How much GPS data do we need?

Anthony Patire
Matthew Wright
Boris Prodhomme
Alexandre Bayen
Motivation

• Emergence of mobile internet and proliferation of smartphones
• Location data increasingly collected by private companies
• Huge opportunities for transportation organizations
 – Performance measures
 – Incident response
 – Situational awareness
 – Coordination and management
Hybrid Data Project Background

- **Focus on** *probe data*
 - commercially available, unaggregated, GPS-based, point-speed data
 - Fields include: ID, lat, long, timestamp, speed
- **Understand practical challenges**
 - Procurement
 - Real-time feeds
 - Filtering
 - Map-matching
 - Fusing with other data types
- **Assess benefits**
Outline

• Introduction

• One answer: how much data we need

• Overview of data and method

• Results

• Probe data quality

• Conclusion
Outline

• Introduction

• One answer: how much data we need

• Overview of data and method

• Results

• Probe data quality

• Conclusion
Travel Time MAPE for combinations of loop and probe data

I-880 NB congested periods between 3/2 and 3/17, 2012
Outline

• Introduction

• One answer: how much data we need

• Overview of data and method

• Results

• Probe data quality

• Conclusion
Overview of Data

- **Bluetooth**
 - Three two-week deployments of ten detection units
 - Independent measure of travel times
- **Probe data**
 - Two vendors
 - March and April of 2012
- **Loop data from PeMS**
Overview of Method

Bluetooth Travel Time Measurements → Filter → Aggregate → Aggregated travel times

Flows (Loops) → Filter

Velocities (Probes) → PIF

Data Fusion → Velocity Map

Calculate travel times and aggregate

Compare

Aggregated travel times
Aggregated Travel Times from Bluetooth

- For each 15-minute period, travel times between successive Bluetooth sensors are measured:

 - $\text{Ave } TT = \frac{T_1 + T_2}{2}$

- Average travel times taken as ground truth and compared with outputs of data fusion

- For visualization purposes we calculate average velocities:

 - $\text{Ave Velocity} = \frac{\text{section length}}{\text{Ave } TT}$
Bluetooth Average Velocities

Velocity Maps

Assimilated Loop Data

Assimilated Probe Data

Average Velocities

Average Velocities from Loop Data

Average Velocities from Probe Data

Outline

- Introduction
- One answer: how much data we need
- Overview of data and method
- Results
- Probe data quality
- Conclusion
Definition: Mean Absolute Percentage Error (MAPE)

\[MAPE = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} \frac{|T_{model}(i,j) - T_{bt}(i,j)|}{T_{bt}(i,j)} \]

- \(T_{model}(i,j) = \) Modeled average travel times for time \(i \), road section \(j \)
- \(T_{bt}(i,j) = \) Bluetooth average travel times for time \(i \), road section \(j \)
- \(N = \) number of 15 – minute time periods
- \(M = \) number of inter – BT road sections

A measure of the percentage error between travel time from Bluetooth sensors and the model’s result using available data, averaged over time and space
Velocity State Estimation: I-880

Loop data only

Position (12 mi)

Loop data and Probe data

Time (24 hr)

Probe data only

Bluetooth only
Velocity State Estimation: I-880

I-880 NB congested periods between 3/2 and 3/17, 2012

<table>
<thead>
<tr>
<th>Data</th>
<th>MAPE or BTMAPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop</td>
<td>21%</td>
</tr>
<tr>
<td>Probe</td>
<td>15%</td>
</tr>
<tr>
<td>Loop+Probe</td>
<td>10%</td>
</tr>
<tr>
<td>One standard deviation “noise floor”</td>
<td>19%</td>
</tr>
</tbody>
</table>
Site Description: I-15 Victorville SB

- Ten Bluetooth sensors placed at roughly 2 mile spacing
- No active loop detectors in place
- Extremely encouraging results
Results:
I-15 Victorville

Bluetooth measured average velocities

Velocity Map from probe data

I-15 Southbound – Sunday April 22, 2012
Velocity Maps resulting from different subsets of available data

Use 9% of probe data yields
36% MAPE

Position (18 mi)

Use 49% of probe data yields
15% MAPE

Use 18% of probe data yields
24% MAPE

Use 100% of probe data yields
13% MAPE
Outline

• Introduction
• One answer: how much data we need
• Overview of data and method
• Results
• Probe data quality
• Conclusion
Discussion of Data Quality

- Example vehicle trajectories illustrating sample rate and penetration rate

High Sample Rate
Low Penetration Rate

Low Sample Rate
High Penetration Rate
Penetration Rate vs. Sample Rate (1)

- **Probe Set A data**
 - Higher sample rate
 - Lower penetration rate: 0.1%
 - 85th percentile flows: 7 veh/hour

- **Probe Set B data**
 - Lower sample rate
 - Higher penetration rate: 0.6%
 - 85th percentile flows: 35 veh/hour
On freeways, a high penetration rate of probes is better than having a high sample rate. For this particular application, probe A data is oversampled.
Outline

• Introduction
• One answer: how much data we need
• Overview of data and method
• Results
• Probe data quality
• Conclusion
How much GPS data do YOU need?

For travel time estimation on freeways, here is a menu of data solutions for a given MAPE requirement:
Future Work

• Consider arterials and freeways in a coordinated way

• Decision support tools for a TMC
 – Estimation of current traffic conditions
 – Prediction of future traffic conditions
 – Assess impacts of potential control interventions
Please visit our exhibition booth

Anthony D. Patire
adpat@berkeley.edu

University of California, Berkeley
PATH Connected Corridors Program
Booth 3208