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Abstract

Automatic Calibration of Freeway Models with Model-Based &nsor Fault Detection

by
Gunes Dervisoglu
Doctor of Philosophy in Mechanical Engineering
University of California, Berkeley

Professor Roberto Horowitz, Chair

This dissertation presents system identi cation, fault déection and fault handling method-
ologies for automatically building calibrated models of &eway trac ow. Using these
methodologies, data driven algorithms were developed asrpaf a larger scheme of a suite
of software tools designed to provide tra c engineers with aimulation platform where vari-
ous tra ¢ planning strategies can be analyzed. The algoritms that are presented work with
loop detector data that are gathered from California freewess.

The system identi cation deploys a constrained linear regssion analysis that estimates the
so-called fundamental diagram relationship between ow ahdensity at the location of a
given sensor. A triangular fundamental diagram is assumedhdt establishes a bi-modally

linear relationship between ow and density, the two modes ding free ow and conges-



tion. An approximate quantile regression method is used for thestamation of the congested
regime due to this mode's high susceptibility to various errnal factors.

The fault detection algorithm has been developed to faciate the automatic model building
procedure. The macroscopic cell transmission model, whieh the model assumed in this
study, requires consistent observations along the modeléaeway section for an accurate
calibration to be possible. When detectors are down or misgj, the model has to be mod-
ied to a less accurate representation to conform with a comuration where a sensor is
assigned to each cell of the model. In addition, on most Califhia freeways the ramp ows
in and out of the mainline are not observed. Since the estimah of these unknown inputs to
the system also hinge on healthy mainline data, the identiation of faulty mainline sensors
becomes crucial to the automatic model building process. €model-based fault detection
algorithm presented herein analyzes the parity between sinated and measured state, along
with estimated unknown input pro les. Subsequently, it malkes use of a look-up table logic
and a threshold scheme to ag erroneous detectors along thedway mainline.

Finally, the fault handling algorithm that accompanies thefault detection aims to revert the
model to its original con guration after the aforemention&l modi cations are made to the
model due to missing or bad sensors. Using a relaxed modatstoained linear optimiza-
tion, this algorithm seeks to Il in the gaps in the observatons along the freeway that are
a result of poor detection. This method provides a reconstction of the unobserved state
that conforms with the rest of the measurements and does notqruce a state estimate in

a control theoretical sense.






To my family,



Contents

Contents v
List of Figures vii
List of Tables X
1 INTRODUCTION 1
2 REVIEW OF RELATED LITERATURE 6

2.1 TRAFFIC MODELING . . . . . . . . . e e e 6

2.2 TRAFFIC SENSING . . . . . . . . s e 15

2.3 FAULT DETECTION . . . . . . e e e e e e e 21
3 AUTOMATIC FREEWAY MODEL CALIBRATION PROCEDURE 32

3.1 FREEWAY MODEL SPECIFICATION AND THE LINK-NODE CELL TRAN  S-

MISSION MODEL . . . . . . . . . 32
3.2 FUNDAMENTAL DIAGRAM CALIBRATION . . .. .. .. .. ... ... 38
3.3 IMPUTATION OF UNKNOWN RAMP FLOWS . . . ... ... ... ... 46
3.4 MODEL VALIDATION . . . . . s e 49
FAULT DETECTION AND HANDLING 54
4.1 MOTIVATION FOR MODEL-BASED FAULT DETECTION . . . ... .. 54
4.2 THE ASYMMETRIC CELL TRANSMISSION MODEL . . . ... .. ... 58
4.3 FAULT DETECTION ALGORITHM . . . . . . . . .. ... . o .. 66
4.4 FAULT HANDLING . . . . . . e e 79
EXAMPLE CASE STUDIES AND RESULTS 91
5.1 INTERSTATE 210 IN SOUTHERN CALIFORNIA . . . .. .. .. .. ... 91
5.2 INTERSTATE 80 IN NORTHERN CALIFORNIA . . . . ... .. .. ... 10 5

CONCLUSIONS AND DISCUSSION 118



Bibliography 121

A Table of Fault Signatures 128

Vi



List of Figures

2.1 Greenshields' Fundamental Diagrams . . . . . . . . . . . ... . ..., 9
2.2 Various Flow-Density Fundamental Diagram Shapes . . . ... . . .. .. ... 11
2.3 Cell Transmission Model send and receive relationshigtween successive cells . 15
2.4 Detector Health throughout the Districts of CaliforniaAugust 2011 - August 2012 20

2.5 Model-based Fault Diagnosis Framework . . . . . .. .. ... ... ...... 23
2.6 Observer-based Fault Diagnosis approach - Block Diagna. . . . .. ... ... 24
2.7 Parity-based Fault Diagnosis approach - Block Diagram.. . . . . . . ... ... 28
2.8 Fault Diagnosis with Parameter Estimation . . . . ... ... .. ........ 28
3.1 Model Building Process Flow Diagram . . . ... ... .. ........... 34
3.2 A Network Editor Snapshot . . . . . . . . ... ... .. 35
3.3 Graphical representation of the LN-CTM . . . . . . ... . ... .. .. ..... 35
3.4 Link - Node representation of a freeway ramp merge locati . . . . . . .. ... 38
3.5 Fundamental Diagram ttingscheme . . ... ... ... ... ... . ..... 39
3.6 Example calibrated fundamental diagram on Interstate 0 Westbound . . . . . 40
3.7 Box Plots of Capacity along 1-880 South . . . . . .. ... ... ........ 43
3.8 Estimation of the congestion wave speed (W) . . . . . . . .. ... ... .. .. 44
3.9 Assignment of Fundamental Diagrams to freeway links . . ... . ... ... .. 46
3.10 Location of measurement with respect to the LN-CTM . . . . ... ... ... 49
3.11 Example Density Contour Plots for a model of I-80 Easthumd . . . . . . . . .. 52
3.12 Example Flow Contour Plots for a model of I-80 Eastbound. . . . . ... . .. 53
4.1 Census ve PeMS daily total ows . . . .. ... .. ... ... ... ... 56
4.2 Relative bias in PeMS ows with respect to hand counts . . .. .. ... ... 57
4.3 Basic ACTM representation and Location of Detectors . . . . . ... ... .. 58
4.4 ACTM schematic representation . . . . . . . . . . . . . . . w .. 59
4.5 ACTM representation of a freeway portion . . . . . . .. .. .. . ... .... 59
4.6 Imputation Parameters and Cell De nitions . . . . . .. ... ... ....... 62
4.7 Fault Detection Framework . . . . . . . . . .. 67
4.8 Example Ramp Conguration . . . . . . . . . . . . . 68

Vil



4.9 Fault Signatures due to Positive Bias in Density and Flown an "All Ramps

Present” con guration (ArticialData) . . . . . ... .. ... ... ....... 73
4.10 Severity of the jump phenomenon in the estimated demapdo les on an example

freeway section . . . . . . . . .. g
4.11 Forming of aMega-Cell . . . . . .. .. .. . .. .. ... 83
4.12 Mega-cell splitting problem . . . . . . . . .. ... ... . 84
4.13 Mega-cell splitting problem - LP formulation . . . . ... ... ... ....... 86
5.1 Modeled portion of the eastbound Interstate 210. . . . . ... .. .. .. ... 92
5.2 Detector Health Space Time Diagram for eastbound Intdege 210 . . . . . .. 94
5.3 [-210E Speed Contours before Fault Detection / Exclusio . . . . . .. ... .. 95
5.4 1-210E Density Contours before Fault Detection / Exclusn . . . . .. ... .. 95
5.5 [-210E Flow Contours before Fault Detection / Exclusion . . . . . . ... ... 96

5.6 1-210E Speed Contours after Fault Detection / Exclusiorfll mega-cells present) 96
5.7 1-210E Density Contours after Fault Detection / Excluson (11 mega-cells present) 97
5.8 [-210E Flow Contours after Fault Detection / Exclusion (1 mega-cells present) 98

5.9 Flows at the upstream boundary of the example mega-cell ... . . . . .. ... 98
5.10 Densities of the upstream half of the example mega-cell . . . . .. ... ... 99
5.11 Flows at the downstream boundary of the example megalice. . . . . . . . .. 99
5.12 Densities of the downstream half of the example megdice . . . . . . ... .. 100
5.13 I-210E Speed Contours: Measurements (top), Mega-selitact (middle), Mega-

cells split (bottom) . . . . . . . . .. 101
5.14 1-210E Density Contours: Measurements (top), Megaitsintact (middle), Mega-

cells split (bottom) . . . . . . . . . ... 102
5.15 I-210E Flow Contours: Measurements (top), Mega-celistact (middle), Mega-

cells split (bottom) . . . . . . . . .. 103
5.16 1-210E Ramp Flow and Demand Pro les for Mega-cell 3 . . .... .. .. ... 104
5.17 Modeled portion of the eastbound Interstate 80 . . . . . ... ... ... ... 106
5.18 Detector Health Space Time Diagram for eastbound Intgate 80 . . . . . . .. 107
5.19 I-80E Speed Contours before Fault Detection / Exclugio. . . . . ... .. ... 109
5.20 I-80E Density Contours before Fault Detection / Excluen . . . . . .. ... .. 109
5.21 1-80E Flow Contours before Fault Detection / Exclusion. . . . . .. ... ... 110

5.22 1-80E Speed Contours after Fault Detection / Exclusioti7 mega-cells present) . 110
5.23 I-80E Density Contours after Fault Detection / Excluson (7 mega-cells present) 111

5.24 1-80E Flow Contours after Fault Detection / Exclusion ¢ mega-cells present) . . 111
5.25 I-80E Speed Contours: Measurements (top), Mega-ceat¢act (middle), Mega-

cells split (bottom) . . . . . . . . .. 112
5.26 I-80E Density Contours: Measurements (top), Mega-tgintact (middle), Mega-

cells split (bottom) . . . . . . . . . .. . 113
5.27 1-80E Flow Contours: Measurements (top), Mega-cellgact (middle), Mega-cells

split (bottom) . . . . . . . e e 114



5.28 I-80E Ramp Flow and Demand Pro les for Mega-cell 2



List of Tables

3.1
4.1
5.1
Al

LN-CTM Variables and Parameters . . . . . . . . . . . . . . . . . . w....

Asymmetric Cell Transmission Model (ACTM) Variables ad Parameters . . . .

Model Calibration Results . . . . . . . . . . . . . .

Fault Signatures for Di erent Ramp Congurations . . . .. .. .. .......



Acknowledgments

First and foremost, | would like to thank the TOPL project menbers and our PI's, Professors
Roberto Horowitz and Pravin Varaiya, for their guidance andsupport and for making this
research possible. My advisor, Roberto Horowitz, has my utst gratitude for giving me
his unwavering support, through the good times and the worstithout which | would not
have been able to complete my PhD study. My special thanks go speci c members of our
group: Ajith Muralidharan, Rene Sanchez, Alex Kurzhanskiyand Gabriel Gomes, who had
invaluable contributions to the realization of this work.

Next, | would like to thank my dissertation committee membes, Professors Alex Skabardonis
and Karl Hedrick for their patience and kindness. | am grated to Professor Skabardonis for
giving me the opportunity to work with him on sensor fault andysis, which translated into
an essential part of this dissertation.

Finally, I would like to acknowledge the support of my friend and family, who had to endure
all my mood swings over the last 6 years. | speci cally thank ynparents for their vision
and for the way they raised me; my brother Derya for being the ay he is, and doing the
things | had to give up in the pursuit of this degree in my stead And last but not least,

| am grateful to have my wonderful wife Miray by my side, who ighe person who had to

make the most sacri ces for my dream to come true.

Xi



Chapter 1

INTRODUCTION

Tra c congestion in urban road networks is a major problem casing losses in time and
energy and threatening public health and environmental sefy. All these adverse e ects
can be quanti ed and regarded as monetary loss to states andumicipal governing bodies.
According to The 2011 Urban Mobility Report [47] generatedyoThe Texas Transportation
Institute, these costs accumulate to a nationwide total of\eer $100 Billion, which corresponds
to approximately $750 yearly average cost per passenger. €lheport also points to the
fact that tra c congestion has been a growing problem over tk past decades. The yearly
average delay per auto commuter over the 15 large urban areasthe United States that
were included in the analysis increased from 19 hours in 198252 hours in 2010. The peak
was observed in 2005 at 60 hours. Considering the ever in@ieg demand and the lagging
nature of facility improvements, it can be conjectured thathis trend is bound to continue.

As the problem grows, so does our arsenal of tools and strategto tackle it. Obviously,



the most intuitive solution to the problem of excessive denmal is to increase the supply, i.e.
to enhance the present roadway infrastructure. This, howey, is not a feasible solution for
every given situation. In addition to physical facility exmnsion, a roadway structure can
be made to operate more e ciently by the deployment of variosa strategies such as ramp
metering control, speed limit control, demand managemengtc. Software tools that model
and simulate trac ow become critical to the evaluation of such improvement strategies
and analyzing their bene ts and drawbacks before deployintpem.

Tra c engineers and city planners rely on calibrated tra ¢ c orridor models and sim-
ulation software to devise mechanisms to improve road netwoperformance. Two main
approaches to trac ow modeling can be classi ed as microsgpic modeling and macro-
scopic modeling. Microscopic models of tra ¢ model each inddual vehicle as a separate
entity and evaluate their interactions with other vehiclesand the road. Macroscopic models
treat the ow of tra c as a compressible uid and evaluate the dynamic properties of the
vehicles on a given road section as a coherent mass. In theanycroscopic models tend to
be more accurate than their macroscopic counterparts, prioled there exist measurements
that facilitate their calibration. However, the data requrements for the calibration of mi-
croscopic models are often very demanding. Since the levélgoanularity for such models
is the individual vehicle, a similar level of granularity aml accuracy in the data is preferred.
This can for instance be provided by video imaging of the roatktworks and the subsequent
processing of these pictures. This, however, is not a fedsilsensing mechanism to be imple-
mented on a large scale. Therefore, most of the sensing on tbads in California are based

2



on inductive loop detectors embedded in the pavement, whicre only capable of report-
ing aggregated point measurements of ow and occupancy. Mamver, even with adequate
data present, the calibration process of microscopic modeis a time and labor intensive
task, which often includes manual tweaking of model parametts. In contrast, macroscopic
models are very easy to calibrate and the data requirementsearelatively more consistent
with the readily available sensing infrastructure. Anothe major advantage of macroscopic
models over the microscopic models is the simulation speeaudhich, due to the simplifying

assumptions of the model, allows for a whole days' simulatido run within a few seconds.
This leads to a more versatile deployment of macroscopic mald in real-time applications
such as live decision support for tra c operators.

The work presented in this dissertation has been carried ounder TOPL (Tools for Op-
erations Planning), a CalTrans and NSF funded project, lawhed in 2006 at PATH (Partners
for Advanced Transportation Technology) and UC Berkeley. e goal of this project is to
provide simulation tools to transportation engineers andesearchers in order to assist them
with operations planning. Tra c operations to alleviate congestion can be achieved through
tra c control (e.g. ramp metering), through demand and incident management (e.g. incen-
tivization and/or congestion pricing schemes), through @ c diversion to alternate routes,
by providing information to travelers, etc. TOPL was launcled to establish a software plat-
form where computationally e cient calibrated models of tra ¢ corridors could be used to
gualitatively assess the bene ts of such strategies.

The main contribution of this doctoral study to the TOPL project mentioned above is the

3



automation of the parameter estimation, fault detection ad fault handling procedures that
greatly facilitate the streamlined model building and cabration process. The questionable
guality and, on occasion, the sparse availability of data lsabeen a major challenge for
the project and prior to the deployment of the presented workthe identi cation of faulty
mainline detectors had to be carried out manually, which sugbantially increased the time
and e ort invested into building freeway models. With the adlition of these algorithms, it is
possible to automatically build and calibrate freeway mods, provided the model geometry
and the corresponding data are available to the software.

Thesis Outline

This thesis is constructed as follows: Chapter 2 exploresehmportant concepts in the tra c
sensing and modeling literature and introduces the main ids in the established model-based
fault detection framework. Preceding studies on fault det#ion in tra ¢ sensing and mod-
eling are also presented in this chapter. Chapter 3 rst intnduces the model building tools
developed by the TOPL team. We then proceed to explaining thgystem identi cation and
unknown input estimation algorithms along with the Link-Nade Cell Transmission Model,
the macroscopic model of choice for this study.

Chapter 4 presents the fault detection algorithm that is delpyed by the TOPL suite of
software tools to identify and eliminate faulty mainline déectors in an automated fashion.
We rst provide some motivating observations for the fault eétection and then proceed to
introducing the Asymmetric Cell Transmission Model on whic the fault detection module is
based. The next chapter demonstrates the application of thmodel building process on two

4



example freeways that have been modeled, namely: Inters¢a80 in Northern California and
Interstate 210 in Southern California. Finally, in chapter6 we discuss the presented results
and possible future work that can potentially extend upon tk automated process presented

herein.



Chapter 2

REVIEW OF RELATED

LITERATURE

2.1 TRAFFIC MODELING

Tra ¢ models in existing literature fall into two main categ ories: macroscopic modelsand

microscopic models In addition to strictly microscopic and macroscopic mods| there also
exist mesoscopic modelthat make use of the assumptions made by each paradigm to varg

extents in an attempt to establish a specic trade-o level ketween model simplicity and
accuracy. In essence, microscopic models of tra ¢ ow are lsad on reproducing the behavior
of individual vehicle units by replicating their interactions with other units and the road
network. These are mostly built on car following models thatdopt parameters such as

headway, speed and position. Due to their detailed repregation of the system, microscopic
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models are not easy to calibrate and validate, especially tivithe available data collection
infrastructure. Due to their increased complexity, simultors based on microscopic models
are not suitable for large scale or real-time applications.

Macroscopic models, on the other hand, replicate the aggetg behavior of all vehicles
on the road instead of focusing on individual units. In e ect macroscopic models treat
the tra c ow as an incompressible uid by specifying and evauating quantities like speed,
ow and density. Some important de nitions regarding macrscopic tra ¢ modeling are
provided by the Highway Capacity Manual [7] as follows (x destes the spatial and t denotes

the temporal dependencies in the following):

Flow f(x;t): Flow is de ned as the number of vehicles that pass a given csasection
on the road during a speci ed time interval divided by the legth of that time interval.

It is easily measured by point sensors on the road and is oftgiven as an hourly rate.

Density (x;t): Density is de ned as the number of vehicles for a speci ¢ stieh of the
road. Measurements of density are di cult to infer from poirt measurements and are
usually approximated from ow and speed measurements agx;t) = f (x;t)=v(x;1t).
Another approach to measuring density is to monitor the det#or occupancy, which
is de ned as the portion of time during which the detection zone of the detector is
occupied. This measurement is called occupancy and can bartslated into the density

measurement using equation (2.8).

Speed v(x;t): Speed is the average rate of motion of vehicles on the road.g@ading

7



on the measurement, it can be expressed aspace mean speednd atime mean speed
Space mean speed is expressed as the average time spent bighesto traverse a certain
length on the road. Time mean speed is the average speed ofiglels passing a given
cross-section of the road, and as such, it is easier to capgursing point measurements

on the road.

Capacity: Capacity is de ned as the maximum rate of hourly vehicular av through

a certain section on the road under prevailing road conditres.

Bottleneck: A bottleneck is a certain location on the road where the demarexceeds
the prevailing capacity. Such locations usually trigger tb onset of congestion that
propagates upstream of the bottleneck location while the emstream of the bottleneck
is typically in free ow. Bottlenecks can arise due to dropsn number of lanes, merges
of high volume onramps and certain topological features ofi¢ road such as grade and

curvature.

Demand: Demand is the number of vehicles that want to traverse a ceiita road

section at a given time period.

Fundamental Diagram of Tra ¢ Flow
Macroscopic models rely on constituting a relationship beeen the key parameters of
ow, density and speed. These are usually captured in termdg the Fundamental Diagrams

This was rst established by Greenshields in his seminal woion the Fundamental Diagram



relationships of tra c ow in 1934 [23]. He rst approximate d a linear relationship between
speed and density based on his observations of captured iraagn a two-lane road. Based
on this relationship, he expressed ow as a parabolic funcim of density using (x;t) =
f(x;t)=v(x;t). A sketch of these relationships are shown in gure 2.1. Inhis gure, ¢
denotes the critical density, where the maximum throughputs observed. Trac ow is in
congestion mode above this density value. Hence, all modefdra ¢ ow are based on this
bimodality of ow. 7 denotes the jam density for the road section, which is the maxum
number of vehicles per mile that can be accommodated by thapeci c location. Note
that both speed and ow are zero when this density is reachedlhe apex of this diagram

corresponds to the section capacity and is attained at the itical density.

Speed (v)

free flow c it
speed apactty ‘ speed

J s c J s
P"  Density (p) P P Density (p)

Figure 2.1: Greenshields' Fundamental Diagrams

In the existing literature, there are several di erent shaps assumed for the Fundamental
Diagram, which essentially is an empirically determined cstituent relationship between the
key macroscopic elements. Thus, it can be established in emal di erent ways, depending

on what is chosen as the state of the model and on the choseneardf the governing di er-



ential/di erence equations of the model. Models based on $pd-Flow [18], Speed-Density
[30],[14] and Flow-Density [48],[20] have been establisheThe Flow-Density Fundamental
Diagram was proposed as the model most suited for use in tra control scenarios in [37],
because it provides a direct relationship between ow, whitwould be the control input in
a ramp metering exercise, and density, which would be the $tato be controlled.

A challenging characteristic of Flow-Density diagram is th observed discontinuities near
the capacity (maximum ow) of the road section, which givesise to discussion on possible
shapes of this fundamental diagram. This phenomenon was ebgd by Edie in [15] and
in studies such as [20], [5]. Although there is widespreadnsensus that the Flow-Density
curve is concave and the corresponding Speed-Density cuigemonotone decreasing, dif-
ferent shapes for the theoretical curve are suggested: Tmgular (or V-shaped), Reverse-
shaped, Reverse parabolic and Trapezoidal Fundamental [gi@ams have been suggested and
evaluated in the literature. Figure 2.2 provides exampleof each of these shapes. Works
by Hall and Gunter [19] and Banks [4] support the V-shaped fuamental diagram. The
argument made for the V-shaped fundamental diagram in [4] ihat drivers obey the car
following rule under dense and congested ow conditions buats their speed approaches the
free ow speed, their sensitivity to vehicle spacing decles. Hence, as the density decreases,
the speed of the vehicles increases at a higher rate whichtj&s the V-shaped fundamental
diagram. On the other hand, microscopic models mostly agrem the Reverse- shaped
Fundamental Diagram. [50], [33] and [17] are some exampldssach studies. Contrary to
the argument made for the V-shape, the following conjecturean be made for the Reverse-

10



claim: When the transition from congestion to free ow occs, the vehicle speeds increase
at a slower rate than the rate at which density decreases. Hem the increase in ow lags
the decrease in density because the downstream spacing dypp just recently available and

it takes time for the vehicles queued upstream to speed up the free ow speeds. This
phenomenon was labeledapacity drop by Cassidy et al. in [9] and [31]. The transition
from free ow to congestion occurs smoothly and the data padis traverse through the apex
of the fundamental diagram, whereas the transition from cagested ow to free ow occurs
more abruptly as a jump into the free ow line, undercutting the apex of the diagram. This
phenomenon is also known as the hysteresis of trac ow and igliscussed in [27] and [51].
Current discussions on Macroscopic Fundamental Diagran@ fUrban networks also consider

this hysteresis [42].

Flow Flow
S N
Triangular Reverse-A
N N
d 4
Density Density
Flow Flow
N ~ .
Reverse Parabolic Trapezoidal
N b
rd 4
Density Density

Figure 2.2: Various Flow-Density Fundamental Diagram Shags
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In our automated model calibration tool, we assume a V-shagd-undamental Diagram
due to its simplicity and ease of use with the Cell Transmissn Model, which is the model
adopted in this work. The V-shaped Fundamental Diagram is uquely determined by 3
parameters: The free ow speed (the slope of the free ow lijethe capacity (the maximum
possible ow) and the congestion wave propagation speed €lslope of the congested regime
line). The critical density and jam density parameters can & deduced from these three
parameters.

The Cell Transmission Model

Macroscopic models are described by sets of partial di ergsl equations that de ne the
evolution of density, ow and speed over space and time. Theidhthill Whitham Richads
(LWR) model [37], [46] constitutes the basis of the Cell Trasmission Model (CTM), which
is the basic model adopted in this study. All macroscopic mets have at their core a vehicle
conservation equation, similar to the mass conservation inid dynamics, and a fundamental
diagram that relates density, ow and speed. In the case of hLWR model, these equations

are given as:

(x;t) N f(x;t) -0

: . 2.1)

( (xt)=fxt)= (xt)v(xt) (2.2)

12



where equation (2.1) is the conservation equation and equ@ar (2.2) speci es the funda-
mental diagram relationship. When this relationship is dierentiable, the two equations can

be combined as:
(x;t) d

" +d—( (x; 1)) (;(;t)

=0 (2.3)

First order models such as the LWR assume a static fundamehtdiagram for any given
section of the road. Higher order macroscopic models complent the conservation equation
with a so-called momentum equation, which are partial di eential equations that describe
the evolution of the space mean speed along the road. In e edhis aims to capture the
complex dynamics of drivers' response to changes in the tra state, rather than assuming
those to be instantaneous as their rst order counterparts @l For a more detailed treatise
of higher order continuous time models, the reader is refed to the PhD thesis of Alex A.
Kurzhanskiy [35], a fellow researcher in the TOPL project.

Since the main goal of the TOPL project is to create an automatl and streamlined
calibration and simulation tool that is applicable to largenetworks, a rst order model is
chosen, namely the Cell Transmission Model.

The Cell Transmission Model (CTM), introduced by Daganzo irl994, is a discretization
of the LWR model. The road network is represented as successsections (cells) of uniform
length L. Here, L is chosen to be such thdt = Tyv; whereTs is the discretization time step

and v; is the free ow speed. With this formulation, the dynamics oflensity n; of any given

13



cell i is described by the following di erence equation:

ni(k+1)= ni(k)+ fi 1(k)  fi(k) (2.4)

wheref; (k) is the ow entering cell i from the upstream cell i-1 andf;(k) is the ow
leaving cell i and entering cell i+1 downstream at time k. Thee ows are determined by

comparing the supply and demand of each cell dictated by thretorresponding fundamental

diagrams.

fi(k) = min(Demand; (k); Supply.1 (k)) (2.5)
Demand; (k) = min (F;; nj(k)v;) (2.6)
Supplyisr = min (Fig ;s Wisa (07 ni(K)) (2.7)

Here, F;, vi and w; are fundamental diagram parameters capacity, free ow speéeand
congestion wave propagation speed, respectively, for eagttion. A triangular fundamental
diagram is assumed. Figure 2.3 provides a visual represdida for this supply - demand
relationship for determining exchanging ows between adgent cells. In this temporal snap-
shot example, Cell 1 has a relatively low density and is thefiame in free- ow. Cell 2 is
congested but has enough room to accommodate ti¥emand; = n;(k)vy; from Cell 1.
Hencef ;(k) = Demand; (k) in this case. Cell 2 wants to sendDemand, = F, to Cell 3 since
it is in congestion. Cell 3, however, is heavily congested @nannot accommodatédemand,.
As a result, fo(k) = Supplys(k) = wz(n3  nz(k)) in this case. Looking at such a snapshot,

14



one would expect the density in Cell 2 to increase in the nextnie instance since ow into

Cell 2 is greater than ow out of it at this time instance.

. Heavy

fiow % fiow . Congestion fiow ! Congestion
fi(k) f2(k)

ne density n n' n density n n nf  density u

@l Y Y > e

Cell 1 Cell 2 Cell 3

Figure 2.3: Cell Transmission Model send and receive relatiship between successive cells

2.2 TRAFFIC SENSING

In this section, we explore the detection, reporting, anasjs and archival tools available
for gathering tra c data. These data can be used to calibratesimulation models, as in
this study, or can be used in real-time by tra c operations phnners for safety monitoring,
incident detection and handling and providing informationto travelers about travel times,
accidents and other hazards.

Sensing Technologies There exist several sensing mechanisms deployed in Califiarfree-

ways. Here we review some of the most widely implemented tedhogies.

Inductive Loop Detectors: These are inductive loops embedded into the pavement.

Their operation principle is based on detecting induced eglccurrents when a vehicle
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passes over the loop. Loop detectors provide point measurms of ow and occu-
pancy, and when installed adjacently, they also provide spd measurements. They
are the most common sensing equipment implemented on Catliia roadways. While
they are used to measure ow, occupancy and speed on freewags arterials, they
are mostly used to detect presence only, for queue resporssignalized intersections.
The data they provide is easily archived and reported, whichmakes them very suitable
for the automatic model building tools to be introduced in ths dissertation. However,
their installation and maintenance costs are relatively Igh and due to their low fre-
guency of maintenance the data they provide are not very rable. Nevertheless, when
maintained appropriately, loop detectors provide the besdccuracy in terms of counts,

i.e. Oows.

Magnetic Sensors:Similar to the inductive loop detectors, magnetometers dett pres-
ence by evaluating the magnetic elds caused by passing veleis. These also need to be
embedded in the pavement but they provide the additional acdantages of easier main-
tenance, longer life times and some models are equipped witlreless transmission

capability.

Video Image ProcessorsVideo camera surveillance of roadway tra c is often used to
transmit imagery to human operators to help them with real-ime management. In
addition, some stations are equipped with video image prassors that digitize and

analyze the imagery. Software tools are available for comtiag these into the desired
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parameters like ow and density. Videos provide the highesguality and highest gran-
ularity data but come with a price tag of data complexity and &e. Moreover, they
are much more susceptible to changing weather and visibylitonditions, especially at
night time. Moreover, their maintenance requirements areigher due to the necessity

of frequent cleaning of the camera lenses.

Microwave and Laser Radars:Contrary to the passive detection technologies listed
above, radars are active sensors that work on the principlé sending electro-magnetic
waves to moving vehicles and and track their presence and neowent through the
re ection of these electro-magnetic waves. These have thehantage of not being
a ected by weather conditions over video surveillance. Whe they provide direct mea-
surements of speed, additional analysis is required to infew and density from radar

measurements.

Other sensor technologies include ultrasonic sensors, gigs acoustic sensors and infrared

sensors. Toll tag readers, license plate readers and prolahicles can also be used for travel

time measurements. For a comprehensive report on tra ¢ seirgy technologies the reader is

referred to the Tra ¢ Detector Handbook [36].

Measured Tra ¢ Elements

The sensing technologies listed above are used to gather #udlowing measurements

related to tra c on road networks:

Occupancy: Occupancy is the percentage of time the detection zone of ateor is
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occupied by vehicles.

Flow: Flow is the number of vehicles passing through the detectiatone of a detector

within a speci ed time interval.

Speed:Depending on the detection method, space mean speeds andetimean speeds
can be reported. Point sensors such as loop detectors and meiic sensors usually
estimate time mean speeds whereas detectors that have widkatection zones, such
as video cameras, can be used to estimate space mean speeds. df multiple point

sensors such as double loops provide accurate time mean dpmeasurements.

Travel Time: Travel times can be estimated from re-identifying vehicleat two detec-
tion stations. Toll tag readers, license plate readers anddeo cameras have this capa-
bility. In addition, vehicle re-identi cation through mag netic signatures over shorter
distances have been demonstrated to work using magnetic sers [32]. These mea-
surements can also be used to determine Origin-Destinatidata, which yields demand

patterns necessary for demand management strategies.

Performance Measurement Systems (PeMS)

The automatic model calibration tools presented in this dsertation are based almost

exclusively on data provided by the PeMS (Performance Measment Systems) archival

tool [2]. PeMS was launched in 1998 as a collaborative prajexf UC Berkeley, PATH and

Caltrans and the software tools have been available onlinense 2003 for use by tra c engi-
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neers and academics. PeMS collects data from over 25000 dietes on California freeways
and arterials and has several tools to lIter, process, aggyate and examine these data. Loop
detectors are the main contributors to this extensive arckie but PeMS also gathers data
from sources like toll tag readers and CHP (California Highay Patrol) incident reports.
It also provides reporting tools for a wide variety of statiscal analyses from individual
detector health to daily ow trends on a specic stretch of rad. Based on loop detector
data, PeMS reporting tools calculate performance measuresch as VMT (Vehicle Miles
Traveled), VHT (Vehicle Hours Traveled), Congestion DelayProductivity Loss, etc. for a
user-speci ed period of time and stretch of road.

For the purposes of this study, loop detector data from Catifrnia freeways are of crucial
importance. In fact, as will be explained in detail in sectio 3.1, the automatic model building
tool relies on the detector locations on the freeway to det@ine the model geometry, i.e. the
detector locations are used as a starting point when spedifg the model. In their raw form,
there are two components to loop detector data: 1) Flow 2) Oapancy. These are collected
at 30s granularity and PeMS subsequently aggregates thentarb minute intervals. PeMS
also infers speed and density based on the occupancy and oveasurements following the

formulae below:

Flow Flow

—g-fact D ity =
Occupancx? actor enstty Speed

Speed= (2.8)
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where the g-factor is an adaptively estimated time-depende e ective vehicle length
speci ¢ to the detector and the location [29].

In spite of this voluminous data collection and archival e ot, detector and data health
remains to be a major problem. Figure 2.4, taken from the PeM®ebsite, shows the per-
centages of working vs non-working detectors over the 1-ygaeriod between August 2011
and August 2012. In the vertical axis are the Districts of TheState of California and it can
be seen that, on average, only about 70% of detectors wereagpd to be working correctly.
It is also noteworthy that District 4, containing the larger Bay Area, has had an average

detector health percentage of a dismal sub-50% value overtmost recent annual period.

3 4 2 B 7 g m 11 12

M < Working B < Mot Warking

Figure 2.4: Detector Health throughout the Districts of Calfornia August 2011 - August
2012

PeMS implements some simple screening methods to determdwtector health. It ags

20



a detector to be "not working" if the detector sends few or noanples. There are also
set thresholds that are triggered when the observed valueseatoo high to be realistic. In
addition to these simple screens, the repository deployshetr fault diagnosis methodologies
which will be explored in the next section.

Another functionality PeMS provides is the imputation of mssing measurements based
on neighboring detectors and/or historical averages. Thigay, it is ensured that sparse
missing chunks in the data do not a ect the overall analysisThe imputation algorithm used
by PeMS is based on a linear regression on the large histoticktabase that is available.
To predict missing data on freeway mainlines, this algorittm uses data from detectors on
adjacent lanes and detectors that are immediately upstreaand downstream of the erroneous

detector [8].

2.3 FAULT DETECTION

Fault Diagnosis is a relatively new sub eld of control theoy that grew in the last several
decades, parallel to the demands for higher system perfornta and better quality assurance
along with increasing system complexity in industrial apptations. In their 1997 survey
of fault detection and isolation methods [44], Isermann an@alle provide the following

de nitions in order to establish a basic terminology for theeld:

Fault: An unpermitted deviation of at least one characteristic prperty or parameter
of the system from the acceptable / usual / standard conditin.
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Fault Detection: Determination of the faults present in a system and the time fo

detection.

Fault Isolation: Determination of the kind, location and time of detection ofa fault.

Fault Identi cation: Determination of the size and time-variant behavior of a fau

Fault Diagnosis: Determination of the kind, size, location and time of detedabn of a

fault.

Fault diagnosis has its historical roots in the implementaon of redundant hardware com-
ponents. If two or more system components are assigned theaeixsame task, any disparity
between them is enough to conclude a fault event. Althoughilitan important scheme, espe-
cially for safety critical applications, a more e cient and cost-e ective approach has been to
implement process models and quantitative analysis tools tackle the issue. Current fault
diagnosis methods can be classi ed into two major branched) Signal processing-based
approaches, 2) Model-based approaches.

Signal processing based methods of fault diagnosis are lashse the assumption that some
process signals contain information about faults. By anatyng the magnitudes or other sta-
tistical metrics of the signals in the time domain or by evalating frequency domain functions
like power spectral densities, one may be able to capture sstically aberrant measurements
that are indicative of process or sensor faults. Especialiy cases where multiple sensors are

used to monitor the system, such as distributed sensor netvis, for times long enough to
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establish temporal and spatial correlations over time, tim-series analysis tools become suit-
able along with hypothesis testing schemes that are desigh® minimize the probability of
false alarm.

Model-based fault diagnosis methods, on the other hand, makise of an analytical model
of the underlying process to generate residuals between tm@del and the real system. Sta-
tistical methods can nonetheless be employed while evalumgg these residuals. The general
idea is depicted in gure 2.5 (gure adapted from [13]). Modebased methods of fault

diagnosis are usually classi ed under three frameworks [1825]:

process input process process output

v

— Y residual

process residual » decision : o knowledge
model .O : 3. processing logic ' ¥ of faults

residual generation ; i residual evaluation

Model based fault diagnosis system

Figure 2.5: Model-based Fault Diagnosis Framework

1. Observer-based Methods: The main goal of this approach is to design an observer
such that the resulting residuals have desirable featuresch as decoupling the faults
from unknown inputs and disturbances along with fault dete@ability and isolability.
These, of course, are mainly dependent on the system matsdeaut the observer design
procedure may exploit known properties about the system cgronents to produce the
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most bene cial residuals for fault diagnosis. Figure 2.6 tgether with equations (2.9) -
(2.11) gives the block diagram schematic of this approachailt, noise and disturbance

signals are not shown in the gure for simplicity - adapted fom [25]).

u x=Ax +Bu y _
> y:Cx »
e r
L |« w >
L» B | » C
A

Figure 2.6: Observer-based Fault Diagnosis approach - BloDiagram

Plant equations:

x(t) = Ax(t) + Bu(t) + Eqv(t) + Fsfs(t)

y(t) = Cx(t) + Enn(t) + Fofo(t) (2.9)

Observer equations:

2= AR(t) + Bu(t) + Le(t)

e(t) = y(t) CR(Y) (2.10)
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Candidate Residuals:

x(t) = x(t)  Xo(t) ; e(t) ; r(t) = We(t) (2.11)

. Parity Equations:  Also called the parity space approach, the use of parity egti@ns
for fault detection is a more straightforward approach wher a xed model is run
in parallel with the process to generate residuals. Thesesiduals are then evaluated,
along with some threshold schemes to account for model untaénties, to identify faults
occurring in the process or the measurements. This approasheasier to demonstrate

in discrete time.

x(k +1) = Ax(k) + Bu(k) + Equ(k) + Fofs(K)

y(k) = Cx(K) + Du(k) + E n(k) + Fof o(K) (2.12)

Given a system in equation (2.12) with (C,A) observable and Qull row-rank, we X
a time instances time steps back in time and build the augmented matrices thamap
the input sequence to the output sequence from time s to time k, in the fault- and
disturbance-free case. In the system above(k) denotes the state,u(k) is the input

signal, v(k) is an unknown disturbancef (k) is the process faultn(k) is measurement
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noise andf ,(k) is the sensor fault. De ning:

2 3 2 3
y(k s) uk s)
y(k s+1) uk s+1)
Ys(K) = : us(k) = (2.13)
y(Kk) u(k)
2 3 2
C D 0 0
CA CB D
Ap = ) Bp = (214)
0
CAs CAs 1B CB D
we get the relationship:
Ys(K) = Apx(k s)+ Bpus(k) (2.15)

In equation (2.15), the only unknown is the state at timek s, x(k s). If sis
chosen such thats >= n, with the observability assumption, the matrix Ap becomes
full column-rank with a non-empty left null-space. This lef null-space constitutes the

parity space as given in equation (2.16).

Ps = fvsjvsAp =09 (2.16)

Using any row-vector from this left null-space, the unknowrstate x(k s) can be

eliminated to produce the residual, which in the fault- and tturbance-free case is 0,
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as expected.

rs(k) = vs(ys(k) Bpus(k)) = vsApx(k s)=0 (2.17)

When we also consider the faults and disturbances, buildingatrices Es,, Fs,, Eq,

and F,, in a similar fashion to equation (2.14), we get the residualgeation:
rs(K) = Vs(Es, ds(K) + Eop Ns(K) + Fo, fs,(K) + Fo, fo,(K) (2.18)

The choice of the parity vectorv has a signi cant e ect on fault diagnosis performance
and can be chosen to cancel one or more of the disturbancesny @rior information is

available on the nature of interactions between unknown sigls. The parity approach
is favorable due to its simplicity, especially for discretime systems that do not have
to be monitored in real time. For this reason, we adopt this ggroach in this study

as will be shown in section 4.3. Figure 2.7 provides a simphd block diagram for the
parity space approach (fault, noise and disturbance sigreaare not shown in the gure

for simplicity - adapted from [25]).

. Parameter Estimation Methods: In the parameter estimation-based methods, the
fault diagnosis is performed online with the assumption thafaults occurring in the
process or the sensors a ect the system parameters. Figure3 Zadapted from [13])
shows the main idea in block diagram form. This approach regas some nominal
values for the unknown system parameters to distinguish dewt estimates from correct
ones. Isolation and identi cation of faults is more di cult for this method than it is
for the other two methods that have been introduced above.
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Figure 2.7: Parity-based Fault Diagnosis approach - Block iRgram
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Figure 2.8: Fault Diagnosis with Parameter Estimation

Fault Detection in Tra c Systems
To the author's knowledge, fault diagnosis literature rel@d to the sensing of vehicular
tra c, especially using model-based approaches, is quitentited. Since the modeling and

calibration e ort presented in this dissertation is based o loop detector measurements, our
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focus is on the detection of loop detector malfunction. Mostf the previous work on the
subject deploys statistical methods to detect faults.

The earliest works go back to early 70's, which coincides Wwithe wide spread of loop
detectors as the primary tra ¢ sensing tool, and their main pinciple is to establish data
reliability tests based on expected behavior and interreii@an of occupancy and ow measure-
ments. The theoretical foundations for these data reliabi/ criteria were provided by Payne
et. al back in 1976 [43], where they identi ed 5 types of detéar errors and introduced up-
per and lower thresholds on ow, density and speed that can lreasonably assumed. Aside
from heuristic "on the eld" decisions made by operating agecies or detector installation and
maintenance personnel to make sure the detector "works", ¢hrst signal processing based
fault detection method that was deployed was the Washingtoalgorithm [28]. Developed
by Jacobson et. al in 1990, this algorithm de nes an acceptibFlow-Occupancy region and
ags individual data points as unreliable if they fall outsde this region. In 1991, Cleghorn
et. al [11] introduced a tighter region of acceptability, wth additional constraints for dual
loops, increasing in e ect the dimensions of the acceptabtegion to 3 by the addition of
speed. In 2000, Turochy et. al [49] added new critical threslids on top of the existing
test on relationships between speed, ow and occupancy to ther identify data points that
were reporting unreasonably high values. PeMS uses the steedevised by Chen et. al
[8] in 2003, that introduces the rst time-series methods taletermine erroneous detectors.
Instead of evaluating individual data points, they detectiregularities in the time series of a
measurement taken during a day. They classify 4 such irreguities:
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1. Zero Occupancy and Flow for an extended period

2. Non-zero occupancy accompanied by zero ow

3. Very high occupancy

4. Constant occupancy and ow

If a detector reports measurements that fall into one of theategories above, that detector
is declared to be unreliable for that whole day and the data iprovides are discarded. To
replace this chunk of missing data, Chen et. al introduce ammputation algorithm that
uses time-series data provided by neighboring detectorsenvthe last 5 days (and reliable
data provided by the same detector, if any, in the past 5 daydp replace these unreliable
measurements. Improved statistical methods building upothis approach are provided by
Kwon et. al [26] and by Rajagopal et. al [45].

To the author's knowledge, the only model-based approach ta ¢ sensor fault detection
in the literature apart from the work presented herein is theecent work of Claudel and Bayen
[10] where they model the freeway ow by Hamilton-Jacobi paial di erential equations
and test the consistency of data collected at certain locatns along the freeway against the
continuous model in the space-time domain. However, theyngre the e ect of unknown
ramp ow inputs into the system.

As far as loop detector data are concerned, the major advaga the model-based schemes

have over statistical methods is the fact that some detectsrare observed to carry consistent
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o sets rather than or in addition to noise or other statistially discernable anomalies. Signal
processing methods based on historical data may not be able torrectly pinpoint such
anomalies if they are consistent throughout the data colléon history. We will explore

these phenomena in more depth in section 4.1
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Chapter 3

AUTOMATIC FREEWAY MODEL

CALIBRATION PROCEDURE

3.1 FREEWAY MODEL SPECIFICATION AND
THE LINK-NODE CELL TRANSMISSION

MODEL

The automated model building procedure for freeways can bemmarized by the process
ow diagram in gure 3.1. The rst step is to specify the stretch of freeway section to be
modeled. TOPL has a dedicated web-based software tool, nasndetwork Editor [3], that

implements Google Maps This tool provides a user-friendly visual platform to buitl freeway

or broader network geometries directly on the road network ap. The user can also download
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PeMS detector information and superpose it on the map. Figar3.2 shows a snapshot
of a speci ed geometry for a portion of northbound Intersta¢ 15 near San Bernardino in
Southern California. The network is specied by placing noés at locations where tra c
ow exchange occurs and where signi cant changes to mainBngeometry exist, such as
lane drops. However, it is customary to build the network sdrcthat all available detectors
get associated with a separate link. Hence, the presence efeattors and their locations
substantially dictate model geometry speci cation. The ndes are then connected by links
and the number of lanes are speci ed for each link. Subseqtignsensors that are superposed
on the map at their corresponding postmiles need to be assateidd with the according links
by the user.
The Link-Node Cell Transmission Model

The macroscopic trac ow model adopted by the TOPL project is the so-calledLink-
Node Cell Transmission Model (LN-CTM) which is an extension of the Cell Transmission
Model introduced in section 2.1. The LN-CTM was introducedn [35] which details the
simulation tools developed by Alex Kurzhanskiy within the sope of the TOPL project.

LN-CTM represents the tra c network as a directed graph of Inks joined by nodes.
Each link in the network is assumed to have uniform geometrynd fundamental diagram
parameters, the identi cation of which will be explained inthe next section. Links can be
classi ed as mainline links, sources and sinks. Source Igkre links that start with a source
node and end at a mainline node. These sources specify theunpoundaries to the network.
Similarly, sink links start with a mainline node and end at a mk node, and they specify
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Figure 3.1: Model Building Process Flow Diagram

the output boundaries of the network. Tra c exchange at nods are speci ed by means of
a time-varying split ratio matrix which scales and assignshie incoming ows to outgoing
ows, corresponding to the evaluation of the model. Nodes daot store any vehicles and
ows are conserved, hence the entries of the split ratio mak corresponding to each link
add to 1. Freeway nodes are allowed to have at most one on-rapd one o -ramp. Hence,
it may be the case where two on-ramp merges are very close taleather, they may need to
be bundled together and represented as a single on-ramp. Almer restriction is on the link

lengths. To ensure that the CFL conditions are satis ed by tk discrete time simulation,
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Figure 3.2: A Network Editor Snapshot

the link lengths should be speci ed such that they can not beraversed within a single time
step of the simulation, i.e.vT < L; andwT < L; must hold for each linki whereL; is the

length of link i, T is the simulation time step andv and w are the free ow and congestion

wave speeds, respectively.

Link i Link i+1
Demand Q, -
Link A e — Density fifk) o Densi{\t.y _______ P Link N
(k) ;. k)
7 o ) !
Ay s

Figure 3.3: Graphical representation of the LN-CTM
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The LN-CTM replicates the evolution of ow and density by a two-layered set of govern-
ing di erence equations. A conservation equation govern$¢ density updates using ows
entering and leaving the links and the ow updates are govead by the supply-demand
dependent send-and-receive relationship between adjacknks, in accordance with the Cell
Transmission Modeling framework introduced in section 2.1f at any exchange location the
demand exceeds the supply, the ows are scaled down to matdhet minimum downstream
supply and the excess demands contribute to density buildsuin the upstream links. An
additional conservation equation is introduced to evalua the queues on on-ramps and the
o -ramps are assumed to have in nite capacity, i.e. they argerfect sinks that do not get
congested. This assumption may not always be accurate, in iwh case the model should be
extended as suggested in [38]. For a network represented imk.- Node formulation as in
gure 3.3 the ow and density update equations are as follows

Density Update:

No(k +1) = no(k) + Qo(k) fo(k)
ni(k+1)= nm(k)+ fi 1)@ oK)+ ri o(k) Fi(k) i=1;, ;N

li(k+1)= li(k)+ Qi(k) ri(k) i=1; ;N (3.1)
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Flow Update:

fN (k) = Dn(k)
min(R; (k); Si+1 (k))

fi(k) = Di(K) R0 i=0; N 1

(k) = di(K) mi”(R‘gf)(;(?‘”(k» i=1, ;N

si(k) = fi(k)@ (k) i=1; ;N

where

Di(k) = min( ni(k)Vi; Fi);

Ri(k) = Di(k)(L (k) + di(k);

Si+1 (k) = min( Wist (07 nisa (K)); Fisa)

di(K) = min ( re(k); (k); C)) (3.2)

where Table 3.1 lists all the variables and parameters in thebove equations.

When modeling a freeway with the LN-CTM, the convention adojd by the TOPL
model building procedure is to collapse the stretch of thedeway between an o -ramp and
the immediately following downstream on-ramp to a single e and specify the split ratio
matrix such that ows from the incoming on-ramp to this node ae not permitted into the
outgoing o -ramp. Incidentally, most of the detectors in Cdifornia freeways are located in
this stretch. An example is shown in gure 3.4. The length oftie upstream link (link i in
the case of gure 3.4) is re-adjusted to include the length dhe collapsed region. Hence, in

e ect, the o -ramp is being pushed downstream per assumptio of the model geometry to
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Symbol Name Unit

Fi ow capacity of Link i veh/period
Vi free ow speed of Link i section/period
Wi congestion wave speed of Link i section/period
n? jam density of Link i veh/section
k simulation time step (period) dimensionless
i (K) split ratio at node i dimensionless
fi(k) ow out of Link i veh/period
n; (k) number of vehicles (vehicle density) in veh/period
Link i
si(k);ri(k) o-ramp, on-ramp ow in node i veh/period
di (k) on-ramp i demand veh/period
li (k) queue length on on-rampi veh/period
i ow capacity for on-ramp i veh/period
L; gueue capacity for on-rampi veh/period
Qi (k) input ow for on-ramp i veh/period

Table 3.1: LN-CTM Variables and Parameters

be attached to the freeway at the same location as the on-ramp

8 -

M&) O—>
\ \

Figure 3.4: Link - Node representation of a freeway ramp mexdocation

3.2 FUNDAMENTAL DIAGRAM CALIBRATION

For both extensions of the Cell Transmission Model that arariplemented by TOPL (LN-

CTM introduced in section 3.1 and ACTM, to be introduced in setion 4.2), and in fact, for
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any macroscopic model of tra ¢ ow, the identi cation of fun damental diagram parameters
for each cell in the network needs to be performed to obtain accurate model. Exploiting
the abundance of Flow-Density data provided by PeMS, an auteated fundamental diagram
calibration methodology has been devised, which uses mplg days' data to calibrate a
fundamental diagram for a section that includes a loop detemr. The main goal of this
algorithm is to t the assumed triangular fundamental diagiam relation to the Flow-Density
scatter plot as shown in gure 3.5. In the scatter plot, everydata point corresponds to a 5

minute aggregated Flow-Density pair.
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Figure 3.5: Fundamental Diagram tting scheme

In this section, we demonstrate how the automated parametddenti cation process
implemented by TOPL works. The rst step is to gather data fran PeMS for each loop
detector station present in the modeled stretch of road netwk. Customarily, we download
data from the PeMS Data Clearing House (DCH), which is a repiery dedicated to provide
users access to daily packets of data from each detector irethistricts of California. Data
collection from PeMS can also be automated by specifying @ditase querying scripts.

To estimate the fundamental diagram parameters at a deteatdocation, the observed 5
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Figure 3.6: Example calibrated fundamental diagram on Intstate 210 Westbound

minute aggregated Flow - Density pairs are combined in a s¢at plot as shown in gure 3.6.
In this example plot, there are 108 days' data combined in onpot, every color corresponding
to a di erent day and this yields a total of 108x288 = 31104 intvidual data points. Three

parameters need to be identi ed to uniquely determine the tangular fundamental diagram:

1. Free Flow Speed (v): The free ow speed corresponds to the slope of the left-hand
side portion of the triangle, where the density is below ciital. This slope is determined
by performing a linear least squares t on the set of Flow-Desity pairs that correspond
to measured speeds that are higher than 55 mph. 55 mph is theNP® criteria for a
threshold speed between free owing and dense tra ¢ condibins. Here we are making

use of the fact that PeMS provide estimates of speeds in addih to ows and densities.

2. Capacity: The capacity of a freeway section is de ned as the apex of thendamental
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diagram in the macroscopic modeling context. However, caraust be taken when
attributing observed maximum ows to the actual capacity ofthe section. First of all,
the section must get congested during the analyzed day fordttapacity to be observed.
Second, the causes of congestion also determine whether dhserved maximum ow
in fact corresponds to the actual section capacity. If the sdon gets congested due
to a lane drop as a result of an incident or because it is hit by back-propagated
congestion wave from downstream, the observed maximum owsay be below what
can ideally be achieved. Furthermore, it is demonstrated iauthor's own work [12] that
capacity, when de ned as maximum ow observed during a day owhich the section
got congested, shows signi cant variability. Figure 3.7 dwonstrates this variability
in capacity (or in daily observed maximums to be more accuraj over a stretch of
southbound Interstate 880 in East Bay approximately from Oldand to Fremont. The
gure shows box plots of daily maximum ows for each detectostation listed in the
horizontal axis. The vertical axis shows the maximum ow vales and listed along
the upper horizontal edge of the gure are the number of dayshat particular section
got congested, i.e. the number of data points for each partilar box plot. The red
lines inside the box plots correspond to the median of the adyved capacities among
days. The lower and upper box boundaries represent 1st andd3guartiles, i.e. 25th
and 75th percentiles, respectively. The whiskers span froeither end of the box to
the smallest and largest data points that are non-outliersiyhere "outliers" are de ned
as any points that are more than 1.5 interquartile range awafrom box boundaries.
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The interquartile range is de ned as the di erence betweenhte 25th percentile and the
75th percentile of the data. Individual outliers are markedas points. It is noteworthy
that in the extreme case of detector 400352, the capacity vas between 2186 and 1324
vehicles per hour per lane. Note that both these values re ethe highest observed
ow on a single day of operation across this detector. Anotlmeémportant observation is
that most of the outliers fall below the lower whisker, indiating that external random
factors such as weather, incidents, events, etc., which wenot controlled for in this
study, a ect the capacity adversely. As for the outliers abee the higher whisker, they
may be attributed to the expected o set and noise in the deteors, which will also be
explored in section 4.1. Under the light of these observatis, the capacity of a section

is assigned as thenaximum non-outlier value, de ned as
Capacity = mfax(fijfi <Q3+1:51QR) (3.3)

wheref; are the individual maximum ows observed on each congestidmearing day,
Q3 is the 75th percentile of all the daily observed maximumsnd IQR = 75th percentile
- 25th percentile. For sections that do not get congested fany of the observed days,
a nominal value (usually 2000 vehicles per hour per lane) issagned as the capacity.

Of course, this nominal value should be higher than the obsexd ows in free ow.

Capacity was demonstrated to be the parameter to which the agted models are most
sensitive by Muralidharan et. al in [40]. Hence, the correatstimation of capacity is
of utmost importance and is an ever evolving debate in the tra literature.
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Figure 3.7: Box Plots of Capacity along I-880 South

3. Congestion Wave Speed (w):  This parameter determines the speed at which the
congestion propagates upstream of the section. Like capgcithis parameter also
shows signi cant variability [6]. Following the reasoningmade for the variability in
capacity, we want to exclude arti cially lower ow data points since those points most
likely correspond to "worse-than-ideal" operating condions for the freeway. Since we
want to capture the "ideal" values of the parameters and useuo simulation tools to
replicate "worse-than-ideal" conditions, we adopt an apmximate quantile regression
scheme [34] to t the right-hand-side portion of the trianglar fundamental diagram.
Once the capacity ow is determined, the corresponding deitg value is deemed the
critical density. The data points that fall to the right of the vertical line drawn from
the apex to the critical density constitute the congested gme data. To estimate the

congestion wave speed, these data points are partitionedafl the density axis into
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non-overlapping bins of 10 data points each. From each of gebins, one representative
point is chosen as the "maximum non-outlier" within the bin,and then a constrained
least squares t is performed to t a line through these reprsentative points and the
apex of the triangle. Figure 3.8 shows a detailed view of thigrocedure, where the
green rectangles in the zoomed view show the representatpeints for each bin. The
estimation of the w-line also establishes th@m density for the section which is the
density value where the w-line intersects the horizontal @& When the section to be
calibrated does not get congested for any of the availableyda a nominal value of 10
mph is assigned as the congestion wave speed. This value isas@rage value over all

the available estimations that have been carried through gsart of the TOPL project.
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Figure 3.8: Estimation of the congestion wave speed (w)

Once the fundamental diagram parameters are identi ed at &h detector location, they
need to be assigned to their corresponding links. In all freays analyzed and modeled by the

TOPL project (1-680, 1-210, SR-101, I-15, 1-80, 1-880), theletector placement is such that
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measurements are taken just upstream of on-ramps and/or judownstream of o -ramps.
The LN-CTM, introduced in the previous section, assumes ank to start just at the on-
ramp merge. Hence we assign the fundamental diagram estiradtat a sensor location to the
link just downstream of the detection. Here, the choice is bg&een assigning the upstream
detector versus assigning the downstream detector to thellceThe choice of the upstream
assignment is justi ed by the model assumptions. Of the two odes a cell can be in, during
free ow we do not expect any signi cant di erence in the nornalized density (normalized
by lane and space) between the measurement location and desiof the cell and when the
cell is congested, the congestion spills back in the upstreadirection, giving rise to a cell
density better captured by the upstream detector locationather than the downstream.
Due to malfunctioning or, more frequently, a lack of adequatdetector placement, there
are several links with no detection. In such cases, the paraters estimated at the nearest
upstream detector station are assigned to these links (seket double assignment of the
fundamental diagram on the right, in the top part of gure 3.9. Another important exception
to the rule is the case of major on-ramp merges, such as fregwa freeway connectors where
the downstream detector gives a more accurate ow-densitglationship for the link (see the

double assignment of the fundamental diagram on the left, ithe bottom part of gure 3.9).
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Figure 3.9: Assignment of Fundamental Diagrams to freewaynks

3.3 IMPUTATION OF UNKNOWN RAMP FLOWS

After the fundamental diagram parameters are calibrated foeach link, the next step to
completing the model calibration is the estimation of unoksved ramp ows. These unknown
ramp ows are estimated using an imputation algorithm devied by Ajith Muralidharan,
another member of the TOPL team. In this section, we present eoncise overview of this
algorithm to complete the picture of the automated model bldling procedure. For a more
detailed account and convergence analysis of the algorithiine reader is referred to [38].

The imputation algorithm that is deployed within TOPL is a model-based algorithm
built upon the LN-CTM introduced in section 3.1. The goal of he algorithm is to construct
arti cial ramp ows at speci ed locations using an iterative learning algorithm to match
model densities and ows with the measurements taken from ¢ghmainline.

For the purposes of the imputation algorithm, the followingadditional terms need to be
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introduced,
Capacity adjusted free- ow speedv(k)): vi(k) = vi(n;j(k)) = min v;; an—('k)
Capacity adjusted congestion wave spead(k)): w;(k) = w;(nj(k)) =min w;; WFW
Total/e ective demand (c(k)): ¢ (k) = nj(k)vi(K)(1  i(K))+ di(k)

Under these de nitions, the demand, and supply functions & represented as

Di(k) = min( n;i(K)vi; Fi) = ni(k)vi(k)

Si(k) = wi(k)(n}  ni(k)) (3.4)

and the model equations become

Density Update:
ni(k+1)= ni(k)+ £ (k) F(K) (3.5)
Flow Update:

k) =min wim k)i 1(k)

OUL(LY — (L : Wir (K)(Ny nisg (K))
fOU(ky = ny(K)vi(k)min  1; S0

G(k) = ni(kvi(k)@ (k) + di(k)

di(k +1) = di(k) + Qi(k) ri(k)

si(k) = i(K)f™ (k)

min (G (K); wi+1 (k)(niJ+1 Ni+1 (K)))

ri(k) = NG

di (k) (3.6)
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Due to the dual nature of both the incoming and the outgoing @s for each link, LN-
CTM is a piecewise nonlinear model with four modes. Dependjron ow conditions up-
stream and downstream of a link, i.e. whether these are in &#eow or in congested operating

conditions, the four modes and their corresponding densitypdate equations can be written

as.

ni(k+1)= ni(k)+ ¢ 1(k) ni(k)vi(k) (FF mode)

ni(k+1)= ni(k)+ G (k) ni(k)vi(k)w‘”(k)(”i_*(lk) 2 () (FC mode)

ni(k+1)= m(k)+ wi)n!  ni(k) ni(k)vi(k)Wi+l(k)(nci+(lk) 1l (e mode)

nik+1) = mk)+ wi)n! i) nikvik) (CF mode)
(3.7)

where F stands for free ow andC stands for congestion in the mode labels following
the equations. The rst letter is for the ow conditions upstream and the second is for

downstream. With this formulation, the imputation algorithm solves a two stage problem:

1. Estimate the e ective demand vectorsc (k) for each link on the freeway using an

adaptive learning scheme to match the density measuremenda the mainline.

2. Using the estimated e ective demands, evaluate incomingnd outgoing ows to and

from each link. Using these ows and the measured ows (usuglmeasured at the
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location depicted by gure 3.10), solve a linear program tonqpduce on-ramp owsr{\k)

and o -ramp split ratios "(k), where the "hats" denote estimated variables.

flow measurement

.
Linki M550 =1 o Link i+1
& $

Figure 3.10: Location of measurement with respect to the LKTM

3.4 MODEL VALIDATION

The identi cation of fundamental diagram parameters and tle estimation of unknown ramp
ows (assuming there are no faulty detectors) produces a cqiete model. The next step
is the open-loop simulation of this model and assessing itenformance. The performance

criteria adopted by TOPL are as follows:

Density Error:  The mean absolute error between the model calculated and nseeed

densities along the freeway.

PP |
Density error = L pdgi(k) N (k)]

T (K] (38)
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Flow Error: The mean absolute error between the model calculated and nseeed

ows along the freeway.

PP
pdfi(k)  fmes (k)]
Flow error = —! Pkg'(_ S— (3.9)
i k]fimeas(k)]
VMT Error:  The relative error in hourly Vehicle Miles Traveled
P
_ JVMI () VMTT()]
VMT error = MO (3.10)
VHT Error:  The relative error in hourly Vehicle Hours Traveled
P
_ JVHE() VHT™®()]
VHT error = SVATO) (3.11)
Delay Error:

The relative error in hourly Delays

P
__dvep() vceD™E()j
Delay error = ERVSS) (3.12)

where VMT, VHT and Delay are de ned as:

X ( +1)x@600=Ts

VHT() = ni (k)
i k= 3600=Ts
X ( +1)y3600=Ts
VMT( ) = fi(k)
i k= 3600=Ts
X ( +1)y3600=Ts
Delay( ) = (ni(k)  fi(k)=M) 1(Vs(k) < 55mph)
i k= 3600=Ts

In the delay formulation, the 55 mph speed is a user-speci eéference speed set at this
value for freeways. In addition to the calculated measuredave, the contour plots of speeds,
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ows and measurements along the freeway provide an importamisual inspection tool to

assess if the model is able to replicate the congestion patise and important bottleneck
locations on the freeway. An example set of these plots areoprded in gures 3.11 and 3.12.
In these contour plots, the horizontal axis is the spatial aardinate whereas the vertical
coordinate axis corresponds to the time of day in hours. Thelgis show a single day, i.e.
a 24 hour period. The trac ows from right to left in these par ticular plots. The color

palettes next to the plots de ne the color vs value matching$or the contours. This example

shows a calibrated 23 mile stretch of eastbound 1-80 on Augdubh, 2008 for a 24 hour time

range.
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Figure 3.11: Example Density Contour Plots for a model of 1BEastbound
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Figure 3.12: Example Flow Contour Plots for a model of 1-80 Etbound
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Chapter 4

FAULT DETECTION AND

HANDLING

4.1 MOTIVATION FOR MODEL-BASED FAULT

DETECTION

Before introducing the model-based fault detection schemere rst provide a background
on common measurement errors that cannot be identi ed by thstatistical methods applied
on the raw data by PeMS. Since the model building tools devgled by TOPL are based
on data already processed and ltered by PeMS, the aim of the axel-based approach is to
detect further errors in the data that have slipped through he PeMS lters. These errors will

usually arise in the form of consistent biases and o -sets ttaer than statistically aberrant
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measurement noise. Therefore, the decision logic to be mtluced in section 4.3 classi es
potential errors as bias in ow and density measurements. lis clear that such errors can
not be detected by comparative statistical methods if theyacur in a consistent manner over
days of operation.

Measurement bias in ow counts was evidenced as a result of ancillary study that
investigated the discrepancy between adjacent loop detecs that report to two separate
authorities but should nevertheless, in theory, report thesame counts. There are many
federal Census detectors on several locations along Catifia Freeways and a signi cant
portion of these are located adjacent to PeMS detectors whi@are under Caltrans authority,
insofar as to share the same physical inductive loop in a fewses. It was observed that
even though these Census and PeMS detectors are right nextdach other, they sometimes
show consistent bias towards one of the reported total dailgounts. Figure 4.1 (left) shows
a scatter plot of 143 days of total daily ows at such a locatin. Looking at the plot, it is
obvious that the counts are highly correlated but the Censusounts are, on average, 20%
higher than the PeMS counts, as the right hand side plot of thegure exhibits. Two such
sites have been further examined in an e ort to explain this idcrepancy. To this goal, hand
counts were established from video feeds at these two sitescompare to the ltered PeMS
data. The details and complete results of this study are begd the scope of this work;
however, the ndings about PeMS counts are highly pertinento the problem of nding
consistently biased measurements. For the two analyzedest it was found that 5 minute
aggregated PeMS data contains 4.3% positive bias relative the hand counts. Among the
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two sites, a total of 6 hours of data were analyzed which amoisnto a sample size of 72 data
points. It was also observed that the PeMS counts were alwakigyher than the hand counts,

i.e. the bias was always positive. The error in hand counts weestimated to be around
1%. Figure 4.2 shows the 15 minute aggregated relative ersan PeMS counts with respect
to the hand counts for a four hour period. Another observatio was that the relative bias

with respect to the hand counts shows no signi cant dependea on ow volume or trac

conditions.
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Figure 4.1: Census ve PeMS daily total ows

For density measurements, the cause of measurement bias isradominantly structural
problem related to sensor placement and model assumption®n California freeways the
loop detectors are customarily placed immediately upstrea of on-ramps and downstream
of o-ramps. When specifying the model geometry, every links associated with one of
these detectors. Figure 3.9, shows this association in theNiCTM sense. ACTM has a
similar detector-link association scheme depicted in gar 4.3. In this gure, the links are

enumerated as 1 and 2, the ramp ows are indicated by the arr@below as r and s and the
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Figure 4.2: Relative bias in PeMS ows with respect to hand amts

measurements f (ow) and n (density) are taken at the locatins indicated by the circles.
Every detector is associated with the link immediately dowstream of the detector location.
Since the ACTM de nes a link with an on-ramp at the beginning ad an o -ramp at the
end, in this formulation the detector actually is within the geometrical con nes of the link
but is nonetheless upstream of the on-ramp and thus may faib tcapture the density of the
whole link accurately. Due to this placement of the detectarwhich is incompatible with
the model assumptions, it is expected that all density measements carry an unavoidable
bias. Since density is the essential state of the model on whiboth the imputation and the
simulations are based, this bias can have a signi cant e eadn the accuracy of the model.

This phenomenon constitutes the basic reason for a modeldseal fault detection algorithm.
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xS

Figure 4.3: Basic ACTM representation and Location of Detears

4.2 THE ASYMMETRIC CELL TRANSMISSION

MODEL

The Asymmetric Cell Transmission Model (ACTM) is another etension of the Cell Trans-
mission Model adopted by earlier deployments of the TOPL fesvay modeling and cali-
bration process [22], [21]. Compared to LN-CTM, introducedh section 3.1, ACTM is a
simpler model that is particularly suited to modeling unidrectional freeways rather than
more complex networks. The fault detection algorithm to bentroduced in the next section
exploits some favorable properties of ACTM which the LN-CTMdoes not provide. For this
reason, the fault detection algorithm is based on the ACTM.H this section we summarize

the ACTM and the ACTM-based imputation algorithm as an essetial background to the
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discussion of fault detection in the next section.

The ACTM speci es the freeway as a sequence of cells, eachhw@t most one on-ramp
near the beginning of the section and at most one o -ramp nedhe end of the section (see
gure 4.4). Every cell is assumed to have a detector stationsaociated with it, and when
specifying the model geometry, it is aimed to build the cells a such a way that every cell
contains one vehicle detector station. This is depicted ingure 4.5 and should be compared

to gure 3.4 for a visual assessment of the discrepancy besvethe ACTM and the LN-CTM.

Figure 4.4: ACTM schematic representation

Figure 4.5: ACTM representation of a freeway portion

The equations that govern the evolution of density and ow fo a given link i in the
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ACTM are as follows:

Density:
nik+1)= m(K)+ f; 1(k) Fi()+rik sk); 1 i N (4.1)
Flow:
fi(k) =min(vini(k) si(k);wisr [Ny, M (K F) 10 i<N (4.2)

Boundary Flows:

fn (k) =min(vnnn (k) sn(k); Fn) (4.3)
fo(k) = min(wi[ni  ny(k)]; Q(k) + fin (K)) (4.4)
Q(k+1)= Q(k) + fin(k) fo(k) (4.5)

wherei is the cell index andk is the discrete time index. The model variables and paramete
are as listed in table 4.1.

It is customary to specify the downstream boundary conditios as free ow and at the
upstream boundary, ow is assumed to be fed to the freeway tbugh a queue. A celi is

de ned to be in free ow if its corresponding discharge owf;(k) satis es

vini(k)  si(k) < min[wiq [0, i (K)]; Fi (4.6)

and it is in congestion if the inequality above is violated. Ence, the system essentially

is apiecewise a ne switching mode systemvith congested and free ow modes for each cell.
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Symbol Name Units

Fi maximum ow (capacity) of sec- veh/period
tion i

Vi free ow speed of sectioni section/period

Wi congestion wave speed of section section/period
[

ny critical density of section i veh/section

n? jam density of sectioni veh/section

fi(k) ow from section i to i +1 at pe- veh/period
riod k

si(k);ri(k) o-ramp, on-ramp ow in section veh/period
i at period k

n; (k) number of vehicles in sectioni at veh/section
period k

Q(k) number of vehicles in the input veh
gueue to section 1 at periodk

fin (K) input ow at upstream queue at veh/period
period k

Table 4.1: Asymmetric Cell Transmission Model (ACTM) Varidles and Parameters

In contrast, the LN-CTM is a piecewise non-linear switching mode systewhich complicates

the building of model-based schemes like imputation and fidetection upon it.

ACTM IMPUTATION

The imputation algorithm, briey introduced in section 3.3, was rst developed for the
ACTM and it is essential to the fault detection scheme to be tnoduced in the following
sections. The ACTM-based imputation algorithm is also duea fellow TOPL researcher
Ajith Muralidharan [41], [38].

The ACTM-based imputation algorithm uses ariterative learning control (ILC) approach
rather than the adaptive control approach described in seicin 3.3 for the LN-CTM-based

imputation. The goal again is to match the mainline ows and @nsities by tting arti cial
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ramp ows at specied locations. In the following, the modeland learning dynamics are
represented in continuous time for ease of representationchanalysis, but in practice they are
implemented in discrete time with a small time step and smafjains, so that the imputation
procedure as well as the model are stable. The upstream sentis speci ed with the subscript
up and the downstream section is speci ed byln. Figure 4.6 shows the parameters and
measurements used for imputation of ramp ows in sectiom. The upstream boundary
conditions include the upstream density, fundamental diagm parameters and the o -ramp
oW S . Since all the parameters and variables carry the subscriptfor clarity, we drop it

in the following equations.

Figure 4.6: Imputation Parameters and Cell De nitions

It is assumed that the density and ramp ow pro les are 24 houmeriodic, and the on-
ramp and o -ramp ows are represented as a convolution of a keel with a constant periodic

ramp ow parameter vector:
Z . Z.
r)= K(t)a()d; s()= Ks(;t)es( )d (4.7)

0 0

62



In equation (4.7),K,( ;k) and K¢( ;k) represent periodic, time dependent kernel func-
tions with a period of 24 hours. A typical kernel function wold be an impulse or a gaussian
window centered at timek.

For each section, the imputation procedure assumes initigstimates for the constant
ramp parameter vectors¢*and &. These estimates are then adapted so that the model
calculated densities match the density pro le measured byhe vehicle detector station. The
model variables and the estimates are denoted by a hat accdrt) and the residuals by a
tilde accent (~). The true values are represented without gnaccent.

The four modes considered by the imputation algorithm are:

1. P-F: Plant in Free Flow

2. P-C: Plant in congestion

3. M-F: Model in Free Flow

4. M-C: Model in Congestion

These modes for both the plant and the model are determined ®quation (4.6). The

mode dependent adaptation laws for the parameters at eacleptare given by:

P-F , M-F (plant and model are both in free- ow):

G(;t) = GiK(t)R(t)

E(;t) = GoKs(;t)fan(t) (4.8)
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P-C , M-C (plant and model are both in congestion):

C(;t)= GiK,(;t)R(t)

G(;t) = GiKs(;t)R(t) (4.9)

P-C , M-F (plant is in congestion and model is in free ow):

Casqi) r(k) > 0

G(;t)= GiK (5 t)n(t)

&(;t)= GiKs(;t)m(t) GoKg( ;t)mn(t)"' Jfan ()]

2
Casq(ii) rR(t) O
&(;t) = GiK (s t)R(Y)
&(st) = GaKs(t)fan(t) (4.10)
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P-F , M-C (plantis in free ow and model is in congestion):
Casqi) r(k) < 0
&(;t) = GiK (;t)R(t)

cs( ;t) = Gle( ;t)ﬁ(t) GZKS( ;t)f’an(t)

Casgii) n(k) O
C(;t)= GiK,(;t)n(t)

G(;t) = GoKs(;t)fan(t) (4.11)

where G's are user de ned positive gains. The model density is updad at each time
step using the most recent estimates of the unknown ramp ownputs by the following set

of equations:

R(t) = n(t) A(t) (4.12)
a(t) = f, fy+2(t) &1t) ar(t) (4.13)
fu = min (g (Vip  Sup(t); Fupsw(n’  A(1))) (4.14)
fa=min(A(V  8(1);Wan(D)(NGy  Nan(t))) (4.15)
() = fan(®  (NOV &) (4.16)

I
nd, Nan ()’

where wg, (t) = min w is introduced in order to absorb the capacity ow

into the congestion mode and the parametea in (4.13) is chosen so as to make the error
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equations asymptotically stable. The adaptation is carri@ out for the entire density pro le
multiple times, so as to reduce the 24-hour ‘residualsp,' Jn(k)  n(k)j and P JFan (k)
fun(K)j. This procedure is repeated until either both the residual®ecome small (eg.<
0:5% of P «N(k) and < 0:5% of P « Fan(k)) or the residuals do not improve (eg.
change of errors ok 0:5% of P « N(k) and < 0:5% ofP « Fan(K) across iterations)

Due to the piecewise a ne formulation of the ACTM, the imputation can be carried
out sequentially for each section, starting from the most gtream section. Hence, for the
estimation of ramps in section, only the immediate upstream sectiom 1 and the immediate
downstream sectioni + 1 are considered. This property is instrumental to the is@tion of

faults for the model-based fault detection scheme to be iduced momentarily.

4.3 FAULT DETECTION ALGORITHM

In the modeling process ow outlined in gure 3.1 the identi cation of faulty mainline detec-
tors, when carried out manually, is the most time-consumingtep of the procedure. There-
fore, an automated procedure based on the evaluation of réisals between the measured
and simulated densities and ows has been devised. Figure’/4hows the block diagram of
this framework.

With regard to the treatise in section 2.3, this framework cabe regarded as aombination
of the parity and parameter estimation methodsThe relatively simple parity approach is

applicable in this case because we have a discrete time modkthe system and the data
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Figure 4.7: Fault Detection Framework

become available as daily packets in the PeMS repository. iBhallows for the iterative
learning of the unknown ramp ows, as explained in section 2, and facilitates the residual
generation for the period of one complete day. The caveat dfi$ structure is that the
method can not be implemented in real-time due to its dependee on a complete set of
daily measurement pro les.

To analyze the e ects of faults on the freeway model, we stawith an arti cial freeway of
only four links. Simulated data are used as measurements afallt signals are superposed
upon these measurements at a known isolated location. Whehet unknown ramp ows
are imputed based on these arti cially polluted mainline dta, the fault signals manifest
themselves in the estimated variables in very specic pattas depending on the freeway
geometry and the nature of the fault signal. A convenient ca@equence of using the ACTM
is that the fault in the measurements of a link only a ects thelink itself, and the two links

adjacent to it upstream and downstream, but not the other liks.
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To demonstrate an example, we consider 3 successive cellspfwhich have both an
on-ramp and an o -ramp and none of the ramp data are availabl¢i.e. they are all to
be imputed). This con guration is depicted in gure 4.8. We nject bias terms, and
respectively, in the ow and density measurements just upstam of cell 2, which the model
assigns as the ow entering cell 2 and density of cell 2, resgiieely. To conform with the
model de nition in chapter 4.2, we denote the ow measured athis location f ; whereas the
density measurement is named, but in reality these two measurements belong to the same
vehicle detector station. We make no additional assumpti@nabout the additive arti cial

error terms. Hence they can, in theory, be any function of tim

Figure 4.8: Example Ramp Con guration

We have:

_.,
=3
1]
—_
=
+
—

T
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where superscript m stands for measured and T stands for thyti.e. the simulated
arti cial data. In the presence of the arti cial faults, the dynamics of the plant, model and

residuals in free ow evolve according to the following eqtians:

Plant:
ng= ving+fo+ryg
No= Vano+VviNp S+ 1o
N3 = V3Nz+ VoNp S+ I3
Model:
A = V1ﬁ1+f(',“+’?‘1
Ao = Voo +vifiy S+ %,
As = Va3 + Vol S+ %3
Residuals:

By = Vifp + 1

Bo= Voo + Vo 2+ 5+ 1+ 1

By = V3fAz+ T3
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where the hat accents are reserved for the model and the tildecents are reserved for

residuals. In the residual equations, we have used the fattat under free ow conditions

vifiy, 61 = f]r-n

V2h2 92 = f2

On the other hand, during congestion, the dynamics evolve @arding to the equations

below:
Plant:
nz = ws(n3 n3z) fa+rz s3(notaected)
n;=wy(ny nz) wy(n3 nNg)+r, s
ng="f" wo(ny n)+r; s
Model:

Ao = Wy(n; Ny) fo+1, &

n = fo Wz(n% N)+%1 &
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Residuals:

o= RoWo+ Wy 2+ 5+ 0

1= AWo W, o+ O

whered; = r; s is the total demand.

To simplify the analysis, only the two cases where the middieell is either in free ow or
in congestion are considered and it is assumed that the adgat cell a ected by the middle
cell (which is the upstream cell when the middle cell is in cgestion and the downstream
cell when itis in free ow) is in the same mode as the middle delThis does not compromise
the algorithm's ability to detect faults since the instance when two successive cells are on
di erent ow modes are transient and do not prevail for exterded periods of time. After the
imputation algorithm is applied, the model pro les converg to the following values during

free ow and congestion respectively:
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Free Flow:

Ar! ng
me— T

i1 frG=fl+ 1)

Congestion:

it Ny

ol nZ(=n;+ »)

61 ! dI Wy -

bt od+w o+

It is seen that the faults manifest themselves in two distirtcways for this particular

con guration of unknown ramp ows:

1. The measured and simulated ows discharged by cell 1 do nmiatch during congestion
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2. The estimated total demands for cells 1 and 2 show a signant instant change when

the mode switches from free ow to congestion.

Figure 4.9 depicts the arti cially generated ow, density and demand pro les in compar-
ison to the simulated model based on these arti cial data anthe injected fault terms. The
fault signatures that were derived above are clearly visilin the gures. In the demand
(total ramp ows) plots, the red lines that show the "true" arti cial ramp ows are not
present in real applications but only the blue "imputed" ranp ows are available. Hence it

is only the sudden switch in the pro les that provides the fali signature.

Figure 4.9: Fault Signatures due to Positive Bias in Densityand Flow in an "All Ramps
Present” con guration (Arti cial Data)

There are 5 possible fault signatures that show up as residsdetween the model and

the plant:
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1. Density mismatch during free ow

2. Density mismatch during congestion

3. Flow mismatch during free ow

4. Flow mismatch during congestion

5. "Jump" in estimated demand when there is a switch in ow coditions

Since the fault signatures are dependent on which ramps are be estimated in a cell
triplet, they were evaluated for all 64 possibilities of ramp con gurations, similar to the
example given above. The given example happens to be casevdereas case 1 is a triplet
of cells with no ramps at all. The signatures for all ramp corguration cases are listed in
the table in Appendix A.

4 modes of systematic fault were considered:

1. Positive Bias in Density

N

. Negative Bias in Density

w

. Positive Bias in Flow

N

. Negative Bias in Flow

If the middle cell in a three cell cascade is subject to any ohé above failure modes, a

unique combination of the 5 signatures occur in all the threeells. In the given example this
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combination is "Signature 4 in Cell 1 and Signature 5 in Celld and 2", which are due to
"Positive Bias in Density" and "Positive Bias in Flow".

The automated algorithm is essentially a look-up-table lag that takes the cells on the
freeway in sets of 3, determines the speci c ramp con gurain and checks whether the
density and ow residuals show characteristics pertainingp any of the failure modes listed
above. The next chapter presents the results of this algohitn on real freeway sections with
di erent ramp con gurations and di erent fault signatures than the ones presented in this
section.

Before we present the results, there are several importaritaracteristics of the algorithm

that need to be explained.

Thresholds: As suggested by the discussion in section 4.1, most measueets are
subject to varying degrees of bias. For this reason the algiym requires thresholds to
be set to accurately ag density and ow mismatches as actudhult signatures. The
models calibrated by the TOPL project customarily aim for ad consistently achieve
mean absolute errors of around 3-5% and 5-10% for density armv respectively
(see equations (3.4) and (3.8)). Such calibration e orts e¢abe reviewed in previous
publications produced by the TOPL researchers, such as [2416] and [39]. In light
of the extensive previous calibration experience (roughbround 50 calibrated models)
on several di erent freeways the 3-5% and 5-10% errors forrdgty and ow have been

established as achievable and acceptable error gures. Heeerror percentages are
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averaged values over all sensors available on the modeleetsh of freeway. Therefore,
the fault detection algorithm uses these gures as a startm point for determining the
degree of mismatch for a particular sensor. Subsequentlyard thresholds have

been set at 3% for density and 10% for ows at individual sensor locations.

Unobservable faults:  As shown in the example above, detection of fault is condi-
tioned on the system switching its mode during the day. If t/e does not occur for a
speci ¢ sensor location, i.e. the section does not get costed, the fault in the mea-
surement is unobservable. In most cases, the model will belato match the faulty
measurements by feeding ramp ows that will match the measament perfectly and
the estimated ramp ow pro les will not exhibit any anomalies that can be picked up
by the algorithm. On the other hand, since we are basing the aaracy of our model
on how it compares to the measurements, this constitutes asmof ‘ignorance being

bliss" and gets ignored.

Known ramp ows:  Although the majority of ramp ows are not monitored and/or
archived on California freeways, this is not always the casén the rare cases where the
ramp ow measurements are available, the algorithm assuméisose measurements to
be fault-free and classi es the geometry as a case where theeg ramp does not exist,
since it is not available to the imputation algorithm to be emated. The decision

logic treats the case accordingly when evaluating the mainé data for faults.

Faults in adjacent detectors: It has been empirically established (similar to the
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example above), that when two neighboring detectors both ke a measurement bias,
they nevertheless produce the corresponding fault signaés in the residuals and es-
timated demand pro les. These signatures do superpose buti$ virtually impossible
for them to cancel each other because this would require thautt signals to perfectly
complement each other. The superposition of the fault sighaes does not constitute a
problem for the decision logic because it looks for an exactiset of signatures for each
fault mode and does not get thrown o by the fact that there areadditional signatures.
In terms of classifying the fault however, it can report the ection to exhibit both pos-
itive and negative bias in the same measurement. To summagjzadjacent faults do

not deteriorate fault detection performance but they may hinderfault identi cation .

Algorithmic characterization of the "Jump" phenomenon: In the automated
algorithm, there is a need to algorithmically evaluate and ategorize the jump phe-
nomenon. Mathematically, this is done by taking the mean vak of the demand pro le
during free ow and congestion and calculating the di erene. If this di erence is above
the threshold of 1000 vehicles per hour, the demand pro le deemed to exhibit the
jump phenomenon. A more exact approach would be to check ifetpro le produces
a jump at the time instance when the ow conditions transition between free ow and
congestion. However, at these exact time instances, we aés@ect some spikes in the
pro les due to the discretization which can corrupt the ideti cation of an authentic

"jump". Figure 4.10 shows the comparison of these two approles. It can be seen that
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the former approach is less sensitive and thus more seleetin terms of identifying the
"jump". Here, the threshold of 1000 vehicles per hour is a raer conservative value.
This gure is also based on previous model calibration and diét identi cation e orts.

Mainline ows have their maximum values at approximately 800 vehicles per hour
when averaged over multiple days and compared to this avemgalue, a di erence of
1000 vehicles per hour is a conservative yet evidently e ee¢ threshold for detecting

faults.

Figure 4.10: Severity of the jump phenomenon in the estimatedemand proles on an
example freeway section

Arbitrary Fault Pro les: When the fault signals that contaminate the measure-
ments are not biases but rather arbitrary pro les superpogston the underlying correct

measurements, they also produce fault signatures of the tgp enumerated above. An
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example of such a fault would be encountered when a detectsrreporting measure-
ments from the opposite direction of the freeway and is highlinconsistent with its

neighboring detectors. Such faulty measurements produdendar residuals, and in fact
these residuals are much more severe and are easily ideri@ with most threshold

settings. These often trigger multiple fault modes that camadict each other such as
"Negative Bias in Density" and "Positive Bias in Density" simultaneously. This is not
surprising since an arbitrarily contaminated measuremertan be both higher or lower

than the true value at di erent time instants throughout the day.

The next section introduces the default post-processing drfault handling procedures

that complete the picture for the automated fault diagnosischeme.

4.4 FAULT HANDLING

Once the faulty detectors are accurately agged, the next ep is to analyze and try to
gure out how to handle the fault. For the sake of complete awdmation, a post-processing
unit deploys a default scheme of fault handling, which is to é introduced shortly. Here,
it is important to note that the performance of this automated scheme will be inherently
poor when compared to user-directed fault handling. The aamated procedure discards
the agged bad detectors completely whereas in reality funier analysis may reveal that the
faulty detector was not necessarily reporting inaccurateada but instead it was placed at

the incorrect location during the speci cation of the freevay geometry, detailed in section
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3.1

Due to the unknown inputs, a complete estimation of the faulsignatures is not possible.
Instead, faults can only be detected, as shown in the previesection. The automated fault
handling approach therefore is to discard the bad detectordm the analysis completely.
This method is labeled adault exclusionin the established fault diagnosis literature.

An important caveat of discarding bad detectors is the factitat data, which already are in
short supply to begin with (about an average of 1.5 healthy dectors per mile on the modeled
freeways), are being completely disregarded once aggedfaslty. Similar to the setting of
thresholds, mentioned in the previous section, a cost vs. et analysis is required in an
e ort to be responsible with scarce resources. Every excled detector reduces the model
complexity and accuracy. So, although we want to exclude fhy detectors, we don't want
to reduce our model too much by doing so. The thresholds meaitied in the previous section
are set based on previous calibration experience and if forcartain freeway section and a
given day they tend to be too strict, too many detectors (up td0% in extreme cases) may be
deemed as faulty by the decision logic. In such cases it bekie® the user to either adjust the
thresholds manually or, as it is more often the case, take aosker look at sensor placement
on the freeway geometry. When too many detectors are aggednd if they also tend to be
succeeding each other in a certain portion of the freeway, ig usually a sign of a structural
problem with the archived data. Two such cases were encoured in the calibrated freeways
so far. One instance was in the modeling of the Eastbound Imitate 80, in the portion
between Emeryville and El Cerrito, encompassing Berkelefgzight mainline detectors in this
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stretch were found to be reporting data from the loops instidd on the opposite direction of
the freeway, i.e. the westbound Interstate 80. A similar ptdem was encountered during the
modeling of northbound Interstate 680. On a portion of the reway to the immediate south
of Walnut Creek, 4 successive detectors on the mainline wedenti ed to be reporting data
from the opposite direction loops.

To address the issue of too many agged detectors without cgromising the complete
automation of the model building procedure, an heuristic Bi-processor has been devised.
It is not uncommon for some agged detectors to not have a vergdverse contribution
to the mean absolute error throughout the whole freeway. Holwing this argument, the
agged detectors can be ranked in terms of how badly they a ¢dhe mean absolute error
of the complete model. Within this ranking, the default autanatic threshold has been set
at an arbitrary 0.5% contribution level, i.e. if the mean abslute error of the complete
model decreases by only less than 0.5% in both density and awrors, those detectors are
not discarded. In e ect, this serves as an additional thresild scheme acting on a post-
processing level. However, attention must still be paid tohie estimated unknown ramp ows
in the vicinity of such detectors. Even though the mainline p les may match more or less
within acceptable accuracy, the estimated ramp ows may Idounrealistic for detectors that
are agged but not discarded. The software is structured schat the user can specify and
override which detectors to be excluded after the automatgutocess determines the detectors
to be eliminated from the analysis.

The exclusion of a detector is equivalent to the very commorase where a detector is
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already reported to be bad by PeMS or a detector is not inst&t at all at an important
location on the freeway. This physical or arti cial lack of nainline detectors coupled with the
unobserved ramp ows gives rise to the creation of the so-tedl Mega-Cellswithin the model
geometry. In e ect, these Mega-Cells are ordinary links in dth the LN-CTM and ACTM
senses. However, both models assume the individual junctioodes (or the individual links
for ACTM) to have at most one on-ramp and at most one o -ramp. Wien a detector is
missing or gets discarded, it may be the case that more than®@wnf each ramp falls between
two adjacent working detectors. In such cases, the imputatn algorithm can only estimate
an e ective total on-ramp ow and an e ective total o -ramp ow no matter how many
on-ramps and o -ramps are between the two working mainlineetectors in reality. In other
words, the model assumptions restrict the algorithm to re@sent an unobserved stretch of
the freeway in a simpli ed manner, e ectively deteriorating the geometric accuracy of the
model. This theoretical formation of the so-called Mega-@as schematically demonstrated
in gure 4.11.

This formulation of mega-cells, although essential for thestimation of the unknown ramp
ows, poses the problem of geometric incompatibility of thenodel with the real world. TOPL
strives for producing calibrated models for tra c researclers to run reliable simulations and
test various planning and control strategies. To this goakk model that represents multiple
ramps that join the freeway at di erent locations as a singles ective ramp connecting to the
freeway at a single location is not an acceptable product. Ehnefore, further post-processing
of the estimated ramp ows is required to revert the geometrypack to its original form.
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Figure 4.11: Forming of a Mega-Cell

This is achieved by converting the mega-cell to its originahape and splitting the estimated
e ective ows in such a way that the new geometrically accuree, no-mega-cells model agrees
with the geometrically inaccurate model that was used in th@nputation of e ective ramp
ows. Obviously, this agreement is only sought at the measement locations which are part
of the mega-cell model, i.e. the detectors that were used fibre imputation.

This splitting of ows poses a challenge for the model constction process because the
new ramp ows assigned to the separated ramps a ect the statef all links in the rest of
the model. This corresponds to going back to the top con guten in gure 4.11 from the
bottom con guration. It is easy to see that an arbitrary spliting of the total e ective on-
ramp OR1+ OR2 may lead to extra congestion, if for instance the on-ramPR1 is assigned

zero ow as an extreme case and all of the estimated e ectiveotial on-ramp demand is
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assigned to the on-rampOR2. The link to which OR2 feeds to has become shorter and
does not have an o -ramp anymore and hence can not accommoedathe total demand
without getting unrealistically congested. This extra cogestion would also spill upstream
and disrupt the rest of the model. Therefore, it is imperatie to devise a separation scheme
for such ramps that are bundled together due to forming of megcells.

A graphical representation of the mega-cell splitting prolem is depicted in gure 4.12.
Based on this gure, the problem can be stated as follows: Fargiven mega-cell + 1 with
simulated pro les as given in the top half of the gure, recostruct the pro les encircled in

blue in the bottom half of the gure.

Figure 4.12: Mega-cell splitting problem

In the earlier stages of development, ad-hoc separation sches were evaluated. These
would start by separating the imputed total demands equallyand adjusting the scaling
according to the e ect the new demands have on the rest of theadel. If for example
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an on-ramp demand is too high for the new geometry to accommatd without excessive
congestion, the algorithm would decrease the portion thategs assigned to that particular
on-ramp. Proceeding in this fashion the algorithm would itetively come up with the best
splitting proportion for the total demands while keeping tle mainline density and ow pro les
at the boundaries of the mega-cell the same. However, thismpach did not prove successful
in practice. Especially for the geometries where the origah geometry has no ramp at the
very beginning or the end of the mega-cell portion, as in thease with FR1 in gure 4.11,
this algorithm could not provide a satisfactory solution.

Therefore, a re-imputation based approach has been adopteRecall that the sole rea-
son for skewing the original geometry is for imputing the umown ramp ows and if the
mainline measurements were appropriately available, no gee-cell would have been created
to begin with. Following this reasoning, the alternative aproach is based on nding an arti-
cial pseudo-measuremenpro le for the mainline that would agree with the model and the
measurements taken at the boundaries of the mega-cell. Qiveuch a pseudo-measurement
at the missing or bad detector location in gure 4.11, there wuld be no need to bunch the
unknown ramps together and the imputation algorithm would stimate the ramp demands
separately.

To nd these so-called pseudo-measurements, we start witlné calibrated model with
mega-cells present. The terminology here bears signi cac Due to the unknown inputs,
the real state of the system is inherentlyunobservablevhen a healthy mainline detection is
not present. Therefore, we can not proceed with a more rigare state estimation approach.
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Instead we formulate the problem as a linear program and sehrfor a mainline density
pro le that agrees with the model assumptions and the modejenerated ows and densities

in the links neighboring the mega-cell. This linear optimiation problem is posed as follows:

rl;sl;rz;sfzj]?;ng;fmid jn}  ngj+jnd  nyj (4.17)
sitt AnY ="+ 1y (frig + S1) Anb=foig+r1 (M +sy) (4.18)
fU+r; wi(3 nb fmig + T2 Wao( 5 nb) (4.19)
fmia + 1 F1 f+s, F, (4.20)
r fé’“tllzz—rll 2 fmid ||::_r22 (4.21)
fma O 1 nl 0 > nb 0 (4.22)
r. O(rry;=0)s; O(rs;=0)r, O(orrp,=0) s, 0(ors,=0) (4.23)

Figure 4.13: Mega-cell splitting problem - LP formulation

Figure 4.13 provides a visual clari cation to the above prolem, where it can be seen that
n; and n, correspond to the measured density pro les and the ows on thboundaries of the
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mega-cell, encircled in blue, are generated as the resultsihulation using imputed e ective
ramp ows. In the equations aboven! and n} denote the pseudo-measurements of density
in the two parts of the mega-cell that is being split, whereas; and n, are the measured
densities taken upstream and downstream of the mega-celgspectively. The fundamental
diagram parameters that are assigned to the two halves areelones calibrated based on
the data received at the measurement locations of, and n, as well. Thej:j operator in the
objective function 4.17 denotes I1-norm. All variables inhte problem are vectors that span
values for the given day of calibration, midnight to midnigh The set of constraints in the
problem can be interpreted as a relaxed LN-CTM where we havelaxed the ow equations
to bounding inequalities due to the unknown ramp ows. The castraints 4.18 specify the
dynamics for the evolution of density in the two cells wherehie matrix A is the di erence

matrix speci ed as:

2 3
1 1 0 O
0 1 1 O
A=
0 1 1
0 0 1

The constraints in 4.19 ensure that ows entering the cells @ not exceed the supply
during congestion, and similarly, discharge ows are bourd above by section capacities

via the constraints in 4.20. The constraints 4.21 are impoddo ensure that ramp ows are
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comparably smaller than mainline ows and so that the solubn set does not include cases
where ow into the downstream half is supplied predominanyl by the ramp and the mainline
ow between the cells hits zero. The rest of the constraintspgcify the trivial bounds within
which the pro les should stay. Depending on the ramp geomstr constraints in 4.23 are set
to either equal or greater than zero for each individual ramgnside the boundaries of the
mega-cell.

The results of the above linear program are only the two pseaeneasurement pro les for
the densities of the two new halves of the former mega-cellh& ramp ows that correspond
to the solution of the linear program are not accurate estintas for the unknown ramp ows
because of the relaxed nature of the model speci cation in ¢hoptimization. However, the
main goal of the mega-cell de-construction is to obtain oramp demands and split ratio
pro les for the individual ramps in the original geometry. This is accomplished by re-
imputation using the pseudo-measurements of density alomgth the actual measurements
where available. To summarize, the iterative algorithm thaproduces the separated ramp
ow pro les is structured as follows:

Mega-cell Splitting Algorithm:

1. Use the linear program 4.17 - 4.23 to nd pseudo-measuree@rtities for the new cells

2. Feed pseudo-measurements into the imputation algorithmlong with the actual mea-

surements

3. Impute for the unknown ramp ows of the new con guration
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4. Simulate to get new boundary ows at the boundaries of the ega-cell

5. If after the splitting, the second cell is still a mega-cellife. still has ramps that
are bundled together), assign the density and the downstrea ow of the rst cell

as the new upstream boundary conditions and go back to step 1.

Otherwise, proceed to the next mega-cell in the geometry.

Before proceeding to the results chapter, there is a need ttafy the choice of target
density prole n, in the objective function 4.17 for the downstream half of thenega-cell.
This target pro le actually is the measurement that is assiged to the link downstream of
the mega-cell. However, due to the relaxed formulation of éhproblem, the pseudo-measured
density pro le n5 needs to be associated with a realistic density pro le. Othise, there
is too much freedom in the free- ow mode, which gives rise toneealistically high densities
and ows at times during the night, where we expect both to bedw. Therefore, a realistic
density pro le is required for the estimatedn) to hinge on.

Another practical modi cation that was implemented was to nternalize the equality

constraints 4.18 in the optimization by adding them to the olective function as follows:

min ind  ngj+jnd noj+ jAnY U 1y + (frig + S1)] (4.24)

r1;81;r2;82;n5 055 mig
. p out ;
+jAn,  fhg T2+ (f77 + s9)]

sit: 4.19 -4.23
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This relaxation is required because of the excessive numbdrequality constraints that
these constraints impose on the problem, especially with athsimulation time-steps such as
5 seconds which makes the A matrix, although sparse, a 1728817279 matrix. The range
of values for densities are often in the range of 50-300 vdb&per mile, whereas the common
range for ows are around 1000-8000 vehicles per hour. Henttee ows are penalized more
severely by a factor of approximately 20 in the cost formulain (4.24).

The next chapter provides case studies on the modeling of tvirieeways that make use

of all of the tools introduced so far.
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Chapter 5

EXAMPLE CASE STUDIES AND

RESULTS

5.1 INTERSTATE 210 IN SOUTHERN

CALIFORNIA

In this section we present the results of the automated modet) and calibration procedure
applied to a certain portion of the eastbound Interstate 210n Southern California. The

modeled section of the freeway spans the portion of the fremystarting near Pasadena and
extending to near San Dimas, California. The rst step of themodel building procedure is
to construct the geometry in Network Editor as shown in 5.1.

The modeled section is 27.3 miles long with 44 mainline detecs placed along the
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Figure 5.1: Modeled portion of the eastbound Interstate 210

mainline. There are 31 on-ramps and 27 o -ramps in this streh. 26 of the on-ramps have
working detectors whereas the remaining 5 on-ramp detectowere o -line for the day of the
calibration. None of the o -ramp ows are observed. Hence,hie 5 on-ramp and all of the
o -ramp ows need to be imputed. There is a 24 hour activeHOV lane (High Occupancy
Vehicle Lane, also commonly known asar pool lang. This HOV lane has detectors separate
from the mainline vehicle detector stations with individu& IDs. Therefore, the model treats
this lane as a separate road parallel to the mainline and spe&s vehicle-type speci ¢ split
ratio pro les for the mixing of ows. The key parameter for the model here is thePPV
(passenger per vehicleyvhich speci es what portion of the vehicles are classi ed asOV
vehicles. This is customarily set to a nominal 1.2 which traglates into 20% of the vehicles
being HOV eligible. The TOPL simulation tool has the capabity of keeping track of di eren
vehicle types such as single occupancy vehicles, high oa@ugy vehicles and trucks.

The freeway is represented by 66 links. These links need to fmned to form cells

such that each cell has a working mainline detector assoaat with it as required by the
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imputation algorithm. Since the imputation of unknown ramp ows hinges on the mainline
data, the 66 link freeway representation needs to be condedsinto a cell representation
where a new cell is initiated at each detector location and ghsucceeding links are attached
end to end until a new detector is reached along the freeway.uP to missing or not working
detectors, this particular freeway needs to be reduced to & 8ell representation. On the day
of February 18", 2011, for which the following model calibration results @ presented, 10
mainline detectors were reported to be down by PeMS and 4 deters were discarded due
to redundancy. When two detectors are in close proximity wit no ramps in between, they
do not provide additional information and one must de ne vey short links to make use of
both detectors. These short links can violate the CFL condidns during simulation and are
therefore avoided. Figure 5.2 shows a spatio-temporal deter health contour plot for the
year 2011, spanning the months between February and OctobéFhe horizontal axis is the
space vertex listing the post miles of the detectors and thektical axis is the temporal vertex
showing the dates. Hence, every row in the plot corresponds & day and every column to
a detector. Detector health is represented as a percentagalue which corresponds to the
percentage of data received by PeMS from the detector for tlggven day. We can see from
the plot that the month of February shows relatively better werall detector health.

The next step is to calibrate the fundamental diagrams for e&h of the detectors and feed
the calibrated model into the imputation and fault detection algorithms. We rst present
the simulation results with imputed ramp ows without performing any fault detection on
the available mainline data. We visualize the simulation ults in form of the speed, density
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Figure 5.2: Detector Health Space Time Diagram for eastbodrinterstate 210

and ow contour plots shown in gures 5.19, 5.20 and 5.21. Tilse plots are similar to
gure 5.2, where each column corresponds to a detector andcharow to a 5 minute time
instance during the day. Therefore, although the horizontaaxis is labeled according to the
post-miles of the detectors, the column widths are uniformral hence do not re ect actual
detector spacing along the freeway. In the speed contoursetcolor bar is not included since
there are only 3 shades of color associated with these ploBltack corresponds to speeds
lower than 40 mph (congested ow), Grey corresponds to owsdiween 40 mph and 55 mph
(dense ow) and White corresponds to speeds higher than 55 imggfree ow).

Before the faulty detectors are excluded, the mean absoluggrors for density and ow
are 5.63% and 10.53% respectively. Out of the 30 availabletelgtors, 5 were agged to

be faulty and excluded. After removal of these bad detectqrshe density and ow errors
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Figure 5.3: 1-210E Speed Contours before Fault Detection /»€lusion

Figure 5.4: 1-210E Density Contours before Fault Detectioh Exclusion

decrease to 1.96% and 6.33% respectively. The speed, dgraitd ow contours after fault
detection and exclusion are given below.

In the latest con guration of the freeway, there exist 11 mearcells to be de-constructed
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Figure 5.5: 1-210E Flow Contours before Fault Detection / Eglusion

Figure 5.6: 1-210E Speed Contours after Fault Detection / Esusion (11 mega-cells present)

into their corresponding original geometries. The rst stp is estimating pseudo-measurements
for each conjoined link inside the mega-cells. Recall thahése are daily density pro les that

are feasible in the LN-CTM sense and are as close as possiblé¢hie nearest available mea-
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Figure 5.7: 1-210E Density Contours after Fault Detection /Exclusion (11 mega-cells
present)

surements. The objective function of the linear program (24) is also posed to preserve
the ow pro les at the boundaries of the mega-cell. Flow and dnsity pro les for an ex-
ample section with the original con guration (i.e. with meg-cells still intact), and after
re-imputation are shown in gures 5.9 to 5.12. That is to sayjn the following plots, the
green dotted lines are the actual measurements, the bluedmare the simulated pro les with
mega-cells intact and the red lines are simulated pro les t&fr the re-imputation using the
pseudo-measurements obtained from the optimization pradh.

To assess the resulting calibrated model after the de-consttion of the mega-cells,
we present the speed, density and ow contours with mega-telintact and mega-cells de-
constructed juxtaposed against the available data along éhmodeled freeway section. These

plots are similar to the above plots except for the uniform domn width for each cell. The
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Figure 5.8: I-210E Flow Contours after Fault Detection / Ex¢usion (11 mega-cells present)

Figure 5.9: Flows at the upstream boundary of the example magell

columns widths in these plots are directly proportional to ell lengths. That is to say, each
cell is assigned a number of successive columns proporticieaits size. This way, it is easy
to see how big the mega-cells are and for how long a portion betmodeled freeway the lack

of data extends. The top plots in all three of the gures re etthe taken measurements and
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Figure 5.10: Densities of the upstream half of the example gee-cell

Figure 5.11: Flows at the downstream boundary of the examplaega-cell

the blacked-out bands correspond to the portions where theth is bad or non-existent. The
set of columns corresponding to mega-cells are bounded byé&® superposed on the plots
and the numbers on top of these plots specify the number of gmal links that are bundled

together to construct that speci ¢ mega-cell.
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Figure 5.12: Densities of the downstream half of the exampiteega-cell
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Figure 5.13: I-210E Speed Contours: Measurements (top), tyeecells intact (middle), Mega-
cells split (bottom)
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Figure 5.14: 1-210E Density Contours: Measurements (topMega-cells intact (middle),
Mega-cells split (bottom)
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Figure 5.15: I-210E Flow Contours: Measurements (top), Maecells intact (middle), Mega-
cells split (bottom)
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Finally, gure 5.16 shows an example of the ramp ow pro les lefore and after splitting
the mega-cell. The three plots on the left hand side show thetal on-ramp, total o -ramp
and net (on-ramp o -ramp) ramp ows before and after the decomposition of themega-
cell from a single cell to 5 individual cells. The right handide plots show the on-ramp
and o -ramp ows that are assigned to each newly created ingidual cell in an alternating
fashion. l.e., the top two pro les are the on-ramp and o -ranp of the rst (most upstream)
cell, the third and fourth plots belong to the second cell ando on. Due to the fact that this

mega-cell consists of 5 individual cells, we get 10 such @ain the right hand side.

Figure 5.16: I-210E Ramp Flow and Demand Pro les for Mega-ite3
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5.2 INTERSTATE 80 IN NORTHERN

CALIFORNIA

In this section we present the results of the automated modeg and calibration procedure
applied to a certain portion of the eastbound Interstate 80n the San Francisco Bay Area.
The modeled section of the freeway spans the portion of theeéway starting near the end
of the Bay Bridge in Oakland / Emeryville and extending to the beginning of the Car-
quinez Bridge in Crockett California. The portion of the moeled freeway section is rst
constructed in the Network Editor to produce the geometry sbwn in 5.17, including the
mainline detectors placed along the freeway.

This modeled section is 21.6 miles long with 51 mainline deters placed along the
mainline. Contrary to the 1-210 example, this freeway has nobservation of ramp ows
and for this reason all of the ramps need to be estimated usitige imputation algorithm.
Within the modeled portion there exist 25 on-ramps and 23 oramps. There is a time-of-
day-activated HOV lane, active during the morning and evenig peak hours of 5:00am to
10:00am and 3:00pm to 7:00pm, respectively. Unlike the |-2Tase study, the detection on
the HOV lane is not separate. Therefore the data reported byhe single loops on the left-
most lanes are used to calibrate the fundamental diagramg fine HOV lanes. In simulation,
the activation and de-activation of the HOV lane is achievedby specifying correspondingly
time-varying split ratios at the nodes where mainline and H® lane ow interactions occur.

The freeway is represented by 79 links, most of which need te lpined into mega-cells
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Figure 5.17: Modeled portion of the eastbound Interstate 80

for the imputation algorithm to estimate the unknown on-ranp demands and o -ramp split
ratios. This is again due to either the poor health or a lack ahainline detection. Moreover,

on the 2.6 mile stretch between the Powell street and the Uravsity Avenue exits, the PeMS
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archives (a total of 8 detectors) were found to be reportingada from the opposite freeway
direction. With no PeMS data available for this stretch, an #ernate source of data was used.
These 8 sensors happen to fall into the exact test bed of the rReley Highway Laboratory
Project [1] and the archives from the year 2008 were avail&to us for use. Hence, the
calibration and imputation were carried through based on ZIB data. In particular, the
unknown ramp ows are imputed for the single day of August 21, 2008 in the following
analysis. Looking at a 3 month period in 2008, the spatio-teporal detector status contours
provide an overall picture of data health along the modeleddeway (5.18). The portion
where the BHL data is used corresponds to the post mile rangetiveen 9.31 and 11.91. It

can be seen in the plot that PeMS reports relatively healthy etection for this stretch.

Figure 5.18: Detector Health Space Time Diagram for eastbod Interstate 80

On the particular day of August 2F' 2008, the PeMS analysis reports 14 of the 51
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mainline detectors to be of poor health. Again, for the impuwtion algorithm, the 79 link
freeway representation needs to be condensed into the cejpresentation. For this particular
case, the 79 link representation is transformed into a 33 tekpresentation due to the 14
bad detectors reported by PeMS and a few other additional mges as a result of redundant
detectors. It is sometimes the case that two detectors aregued within close proximity and
do not provide additional information. In such cases, one dlie two is discarded, especially
if the distance between the two is shorter than the required mimum cell length for the CFL
condition to be met by the simulation. Hence, in this particlar example we have a 33 cell
representation of the freeway although we have 37 healthy tdetors available.

The next step is to calibrate the fundamental diagrams for eh of the detectors and feed
the calibrated model into the imputation and fault detection algorithms. We rst present
the simulation results with imputed ramp ows without performing any fault detection on
the available mainline data. Similar to the 210 example, thepeed, density and ow contour
plots are shown in gures 5.19, 5.20 and 5.21.

Before the faulty detectors are excluded, the mean absoluterors for density and ow are
6.22% and 8.39% respectively. Out of the 33 available detecs, 4 were agged to be faulty
and excluded. After removal of these bad detectors, the detysand ow errors decrease to
3.08% and 6.8% respectively. The speed, density and ow conts after fault detection and
exclusion are given in gures 5.22 through 5.24 below.

In this latest con guration of the freeway, there exist 7 meg-cells to be de-constructed
into their corresponding original geometries. We again psent the speed, density and ow
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Figure 5.19: I-80E Speed Contours before Fault Detection /»€lusion

Figure 5.20: 1-80E Density Contours before Fault Detectioh Exclusion

contours with mega-cells intact and mega-cells de-constted juxtaposed against the avail-
able data along the modeled freeway section. Contrary to dorm column width for each

cell, the columns widths in these plots are directly propoibnal to cell lengths. The top
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Figure 5.21: 1-80E Flow Contours before Fault Detection / Eglusion

Figure 5.22: 1-80E Speed Contours after Fault Detection / Esfusion (7 mega-cells present)

plots in all three of the gures re ect the taken measuremerg and the blacked-out bands
correspond to the portions where the data is bad or non-exestit. Finally, gure 5.28 shows

an example of the ramp ow pro les before and after splittingthe mega-cell.
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Figure 5.23: 1-80E Density Contours after Fault Detection /Exclusion (7 mega-cells present)

Figure 5.24: 1-80E Flow Contours after Fault Detection / Exdusion (7 mega-cells present)
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Figure 5.25: I-80E Speed Contours: Measurements (top), Megells intact (middle), Mega-
cells split (bottom)
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Figure 5.26: 1-80E Density Contours: Measurements (top), 8ya-cells intact (middle), Mega-
cells split (bottom)
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Figure 5.27: 1-80E Flow Contours: Measurements (top), Megeells intact (middle), Mega-
cells split (bottom)
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Figure 5.28: I-80E Ramp Flow and Demand Pro les for Mega-de2
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In summary, the constructed model goes through the followgnsteps:

1. Imputation of unknown ramp ows: In this step, freeway lirks are bunched together

to build mega-cells due to PeMS-reported malfunctioning tectors

2. Fault detection: The fault detection algorithms ags andremoves further bad detectors

not reported by PeMS

3. Re-imputation of unknown ramp ows: Mega-cells are exteted due to additional

detectors being removed from analysis

4. Splitting of mega-cells: This step is done in two steps agpdained in section 4.4. First,
surrogate density measurements are found using the LP appiat and second, imputing

the unknown ramp ows for a third and last time using the pseud measurements.

Table 5.1 summarizes the faulty detector information and té errors calculated for each

of the models presented above, after each iteration.

116



Freeways [-210E | I-80E
Total Number of detectors 36 51
Number of bad detectors reported by PeMS 6 14
Number of bad detectors removed by the fault detection algithm | 5 4
Density Error after rst pass with mega-cells 5.63% | 6.22%
Flow Error after rst pass with mega-cells 10.53%| 8.39%
Density Error after fault detection with mega-cells 1.96% | 3.08%
Flow Error after fault detection with mega-cells 6.33% | 6.80%
Density Error after mega-cell splitting 3.02% | 3.69%
Flow Error after mega-cell splitting 5.82% | 6.92%

Table 5.1: Model Calibration Results

117




Chapter 6

CONCLUSIONS AND DISCUSSION

This dissertation explored system identi cation, fault deection and fault handling method-

ologies developed for the automated freeway model buildiagd calibration software, as part
of the Tools for Operations Planning (TOPL) project. A macracopic ow model is adopted
in order to simplify the model building and provide very fastsimulation performance to
facilitate live decision support for tra ¢ operators and ergineers.

In chapter 2 we have presented the current data collection frastructure that feeds the
data required by the data driven algorithms presented in tls work. It has been shown
that despite extensive collection and archival capabiliéis, the quality and availability of

data still remains the biggest challenge for the accurate drcompletely autonomous model
construction e ort. The main power of the macroscopic modelg approach is its swiftness
of operation. Therefore, the challenges posed by poor datave to be tackled e ciently

to leverage this convenient feature. Two imputation algotihms, explained in sections 3.3
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and 4.2, are used to estimate the ramp ows which are usuallyoh observed in Califor-
nia freeways. Fault detection and handling algorithms thafurther tackle low quality data
problems have been introduced in sections 4.3 and 4.4. A |eog table logic automatically
assesses the health of individual detectors along the moettlfreeway and the removal of
the faulty detectors from the analysis reduces mean absotuerrors in density and ow by
40-50% and 20-40%, respectively. For extended portions oédway with poor detection,
a mega-cell decomposition methodology produces substiuimeasurements that agree with
the rest of the healthy mainline detectors in order to keep # automated model building
procedure functional even when good data are unavailable.b@ously, this solution should
not be interpreted as anything more than a temporary x. As sbwn in section 4.4, these
pseudo-measurements do not provide estimates of the inhettg unobservable state. The
correct x for this problem should be to revive, repair and istall the required detectors or
collect the necessary data by other means. Yet another algm introduced in section 3.6
was the Fundamental Diagram identi cation, which again addessed the wavering nature of
the observed data by utilizing statistical tools to estimaé¢ the parameters.

Future research into the model-based sensor fault deteatishould be exploring the extension
of the algorithm presented herein to more complex networksther than unidirectional free-
ways. Obviously, this is a shortcoming of the underlying maal-based imputation scheme
rather than the fault detection algorithm itself. If the imputation algorithm were to be
extended to more complex networks, the fault detection sche would readily carry over.
Advancements to the fault detection method can be made in ters of threshold setting. If
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the model building process were to be inserted within a constated software framework,

complete with continuous database access, within a few mastthere would be enough cal-
ibrated days to start establishing a threshold learning s@me for individual detectors. This
scheme can subsequently be con gured to automatically uptgaand tune the thresholds as
more calibrated days become available. Another improvemecan be made towards remov-
ing the assumption that ramp measurements are fault-free v@hever they are available. This
is a simplifying assumption made while developing the fauttetection framework and due to
this assumption, any mismatch between the simulated and m&ared pro les is attributed

to the mainline measurement, while in reality this may not neessarily be the case.
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Appendix A

Table of Fault Signatures

The table below lists the fault signatures corresponding tthe four modes of fault considered:
1. Positive Bias in Density
2. Negative Bias in Density
3. Positive Bias in Flow
4. Negative Bias in Flow
The fault signatures are enumerated as follows:
1. Density mismatch during free ow
2. Density mismatch during congestion

3. Flow mismatch during free ow
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4. Flow mismatch during congestion

5. "Jump" in estimated demand when there is a switch in ow coditions

The ramp con gurations are encoded as binary numbers from @t63. Each digit in the 6
digit number stands for a ramp. Read from left to right (whichis the direction in which
tra c is assumed to be owing), the rst entry corresponds to the onramp in the rst cell,

the second entry to its o ramp, the third entry to the onramp of the second cell and so on.

The fault is assumed to be isolated to the middle cell, i.e. hsecond cell only.

Ramp Con guration

000000

000001

Fault Modes Fault Signatures
Celll1| 24
(1) Positive Bias in Density | Cell 2 2
Cell 3 1
Cell 1 2
(2) Negative Bias in Density| Cell 2 2
Cell 3 1
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell 1 3,4
(4) Negative Bias in Flow Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

000010

000011

Celll1| 24
(1) Positive Bias in Density | Cell 2 2
Cell 3 5
Cell 1 2
(2) Negative Bias in Density| Cell 2 2
Cell 3 5
Celll1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 34
(4) Negative Bias in Flow | Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

000100

000101

Cell 1 2,4
(1) Positive Bias in Density | Cell 2| 3,5
Cell 3 1
Cell 1 2
(2) Negative Bias in Density| Cell 2| 1,3
Cell 3 5
Cell 1 3,4
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 3,4
(4) Negative Bias in Flow Cell 2 -
Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Cell 1 2,4

(1) Positive Bias in Density | Cell2| 3,5

Cell 3 -

Cell 1 2

(2) Negative Bias in Density| Cell 2| 1,3,5

000110 Cell 3 -

000111 Cell 1 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell 1 3,4

(4) Negative Bias in Flow Cell 2 -

Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

001000

001001

Cell1| 24
(1) Positive Bias in Density | Cell 2 4
Cell 3 1
Cell 1 2
(2) Negative Bias in Density| Cell 2| 3,5
Cell 3 1
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 3,4
(4) Negative Bias in Flow | Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

001010

001011

Cell1| 24
(1) Positive Bias in Density | Cell 2 4
Cell 3 5
Cell 1 2
(2) Negative Bias in Density| Cell 2| 3,5
Cell 3 5
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 3,4
(4) Negative Bias in Flow | Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

001100

001101

Celll| 24
(1) Positive Bias in Density | Cell 2 5
Cell 3 -
Cell 1 2
(2) Negative Bias in Density| Cell 2| 3,5
Cell 3 -
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 34
(4) Negative Bias in Flow Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

001110

001111

Celll| 24
(1) Positive Bias in Density | Cell 2 5
Cell 3 -
Cell 1 2
(2) Negative Bias in Density| Cell 2| 3,5
Cell 3 -
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 34
(4) Negative Bias in Flow Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

010000

010001

Cell1| 45
(1) Positive Bias in Density | Cell 2 2
Cell 3 1
Cell 1 2
(2) Negative Bias in Density| Cell 2 2
Cell 3 1
Cell1| 45
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell1| 235
(4) Negative Bias in Flow Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

010010

010011

Cell1| 45
(1) Positive Bias in Density | Cell 2 2
Cell 3 5
Cell 1 2
(2) Negative Bias in Density| Cell 2 2
Cell 3 5
Cell1| 45
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell1| 235
(4) Negative Bias in Flow Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

010100

010101

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 3,5
Cell 3 1
Cell 1 2,45
(2) Negative Bias in Density| Cell 2| 1,3,5
Cell 3 -
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell 1 2,3,5
(4) Negative Bias in Flow | Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

010110

010111

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 3,5
Cell 3 -
Cell 1 2,45
(2) Negative Bias in Density| Cell 2| 1,3,5
Cell 3 -
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell 1 2,3,5
(4) Negative Bias in Flow | Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

011000

011001

Celll1| 45
(1) Positive Bias in Density | Cell 2 4
Cell 3 1
Cell1| 245
(2) Negative Bias in Density| Cell 2| 1,3,5
Cell 3 1
Celll1| 45
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell1| 2,35
(4) Negative Bias in Flow Cell 2 5
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

011010

011011

Cell1| 45
(1) Positive Bias in Density | Cell 2 4
Cell 3 5
Celll| 245
(2) Negative Bias in Density| Cell 2 2
Cell 3 -
Cell1| 45
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell1| 2,35
(4) Negative Bias in Flow | Cell 2 5
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

011100

011101

Cell1| 45
(1) Positive Bias in Density | Cell 2 5
Cell 3 1
Cell1| 245
(2) Negative Bias in Density| Cell 2 3
Cell 3 1
Cell1| 45
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell1| 2,35
(4) Negative Bias in Flow | Cell 2 5
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

011110

011111

Cell1| 45
(1) Positive Bias in Density | Cell 2 5
Cell 3 -
Cell1| 245
(2) Negative Bias in Density| Cell 2 3
Cell 3 5
Cell1| 45
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell1| 2,35
(4) Negative Bias in Flow | Cell 2 5
Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Cell1| 245

(1) Positive Bias in Density | Cell 2 2

Cell 3 1

Cell1| 45

(2) Negative Bias in Density| Cell 2 2

100000 Cell3| 1

100001 Cell1| 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell1| 34

(4) Negative Bias in Flow Cell 2 -

Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Cell1| 245

(1) Positive Bias in Density | Cell 2 2

Cell 3 5

Cell1| 45

(2) Negative Bias in Density| Cell 2 2

100010 Cell 3 5

100011 Cell1| 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell1| 34

(4) Negative Bias in Flow Cell 2 -

Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Celll| 245

(1) Positive Bias in Density | Cell2| 3,5

Cell 3 1

Cell 1 4,5

(2) Negative Bias in Density| Cell 2| 1,3,5

100100 Cell 3 1

100101 Cell 1 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell 1 3,4

(4) Negative Bias in Flow Cell 2 -

Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Celll| 245

(1) Positive Bias in Density | Cell2| 3,5

Cell 3 -

Cell 1 4,5

(2) Negative Bias in Density| Cell 2| 1,3,5

100110 Cell 3 -

100111 Cell 1 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell 1 3,4

(4) Negative Bias in Flow Cell 2 -

Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Cell1| 245

(1) Positive Bias in Density | Cell 2 4

Cell 3 1

Cell1| 45

(2) Negative Bias in Density| Cell 2 3

101000 Cell 3 1

101001 Cell1| 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell1| 34

(4) Negative Bias in Flow Cell 2 -

Cell 3 -
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Ramp Con guration | Fault Modes Fault Signatures

Cell1| 245

(1) Positive Bias in Density | Cell 2 4

Cell 3 5

Cell1| 45

(2) Negative Bias in Density| Cell 2 3

101010 Cell 3 5

101011 Cell1| 3,4

(3) Positive Bias in Flow Cell 2 -

Cell 3 -

Cell1| 34

(4) Negative Bias in Flow Cell 2 -

Cell 3 -

150




Ramp Con guration

Fault Modes

Fault Signatures

101100

101101

Cell1| 245
(1) Positive Bias in Density | Cell 2 5
Cell 3 5
Cell1| 45
(2) Negative Bias in Density| Cell 2| 3,5
Cell 3 5
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 34
(4) Negative Bias in Flow Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

101110

101111

Cell1| 245
(1) Positive Bias in Density | Cell 2 5
Cell 3 5
Cell1| 45
(2) Negative Bias in Density| Cell 2| 3,5
Cell 3 5
Cell1| 34
(3) Positive Bias in Flow Cell 2 -
Cell 3 -
Cell1| 34
(4) Negative Bias in Flow Cell 2 -
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

110000

110001

Cell1| 45
(1) Positive Bias in Density | Cell 2 2
Cell 3 1
Cell 1 -
(2) Negative Bias in Density| Cell 2 2
Cell 3 1
Cell1| 45
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

110010

110011

Cell1| 45
(1) Positive Bias in Density | Cell 2 2
Cell 3 5
Cell 1 -
(2) Negative Bias in Density| Cell 2 2
Cell 3 5
Cell1| 45
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

110100

110101

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 3,5
Cell 3 1
Cell 1 -
(2) Negative Bias in Density| Cell 2| 1,3,5
Cell 3 -
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow | Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

110110

110111

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 3,5
Cell 3 5
Cell 1 -
(2) Negative Bias in Density| Cell 2| 1,3,5
Cell 3 -
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 1,3
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow | Cell 2 1,3
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

111000

111001

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 2
Cell 3 1
Cell 1 -
(2) Negative Bias in Density| Cell 2 2
Cell 3 1
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow Cell 2 5
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

111010

111011

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 4
Cell 3 5
Cell 1 -
(2) Negative Bias in Density| Cell 2 2
Cell 3 5
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow Cell 2 5
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

111100

111101

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 5
Cell 3 1
Cell 1 -
(2) Negative Bias in Density| Cell2| 3,5
Cell 3 5
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow Cell 2 5
Cell 3 -
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Ramp Con guration

Fault Modes

Fault Signatures

111110

111111

Cell 1 4,5
(1) Positive Bias in Density | Cell 2 5
Cell 3 -
Cell 1 -
(2) Negative Bias in Density| Cell2| 3,5
Cell 3 -
Cell 1 4,5
(3) Positive Bias in Flow Cell 2 5
Cell 3 -
Cell 1 -
(4) Negative Bias in Flow Cell 2 5
Cell 3 -

Table A.1: Fault Signatures for Di erent Ramp Con g-

urations

160




