and α2(·) were previously established for any binary or
relaxed control matrix in (5.22) and (5.26), respectively. Thus we already know that:

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2

∣∣X(t) . . . X(t+ p− 1)
}

(5.38)

< 2
∑
l,m

c(l,m)C(l,m) +NB2 + E
{

2α1(t+ p)
}
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The remainder of the bound proposed in (5.32) originates from the 2α1(t + p) term, which
is directly dependent on the explicit form of the controller S. Rewrite 2 · α1 from (5.36) as
follows:

2
∑
l,m

w(l,m)(X(t+ p))[flr(l,m)− c(l,m)S(l,m)(t)]

= 2
∑
l,m

w(l,m)(X(t))[flr(l,m)− c(l,m)S(l,m)(t)] (5.39)

+ 2
∑
l,m

{
w(l,m)

(
X(t+ p)−X(t)

)
· [flr(l,m)− c(l,m)S(l,m)(t)]

}
= ξ1(t, p, S) + ξ2(t, p, S)

for ξ1(t, S) = 2
∑
l,m

w(l,m)(X(t))[flr(l,m)− c(l,m)S(l,m)(t)] (5.40)

and ξ2(t, p, S) = 2
∑
l,m

{
w(l,m)

(
X(t+ p)−X(t)

)
· [flr(l,m)− c(l,m)S(l,m)(t)]

}
(5.41)

By Lemma 5.8 we know that ξ1(t, S) < −2εη|X(t)|. Because |X(t)| = |X(t + p) − (X(t +
p)−X(t))| > |X(t+ p)| − |X(t+ p)−X(t)|, we find that

ξ1(t, p, S) < −2εη
(
|X(t+ p)| − |X(t+ p)−X(t)|

)
< −2εη|X(t+ p)|+ 2εη

p∑
i=1

|X(t+ i)−X(t+ i− 1)|

= −2εη|X(t+ p)|+ 2εη

p∑
i=1

|δ(t+ i− 1)| (5.42)

So by (5.42) and (5.22),

ξ1(t, S) < −2εη|X(t+ p)|+ 2εηp
∑
l,m

max

{
C(l,m),

∑
k

C(k, l), d(l,m)

}
= 2εη ·

(
pNB − |X(t+ p)|

)
(5.43)
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To bound ξ2, we study the term

w(l,m)(X(t+ p))− w(l,m)(X(t)) =

p∑
n=1

w(l,m)(X(t+ n))− w(l,m)(X(t+ n− 1))

=

p∑
n=1

{
x(l,m)(t+ n)− x(l,m)(t+ n− 1)

−
∑

s∈Out(m)

[x(m, s)(t+ n)− x(m, s)(t+ n− 1)]r(m, s)
}

=

p∑
n=1

w(l,m)(δ(t+ n− 1)) (5.44)

By (5.22) and the fact that w(·) is linear,

|w(l,m)(δ(t+ n− 1))| < NB (5.45)

Plugging (5.45) back into the definition of ξ2, we obtain

ξ2(t, p, S) = 2

(∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)] ·
p∑

n=1

w(l,m)(δ(t+ n− 1))

)

< 2

p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)] ·
∑
u,v

max
{
C(u, v),

∑
k

C(k, u), d(u, v)
}

= 2NB

p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)] (5.46)

Also note that∣∣∣ p∑
n=1

∑
l,m

[flr(l,m)− c(l,m)S(l,m)(t)]
∣∣∣ < p

∑
l,m

[flr(l,m) + c(l,m)] (5.47)

so (5.46) becomes

ξ2(t, p, S) < 2NBp ·
(∑

l,m

[flr(l,m) + c(l,m)]
)

(5.48)

Substituting (5.43) and (5.48) into (5.38) yields (5.32).
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Long-term network queue bound

Given Lemmas 5.6-5.9, we show that for a time t within any number K of τ -updated cycles,
the following quantity is bounded:

Kτ∑
t=1

E
{
|X(t+ 1)|2 − |X(t)|2|X(t)

}
=

K−1∑
t=1

τ−1∑
p=0

E
{
|X(t+ p+ 1)|2 − |X(t+ p)|2|X(t+ p)

}
<

K−1∑
t=1

τ−1∑
p=0

(Y + h(p)− 2εη|X(t+ p)|)

< −2εη
Kτ∑
t=1

|X(t)|+ (K − 1)
(
τY +

τ−1∑
p=0

h(p)
)

(5.49)

which, when taking the expectation, yields

E
{
|X(Kτ + 1)|2 − |X(1)|2

}
< −2εη

Kτ∑
t=1

E
{
|X(t)|

}
+ (K − 1)(τY +

τ−1∑
p=0

h(p)) (5.50)

Rearranging gives

1

Kτ

Kτ∑
t=1

E
{
|X(t)|

}
<

1

2εηKτ
E
{
|X(1)|2 − |X(Kτ + 1)|2

}
+

τ − 1

2εηKτ

( τ−1∑
p=0

h(p) + τY
)]

<
1

2εη Kτ
E
{
|X(1)|2

}
+

1

2εητ

(
τ−1∑
p=0

h(p) + τY

)
(5.51)

By (5.12), the bound

2εη
1

Kτ

Kτ∑
t=1

E
{
|X(t)|

}
< 1

Kτ
E
{
|X(1)|2

}
+

1

τ

τ−1∑
p=0

h(p) + Y (5.52)

establishes that the cycle-based max pressure controller uc∗(X(t)) defined in (5.16) will
stabilize a vertical queueing network with dynamics X(t) as in (5.5)-(5.6).

Increase in queue bounds

The following bound on network queue state for a standard max pressure controller is derived
in Appendix B (for Y as in (5.33)):

2εη
1

T

T∑
t=1

E
{
|X(t)|

}
<

1

T
E
{
|X(1)|2

}
+ Y (5.53)
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Notice that by comparison between (5.53) and (5.52), the bound on the long-term sum of
expected network queues in cycle-based max pressure is larger by a term that increases
linearly in cycle length τ :

1

2εητ

τ−1∑
p=0

h(p) = (τ − 1)NB
(

1 +
1

εη

∑
l,m

[
flr(l,m) + c(l,m)

])
(5.54)

5.4 Numerical implementation of Cb-MP

To demonstrate the effectiveness of a realistic implementation of max pressure, cycle-based
max pressure controller was implemented on a network of 11 signalized intersections modeled
in the Aimsun, a commonly-used micro-simulation platform. The model was generated as
part of the I-15 Integrated Corridor Management project undertaken by the San Diego
Association of Governments in San Diego, CA. Demand and other model parameters are
calibrated to match the morning peak period (5:00 AM to 10:00 AM).

Figure 5.1: The chosen network was calibrated to represent realistic demands and physical
parameters observed on a stretch of Black Mountain Road near the I-15 freeway in San
Diego, California.

This section of road is currently controlled using an offset-optimized actuated-coordinated
control scheme. Under this system, each signal operates with a fixed cycle time of 100 seconds
and a fixed phase ordering, but uses instantaneous feedback of intersection vehicle approaches
to adjust cycle green splits (effectively λi) within fixed minimum and maximum green time
constraints per cycle. This control algorithm is coded and calibrated in the Interstate-15
Aimsun model to represent realistic conditions and was therefore deemed an appropriate
benchmark for performance comparison to Cb-MP.

Six variations of Cb-MP were implemented. First, a version with a cycle length of 100
seconds and minimum green time constraints of 10 seconds for each available signal phase was
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used to closely match the operational constraints of the existing fully-actuated controller.
The relative offsets for the southbound coordination phases in this implementation were
the same as those used in the actuated-coordinated system. We then ran variations which
extended the cycle time for Cb-MP to 120, 140, 160, 180, and 200 seconds to demonstrate
the effect of increased cycle time τ on observed queue lengths.

To compare performance, we calculated vehicle service rates, average delay, average num-
ber of stops and stopped time, and mean and maximum queue lengths that were modeled
using each controller. These metrics were only calculated for vehicles and links correspond-
ing to the southbound direction on Black Mountain Road as well as the short connections to
the I-15 freeway on westbound Mira Mesa Blvd and eastbound Mirimar Rd. This pathway
simulates a viable “freeway-alternative” in the congested direction during the morning peak
period. During implementation, the Cb-MP algorithm most often chose to give actuation
priority to this high-demand Southbound direction, as expected.

The comparison of network vehicle counts in Figure 5.2 suggests that Cb-MP is able to
service approximately the same volumes as the optimized actuated-coordinated control when
cycle times were comparable. The higher cycle length Cb-MP implementations are omitted
from this plot for clarity; these controllers resulted in higher variations of vehicle service
between 5-minute periods but ultimately only reduced total service rates slightly.

Figure 5.2: Cb-MP demonstrated service rates that are consistent with a fully-actuated
control system for similar cycle lengths.

Yet distinct differences between the fully-actuated and Cb-MP controllers were observed
in measurements of delays. Figure 5.3 compares the average vehicle delay given fully-actuated
and max pressure control with the same cycle length. It is apparent that while the fully-
actuated controller produces less delay when demand is far below network capacity, Cb-MP
outperforms the existing controller given consistently high demand; it imposes less delay
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with a noticeably smaller variance. This may not be surprising given known deficiencies in
actuated controllers, however it is important to point out that this implementation of max
pressure produces very promising network delays with almost no controller parameters that
require tuning.

Figure 5.3: Cb-MP outperforms the actuated controller given high demand in terms of vehicle
delay.

Despite maintaining the same relative offsets for actuation of the main (coordination)
direction as the fully actuated controller, Cb-MP induced slightly more stops during a ve-
hicle’s south-bound journey across the network. Again, this may be expected given the
stop-minimizing design objectives of the fully-actuated system: the small but consistent dif-
ferences in average vehicle-stops shown in Figure 5.4 are likely caused by the on-demand
service extensions provided for low density “back-of-queue” arrivals in the fully-actuated
system. Notice that the average vehicle stopped time is actually lower in Cb-MP than with
the fully actuated system during peak demand, which is consistent with the estimates of
total delay demonstrated in Figure 5.3.

The higher cycle length Cb-MP implementations are again omitted from Figures 5.3-5.4
for clarity, yet it is important to note that higher cycle lengths predictably led the longer
stops and more delay, as vehicles which encountered a red light would have to wait longer
for the cycle to reach their desired green phase. This increase in wait time also corresponds
to the predicted larger queues.

Figure 5.5 demonstrates the increase in mean queue lengths with increase in cycle length
τ . While the linear increase in maximum queue length derived in (5.54) is not explicitly
depicted in the observations, these results appear to remain consistent with such an upper
bound.
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Figure 5.4: While Cb-MP caused more vehicle stop events, stoppage times were similar to
those observed using the actuated controller.

The numerical implementation of cycle-based max pressure presented here suggests a
promising alternative for signal control in periods of high demand where the performance
of existing actuated controllers is known to deteriorate. It is an intuitive and scalable con-
trol algorithm that is appealing because it maintains theoretical network-wide performance
guarantees without the need for centralized communication or control centers. The cyclical
operation of Cb-MP can still maintain the flow-progression benefits obtained from existing
offset optimization algorithms along a prioritized route, as demonstrated by the fact that
the average number of vehicle-stops on the southbound route only increases slightly using
Cb-MP over an implementation of the optimized actuated system. Because the cycle splits
are more predictable in Cb-MP than in current actuated-coordinated algorithms, it may even
be possible to further optimize progression on multiple (conflicting) routes with additional
linear constraints on cycle splits in (5.17).

Furthermore, Cb-MP is a widely-applicable algorithm which requires significantly less
tuning and site-specific adjustment than the typical fully-actuated control system. For ex-
ample, the timing parameters for a fully-actuation system deployed on networks such as the
San Diego site referenced above are often a result of many hours of both model-based and
heuristic optimization procedures for a specific network geometry and expected demand. Yet
in our implementation, the generalized Cb-MP algorithm with arbitrary reasonable minimum
green parameters achieved approximately equal performance without requiring any knowl-
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Figure 5.5: Observed queues increase with cycle length using Cb-MP control.

edge of location or demand.
By addressing the practical problem of lost capacity due to frequent switching, our ex-

tension of the proofs of [205] brings the concept of max pressure closer to a realistic imple-
mentation. Yet it is important to point out that existing sensing infrastructure does not
typically provide the capabilities necessary to accurately measure approaching link-counts,
nor does it provide any measurement of downstream link state. Future work should also ad-
dress limitations inherent in the vertical queueing model framework such as the assumption
of infinite link buffer size. In practice, oversaturation could cause unmodeled instabilities in
a traffic network if expected queue bounds exceed physical road storage.

One could also consider multiple ways in which the performance of Cb-MP could benefit
from heuristic modification, such as enforcing a maximum value of the green split λl as a
function of queue measurement xl to prevent wasted green in a given cycle. Our extended
proof of stability should hold for any additional linear constraints on λ in (5.17) (which
maintain the concept of a relaxed, τ -updated controller) given that there exists any controller
satisfying these constraints for which the network demand is feasible according to (5.19).



98

Chapter 6

Facilitating implementation of traffic
responsive plan selection operations

Typical traffic controllers can be operated with plan selection based either on time of day
(using time-of-day or TOD mode) or on observed conditions (using a traffic responsive plan
selection or TRPS mode). TRPS mode will enable a signal controller to use immediate
feedback from local volume and/or occupancy sensors to choose a timing plan optimized for
current conditions from a pre-programmed set of existing plans.

While most of the implementation-oriented research performed to date on TRPS has
focused on either small networks of less than five intersections or on artificial (theoretical)
networks, the following studies have shown that operating in a TRPS mode often has large
potential for achieving delay reductions in highly-varying or abnormal traffic conditions:

• A TRPS implementation based on real-time use of the Traffic Network Study Tool
(TRANSYT) software claims a 15 percent delay reduction over application of a fixed-
time or vehicle-actuated control [217].

• An analysis of a simulated traffic responsive system on SR-28 in Lafayette, Indiana
using 5 different plans (originally TOD plans for midday, morning, afternoon, event-
inbound, event-outbound) suggested that delay could be reduced from 14-28% com-
pared to TOD with these plans. But a lot of fine-tuning was required to prevent
frequent unexpected switching which initially reduced system performance [153].

• A recent deployment on Reston Parkway in Northern Virginia demonstrated across-
the-board improvements in delays, travel times, number of stops in both congested and
un-congested conditions over previous TOD operations [1].

Despite its promise, TRPS is rarely used in normal signal operations; most jurisdictions
simply default to a sub-optimal plan switching schedule. The difficulty and lack of intuition
in calibrating the many weights and thresholds of a TRPS system is often cited as the main
factor discouraging its implementation [3]. This has driven the search for ways to automate
the process of designing and calibrating the required parameters.
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One of the biggest obstacles in implementing TRPS is the inability to model the direct
impacts of control parameters on a desired performance objective. For example, the primary
method of quantifying intersection level-of-service (LOS) in the Highway Capacity Manual
2010 is an evaluation of the control delay. Specifically, delay is calculated in the HCM by a
prescribed equation (2.27)-(2.29). Yet this functional form is highly dependent on heuristic
parameters, and there is much debate as to its accuracy and applicability. In fact, while
intersection delay is an intuitive metric for the performance of a signal controller, there
does not exist any universally-accepted model for accurately calculating delay at a signal-
controlled intersection with arbitrary vehicle arrival patterns (as discussed in Section 2.2).

Many researchers have therefore suggested using new data-driven classification algorithms
for designing a TRPS controller, for example hierarchical clustering/regression trees [195,
196], k-means clustering [184, 210], linear discriminant analysis (LDA) [168], genetic al-
gorithms [165, 2], or neural networks [82]. While theoretically promising, the proposed
procedures all require a great deal of flexibility in controller design, including the creation of
new signal plans that are not guaranteed to adhere to the many practical political or safety
constraints that must be considered by existing traffic signal operators or technicians.

Here we propose an new method for rapidly configuring TRPS system parameters for
delay reduction using only the set of signal timing plans that is already encoded in network
controllers. This methodology is model-independent and therefore easy to implement on
any network given reasonable knowledge of sensor placements and critical intersections. The
“constraint” of using only existing signal plans makes our method more immediately useful
than previous proposals, as it skirts the need for long and costly re-timing processes—but
can still incorporate new plans as they become available. We believe that this will make our
methodology very attractive to municipalities that are hoping to improve the efficiency of
their existing automated signal control procedures without the expense of re-timing proce-
dures or the need to acquire new hardware.

In the following sections, we describe the typical TRPS mechanism that is present in
existing controller software, explain how our procedure could be implemented to calibrate this
mechanism, and provide a proof-of-concept demonstration of the procedure which improves
the theoretical performance of a real signal in terms of a simple estimation of intersection
delay.

6.1 Background: existing traffic responsive plan

selection functionalities

TRPS can be implemented on either a single controller or a set of neighboring controllers
equipped with occupancy and count sensors and an appropriate system management soft-
ware. Generally, a controller (either an isolated controller or master controller in a coordi-
nation group) aggregates a set of scaled and smoothed detector measurements into weighted
linear combinations that are known as Computational Channel (CC) parameters. Functions
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of these CC parameters then define three Plan Selection (PS) indices, which are used to ref-
erence an appropriate pre-encoded plan from a static three-dimensional look-up table stored
in controller memore. Figure 6.1 illustrates the typical process hierarchy for calculation of
PS indices.

Figure 6.1: Individual sensor measurements are first scaled, smoothed, and combined into
detector values. Computational channels (CC) are linear combinations of detector values,
and plan selection (PS) parameters are calculated as a function of these computational
channels. The PS parameters are used as indices in a look-up table to determine the proposed
plan.

CC parameters

As illustrated in Figure 6.1, raw measurements can be treated with scaling, smoothing, and/or
weighting factors in the process of calculating the CC parameters.

Scaling factors Scaling factors (or gains) convert raw count and occupancy measurements
into a value which is approximately representative of the utilized capacity of the approach
being detected. Assume that a scaling factor K for each individual sensor can range between
0 and 100.
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Smoothing factors Some type of time-averaging operation is typically performed to
smooth raw measurements, for example

xsmoothed[t+ 1] = xsmoothed[t] + τ(xraw[t+ 1]− xsmoothed[t]) (6.1)

for some smoothing factor τ . This helps identify long-term trends from high-frequency
variance in cycle-to-cycle movement demands.

Weighting factors Detectors are assigned weighting factors W by which the (scaled and
smoothed) approach measurements are multiplied prior to calculation of the PS indices.
Selection of detector weights W have a large influence on the resulting CC and eventual PS.
Intuitively, detectors with high variance corresponding to the crucial distinctions in network
state should be assigned a higher weight than those which have less variation in output.

Plan look-up table

The final step of the TRPS algorithm is the calculation of PS indices, which are some
simple function of the CC parameters. The exact form of this function is dependent on the
management software in use, but can be assumed to be a mapping that involves some sort
of weighted average, rounding, max(·) or min(·) operator.

Importantly, PS indices are not explicit suggested values for each of the plan character-
istics, rather they only represent a label to match detected conditions with suggested char-
acteristics. As previously mentioned, differences in PS indices typically represent thresholds
in optimal cycle length, green split, and offset timing features. These indices ultimately
correspond to coordinates in a static look-up table such as that illustrated in Figure 6.2.

At the end of an evaluation period, each master controller uses the PS indices calculated
from detectors within its coordination group to locate the appropriate plan from this pre-
defined table and disseminates the intended plan to the other coordinated signals. Each
individual controller then actuates its pre-encoded timings corresponding to the centrally-
chosen plan.

Hysteresis thresholds

It is known that frequent switches in timing plans causes unintended congestion due to dis-
ruptions in planned signal coordination. Therefore TRPS systems typically have limitations
on the frequency of plan switches. They also often have a built in “hysteresis” mechanism
to increase system stability given rapid changes in congestion state.

Many management systems designate “entering” and “exiting” thresholds for PS states.
These effectively define an “overlap” between adjacent measurement classifications where the
PS indices will tend to remain in their previous state until the alternate state fully dominates
(exceeds the exiting threshold of) the current measurement state.
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Figure 6.2: Plan selection (or PS ) parameters correspond to indices of a lookup table con-
taining plans available for the TRPS mechanism. Traditionally, the value of each PS index
corresponds to the preferred value of one of three independent signal control parameters:
cycle length (PSc), green split (PSs), and cycle offset (PSo).

Alternative implementation of TRPS

Early implementations of TRPS depended on a formulation designed for the FHWA’s Ur-
ban Traffic Control System (UTCS 1-GC) standard controller software [69]. This particular
pattern matching algorithm is natively implemented on many versions of the firmware for ex-
isting 170 controllers. However today it is sometimes overridden by the TRPS algorithms of
more advanced system management packages. We do not explicitly deal with this implemen-
tation in our algorithm, but it could be considered a special case of the general weighting and
scaling procedure. More on this “vpko” implementation of TRPS is provided in Appendix
C.

6.2 Analysis of the potential benefit of TRPS on

signals in the I-210 corridor

To analyze an example of benefits which could be obtained in an ideal implementation of
TRPS, we obtained four weeks worth of sensor data from a set intersections in Arcadia,
California. Out of the 52 intersections that were equipped with sensors at the time (seen in
Figure 6.3), we were only able to extract useable data from 30—and not a single intersection
had every single one of its individual movements represented. Note that this does not imply
that sensors were not present on all approaches for use in a TRPS application, only that all
existing sensors were not designated to send data to the central server.
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Figure 6.3: Traffic operators for the city of Arcadia, California provided approximately nine
months of data collected from 52 intersections in their jurisdiction. Intersections equipped
with loop detectors are indicated in red, and video detectors are indicated in green.

The functioning sensors include both video and loop detectors which measure counts and
occupancies in various configurations. Data are aggregated into five-minute measurements.
Most of the signals in the area operate with cycle lengths of 90-120 seconds, so five minutes
represents multiple full signal cycles —thus the impact of imposed signal timings on observed
demands should be minimal, assuming minimal cycle failures.

We choose delay as the primary performance metric we aim to minimize using TRPS.
Because we do not have access to the intersection to experimentally measure delay, we use
a the Webster delay formula (2.4) as a functional proxy to calculate an estimate of the
expected control delays at an intersection. Define Wm(qm(t), p(t)) to be Webster’s delay
formula (2.4) for a given intersection movement m, a function of measured volumes qm(t)
and the intersection signal plan p(t) (which is in the set of encoded plans P). Using this
model, the desired plan popt(t) at every measurement period t would solve the following
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optimization problem:

popt(t) = arg min
p∈P

∑
m

Wm(qm(t), p) (6.2)

Consider the signal operating the intersection illustrated in Figure 6.4. This intersection
is currently operating with three available plans, one designed for each of AM peak, PM peak,
and off-peak hours.On a typical weekday, the AM peak plan (plan 2) is in operation from
0600-0900 hours (6:00-9:00 AM) and the PM peak plan (plan 3) is in operation from 1530-
1900 hours (3:30-7:00 PM). Six of the eight relevant approach movements are represented
by the seven accessible system sensors.

Figure 6.4: The intersection of Huntington Drive and Santa Clara Street in Arcadia, Cali-
fornia has four approaches and three egresses. While sensors corresponding to each of the
nine turning movements are installed, only data from seven approach sensors is collected
centrally: measurements of north-bound right turns and north-bound left turns were not
provided. Each sensor location returned 2 independent measurements: volume and time-
occupancy. Thus there are a total of 14 measurements available for analysis.
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Estimated Weekday Control Delays Using Scheduled and Optimal Plan Selection  (09/12/2014)
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Figure 6.5: Ideal plan switching would reduce delay most notably during the hours surround-
ing the peak periods. In this example, it appears as if the intersection would benefit from
an extension of the AM peak period plan (2) and a shift in the PM peak period plan (3)
towards earlier hours. Also, the AM peak plan (2) could better serve late evening demand
than either the off-peak (1) or PM peak (3) plans. However this pattern varies daily.

To demonstrate the sub-optimal performance of the current TOD plan switching sched-
ule, we calculated the estimated intersection delay on the observed turn movements with
each available plan, and compared the delay for scheduled plans compared to the delay-
minimizing (optimal) plan p∗(t). Only the movements for which measurements are available
were considered; no effort is made to estimate delay on movements for which no data is pro-
vided. Results for a single weekday are demonstrated in Figure 6.5. Cumulative reduction in
delay with optimal plan selection is shown in Figure 6.6. Over one week, ideal plan switching
would result in a reduction of 13.82 vehicle-hours of delay as compared to scheduled opera-
tions. Scheduled operations would create an estimated 1,344.71 (cumulative) vehicle-hours
of delay; hence this reduction is equivalent to only a little over 1% of estimated control delay
at this intersection over the week.

If the expected onset and termination of peak hour demands remained consistent through-
out a typical week, similar delay reductions could be achieved via a simple re-tuning of the
TOD schedule. However we found that this was not the case: optimal switching behaviors
were not in fact consistent from Monday to Friday on a typical week, as shown in Figure 6.7.
Such day-to-day variations in demands corresponding to different optimal plans provides
the strongest motivation for further investigation of TRPS, despite seemingly minimal delay
reductions in this case. If the available plans had greater variation in green splits that are
more attuned to the observed differences in AM and PM demand patterns, a greater variance
in performance (and larger delay reductions) would be expected.
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Figure 6.6: Ideal plan switching would save approximately 13.8 hours of delay (1%) as
compared to continuous application of peak period plan scheduling over one week.
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Figure 6.7: Time-of-day settings would inevitably be sub-optimal for a majority of the week
days due to day-to-day variation in demands.



CHAPTER 6. FACILITATING IMPLEMENTATION OF TRAFFIC RESPONSIVE
PLAN SELECTION OPERATIONS 107

Yet is also important to note that no realistic TRPS algorithm could fully achieve the fully
optimal plan switching patterns for one major reason: the controller must decide on future
plans based on past feedback—it cannot choose ideal plans before the measured demands
are served. Switches between plans will therefore be at least one measurement period behind
optimal switching times.

Furthermore, the high-frequency switching behavior observed in the optimal plan pat-
terns in Figures 6.5-6.7 is not desirable because intended signal coordinations (progression
bandwidths) with neighboring intersections would be disrupted. In practice, plan switches
will be minimized by the hysteresis functionalities of the TRPS system. This mechanism
will however further delay the onset of desired plan switches.

Analysis of plan switching optimization over a network of intersections would involve
repetition of this process for all included intersections. Accurate calculation of delay in a
network, however, should include a representation of the impacts of signal offsets, which
is not the case with Webster’s delay formula. While there is a term in the HCM delay
formula which attempts to account for the effects of progression bandwidth, we currently
lack knowledge of the intended or observed network bandwidths that is required to calculate
the parameters of this delay term.

6.3 Formulating TRPS calibration as a supervised

learning problem

We propose a mathematical methodology for calibrating the set of parameters to cause
the mechanism to select the optimal plan (from the existing set of pre-designed plans) as
often as possible. This method requires a two inputs: the parameters of the existing signal
timing plans encoded on a given controller, and an extensive set of measurements taken from
the sensors that will ultimately be accessible to the TRPS system. It is assumed that the
sensor measurements are aggregated at a rate of 5-30 minutes. If all intersection approaches
are not represented by measurements, assumptions must be made regarding proportional
relationships between observed and unobserved demands.

The proposed calibration procedure can theoretically be used to derive a system that
selects plans to optimize any unknown (or known but non-calculable) function of available
measurements. However, we choose to propose a system to specifically achieve the natural
objective of minimum delay. The first step of our procedure is therefore to determine the
delay that would be induced by each available control plan for each measured set of demands.

If an accurate analytical model of intersection delay was available (and all measure-
ments and parameters required to calculate such a function were observable) an “optimal”
TRPS implementation would be trivial: the objective function for each set of sensor mea-
surements could simply be calculated explicitly, and new sets of measurements could be
functionally mapped PS indices in order to populate the optimal TRPS lookup table. How-
ever, as previously mentioned, no such analytical expression exists. This set must therefore
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be achieved using a numerical simulation of an intersection using, for example, microscopic
simulation software (see Section 2.6 for a brief description of microsimulation tools). The
desired outcome of the microsimulation procedure would be an assignment of “optimal” or
delay-minimizing plan for each simultaneous set of sensor observations (i.e., a plan is assigned
to every 5-minute measurement).

Modern microscopic simulation tools have built-in numerical methods for calculating
vehicle delay at intersections given different signal plans. Hence the mapping of demands to
delay-minimizing plan would be fairly straightforward. Note that the simulated network does
not have to be excessively large or detailed, as it only needs to encompass a single intersection.
However some knowledge of local coordination or platooning behaviors (depending on the
specific tool used) would be required for accuracy in delay estimation. An intersection will
only need to be simulated once per available signal plan with the same (deterministic) set of
input demands. The computational effort required for this procedure would then of course
depend on the length of the observation set.

The next step is to determine how the observable sensor measurements can best be
“compressed” into computational channels (CCs) that can be used to make distinctions
between optimal plans. One major difficulty faced by traffic technicians is the rigidity of the
existing TRPS feedback mechanism, which operates via the system of scaling, smoothing,
and weighting parameters illustrated in Figure 6.1. In practice, traffic signal technicians are
left to heuristically decide which sensor measurements are “most important” to consider in
the calculation of optimal cycle length, green splits, and cycle offset—and furthermore, how
to design the set of CC parameters that makes the desired threshold between appropriate
controller parameters as distinct as possible.

Abstractly, this procedure is equivalent to the process of compressing data into the most
relevant or critical components—a process which is commonly required in modern data sci-
ence applications, and is therefore very well-studied. Here we consider the application of
existing two data reduction techniques, Principle Component Analysis and Linear Discrim-
inant Analysis, to compress available sensor measurements into linear combinations that
are most likely to provide the information required to distinguish between assigned optimal
plans. The coefficients of the resulting linear combinations can be considered equivalent to
the weighting parameters Wd,c which map the measurements of detector d to computational
channel c; they can be scaled as necessary to lie within the range which can by implemented
by TRPS software system.

Finally, we use machine learning techniques to develop thresholds on the space of the
computational channels that distinguish between the appropriate plan assignments. At this
point we have a set of “training data” (computational channel values) with known “labels”
(optimal plans) and we desire to develop a set of rules to assign new data to the appropriate
labels, as would be encoded in a look-up table. This is the task of a supervised classification
algorithm.

The relationship between these steps of the proposed calibration procedure are illustrated
in Figure 6.8.
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Figure 6.8: A traffic operator will existing plan parameters and historical data to receive an
appropriate set of scaling, weighting, and PS threshold parameters that reduce estimated
delay in a TRPS implementation.

Derivation of computational channels via feature extraction
algorithms

The computational channels illustrated in Figure 6.1 primarily serve to compress the many
independent sensor measurements into a smaller number of features that are considered most



CHAPTER 6. FACILITATING IMPLEMENTATION OF TRAFFIC RESPONSIVE
PLAN SELECTION OPERATIONS 110

relevant to plan selection. There are no formal guidelines offered for constructing these fea-
tures in practice. They may logically be used to highlight expected changes in demands for
certain movements based on the design of the relevant plans. For example, sensors on the
major arterial through movements may be given larger relative weights than those on minor
through movements to aid distinction between peak period plans that are traditionally used
to accommodate unidirectional spikes in demands on a major arterial. Previous academic
implies that computational channels can also serve a “first pass” in distinguishing the avail-
able measurements which relate to the control variables (cycle length, splits, and offsets)
to which plan selection parameters are assigned. Yet it is not intuitive how this can be
accomplished, even with advanced knowledge of the geometric properties and flow patterns
on a specific network.

We propose to replace the heuristic procedure with an automatic feature extraction algo-
rithm to design appropriate computational channels. Explicitly, we use a feature reduction
algorithm fr(·) to map training measurements {q̂train, ôtrain} to an “optimal” space for classi-
fication, and then use the same mapping on all future measurements in the calibrated TRPS
controller:

W = fr({q̂train, ôtrain}) (6.3)

X (t) = W · [q̂(t), ô(t)] (6.4)

Dimensionality reduction through feature extraction is common practice for pre-processing
data in modern data science applications; it is a standard way to improve the efficiency of
a learning procedure (i.e. regression or classification) by “filtering out” data fields that are
of little impact to the final result before costly computations are attempted. Our proposed
methodology brings benefit to the TRPS calibration procedure because we effectively remove
the influence of “traditional” heuristic knowledge of relative sensor importance and instead
generate an unbiased quantification of which features truly show high variation.

We evaluate the performance of the following two feature extraction methods for use in
this system.

Principle Component Analysis

The simplest method of dimensionality reduction is known as principle component analysis
(PCA) [167, 98]. PCA is an intuitive eigenspace-based analysis method that is widely used
in many fields [190, 149, 104].

Consider a data set of N samples {q̂train, ôtrain} which each contain m << N unique
sensor measurements. Arrange this data as a m-by-N matrix Xo in which each column
corresponds to a specific sample time and each row corresponds to measurements from a
single sensor (measuring either a volume q or occupancy o). Denote the ith column of this
matrix xi. The scatter matrix of Xo (an un-normalized covariance matrix, assuming E(xi)



CHAPTER 6. FACILITATING IMPLEMENTATION OF TRAFFIC RESPONSIVE
PLAN SELECTION OPERATIONS 111

is equal to the column-mean vector µ) can be calculated as follows:

S =
N∑
i=1

(xi − µ)(xi − µ)T (6.5)

PCA seeks the direction of maximum variance, or the projection φ which achieves

φPCA = arg max
∣∣φTSφ∣∣ (6.6)

The principle components are simply the set of n < m normalized eigenvectors of S
that correspond to the n highest eigenvalues. Intuitively, these eigenvectors indicate the
orthogonal dimensions which capture the most variance in the columns of Xo (the training
data).

Explicitly, φ is a m-by-n matrix with the principle component vectors (the first m eigen-
vectors of S) as columns. The dimension of a data set Xo is reduced via the linear transfor-
mation

X = φTXo (6.7)

In this application, we choose n to be equal to the number of desired computation channels
in the TRPS mechanism. The set of sensor weights Wi corresponding to CCi would then be
equal to the (scaled) elements of the ith eigenvector.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), also known as Fisher’s Linear Discriminant, is often
the default choice for feature reduction in supervised learning applications such as this one
[21, 133]. While an unsupervised feature extraction algorithm such as PCA generates a
set of features which account for the most overall variance in a dataset, LDA targets those
features which have the largest influence specifically on the corresponding classifications. In
other words, the relative sensor weightings derived by this algorithm indicate the relative
impact of specific sensors measurements directly on the space of the outcomes instead of on
the space of the measurements themselves. A projection derived via LDA would therefore
ideally result in maximal separation of the labeled classes.

Organize the training data into matrix Xo as previously described. Define a separate
mean vector µk of the measurements corresponding to each available class k ∈ {1, . . . , K}.
The sum of the un-normalized co-variance matrices calculated for each class-subset of the
training data is called the within-class scatter matrix :

Sw =
K∑
k=1

N∑
i=1

(xi − µi)(xi − µi)T (6.8)

The between-class scatter matrix is then defined as

Sb =
K∑
k=1

Nk(µi − µ)(µi − µ)T (6.9)
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where Nk is the number of samples (columns) classified as class k and µ is the mean of all
training measurements.

LDA selects a projection that maximizes the ratio of the determinants of the between-
class scatter matrix and the within-class scatter matrix, known as Fisher’s criterion:

φLDA = arg max

∣∣φTSbφ∣∣
|φTSwφ|

(6.10)

It can be shown that the columns of the projection matrix which maximizes (6.10) are
equal to the subset of the eigenvectors of the matrix [S−1

w Sb] which correspond to the largest
eigenvectors.

Note that this matrix is of dimension m-by-K, and therefore its rank is necessarily ≤ K.
Hence LDA can at most derive (K − 1) feature vectors. In our application, this is a strong
limitation: as will be seen in our simulated implementation, the features derived via LDA
will not be able to generate a three-dimensional plan selection table for a signal which has
fewer than four plans available for selection.

Mapping CCs to PS indices

Very little information is available about how to translate the values of the computational
channels into plan selection parameters. It appears to vary according to the manufacturer
of a specific controller or signal management software.

Define this mapping between CC parameters and PS indices as PS = ψ(CC). Consider
only the following constraints on the PS indices:

• The table is indexed by three PS indices, which may or may not be linked to the three
degrees of freedom in a signal plan (cycle length, splits, offsets). This assumption
provides flexibility for improved distinction between plans in cases where, for example,
a cycle-length PS parameter would become irrelevant because all available plans share
a common cycle time.

• The function ψ(·) is user-defined, but can only use relatively simple operations such as
summations, averages, integer-rounding, min(·), or max(·).

• PS indices must be positive integers between 0 and a fixed maximum index M .

The first assumption highlights one of the initial challenges we encountered while ex-
perimenting with TRPS calibration procedures. Literature implies that the PS indices are
typically assumed to correspond directly to the three degrees-of-freedom in a signal plan
design process. While this would be a reasonable approach if one were to have full freedom
in plan design when calibrating a TRPS (in other words, the plans were being designed
with this TRPS mechanism in mind), it is a severe limitation in our case because we are
attempting to demonstrate TRPS only with existing plans.
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In practice, differences in green splits are almost universally the primary distinction be-
tween plans. In the case of coordinated controllers, offsets are also a key source of plan
variation. But in our analysis of the plans implemented on Arcadia intersections, we com-
monly ran across cases in which all available plans for a given intersection shared a common
cycle length. In this case, the plan selection parameter designated for the cycle length char-
acteristics would become irrelevant, and our plan selection table would be effectively reduced
to two dimensions. Furthermore, because we do not have full observation of all relevant ge-
ometric parameters of the network, we lack knowledge of the intentions of impacts of the
offset parameter on signal performance, so it was also difficult to make plan distinctions
based on this PS axis. We were therefore only left with a single index (the PS corresponding
to splits) upon which to base our plan choice.

Here we defy the precedent that each of the PS indices must correspond to a plan charac-
teristic. We found no reference to specifically evidence that this was a necessary assumption
in the functionality of existing TRPS mechanisms. Furthermore, the process for deriving
CCs we described above is actually designed in a manner that is blind to this type of physi-
cal interpretation—but instead provides a theoretical robustness that cannot necessarily be
achieved with the artificial division between individual plan characteristics.

We choose a very simple mapping for computational channels to PS indices: the ith PS
equal to the ith CC after normalization, rounding, and scaling to a valid positive integer
between 0 and M (to enforce maximum possible precision).

PSi = ψ(CC) = min

{
max

{
int

[
M

bmaxi − bmini

(CCi + bmini )

]
, 0

}
, M

}
(6.11)

where bmaxi and bmini are the maximum and minimum values of the ith CC observed in the
training set, respectively, and the int[·] implies rounding to the nearest integer.

Notice that this method does limit our procedure to using (at most) three CCs, given
that there are only three PS dimensions available. We discuss the implications of this on
our test implementation in the following section.

Plan selection table design: comparison of supervised learning
alternatives

The last step of the calibration procedure is the population of the lookup table. As previously
mentioned, this is accomplished via a supervised classification procedure to map all possible
combinations of PS indices to the best available plan.

We define classification as the process of assigning a discrete label to an object or state
based on a set of known characteristics. In this case, we are attempting to assign an appropri-
ate signal plan p ∈ P for the signal controller based on feedback from sensor measurements
{q̂, ô} —or more specifically, the set of features derived from the measurements using the
previously discussed data reduction algorithms, X (t):

p = C
(
X (t)

)
(6.12)
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In a TRPS implementation, we actually use this classification algorithm slightly differently:
because we cannot explicitly compute the classifier on the controller hardware, we use the
classifier to populate a discrete look-up table T which stores the values of the classifier at
each possible combination of PS indices PS = ψ(CC).

pc = T[PS] (6.13)

T = C(X train) (6.14)

for a set of training features X train derived from a set of historical sensor measurements. We
are effectively creating a discretized representation of the classifier output for reference in
the TRPS controller.

Three multi-class classification algorithms were considered for this application.

Decision Tree

A decision tree iteratively analyzes groups of training data to determine a variable which
“optimally” splits the group into two subsets. It begins by selecting the entire training data
set and splitting it into two sub-nodes called “branches”. It then acts on each branch in-
dividually until it reaches “leaves” which attain full classification or some other pre-defined
stopping criterion. Decision trees are one of the most popular tools for data mining applica-
tions, and there are many in depth references on their implementation [35, 84].

At every node of a decision tree, the division between subsequent branch node groups
are based on some threshold on feature values that produces the most information gain
(or reduction in impurity) between the parent node and the resulting sub-groups. There
can be many measures of optimality in the splitting criterion, but the goal is generally to
progressively reduce the variance of the data in the separated groups as they progress through
subsequent branches. In this work we choose a split with minimum Gini impurity.

Consider selecting a single measurement from a data set, and randomly labeling this
measurement by selecting a value from the overall distribution of labels present in the whole
set. Gini impurity (IG) is a measure of how often this element would be labeled incorrectly.
For some group of data with K classes, define fk to be the fraction of the data that belongs
to class k. The Gini impurity of this set is defined as

IG(f) =
K∑
k=1

fk(1− fk) =
K∑
k=1

(fk − fk2) = 1−
K∑
k=1

fk
2 (6.15)

Notice that (6.15) reaches its minimum (0) in a group where all data belongs to the same
class.

As previously mentioned, node groups are split based on a threshold in one of the con-
tinuous feature values. A node n chooses a single split point cn for some feature f , such
that all elements in the resulting sub nodes either have f < cn or f > cn. The choice of
attribute (or small group of attributes) to split on can be determined differently in different
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implementations of a decision tree algorithm. Often when the choice of optimal splits is
not unique, one of the alternatives is chosen at random. This step of the procedure may
introduce randomness into the algorithm output: it may be the case that two runs of the
same decision tree implementation will produce different trees for the same input data. A
variety of parameters (such as the maximum number of bins to use when discretizing con-
tinuous input features, or the minimum information gain required to induce a split) can be
tuned to make the path of a decision tree more predictable, but no there are no guarantees
of optimality when fixing (or not not fixing) these parameters.

If the construction of a decision tree classifier is not impeded by a pre-defined maximum
tree depth, minimum leaf size, or other stopping criterion, it will theoretically provide clas-
sifier that correctly identifies every single data point in a training set (assuming that there
is a true one-to-one mapping of features to classes in the data). This is not necessarily a
desirable characteristic because it could cause overfitting, or the state in which the classifier
is so specific to the training data that it cannot be generalized to perform optimally on new
stochastic feature sets.

Random Forest

A random forest is an implementation of the decision tree concept that reduces risks of
overfitting by generating sub-samples of the training data and creating decision trees on
each sample [34]. New predictions are generated by labeling the input feature set using each
tree individually and ultimately selecting the “most popular” mode class label. By the Strong
Law of Large Numbers, a random forest is guaranteed to converge to a deterministic classifier
as the number of individual trees used grows. Not surprisingly, this ensemble method has
been shown to produce classification results that are much more robust and accurate than
individual trees.

k-Nearest-Neighbors

A simpler method for classification is the k-nearest-neighbor (k-NN) algorithm. As the name
implies, a prediction for any new element is simply the “majority vote” of the k “nearest”
training examples in the feature space. The appropriate number of neighbors to choose will
vary according to the specific characteristics of the training data set; it can be determined
by testing the algorithm on a validation data set (with known classes) with many values of
k to identify which k minimizes root-mean-square error in the resulting predictions.

This algorithm is intuitive and easy to implement, but has significant drawbacks. The
resulting classification can easily be biased towards one class that is more frequent than
others in the training data, because logically these samples are more likely to be the closest
“neighbors” to any point in the feature space. To reduce the impact of this effect, the
“votes” of the k neighbors can be given weights according to their Euclidean distance from
the queried location in the feature space. Yet data with a large amount of “unimportant”
features (that are not relevant to the resulting class) can also degrade the results of the
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k-NN algorithm, and the aforementioned weighting scheme may amplify this problem. For
additional reference on this algorithm, see [84].

Robustness to missing data or sensor malfunction

The inherent TRPS system can unfortunately be very sensitive to unexpected sensor failures.
Once such a malfunction is positively identified, however, the proposed method of calibration
makes adjusting for such failures relatively simple. Assuming that the complete mapping of
sensor measurements to optimal plan (i.e., from microsimulation) is still available, only the
data reduction and table generation steps would need to be reconstructed to complete a full
recalibration of the TRPS controller. In practice, these two steps are highly efficient and can
be fully automated—no additional manual analysis would be required. To account for the
missing data, one would simply remove the missing sensors from the training set which is
input into the feature extraction step without changing the corresponding plan assignment,
and in practice assign the faulty sensors a weight of 0 for all resulting CCs.

In other words, the essential functionality of the calibration methodology proposed here
would not be impacted by the reduction of a single sensor. If the removed sensors were
highly weighted in any CC of the previous calibration, performance of the newly calibrated
system could theoretically be significantly reduced—however this would be the case with any
reasonable TRPS system.

6.4 Performance of proposed parameter selection

system

We tested a proof-of-concept implementation of our proposed calibration method by simu-
lating its use on the controller at Huntington and Santa Clara that was described above.
We had a total of 37 weeks of sensor measurements available; thus we used the first 25
weeks of data to train our feature extraction and classification algorithms and validated
the performance of the resulting TRPS mechanism using the subsequent 12 weeks of data.
Importantly, instead of using microsimulation for generation of a training set (as proposed
above), we used the simple analytical expression of Webster’s delay (as in (6.2)) to generate
our training set.

Based on a preliminary investigation of classification error, we selected the following
parameters for the three classification algorithms described above:

• The decision tree and random forest was derived with a maximum depth (number of
consecutive branches in the tree structure) of 10. While limiting the tree depth could
result in unnecessarily mis-classified spaces in the feature space, we found that this
stopping criteria actually improved results on the validation set. Because we simply
aimed for a proof-of-concept implementation, we did not investigate further restrictions
on the stopping criteria.
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• We chose k = 3 neighbors in the k-nearest-neighbor implementation based on high-level
observations of the level of detail in the resulting class boundaries for ks ranging from
two to five. Again, our proof-of-concept implementation did not require “optimization”
of this classifier, although it could easily be performed with a more rigorous analysis
of the results on the validation data set using different alternative for k.

Recall that LDA is usually considered the preferred methodology for feature extraction
in supervised learning applications, however it is limited by the fact that it cannot derive
more components than available classes. Hence we were not able to generate more than two
sets of CC weights using LDA in this case (as there were only three plans encoded into this
specific controller). However, Figure 6.9 demonstrates how classification on the validation
data set using the two features extracted from the training set via LDA outperformed a
low-dimensional feature set derived using PCA in all of the tested algorithms. This matches
common expectations in such a supervised learning application. The fact that classification
accuracy continues to increase with the number of PCA parameters in all algorithms suggests
that overfitting is not a factor here, rather the lower dimensional feature reductions are not
actually sufficient to capture all relevant variations in data. Yet as previously mentioned, the
three-dimensional lookup table available in TRPS systems constrain our feature dimension to
at most three—and at this low dimensionality, we have clear evidence that feature extraction
via LDA will lead to more accurate classification than via PCA.

Figure 6.9 also suggests that the most accurate classification (with any set of three or
fewer parameters) is attained using a Random Forest algorithm. Yet accuracy in classification
alone cannot ultimately predict performance: the impact of sub-optimal plan selection due
to the resulting misclassifications from each algorithm is not guaranteed to be the same
with all algorithms. Thus we simulated the performance of a TRPS controller using each
of the three previously described classification algorithms using features derived from both
two-feature LDA and three-feature PCA.

Examples of the 2-D and 3-D lookup tables are shown in Figures 6.10-6.13. The controller
classification accuracy (and resulting delay reduction) is highly influenced by the resolution
of the plan selection table (M in equation (6.11)). With 10 or fewer possible values for each
PS index, the rounding used to map each continuous CC value to a discrete PS index caused
relatively large areas of the CC-space to be mis-classified. The choice of 32 index values was
made via comparison of the resulting selected plans to the optimal plans (see Figure 6.14);
improvement in classification accuracy was questionable in all algorithms at table resolutions
higher than this.

Our TRPS controller implementation was simplified for the purposes of demonstration
and analysis: upon receipt of a measurement, the controller calculates CC and resulting PS
parameters and immediately implements the plan indicated by the lookup table at these
indices at the subsequent time step, illustrated in Figure 6.15. Explicitly, the plan pc(t)
selected for application at time step t is a function of volume and occupancy measurements
from previous time step t−, {q̂(t−), ô(t−)}. These measurements are mapped through feature
extraction method fr and a table generated using classifier C trained on a set of historical



CHAPTER 6. FACILITATING IMPLEMENTATION OF TRAFFIC RESPONSIVE
PLAN SELECTION OPERATIONS 118

Decision Tree

Random Forest

3-Nearest Neighbors

cl
as

si
fic

at
io

n 
ac

cu
ra

cy

number of PCA coefficients

Figure 6.9: In general, the LDA feature reduction method resulted in higher accuracy of
the subsequent classification algorithms as compared to lower-dimensional PCA; six or more
features were required from the unsupervised feature extraction procedure to produce results
equivalent to a two-feature LDA reduction. Additionally, a comparison between the three
tested classification algorithms reveals that random forest was the most successful.

sensor data, {q̂train, ôtrain}.

u({q̂(t), ô(t)}) = pc(t) = T[PS(t−)] (6.16)

where W = fr({q̂train, ôtrain}) (6.17)

X train = W · [q̂train, ôtrain] (6.18)

T = C(X train) (6.19)

X (t) = CC(t) = W · [q̂(t), ô(t)] (6.20)

PS(t) = ψ(X (t)) (6.21)

This is a “simplified” TRPS controller because it does not incorporate any smoothing on
the measurements and it does not demonstrate hysteresis boundaries on the plan switching
mechanism. Both of these features, if implemented, would theoretically reduce undesirable
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Figure 6.10: The creeping class boundaries in the lookup table generated by a single decision
tree shows evidence of over-fitting.
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Figure 6.11: The lookup table generated by the random forest algorithm shows more regular
class boundaries than the decision tree table, as expected using this ensemble method.
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Figure 6.12: The discretization inherent in creating a lookup table filters noise in the feature
space that would otherwise appear in the feature space using a k-nearest neighbors classifier.

Figure 6.13: The 3-dimensional lookup table shown here is only an under-sampled represen-
tation (rendering the full version is difficult).
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Figure 6.14: The look-up table resolution (M in (6.11)) intuitively has a large impact on the
optimality of the resulting plan selection table. We chose M = 32 based on the observation
that oscillations in accuracy with increasing resolution could be caused by the inherent error
due to overfitting of the classifiers, which is “smoothed out” by under-sampling at lower
resolutions. Variations in the accuracies of the decision tree and random forest classifiers are
expected due to the randomness involved in these algorithms.
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Figure 6.15: We implement a simple feedback controller for our system simulation. The
selected plan is a function of volume and occupancy measurements from all available sensors.
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plan 2 plan 3plan 1Comparison of plan switching behaviors: TRPS, optimal, and scheduled over 24 hours
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Figure 6.16: In this example day, the “best” performing classifier (decision tree using LCA-
derived features) incorporated the most plan switches—even more than the optimal switch-
ing pattern. This suggests an overfitting of the data in the classification algorithm. The
random forest and k-nearest-neighbor classifiers returned exactly the same results in this
case. In practice, a functioning TRPS controller would have to eliminate high-frequency
plan switches, as the process of switching between plans will realistically take around 15-
20 minutes. More frequent plan switches also have a negative (short-term) impact on the
intended progression bandwidths.

high-frequency switching behavior. Figure 6.16 shows how our simplified controller often
recommends switching plans twice or more in a 15-minute interval.

Table 6.1 lists the final classification accuracies achieved by the simulated TRPS controller
referencing a 32×32 plan selection table (for 2 LDA features) or a 32×32×32 plan selection
table (for 3 PCA features). Despite the reduced dimensions, each of the tables generated by
the LDA features clearly outperforms the tables indexed by the PCA-based CC parameters.
LDA should be the default option for feature reduction—especially if four or more plans are
available such that a 3-dimensional table can be produced.

The delay induced by the LDA-feature TRPS controllers was very close to the optimized
delay, as seen in Table 6.2. While 0.9 % appears to be a relatively small reduction in delay,
absolute delay reductions are far from insignificant. Given “optimal” plan selection, the
cumulative total control delay over the entire 12 weeks would be 170,729 vehicle-hours. Our
simulated TRPS controller would induce a cumulative total delay of 170,829 vehicle-hours.
The scheduled TOD plans, meanwhile, generate 172,385 vehicle-hours of delay over this time
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Classification accuracy (percent)
classifier 2 LDA features 3 PCA features

decision tree∗ 85.2913 66.4018
random forest∗ 85.2358 74.2851

3-nearest neighbors 83.7657 69.8779

Table 6.1: In general, classification using two LDA features was significantly more successful
than that using three PCA features. The decision tree and random forest algorithms were
more accurate than k(3)-nearest-neighbors. Values for the decision tree and random forest
algorithms (marked with ∗) are an average of four simulation results.

Delay reduction (percent, compared to TOD plans)
classifier 2 LDA features 3 PCA features

decision tree∗ 0.900502 0.584689
random forest∗ 0.902846 0.782999

3-nearest neighbors 0.884022 0.697648
optimal 0.960819

Table 6.2: Optimal delay reduction was observed using a decision tree or random forest
classifier (with a maximum tree depth of 10) operating on two features that were derived
via linear discriminant analysis. Values for the decision tree and random forest algorithms
(marked with ∗) are an average of four simulation results.

period. Assuming a similar reduction given TRPS application on the surrounding 51 signals,
the annual delay reduction could be over 300,000 vehicle-hours.

While we recognize that the frequency of switching that is required to achieve these
delay reductions is unreasonable, this work serves as a proof-of-concept for a realistic TRPS
calibration mechanism. Only small modifications are required to make the proposed system
directly ready for implementation. For example, a simple constraint on switching frequency
(and “memory” of recent measurements) would provide a desired smoothing of controller
switches. Furthermore, a procedure could be developed to identify situations in which adding
an additional plan to the encoded set would significantly increase controller performance.
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Chapter 7

Conclusion

The research presented in this dissertation represents a variety of theoretical and practical
contributions to the study of signalized traffic networks, but more globally demonstrates the
challenges of merging theory into the practice of urban traffic management. In the concluding
chapter, we briefly summarize the main contributions presented in this body of work. We
then return to the initial motivations that were described in the first chapter, and address
the outcomes of our work on the prospect of a comprehensive arterial management system.
We finally suggest some directions for future research and development that have arisen from
the work compiled in this dissertation.

7.1 Summary of contributions

In Chapter 1, we introduced three primary objectives of arterial traffic management: model-
ing/prediction, estimation, and control. To conclude the work, we present the contributions
of the preceding work in relation to each of these objectives.

Modeling

While the traffic community has (relatively) settled on methods of representing uninter-
rupted freeway flows using kinematic wave models, no such consensus has been reached in
the case of signalized urban roadways. The validation and analysis of a reproducible imple-
mentation of two dynamic traffic models in Chapter 3 addresses this fact. To the knowledge
of this author, this work represents the first comprehensive evaluation of the performance of
CTM on short signalized roadways. It also presents an entirely new formulation of a cell-
based vertical queueing model variant specifically for signalized networks called the Vertical
Cell Model (VCM). Because no physical model can be expected to reproduce the often-
unpredictable instabilities in congestion dynamics with complete accuracy, we demonstrated
that a simplified vertical queuing model such as VCM achieves an acceptable compromise
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between accuracy and analytical simplicity in its representation of the evolution of arterial
traffic state.

Estimation

We introduced an analytically-based state estimation procedure which can incorporate mea-
surements taken from multiple disparate sources into a single model of link dynamics in
Chapter 4. Specifically, we extended a methodology that has been previously demonstrated
on freeways to an application on signalized roadways through incorporation of constraints
to impose the artificial impediment generated by a downstream signal controller. We also
presented a method of incorporating end-to-end travel time measurements into the model-
based state estimation. This is a more flexible way to incorporate information gained from
a GPS trajectory into a queue estimate than techniques which depend on highly-accurate
positioning information, as individual trajectories with such high resolution can provide a
poor representation of the macroscopic behaviors that are being estimated.

Control

Control was approached from two very different directions in this dissertation.
Chapter 5 presents a theoretically optimal signal controller and extends the controller’s

underlying modeling framework closer towards an accurate representation of the constraints
imposed on existing signal controllers. The contribution of this effort brings max pressure
signal control one step closer to reality.

On the other hand, Chapter 6 addresses the very practical problem of calibrating a rigid
controller software framework to achieve theoretically-optimal results. Even without any real
effort to tune or “optimize” the tools implemented in the proposed calibration procedure,
the resulting controller was shown to achieve a delay reduction that was very close to the
optimal performance possible with the set of existing signal plans. Because the concept was
designed to be applied on existing hardware using the set of signal plans that is already
available, the algorithm is something that could be implemented practically immediately.

7.2 Primary challenges identified in the development

of a unified urban traffic management system

Perhaps the most significant limiting factors of this work has been a lack of available data
for realistic analysis of traffic on signalized road networks. In an era where surveillance (and,
in some sense, control) of human behavior is practically ubiquitous, it seems strange that
we do not yet have an effective system to monitor and/or control how people use their local
transportation networks. Yet consider that currently we do not even have a robust real-time
method of monitoring the proportion of vehicles that turn left at any given approach to a
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traffic intersection. Such an observation of turn-ratios alone would make a huge differences
in the expected accuracies of any type of dynamic model of urban traffic flow.

But the lack of data was not limited to the dynamic characteristics of a road network.
In fact, it was even incredibly difficult to compile the (relatively) static data that more
fundamentally influence vehicle flows, such as lane counts, turn bay capacities, and artificial
movement restrictions.

This data gap is often overlooked by academic researchers driving the development of
traffic theory, as they can (and sometimes must) use fully-synthetic simulated models to
demonstrate their theories and algorithms. Yet in Chapter 3, we concluded that the repre-
sentation—or misrepresentation—of this type of data data can have more impact on model
predictions than the choice of model itself.

While it was not always addressed specifically, this conclusion could also be considered
highly applicable to the rest of the work described in this dissertation. For instance, the
estimation algorithm described in Chapter 4 not only relies on the inherent assumption
that traffic behaves according to the LWR model, but it also assumes that traffic divides
into a predictable number of queues corresponding to the number of lanes available in the
roadway. For truly realistic results, it would need to be aware, for example, of the ability
of right-turning vehicles to consistently bypass queued vehicles to proceed on a red light by
creating an unofficial turn lane. While this type of unexpected behavior may seem trivial
to a theoretician, it must be considered if we ever hope to depend on a model to accurately
predict the onset of intersection spill-back. Considering that one of the objectives of projects
such as Integrated Corridor Management is to facilitate operation of a traffic network when
demands are very near its theoretical capacity, this desired use-case is actually very possible.

One overarching outcome of this work is therefore a reconsideration of the initial assump-
tions outlined in the introduction to this work: the first step towards a unified urban traffic
management system is not in fact a “comprehensive” model of traffic flow dynamics, but
rather a “comprehensive” representation of the road network itself.

There is evidence of past efforts to systematize the geometric data required to accurately
represent network dynamics with an incredibly high level of detail. For example, the formula
presented in the 2010 Highway Capacity Manual for determining saturation flow at an inter-
section approach has 11 separate geometric and behavioral adjustment factors. Calculating
the value of each adjustment factor would require a distinct and detailed physical measure-
ment of road geometry or typical driver behavior. The presentation of this equation in the
HCM is quickly followed by a reference to default values, and a disclaimer that measured sat-
uration flows will be more accurate than the adjustment procedure anyway—which implies
that someone with sufficient access to observe all of the physical characteristics required for
accurate estimation of saturation flow should just measure it instead!

Before future efforts to use data-driven methods of calibrating physical network parame-
ters, more study needs to be done to determine and standardize the minimum set of informa-
tion required to accurately represent the characteristics of a signalized road network. Such
a process would greatly facilitate future development of sufficiently-accurate yet efficient
queueing models for signalized networks.
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It is also important to actively seek areas where the traditional heuristic models and
traditional beliefs about urban traffic management can be supplemented or even replaced
by more rigorous data-driven algorithms, such as the TRPS calibration algorithm presented
in Chapter 6. This work clearly demonstrates an area where a departure from traditional
methods can make operations much more efficient and effective. But it is also important
to recognize that this does not mean that there is no need for the heuristic knowledge
of experienced traffic engineers and technicians. In fact, our simplified implementation of
the TRPS controller could greatly benefit from advice of traffic practitioners to improve
the realism of our modeled objective function and assumptions on reasonable switching
behaviors.

7.3 Future directions

The original motivation behind developing VCM was in fact to simplify the pathway towards
applying traditional control techniques derived from linear systems theory to traffic signals.
This is still a very valid objective for future work. The linear link model is attractive
for analysis and estimation purposes as well. In fact, existing efforts at feedback-based
queue estimation applied a Kalman filter to a similar vertical queueing representation using
measurements that could be realistically available [44, 206]. It would be valuable to explore
how such an approach to queue estimation could be extended to incorporate measurements
from neighboring links using the VCM framework.

In the same vein, the next logical step for the Moskowitz PDE-based queue estimation
technique is an extension to a network of signalized intersections which are realistically
coupled such that a queue length estimate could be informed not only by the measurements
that are within the domain of a single link, but also by those taken on upstream links.
Research would be required to determine how to best project upstream measurements onto
the area of analysis in a way that is consistent with the assumptions of the underlying LWR
model.

There is a great deal of work that would need to be done to make the theoretically-
beneficial max pressure controller more practically applicable. Unfortunately, there are many
unrealistic assumptions of the inherent store-and-forward modeling framework that must be
addressed before the theoretical guarantees of optimality can be directly translated to per-
formance on a road network. One of the biggest assumptions is the infinite storage capacity
of network links. An extension of the modeling framework to handle finite link storage is
challenging, as it introduces an additional non-linearity (and downstream dependence) on
link discharge rates. Yet such an extension would be a huge step forward in the relevant line
of research.

Another unrealistic assumption which limits the application of max pressure is that the
controllers have knowledge of the expected intersection turning ratios. In fact, almost all of
the algorithms discussed in this dissertation have required estimation of turning proportions.
Turn ratio estimation using existing sources of data has been explored from many angles by
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the traffic community, yet no strong consensus on the optimal approach has been reached.
Emerging data sources such as those discussed at the end of Chapter 2 offer new promise in
this line of work; researchers should continue to explore creative ways to use probe vehicles
and advanced detectors to improve estimation of network parameters as well as congestion
state.

The TRPS calibration procedure described in Chapter 6 remains only a proof-of-concept.
Areas for improvement are numerous: classifier parameters could be optimized, mechanisms
could be implemented to reduce high-frequency switching, and, importantly, the benefit
analysis should be extended to implementation on a network of coordinated signals with a
representation of progression (or number of stops) incorporated into the objective function.

The lessons learned from this process could also motivate the search for additional sub-
problems in arterial traffic operations where, given increased availability of data from signals
and traffic sensors, model-less estimation or control techniques could be applied. Because
of the challenges associated with modeling signalized intersections, algorithms that are not
explicitly dependent on a specific model of traffic dynamics have wide appeal. The suggestion
of new use cases for high-resolution sensor data would furthermore motivate traffic operators
to begin to centralize and archive the data from their signalized networks, which could benefit
all of the primary objectives of the work described in this dissertation.
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Appendix A

Descriptions of existing adaptive
traffic control systems

• The TRANSYT model is the basis for an automated online optimization method called
the Signal, Cycle, and Offset Optimization Technique (SCOOT) [100, 175].
SCOOT adjusts traffic at small intervals (not a “one-shot” optimal) based on the
optimal settings derived from TRANSYT given inputs derived from the most recent
knowledge of traffic conditions. While it requires a central processing unit, the resulting
strategy is functionally a decentralized actuation of individual signal splits, offsets,
and cycle times. SCOOT was implemented in the 1980’s in Britain with demonstrated
success compared to typical heuristic fixed-time plans. It is more recently commonly
deployed in Australia and Asia, and occasionally in North America (notably, see the
results of a field test in Anaheim, CA [146]).

• The Sydney Coordinated Adaptive Traffic System (SCATS) is a closed-loop
traffic control system that updates intersection cycle length and splits based on infor-
mation gathered in real-time at stop-line detectors [188, 131]. It also showed substantial
improvement in arterial flow over a static optimized fixed-time control scheme. As of
1990, there were plans to implement SCATS on over 1,800 signals in Sydney [130]. It
requires a central processing center to supervise a set of independent regional comput-
ers which each directly advise up to 200 local controllers (sets of signals). The regional
computers essentially choose which controllers to “marry” to create groups of locally
connected sub-systems over which to optimize flows. The selection of these “marriages”
is dependent on measured traffic conditions. The regional system then selects the cycle
length, offset, and plan (out of a pre-defined set) for each controller in each sub-system
that optimizes either for minimum delay, minimum stops, or maximum throughput in
that subsystem. SCATS was the first adaptive control system deployed in the U.S.
with a field test as part of the Fast-Trac program in Oakland County, Michigan [61].
This test used video detectors instead of loop detectors.

• The FHWA developed a centralized traffic control system known as the Urban Traffic
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Control System (UTCS) in the 1970’s. This uses historical data to develop timing
plans which may vary by time of day or day of week. The first generation system
(1-GC) selects fixed or variable timing plans based on time of day or by matching
recent measurement to previously observed congestion patterns. If operating in traffic
responsive mode, it can update the plan at 15 minute intervals based on real-time
demand measurements. A feature called critical intersection control permits some
adjustment of green splits from pre-determined plans. Details of the traffic responsive
capabilities of UTCS are provided in Appendix C.

• UTCS 2-GC is a online network-wide control strategy that uses real-time measure-
ments and a prediction model (fed historical data) to optimize signal timings at 5
minute intervals. Plans can be switched at most once every ten minutes, with a
molded transition time. UTCS 3-G shortens the revision of the optimal to once
every 3 minutes, with possible control updates every 5 minutes. It also incorporates
current measurements into modeled predictions, and includes the option to vary cycle
lengths among signals.

• The Optimization Policies for Adaptive Control (OPAC) is a real-time, decen-
tralized, demand-responsive signal timing optimization algorithm which acts to mini-
mize a function of total intersection delay and stops on a two-level basis [70]. It uses
a combination of measured and modeled demands to select optimal phase durations
within constraints on minimum and maximum green times at a time resolution of 4-5
seconds. There can also be (demand-responsive) considerations of signal coordination
via virtual constraints on cycle length and offsets. However, it is important to note that
there is not a rigidly fixed cycle time in the OPAC algorithm; in fact, it is considered the
first practical system to break from the traditional concept of cycle-based signal timing
plans. It requires on-line data from upstream link detectors at all controllable links,
but can otherwise be implemented on existing hardware (2070 controllers). Multiple
approaches to the optimization problem have been tested, including a dynamic pro-
gramming approach, a sequential optimization approach, a rolling horizon approach,
and, most recently, a “Virtual-Fixed-Cycle” approach developed to fulfill the require-
ments of the RT-TRACS program. [71]. The dynamic programming approach requires
advanced knowledge of arrival data and neighboring signal data, which is typically not
available and has to be estimated. The optimal sequential constrained search divides
the optimization process into stages of 50-100 seconds, and during each stage there is
at least one signal change and at most three signal changes. Total delay is evaluated
for each feasible switching sequence, and the minimal pattern is selected.

• RHODES is a real-time, hierarchical, distributed traffic signal control framework
that uses high-resolution predictive models to react to stochastic variations in demand
patterns at intersections. It is based on an architecture that separates low-level in-
tersection control, mid-level network flow control (signal coordination), and high-level
network loading dynamics [86]. Low-level logical signal control decisions such as signal
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phase and duration decisions are made on a second-by-second basis based on observed
vehicular flows and predictions as well as operational constraints. These are distributed
controllers. Coordination constraints are made at a 200-300 second interval based on
predictions of platoon flows. This requires communications with other local controllers
and sensors. General travel demand over longer periods of time (about one hour) are
used centrally at the highest level to anticipate general demand patterns and future
platoon sizes at network boundaries. RHODES uses a stochastic model called PRE-
DICT to estimate intersection arrival patterns based on upstream measurements [145].
The individual intersection control logic (called Controlled Optimization of Phases, or
COP) is found by solving a dynamic programming problem that minimizes a function of
stops or delay over a rolling horizon [183]. While it does not require a pre-defined phase
sequence (cycle), this can be enforced when preferred by operators. A platoon-tracking
model called APRES-NET is then used at the sub-network level, and signal offsets are
optimized based on an adaptive bandwidth controller called REALBAND [56]. The
offsets generated from REALBAND appear as constraints to the COP controller. A
prototype of the RHODES architecture is proposed for field testing in Tuscon, AZ,
Seattle, WA, and Tempe, AZ [145].

• Automated Traffic Surveillance and Control (ATSAC) is a system created by
the city of Los Angeles. It is a customization of UTCS that incorporates measure-
ments from loop detectors as well as CCTV, and features signal optimization software
and real-time centralized control of traffic signals. Time-of-day signal timing plans
are generated using historical data and TRANSYT models, then they are fine-tuned
manually by operators based on conditions observed at link detectors and CCTV cam-
eras. There is also capability to use automated traffic-responsive control to select the
appropriate signal timing plan from a pre-defined set using an algorithm that matches
observed congestion patterns to those that were used to generate each plan [178]. Link
detectors are placed either 250 feet upstream or 100 feet downstream of each signal.
At intersections of urban and local streets, semi-actuated control is used and data is
not centralized. ATSAC was first used in connection with congestion generated around
the Coliseum due to the 1984 Olympic Games on a network of 118 intersections and
396 detectors, and is currently deployed on approximately 1170 intersections in Los
Angeles [216]. It has been found to be highly effective at clearing event traffic. It also
reduces stops by 35%, intersection delay by 20%, travel time by 13%, and fuel con-
sumption by 12.5%. While the cost of installation and operation is more than $70,000
per intersection, it is estimated to have paid for itself in less than one year upon initial
deployment.

• PRODYN uses forward dynamic programming to minimize intersection delay and de-
composition coordination techniques to optimize signal coordination [90]. Like OPAC
and RHODES, it does not follow a phase-cycle pattern but rather chooses flexible
phase durations to attain closer-to-optimal performance. The local intersections de-
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cides at a 5-second interval whether to shift from one phase to the next based on a
dynamic programming problem operating on a heuristic delay objective function. It
requires a sensor at each upstream junction output (to predict downstream arrivals)
and another sensor at about 50 meters from the stop line. The combination of these
measurements are used to estimate the probability density function of the queue state
of the line based on a vertical queuing model. This estimate is used as an initial
state in a forecast model running over a 75-second time horizon. The forecast model
also has information sent by neighboring intersections on their intended signal timings
during this time. The optimization procedure is used to determine the future green
timings which minimize the sum of delays over the 75-second horizon. PRODYN was
field-tested on two intersections in France [63].

• Urban Traffic Optimization by Integrated Automation (UTOPIA) is another
hierarchal traffic control system that performs bilevel optimization [135]. Local in-
tersection signal optimization is done using a rolling horizon optimal controller with
120-second time horizon with 3-second actuation updates using an algorithm called
SPOT. SPOT applies a microscopic model to estimate the state and time-varying pa-
rameters of an intersection from loop detector measurements. The area level uses a
less detailed model to validate local detection and compare measurements to historical
(or nominal) congestion levels to detect significant congestion or possible incidents. It
can also perform regional actions such as activate VMS. A central “supervisor” level
collects area information and integrates outside information such as bus arrivals and
travel times into a less detailed macroscopic model. UTOPIA has been deployed in
many places in Europe, notably in Denmark.

• Control of Networks by Optimization of Switchovers (CRONOS) is an al-
gorithm developed in the 1990’s with the objective of building a non-exponential and
fast optimization method to provide signal states for the next second in less than one
second — it was motived by the desire to react as quickly as possible to variations in
traffic conditions [30, 29]. It also desired to use image-processing-based traffic measure-
ments and vehicle spatial occupancy inside the intersection as state feedback. It uses
a state prediction based on a rolling average of past arrivals to calculate the value of a
chosen traffic parameter (usually total delay) over a finite future time horizon. The op-
timization procedure is a modified version of the Box algorithm, which has polynomial
complexity as the number of intersections increases. Typically the optimization proce-
dure is run with a time horizon of around one minute for one controlled intersection.
When the procedure is run on a set of intersections in a single zone, intersection ar-
rivals are calculated from the decision of the upstream intersection at the previous time
step, preventing the need for more heuristic predictions and allowing the optimal signal
pattern for the entire zone to be calculated at once. Like OPAC/UTOPIA/PRODYN,
CRONOS does not stick to the concept of a fixed cycle. In fact, it goes even farther to
eliminate the need for pre-defined stages at all; intersections are instead only defined
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by a set of safety constraints on simultaneous actuations [29].

• ACS Lite is the result of a recent project by the US FHWA that was initiated in re-
sponse to widespread concerns over the installation and maintenance costs of previously
developed ATCS [186]. To reduce costs, it leverages existing capabilities on typical
National Electrical Manufacturers of America (NEMA) model controllers and existing
detectors that communicate via the standard National Transportation Communica-
tions for ITS Protocol (NTCIP). In fact, ACS Lite depends on existing hardware and
logic for underlying signal timing plan characteristics and immediate decision-making.
It instead functions “on top” of existing second-to-second operations by making in-
cremental adjustments to the baseline split and offset parameters on a 5-10 minute
time step. The suggested timing adjustments are based on measurements of phase
utilization from local stopline detectors, and can be constrained to remain within pre-
determined limits on minimum or maximum green times. Early field tests have shown
delay reductions of up to 35% [7].
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Appendix B

Stability of max pressure controller,
original formulation

For reference, we provide the proof of the following theorem that was originally published in
[205]. All terminology and variables are defined as in Chapter 5.

Theorem: The max pressure controller

u∗(X(t)) = arg max{γ(S)(X(t))|S ∈ U}

is stabilizing whenever the average demand vector d = {dl} is within the set of feasible
demands D0.

Proof. To prove that the max pressure controller is stabilizing, we must prove that when the
controller is applied to the system dynamics, the following quantity

1

T

T∑
t=1

E
{
|X(t)|1

}
remains bounded. In fact, it is sufficient to show that there exists constants K and ε > 0
such that

E
{
|X(t+ 1)|22 − |X(t)|22

∣∣X(t)
}
< −ε|X(t)|1 +K (B.1)

where |X|22 =
∑

l,m |x(l,m)|2. This is because (B.1) immediately implies that

E
{
|X(T + 1)|22

}
− E

{
|X(1)|22

}
< −ε

T∑
t=1

E
{
|X(t)|1

}
+KT (B.2)

which can be rewritten as a bound on the desired quantity:

ε

T

T∑
t=1

E
{
|X(t)|1

}
< K +

1

T
E
{
|X(1)|22

}
(B.3)
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The following proof shows that for a network with feasible demand and a standard max
pressure control, there exists a ε > 0 and a K > 0 satisfying (B.1).

Consider the expectation of the following function of queue state with perturbation

δ(t) = X(t+ 1)−X(t) (B.4)

conditioned on the past queue state:

|X(t+ 1)|2 − |X(t)|2 = |X(t) + δ(t)|2 − |X(t)|2 (B.5)

= 2X(t)T δ(t) + |δ(t)|2

= 2α(t) + β(t)

with
α(t) = X(t)T δ(t) (B.6)

and
β(t) = |δ(t)|2 (B.7)

We address bounds on β and α separately.

Bound on β(t) = |δ(t)|2
Define known (or measurable) parameters:

• C(l,m) is the maximum realized saturation flow on (l,m),

• d(l,m) is the maximum possible value of the demand on (l,m),

• D(l)(t) is the realized demand on link l at time t, and

• D(l,m)(t) = D(l)(t)R(l,m)(t).

Then if l ∈ Lent and m ∈ Out(l),∣∣δ(l,m)(t)
∣∣ =

∣∣∣∣− [C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)] +D(l,m)(t+ 1)

∣∣∣∣
≤ max

{
C(l,m), d(l,m)

}
(B.8)

This is because both C(l,m)(t+1)S(l,m)(t)∧x(l,m)(t) and D(l,m)(t+1) are non-negative,
so the absolute value of their difference must be less than either of the two quantities indi-
vidually.

Similarly, if l ∈ L\Lent and m ∈ Out(l):∣∣δ(l,m)(t)
∣∣ =

∣∣∣∣− [C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)
]

+
∑
k

[
C(k, l)(t+ 1)S(k, l)(t) ∧ x(k, l)(t)

]
R(l,m)(t+ 1)

∣∣∣∣
≤ max

{
C(l,m),

∑
k

C(k, l)

}
(B.9)
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If we define B as the maximum of all of the quantities
{
C(l,m),

∑
k C(k, l), d(l,m)

}
and

N as the number of queues in the network, we can derive a bound for β which depends on
only B and N :

β(t) =
∣∣δ(t)∣∣2 ≤ NB2 (B.10)

Bound on α(t) = X(t)T δ(t)
The term α(t) in (B.6) is explicitly defined in terms of queue state X(t) as follows:

α(t) = X(t)T [X(t+ 1)−X(t)]

=
∑

l∈L\Lent,m

∑
k

[
C(k, l)(t+ 1)S(k, l)(t) ∧ x(k, l)(t)

]
R(l,m)(t+ 1)x(l,m)(t)

−

 ∑
l∈L,m

[C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)] +
∑

l∈Lent,m
d(l,m)(t+ 1)

x(l,m)(t)

=
∑
l∈L,m

[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

](∑
p

R(m, p)(t+ 1)x(m, p)(t)− x(l,m)(t)
)

+
∑

l∈Lent,m
d(l,m)(t+ 1)x(l,m)(t) (B.11)

Observe that because R(m, p)(t+ 1) is independent of C(l,m)(t+ 1) and X(t),

E
{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]
R(m, p)(t+ 1)x(m, p)(t)

∣∣X(t)
}

(B.12)

= E
{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣X(t)
}
r(m, p)x(m, p)(t)

Also, note that the the expectation of demand d(l,m) is equal to the measured demand on
link l scaled by the expected split ratio r(l,m):

E
{
d(l,m)

}
= dlr(l,m) (B.13)

Hence we derive the expectation of (B.11) as follows:

E
{
α(t)|X(t)

}
=∑

l∈L,m
E
{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣∣X(t)
}(∑

p

r(m, p)x(m, p)(t)− x(l,m)(t)
)

+
∑

l∈Lent,m
dlr(l,m)x(l,m)(t) (B.14)

=−
∑
l∈L,m

E
{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣X(t)
}
w(l,m)(t)

+
∑

l∈Lent,m
dlr(l,m)x(l,m)(t) (B.15)
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where w(l,m)(t) = w(l,m)(X(t)) is the max pressure weight of a link, as defined in equation
(5.9). We then incorporate the following relation:

∑
l∈L,m

flr(l,m)w(l,m)(t) =
∑
l∈L,m

flr(l,m)

[
x(l,m)−

∑
p

r(m, p)x(m, p)(t)

]

=
∑
l∈L,m

flr(l,m)x(l,m)(t)−
∑
m

[∑
l∈L

flr(l,m)
∑
p

r(m, p)x(m, p)(t)

]
=
∑
l∈L,m

flr(l,m)x(l,m)(t)−
∑

m∈L\Lent,p
fmr(m, p)x(m, p)(t)

=
∑

l∈Lent,m
dlr(l,m)x(l,m)(t)

So (B.15) is further simplified to:

E{α(t)|X(t)} =
∑
l∈L,m

[
flr(l,m)− E

{[
C(l,m)(t+ 1)S(l,m)(t) ∧ x(l,m)(t)

]∣∣X(t)
}]

w(l,m)(t)

(B.16)

By adding the 0-valued term [c(l,m)S(l,m)(t)w(l,m)(t) − c(l,m)S(l,m)(t)w(l,m)(t)] to
(B.16), we split this expression into the following sub-terms for convenience:

E{α(t)|X(t)} = α1(t) + α2(t) (B.17)

where

α1(t) =
∑
l∈L,m

[flr(l,m)− c(l,m)S(l,m)(t)]w(l,m)(t) (B.18)

and

α2(t) =
∑
l∈L,m

[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]

S(l,m)(t)w(l,m)(t) (B.19)

Note that because S(l,m)(t) ∈ {0, 1}, this term is brought outside of the internal minimiza-
tion function in the α2(t) expression without impact on the result.

Lemma B.1. For all l, m, t,

α2(t) ≤
∑
l∈L,m

c(l,m)C(l,m) (B.20)

where C(l,m) is the maximum value of the random service rate C(l,m)(t).
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Proof of Lemma B.1:
By Jensen’s inequality,

E
{
C(l,m)(t+ 1) ∧ x(l,m)(t)

∣∣X(t)
}
≤ E

{
C(l,m)(t+ 1)

∣∣X(t)
}
∧ x(l,m)(t)

= c(l,m) ∧ x(l,m)(t)

≤ c(l,m)

Furthermore, it is known that[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]
≥ 0 (B.21)

and
[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]

= 0 only when x(l,m)(t) > C(l,m).

Using these relations and the observations that w(l,m)(t) ≤ x(l,m)(t) and S(l,m)(t) ∈
{0, 1}, the following must hold

α2(t) =
∑
l∈L,m

[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]

S(l,m)(t)w(l,m)(t)

≤
∑
l∈L,m

[
c(l,m)− E

{[
C(l,m)(t+ 1) ∧ x(l,m)(t)

]∣∣X(t)
}]

S(l,m)(t)x(l,m)(t)

≤
∑
l∈L,m

c(l,m)C(l,m)

Lemma B.2. If S∗(t) = u∗(X(t)) = arg max{γ(S)(X(t))|S ∈ U} and demand d is in the
set of feasible demands Do, then there exists an ε > 0, η > 0 such that

α1(t) ≤ −εη
∣∣X(t)

∣∣ (B.22)

Proof of Lemma B.2:
Applying the definition of max pressure control in (5.11) as S∗ and using long term proportion
matrix M as defined in (5.7),∑

l,m

S∗(l,m)(t)c(l,m)w(l,m)(t) = max
S∈U

∑
l,m

S(l,m)c(l,m)w(l,m)(t)

= max
M∈co(U)

∑
l,m

M(l,m)c(l,m)w(l,m)(t) (B.23)

As in (5.8), since d ∈ Do there exists an ε and M+ such that C(l,m)M+(l,m) > flr(l,m) +
ε ∀(l,m). Logically, any M ′ such that 0 ≤ M ′ ≤ M+ (component-wise) must also be in
co(U). Therefore choose a M ′ < M+ such that

M ′(l,m)c(l,m) =

{
flr(l,m) + ε if w(l,m) > 0

0 if w(l,m) ≤ 0
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Then

α1(t) =
∑
l∈L,m

[flr(l,m)− c(l,m)S∗(l,m)(t)]w(l,m)(t)

≤
∑
l∈L,m

[flr(l,m)−M ′(l,m)c(l,m)]w(l,m)(t)

= −ε
∑
l∈L,m

max{w(l,m)(t), 0}+
∑
l∈L,m

flr(l,m) min{w(l,m)(t), 0}

≤ −ε
∑
l∈L,m

|w(l,m)(X(t))| (B.24)

Notice that w(l,m)(X(t)) = x(l,m)(t)−
∑

p r(m, p)x(m, p)(t) is a linear, invertible function
of the arrayX(t), and therefore there exists a η > 0 such that

∑
l,m |w(l,m)(X(t))| ≥ η|X(t)|.

Substituting this expression into (B.24) defines a bound on α1 (t):

α1(t) ≤ −εη |X(t)| (B.25)

Combining the results of Lemmas B.1 and B.2 generates the desired bound on E
{
α(t)|X(t)

}
:

E
{
α(t)|X(t)

}
≤ −εη |X(t)|+

∑
l∈L,m

c(l,m)C(l,m) (B.26)

Explicit bound on queues

Combining (B.26) and (B.10), we obtain

E
{
|X(t+ 1)|2−|X(t)|2|X(t)

}
= E

{
2α(t) + β(t)

}
< −2εη |X(t)|+ 2

∑
l∈L,m

[c(l,m)C(l,m)] +NB2 (B.27)

where N is the number of links in the network and B = max
{
C(l,m),

∑
k C(k, l), d(l,m)

}
.

The expression (B.27) demonstrates stability.
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Appendix C

“VPKO” traffic responsive
functionalities

The following paragraphs describe the standard for traffic responsive plan selection developed
for Type-170 controllers as part of FHWA’s Urban Traffic Control System (UTCS) standard.
More on objectives of the UTCS project is described in Section 2.5.

UTCS pattern matching algorithm

Assume that there are between 4 and 16 detectors per intersection. In a typical 4-approach
intersection, these detectors are loop detectors that are placed both at the stopbar of each
approach and approximately 200 feet upstream of these stopbars. Each detector l returns
a measurement of raw volume vrl [k] and raw occupancy orl [k] over a fixed period of time
denoted by time step k.

Define the following smoothed volume/occupancy values from a loop detector l:

vsl [k] = τvsl [k − 1] + (1− τ)vr[k] (C.1)

osl [k] = τosl [k − 1] + (1− τ)or[k] (C.2)

where τ is a filter parameter related to the user-defined time constant Tc (typically set to be
equal to the time to reduce filter error by 63%) and the measurement time step ∆t:

τ = e−∆t/Tc (C.3)

Flow and occupancy measurements from each of intersection i’s system loop detectors l ∈
{1, . . . , Li} are used to calculated a “volume plus K occupancy” or VPKO value :

V PKOobs
i,l = vsi,ll +K × osi,l (C.4)

for a user-defined (system-wide) occupancy weighting factor K ∈ (0, 100). The measured
state of the intersection x̂i(t) is represented by an array of VPKO values for all system
detectors at that intersection:

x̂i[k] =
[
V PKOobs

i,1 [k], V PKOobs
i,2 [k], . . . , V PKOobs

i,Li
[k]
]T

(C.5)
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UTCS-1G controllers each store a fixed set of signal timing plans P . Each plan p ∈ P
is associated with pre-defined volume and occupancy signatures for each system detector
(respectively, vpl and opl for all l). To choose an appropriate plan to implement, controllers
calculate a linear combination of the differences between each the measured VPKO and that
corresponding to each available plan:

Fp[k] =
∑
l

Wi,l

∣∣(vsi,l[k] +K × osi,l[k])− (vpl +K × opl )
∣∣ (C.6)

given user-defined detector weights Wl ∈ (0, 10) [69]. A controller selects the candidate plan
with minimum value of its comparison function:

p∗i [k] = ui(x̂i[k]) = arg min
φ∈Pi

Fi,φ[k] (C.7)

But a transition is only initiated when the following two conditions are met:

1. the current plan must have been in place for at least time tmin
s time steps:

t−s [k] ≥ tmin
s (C.8)

where t−s [k] is the number of time steps since the previous plan switch, and

2. the value of the comparison function Fp[k] for the current plan p[k] differs from that of
the candidate plan p∗i by more than a pre-defined threshold:

E = AFpi[k] − Fp∗i > 0 (C.9)

where A is a weighting factor defined separately for each section.

Control switching decisions are typically limited to a frequency on the order of once per
600-900 seconds (10-15 minutes).

Section synchronization

Intersection controllers can act somewhat independently, but are synchronized within a co-
ordination zone by a pre-designated master controller. Every time that the previously de-
scribed pattern-matching algorithm selects a new plan in a slave controller, the software
compares the cycle lengths of the candidate plan with that currently operating at the mas-
ter controller. If the difference between these cycle lengths is less than an operator-defined
limit, the timing plan number for the slave intersection controller is simply set to the same
number as that of the master controller [69]. In other words, the feedback-dictated plans at
the slave controllers may often be overridden if they differ significantly from the desires of
the master.
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Critical intersection control

UTCS software also has the capability of implementing a feature called Critical Intersection
Control (CIC) which enables a controller to explicitly calculate the total green demand for
all phases in a critical intersection using the previous time step’s approach volume and
occupancy measurements. Green demands are calculated in one of two ways:

1. The standard UTCS formula from the Traffic Control Systems Handbook defines green
demand as:

gl = K1o
s
l +K2v

s
l +K3(vsl · osl ) (C.10)

2. In the Los Angeles DOT’s ATSAC system (a customization of UTCS), a user defines
coefficients A, B, C, and D to obtain an approach greed demand gl:

gl = A(vsl )
B + C(osl )

D (C.11)

The critical controller can then redistribute the stage green splits {gs} to reduce detected
excess greens for each stage (es) given minimum green time parameters gmin

s :

es = max
{

max
l
{gl} − gmin

s , 0
}

(C.12)

g′s =
es∑
σ eσ
×Gfree + gmin

s (C.13)

where Gfree = C −
∑
s

(gmin
s + ys + rs) (C.14)

Note that while green splits may be adjusted independently at these critical intersections,
cycle times and yield points (relative offsets) are held constant to maintain network-level
coordination.
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