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Abstract:
The control of a network of signalized intersections is studied using a discrete-event simulator
called ‘point queue’ (.Q). Vehicles arrive at entry links from outside the network in a continuous
Poisson stream, independently make turns at intersections, and eventually leave from exit links.
There is a separate queue at each intersection for each turn movement. The control at each
intersection determines the amount of time that at each queue is served within each cycle. A
vehicle arriving at an intersection joins the appropriate queue, waits there until it is served (its
‘green light’ is actuated), then travels over the downstream link and joins the next queue or
leaves if it is an exit link. The performance of the control scheme is measured in terms of the
length of each queue, the queue waiting time, or the travel time from entry to exit. Two sets
of control policies are modeled and compared via .Q simulations for a fairly complex arterial
network near the I-15 freeway in San Diego, CA. The first is ‘fixed time (FT)’ control which
generates an open loop periodic sequence of green light actuations. The second is a feedback
strategy called ‘max pressure (MP)’ in which the turn movement that is actuated is a function of
the queue lengths adjacent to the intersection. The simulations confirm the theoretical property
of MP, namely that it maximizes throughput, whereas FT does not. The simulation study
provides more details concerning the queue length distribution and the behavior of MP as a
function of how frequently it is invoked. These details are critical in evaluating the practicality
of MP. The study shows that the .Q simulator is a versatile tool in the design of signal control.

Keywords: Traffic-responsive signal control, stabilizing policy, fixed-time control, max-pressure
control, store and forward queueing model, discrete-event simulation, Monte Carlo simulation,
network performance evaluation.

1. INTRODUCTION

A network of signalized intersections is modeled as a net-
work of controlled queues, with one queue per movement or
phase, like in a store-and-forward communication network.
At any time, a control policy actuates a stage, i.e. a set
of simultaneous movements, for a duration of time. The
actuation of a movement causes the corresponding queue
to be served. The service rate, called the saturation flow
rate, is pre-specified and depends on the geometry of the
intersection. When a non-empty queue is served vehicles
move towards the downstream queue and join it after a
pre-specified link travel time. Each link has a pre-specified
finite storage limit depending on the link geometry. If the
downstream link has reached its limit, the upstream queue
is blocked even if it is actuated by the control.

The large literature on signal control policies is reviewed in
Mirchandani and Head (2001); Papageorgiou et al. (2003);
Osorio and Bierlaire (2008); Xie et al. (2012). Each study
proposes an intuitively appealing policy, supported by an
illustrative simulation, since mathematical analysis of a
store-and-forward queuing network with blocking seems
impossible. Two control schemes are compared in this
paper in the context of the arterial network near the I-15
freeway in San Diego, CA, shown in Fig. 1. A fixed-time
control policy or FT is an open loop periodic sequence

of stage actuations. In max pressure control or MP the
stage that is actuated is a function of the queue lengths
adjacent to the intersection. Theoretical properties of FT
and MP are derived in Varaiya (2013b,a). Practically more
important properties are compared here via simulation.

The study network of Fig. 1 is a graph with nodes or
intersections like 37612 at the top and directed links
entering and leaving the nodes. Link 741 is an entry link,
742 is an exit link, and 737 is an internal link. A queue is
associated with each incoming and outgoing link pair: thus
q(741, 737) is the number of vehicles at this intersection
on link 741 waiting to make the turn (741→ 737). When
the stage that includes this turn is actuated, vehicles will
leave this queue at a rate given by the saturation flow
rate C(741, 737), provided that the downstream link 737
is not full. (If that link is full, the turn is blocked even
if it is actuated.) Once a vehicle leaves q(741, 737) it will
travel along link 737. (In the study the travel time is a
lognormal iid sequence.) When the vehicle arrives at the
downstream intersection, namely 37610, it will join a queue
for one of the four outgoing links, 733, 738, 2351, or 20471,
with a pre-defined turn probability. (In this study all turn
probabilities are taken equal.)
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Fig. 1. Study network near I-15 San Diego, CA

Vehicles enter the network at entry links in a Poisson
stream with specified demand rate. Suppose d is the vector
of demand rates, with dl = 0 if l is not an entry link. Let
R = {R(l,m)}, with R(l,m) equal to the probability that
a vehicle on link l turns into linkm. If the network is stable,
the vector f = {fl} of average link flows must satisfy the
conservation equation f = R′f + d; hence f = [I −R′]−1d
(R′ is the transpose of R), and R(l,m)fl is the average rate
of turns from link l to m. If a control policy can support
demand d, it must actuate movement (l,m) at rate at least
R(l,m)fl. If this condition holds, the queues are stable, i.e.
(E denotes expectation)

sup
T
T−1

∑
l,m

T∑
t=1

Eq(l,m)(t) <∞. (1)

Stability is an essential requirement for a signal control
policy. But beyond stability, one wants good performance
in terms of the average queue size, or the average total
travel time from entry to exit, or the average and variance
of the travel time along important routes, etc. All these
quantities require simulation.

2. STABILITY, FT, AND MP

At each intersection a control actuates a stage (a set of
simultaneous turn movements). So a control is represented
by a matrix U with U(l,m) = 1 or 0, accordingly as turn
(l,m) is or is not actuated. Let C = {C(l,m) ≥ 0} be
the matrix of pre-specified saturation flow rates (in units
of vehicles per hour). Then {C(l,m)U(l,m)} is the matrix
of service rates at which queues at this intersection are
served when control U is invoked. The control for the
entire network at any given time consists in selecting a
control U(n) from the finite set of controls U(n) for each
intersection n.

We now specify a FT control. We are given a cycle time
T , a loss time L < T , and a fixed sequence of stages
U1, · · · , UK from U(n) for intersection n. A FT control
for intersection n is specified by a vector λ = (λ1, · · · , λK)
such that λi ≥ 0 and

∑
i λi = 1 − L/T . λ specifies the

periodic control: invoke U1 for duration λ1T , · · · , invoke
UK for duration λKT ; then repeat. L is the time within
each cycle that is ‘lost’ because of the safety-required ‘all
red’ signal between stage switches (typically 3s) and for
pedestrian crossing. (At a US intersection, K is 4-8, T is
60-120s, L is 10-20s.) If FT control λ has been selected
at intersection n, the resulting matrix of service rates is
{
∑

i λiC(l,m)Ui(l,m)}.
If d is the average demand rate vector, R is the turn
probability matrix, the average link flow vector is f = [I−
R′]−1d and R(l,m)fl is the average rate of turns needed
to meet the demand. Hence if the FT control λ at an
intersection is to support this demand, it must satisfy the
inequalities∑

λiC(l,m)Ui(l,m) > R(l,m)fl, all l,m∑
λi = 1− L/T ; λi ≥ 0, all i.

(2)

Varaiya (2013a) shows that (2) is sufficient for stability.
Observe that to design a stable FT control one must know
d and R, in addition to the physical saturation flows C.
The set of stages U(n), which determines whether and
which turns are allowed, is designed by traffic planners.
The number K of stages and the stage sequence can be
included in condition (2). If (2) can be satisfied, infinitely
many λ are feasible. One criterion to select the ‘optimum’
λ is to maximize the minimum ‘excess capacity’,

min
l,m

∑
i

λiC(l,m)Ui(l,m)−R(l,m)fl.

Both d and R change over the time of day and day of week,
and when there are unusual events. An FT λ that satisfies
(2) for one demand may not satisfy it for another demand.
One advantage of MP is that it automatically adapts to
changes in the demand vector d.

MP is specified as follows. T, L are as before. The cycle is
divided into a number of equal periods (between 2 and
10 in the simulations below). MP selects the stage to
be actuated in each period, depending upon the queue
length measurements made just before the start of the
period. Suppose at intersection n the queue measurements
are q(t) = {q(l,m)(t)}. Compute the ‘pressure’ π(U, q(t))
exerted by each control U ∈ U(n):

π(U, q(t)) =
∑
l,m

C(l,m)U(l,m)W (l,m) (3)

W (l,m) = q(l,m)−
∑
p

R(m, p)q(m, p)]. (4)

The MP policy selects the control with maximum pressure
at state q(t),

U∗(q(t)) = arg max{π(U, q(t)) | U ∈ U(n)}. (5)

W (l,m) is the upstream queue minus the (average) down-
stream queue for movement (l,m); it is called the weight
of the phase (l,m) in Varaiya (2013a). So MP selects the
stage that maximizes the instantaneous rate at which W
decreases. The stage U∗ is actuated until the end of the
period, when the queue is measured again and a new MP



is computed. Observe that U∗ does not depend on the
demand rate d, but it does depend on the turn probabilities
R.

The main theoretical result in Varaiya (2013a,b) is that
MP will stabilize the network if there exists a feasible solu-
tion to (2). Thus if the demand changes over time, MP may
maintain stability even when there is no single stabilizing
FT. It is also proved that if R is estimated (perhaps by
counting turns) in a consistent manner, one may replace R
in (4) by its estimate and the stability property is main-
tained. In this sense MP is adaptive. Another property
proved in Varaiya (2013a) but not explicitly called out is
that the average queue size E

∑
q(l,m)(t) is proportional

to 1/P , where P is the number of times within a cycle
that a new MP control is selected. However, there is no
quantitative comparison between the performance of FT
vs MP. That comparison is carried out below using the .Q
simulator.

3. .Q SIMULATOR

A discrete event simulator like .Q is specified by a set
of events and a procedure for treating each event. The
occurrence of an event modifies the state according to the
associated procedure, and it may also trigger future events.
The state of .Q is the vector of queue lengths, together
with some memory needed to specify the control, and some
memory required to trace the movement of a vehicle from
one intersection to the next. .Q has two principal classes
of events.

(1) Events initiated by vehicles:
(a) Vehicle Appears At An Entry Link: A new vehicle

appears at the network;this will also trigger the
next arrival.

(b) Vehicle Arrives At A queue: A vehicle joins a
queue.

(c) Vehicle Ends Its Hold Time: The time, which
depends on the saturation rate, that a vehicle at
the head of a queue is held there before it can
leave.

(d) Vehicle Departs A Queue: A vehicle leaves its
queue and heads towards its next destination
intersection.

(2) Events initiated by the intersection control:
(a) Decision For the Next Traffic Control: The selec-

tion of the next stage to actuate at the end of
the duration of the currently actuated stage. For
FT this is pre-defined; for MP this will depend
on the calculation (5).

(b) New Network Control: When the actuation fol-
lows the previously selected control.

The .Q simulator records the system trajectory, i.e., the
time-stamped sequence of events and corresponding states.
Many trajectories may be recorded for a stochastic simu-
lation. Performance of the controller is obtained by appro-
priately processing the recorded trajectories.

Following data are needed for a .Q simulation. (1) Net-
work: graph; length, storage capacity and travel time of
each link; saturation flow rate of each turn; control stages
U(n) for each intersection. (2) Control: FT or MP; .Q also
has procedures to simulate actuated control. (3) Demand:
average demand rates, turn probabilities; .Q can also use
demand specified via origin-destination-path flows. In the

simulations below, the time step is 0.1s and each simula-
tion lasts 10,800s or 3 hours.

.Q is sometimes called a mesoscopic in contrast with micro-
scopic and macroscopic traffic simulators. A microscopic
simulator models the movement of individual vehicles each
using a simple differential equation that emulates car-
following and lane-changing behavior of drivers. A mi-
croscopic simulation model has hundreds of differential
equations (vehicles) each with its own driver behavior
parameters, so the model is impossible to calibrate. The
usefulness of commercial microsimulation packages is their
impressive ‘3D’ visualization of the results, which lends
verisimilitude but no statistical guarantee. Of course, mi-
croscopic simulators are slow, so running stochastic simu-
lations is time-consuming.

Macroscopic simulators typically model traffic flow as a
fluid, often based on the cell transmission model (CTM),
see Lo (2001). They are straightforward to calibrate, but it
is quite difficult to model turns, shared lanes and queues.
Feedback controllers in practice rely on sensors that are
actuated by the passage of vehicles. It is a challenge to
model such sensors in a CTM model of a fluid whose
state is density (vehicles/km) and use it to predict the
performance of (say) a fully actuated controller. Random
(Poisson) demands and exponential service are also hard
to model.

A mesoscopic simulator, like .Q, can incorporate the ad-
vantages of both. It requires the same model parameters as
macroscopic models (network, demand, control), and they
do model individual vehicles, but it doesn’t model lane
changing or car-following. It is easier to calibrate than
a macroscopic model because it involves vehicle events
that are measured by standard detectors. It is much faster
than microsimulations. (A 10,800s .Q simulation of the 13-
node, 150-queue study network takes under 1s on a laptop
computer.) Since it models individual vehicles, one can
model sensors that detect their passage and hence actuated
control.

4. FT AND MP, BASIC PROPERTIES

The demand d for the network of Fig. 1 was obtained
from an Aimsun microsimulation of the network. (As
noted before, turns are taken to be equiprobable. An FT
control λ = {λ(n)} (n is intersection index) is obtained by
solving the LP problem obtained by adding the criterion
of maximizing the excess capacity to the inequalities (2).
It turns out that (2) is feasible. Fig. 2 plots the sum of all
queues

∑
l,m q(l,m)(t) every 0.1s for 10,800s or 3 hours.

(An argument in Varaiya (2013a) can be used to prove a
kind of ergodicity result, namely that the time average of
this queue-sum converges to its statistical average.) The
plot confirms the prediction of stability of this FT control.

Figure 3 plots the evolution of the sum of the queues, for
the same demand d under MP control (5) when the number
of the control decisions taken per cycle, is varied from two
to ten decisions. This verifies the property predicted in
Varaiya (2013a) that the queue size will decrease as the
MP update is taken more frequently.

A comparison of the plots in Figs.2 and 3 shows that the
queues under MP with 4 decisions/cycle (which is also the
number of stages per cycle under FT) leads to queue sums



Fig. 2. Sum of queues with demand d and FT control λ

Fig. 3. Sum of queues with demand d and MP control with
2 (blue), 4 (red), 6 (green), 8 (yellow), and 10 (brown)
decisions/cycle

that are smaller on average and have smaller variability.
This property is not predicted in the theory but it is
(presumably) a consequence of the adaptability of MP.

It is impractical to reduce queues simply by invoking MP
more frequently within each cycle, because changing a
stage incurs a loss. A more practical approach, which we
call MP-pract, is to evaluate MP frequently, but implement
a change only if it leads to a significantly larger pressure:

max
U

π(U, q(t))− π(U∗, q(t)) > η. (6)

Here U∗ is the previously selected MP stage, and the
threshold η > 0 should be chosen to prevent excessive
stage switching. Figure 4 plots the evolution of the sum
of queues under MP-pract with evaluations two, four, six,
eight and ten times per period, and η small.

Figs. 3 and 4 show that the performance of MP-pract
is comparable to that of MP but requires much fewer
stage changes, as Table 1 reveals. The Table compares
for intersection 37593 the total number of MP evaluations
vs MP-pract implementations. Interestingly, the number
899 of MP-pract implementations for 8 decisions/cycle is
smaller than the number 938 of MP implementations for 4
decisions/cycle, which is also the number of stage switches
using FT. Thus MP-pract appears to be a practically
sound implementation of MP.

Fig. 4. Sum of network queues with demand d and MP-
pract 2,4,6,8,10 decisions/cycle following (6).

Nb MP Total Total
Decisions Nb Nb
Per Period Evaluations implementations

2 466 224

4 938 455

6 1403 680

8 1866 899

10 2243 1026

Table 1. Number of MP evaluations vs number
of MP-pract implementations for intersection

37593.

5. NETWORK BEHAVIOUR UNDER DEMAND
VARIATION

We consider a time-varying demand equal to d1 from time
0 to 10,800 s and d2 from time 10,801 to 21,600. The only
difference between d1 and d2 is the demand at the entry
link 2370 at intersection 37593, at the bottom of Fig.1. FT
control λ1 supports d1, λ2 supports d2, but no FT control
supports both d1 and d2. We consider q(2370, 709) on link
2370.

Fig. 5 and 6 depict the evolution of q(2370, 709) when FT
λ1 is employed for the entire 6-hour period. As can be seen,
the system is stable for the first 3 hours (with demand d1)
but then becomes unstable with demand d2. However, FT
λ2 supports demand d2 as seen in Fig. 7, but λ2 does not
support d1 (not shown).

Fig. 5. q(2370, 709) - FT control (d1, λ1).

Figs. 8,9 show the evolution of q(2370, 709) when demand
level varies from d1 to d2 under MP control. Evidently,



Fig. 6. q(2370, 709) - FT control (d2, λ1).

Fig. 7. q(2370, 709) - FT control (d2, λ2).

MP adapts to the change in demand, in sharp contrast
with FT.

Fig. 8. q(2370, 709) - MP control and demand d1.

6. TRAVEL TIME

Travel time is an important performance metric of signal
control strategies.

Table 2 compares the mean travel time (MTT) and the
number of completed trips for three different stabilising
policies with the same demand. The trips are those that
originate at node 37593 and leave from one of the exit
links. As expected, because all controls are stabilizing, the

Fig. 9. q(2370, 709) - MP control and demand d2 continu-
ation of demand d1.

(Exit, FT MP MP Practical
Entry) control 8 ctrls 8 ctrls
Link per cycle per cycle

Number Number Number
Veh & Veh & Veh &
MTT MTT MTT

(2370, 217793) 218.6 27 141.3 27 149.1 27

(2370, 742) 300 12 246.9 12 255.2 12

(2370, 16462) 207.5 46 136.7 47 128.50 46

(2370, 217802) 216.8 19 187.3 19 210.6 20

(1497559, 742) 340.5 9 243.8 9 274.5 9

(11497559, 1721893) 298.8 10 228.3 10 243.9 10

(1497559, 217802) 219.4 11 180.1 11 214.5 11

Table 2. MTT in sec and number of completed
trips with FT, MP, MP-Pract.

same number of vehicles complete the trips. However, the
mean travel times for FT are much larger than for MP and
MP-pract. Further, the travel times for MP and MP-pract
are similar.

The trip travel time is the sum of the link travel times
and the queue sojourn times. Since link travel times do
not depend on the control policy, the difference in trip
travel times is due to differences in queuing delay. Table 3
shows the number of vehicles and the mean sojourn time
in each queue of the intersection node 37593 with 2 to 10
MP decisions per cycle. The smaller queuing delay under
MP with more frequent updates per cycle conforms to the
correspondingly lower queue size shown in Fig. 3. As seen
in Table 4, the delay incurred by FT is larger than by MP
with 4 or more MP decisions per cycle,.

Finally, Tables 5 and 6 show how the MTT for trips
originating in entry link 2370 to selected exit links changes
under MP with 2 to 10 decisions per cycle. Once again
if we recall that the performance of MP with 8 or 10
decisions per cycle is very similar to that of MP-pract with
4 implementations per cycle, we see that MP-pract offers
a very satisfactory control performance.

7. CONCLUSION

The paper illustrates the use of the simulator .Q to evalu-
ate the performance of the control of a network of signal-
ized intersections. The control of such a network actuates
a stage (i.e. a set of simultaneous turn movements) at each



(Input, Nb Mean Time
Output) Stat. Spent in Que, (secs)
Link Veh. by Veh.

MP
2,4,6,8, 10 updates

per cycle

(23004, 831) 424 67.1 30.7 21.5 15.4 12.7

(23004, 2371) 430 55.5 28.2 20.4 16.5 13.1

(2370, 709) 336 131.7 73.4 40.8 31.4 21.7

(2370, 23003) 298 97.1 48.3 32.8 28 19.9

(1497559, 2371) 234 73.9 31.2 18.1 15.1 11

(1497559, 709) 280 109.4 58 39.6 27.6 20.1

(708, 23003) 863 26.2 15.4 10.6 8.8 7.9

(708, 831) 806 32.4 18.9 13.1 11.3 9.8

Table 3. Mean sojourn time in queues at node
37593 with 2, 4, 6, 8, & 10 MP decisions/cycle.

(Input, Nb Mean Time
Output) Stationned Spent in Que, (secs)
Link Veh. by Veh.

FT
stabilizing

(23004, 831) 421 37.5

(23004, 2371) 433 23.7

(2370, 709) 336 41.5

(2370, 23003) 298 35.3

(1497559, 2371) 234 30.1

(1497559, 709) 280 23.5

(708, 23003) 864 30.8

(708, 831) 809 35.1

Table 4. Mean sojourn time in queues at node
37593 with ‘optimized’ FT control.

Nb Veh. Nb Veh. Nb Veh.
(Entry,Exit) Served Served Served

Link & MTT & MTT & MTT
(secs) (secs) (secs)
2 MP 4 MP 6 MP

updates updates updates
per cycle per cycle per cycle

(2370, 1752108) 132 176.6 137 106 137 89.1

(2370, 831) 355 25.9 355 15.6 355 11.7

(2370, 1201) 56 276.3 56 170.3 56 120

(2370, 217793) 26 363.8 27 207.4 27 164.5

(2370, 2351) 14 439.1 14 332.4 14 234.2

(2370, 742) 12 608.4 12 371.9 12 284.6

(2370, 1721893) 11 550.2 11 360.6 11 301.9

(2370, 217802) 19 441.7 19 285.9 19 216.8

(2370, 1752109) 114 188.2 115 108.2 115 80.3

(2370, 16462) 45 406.2 46 232.9 47 165.1

(2370, 1206) 149 328.1 154 196.1 152 113.6

Table 5. MTT from entry link 2370 at node
37593 under 2, 4, 6 MP decisions/cycle.

time and in every intersection. There is a large literature
on the design of such controls. Invariably, the performance
of a control scheme is carried out via simulation. This
paper compares two families of controllers in the context
of a signalized arterial network with 13 nodes, 50 links and
150 queues.

.Q models the network as a store-and-forward queuing
network. It is a mesoscopic simulator: it models the move-
ment of individual vehicles, but without lane-changing. It
is a discrete-event simulator that retains only the essential

Nb Veh. Nb Veh.
(Entry,Exit) Served Served

Link & MTT & MTT
(secs) (secs)
8 MP 10 MP

updates updates
per cycle per cycle

(2370, 1752108) 138 73.3 137 63.9

(2370, 831) 355 10.2 355 9.1

(2370, 1201) 56 106.1 56 88.1

(2370, 217793) 27 141.3 27 121.3

(2370, 2351) 14 192 14 167.5

(2370, 742) 12 246.9 12 188.7

(2370, 1721893) 11 253.6 11 240.8

(2370, 217802) 19 187.3 19 145

(2370, 1752109) 115 75.8 116 62.9

(2370, 16462) 47 136.7 46 104.1

(2370, 1206) 153 92.6 155 76.5

Table 6. MTT from entry Link 2370 at node
37593 with 8, 10 MP decisions/cycle.

events needed to describe a vehicle’s trajectory (entering,
joining and leaving a queue, making a turn, departing the
network) and control decisions (which and when a stage is
selected and actuated). .Q is easy to use, fast and versatile.
The last property is illustrated by the two control schemes
that are studied: FT or fixed-time control and MP or
max-pressure control. Stability of FT and MP has already
been theoretically investigated. .Q is used to compare their
performance in simulations.

The simulation study confirms the theoretical predictions
about stability and instability. It confirms that MP is
adaptive: it preserves stability in the face of demand vari-
ation. More interestingly it shows that queues decrease as
the MP control is invoked more frequently. Of practically
greater importance is the finding that with MP-pract the
number of stage switches can be limited without sacrificing
the gain from more frequent switching.
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