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ABSTRACT
This work explores the problem of estimating road link densities from cellular tower signals by
mobile subscribers in urban areas. We pose the estimation problem as a quadratic program, and
present a robust framework that produces vehicle density estimates and is suitable for large-scale
problems. We demonstrate that both simple and sophisticated models of cellular network connec-
tions can be handled robustly by the framework, without sacrificing efficiency or scalability. We
present a numerical experiment on the I-15 corridor in San Diego based on a calibrated Aimsun mi-
crosimulation and a simulated cell network, demonstrating the framework can practically be imple-
mented as part of an integrated corridor management system. The numerical results demonstrate
that when the cell phone connection model is chosen appropriately, the estimates are consistent
with those observed in a microsimulation.
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INTRODUCTION
Vehicle density estimation is a critical component of future traffic management in urban areas.
Vehicle density on freeways and arterial roads alike can be inferred from instrumentation added
to the road network, but installing and maintaining such sensors is time consuming and costly,
(Fontaine and Smith (1)). Heavily used freeways are usually instrumented, but most arterial roads
are not. Thus, estimates of traffic conditions can only be found on a small fraction of the entire
road network in an urban area. The framework presented in this article uses data from cellular
network infrastructure to estimate current link densities on the road network. This not intended
for traffic information systems, due to the granularity of the data, however better estimates of
counts of cars on arterial roads on a 10-to-15 minute interval would be a useful input to traffic
management systems that could provide richer information for decision making. For example, it
could be used as data for improving demand estimation and management, and would allow traffic
managers to adjust signal timing schedules to account for changes in current conditions, since most
signal timing strategies are adjusted on a similar time resolution, (Lee and Williams (2)).

Cell tower usage data has become an increasingly popular source of data for traffic demand
estimation, as mobile phone network coverage is generally ubiquitous in urban areas, however
one of the challenges of using cell phone tower data is the coarse granularity of the sensors, both
spatially and temporally, (Cheng et al. (3)). For this reason, cellular infrastructure data is not as
useful as GPS or Bluetooth for traffic information systems, (Herrera et al. (4) and Work et al. (5)).
On the other hand, they are a pervasive source of data, where penetration rates in the population
are exceptionally high compared to other data sources such as GPS or other wireless probes, as
noted by Calabrese et al. (6). This makes them valuable for traffic management applications,
where congestion and demand information are useful for making more data-driven management
decisions.

Studies of cell phone data have focused on numerous important areas of traffic model-
ing. Because of extensive coverage and appropriate level of accuracy and precision in cellular
infrastructure data, applications to demand modeling have shown impressive results, allowing re-
searchers to shift from census based models to more sophisticated models of data-driven origin-
destination inference, allowing higher temporal resolution, as presented by Toole et al. (7). In
this article, we investigate the usage of this data to estimate current counts of vehicles on links
in the road network, a more localized quantity of significant importance to traffic modeling. The
map shown in Figure 1, created from the numerical work presented later in the article, shows how
solving this problem is similar to projecting cell tower connection density onto the road network.

In this article, we present a convex optimization framework for estimating link flows from
cell tower usage data. Our model is based on two main ideas: connections to cell towers can be
modeled by a probability distribution that gives the probability of being on each link given that one
is connected to a given cell tower, and a link similarity model can encode the relationship in density
between links in the road network. The framework presented poses the problem as a quadratic
program that can be solved in O(n3) time, where n is the number of cell towers in the region,
which is usually less than 1000. Numerical results establish consistency with microsimulation
results, and discuss how this framework can be extended to further improve results.

RELATED WORK
Location data from mobile phones has been embraced by the urban planning community as a
powerful and pervasive source of spatiotemporal data about urban communities, (Ratti et al. (8)).
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FIGURE 1 : Example of density projection from the data used for the present study. Regions
(resp. links) colored in red have high cell tower connection (resp. vehicular) density. Best viewed
in color. A time-lapse video is available on http://connected-corridors.berkeley.edu/
gallery/videos

Estimating traffic demand from cell phone data has become a popular area of research in the trans-
portation community in recent years, (Wang et al. (9), Yuan and Raubal (10) and Steenbruggen
et al. (11)). As noted before, cell phone data presents very different challenges from traditional
sensors for traffic engineering, such as loop detectors and cameras, (Calabrese et al. (12)). There
are various forms of cell phone data studied in the literature that all have specificities and chal-
lenges, (Rose (13), Wang et al. (9) and Iqbal et al. (14)). For instance, location data acquired from
triangulation has been used to get a fine position estimate of the phone. Jiang et al. (15) used this
to model density and track users throughout an urban network.

Call detail records (CDR), indicating which tower a call, text, or data transmission came
through, is another data source studied from cell tower infrastructure. While it is not as fine
grained, it is a commonly logged data source among cell phone network operators, and has good
penetration rates. Moreover, it is a good compromise between user privacy and usefulness. One
of the most common applications of CDR data is origin-destination matrix estimation, (Iqbal
et al. (14)). Wang et al. (9) demonstrates a method of using time-dependent origin-destination
information collected from cell phone data to estimate link flows through the traffic network using
a user equilibrium model.

Pozdnoukhov and Kaiser (16) demonstrate that continuous space models via area-to-point
kriging can be used to project CDR data onto an urban area. Our work is an extension to this
idea, where the probability distribution is constrained to the road network as opposed to the entire
urban area, allowing us to focus on the nuances of a road network to get better estimates of vehicle
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FIGURE 2 : Voronoi partition of the cell tower space for the I-15 corridor according to cell tower
locations modeled based on population density in the corridor.

density.

PROBLEM FORMULATION
The rest of the article is organized as follows: Firstly, we present the model of the transportation
network used in this algorithm and the assumptions about cell phone networks and the data ac-
quired from the cell tower infrastructure. Secondly, a convex optimization framework is presented
based on the combination of these models that enables efficient inference of vehicle density on
links in a road network. Finally, experimental results are presented to validate the efficiency and
accuracy of our model in which the ground truth is obtained from a microsimulation of a weekday
morning rush hour on the I-15 corridor in San Diego County.

Modeling
We assume that a road network can be described as a directed graph G = (V,E,w), where V is the
set of nodes on the network, and E is the set of links, (Eppstein and Goodrich (17)). The variable
w is a tuple for each link that encodes a set of properties of the associated link. For the purposes
of this article, each tuple contains the link’s length, number of lanes, and its "importance" to the
network – an empirically determined parameter which captures information such as which roads
are major thoroughfares and highways, and which are neighborhood streets that are less traveled.
The number of vehicles on a given link e ∈ E at a specific time t is denoted by nt

e.
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The road network is associated with a set of cell phone towers, T , each described by a
geographical location and a history of the number of connections to that tower. We assume that
there is a static coverage area of each tower k ∈ T . We assume that the coverage model can be
represented by a Voronoi partition of the geographic region, Figure 2, according to distance from
the nearest cell tower, as modeled by Yuan and Raubal (10), Gonzalez et al. (18), Steenbruggen
et al. (11), and many others. We call Ek the set of links that could possibly be connected to tower k.
With hard boundaries, such as the Voronoi partition described here, this set contains only links that
intersect the tower’s Voronoi cell. However, if one were to develop a stochastic model, this set
would be the set of all links that have a nonzero probability of having a cell phone user on that link
and connected to the tower u.

For a given time interval [t, t + ∆t], each tower has a count of the calls placed in that
cell during the time interval, which we call yt

k. To simplify notation, we will assume the rest
of the analysis applies only to a specific time interval, and so we will drop the indication of the
time interval, and for notational convenience refer to these quantities by, for example, yk. To use
cell phone data to estimate vehicle density, we must make an assumption about the relationship
between cell tower usage and road network utilization. In this model, we assume that the two are
proportional. We assume that we can get the empirical coefficient of proportionality, such that the
number of cars in the region ck = mkyk, where mk > 0 is a list of known constants, as proposed
by Wang et al. (9). For instance, if we assume a given carrier provides cell service to 50% of the
population in all regions of the network, and that yk accounts for only connections made by vehicles
in motion, and that there are an average of 1.3 persons per vehicle, then mk =

1.3
0.5 = 2.6 ∀k ∈ T . In

matrix form, we write M = diag(mk)k∈T , and so c = My.

Optimization Framework
In our model, the prediction of the number of vehicles ĉk in the coverage area of a cell tower k is a
sum of the number of cars on each road segment that is entirely in the cell tower coverage region,
plus the sum over of the number of cars on links that cross into that region, times the fraction of
the link that is in the given cell. So we can define a prediction of the number of cars in the kth cell
as

ĉk = ∑
e∈Ek

neP(Ek|e) (1)

= ∑
e∈Ek

qk,en̂e (2)

qk,e = P(Ek|e) (3)

where P(Ek|e) is the probability of one being in the coverage region Ek given that he or she is on
link e, and n̂e is the predicted number of cars on link e.

In matrix form, the number of cars ĉ ··= (ĉk)
ᵀ
k∈T if a aggregation of the number of cars on

each link n̂ ··= (n̂e)
ᵀ
e∈E such that ĉ = Qn̂, where Q = (qk,e)k∈T,e∈E = (P(Ek|e))k∈T,e∈E . Hence, we

expect the best estimate of the link densities n̂ to be one that minimizes the error in estimating the
number of phones connected to a cell tower, y = (yk)

ᵀ
k∈T . This can be formulated as the following

optimization program.
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minimize
ĉ,n̂

‖y−M−1ĉ‖2

s.t. ĉ = Qn̂
(4)

As the objective function is a sum of squares and all constraints are linear in the problem
variables, ĉ and n̂, the problem is a quadratic program. We can see, though, that if any of our cells
have more than one link in them, then this problem would be have many solutions that minimized
the loss, as vehicles could always be removed from one link and placed on the other without
affecting the total number of vehicles in the cell. However, it is intuitively the case that some
distributions of vehicles onto the links within a tower’s coverage region are more likely than others–
it is unlikely that everyone is on neighborhood roads and no one is on the highway, especially if
there are cars on that highway in the adjoining region.

To resolve this issue, we propose a set of constraints on the set of links that reduces the
degrees of freedom. In this model, we define a similarity function on links, s(e,e′) which measures
the similarity of e′ to e. This similarity measure should express how density on one road segment
will affect the density on another road segment. We then define the expected similarity between a
link and a cell phone region as

S(e,Eu) = ∑
e′∈Eu

s(e,e′)P(e′|Eu) = ∑
e′∈Eu

s(e,e′)pe′,u with pe′,u = P(e′|Eu) (5)

where S(e,Eu) is the expected similarity of e to the u-th tower, and P(e′|Eu) is the probability of
being on link e′ given that one are connected to cell tower u. S(e,Eu) encodes the rate at which
density varies on link e with densities on other links through their relationship to the spatial region
covered by tower u. The similarity need not be symmetric, but in this case, care should be taken
such that the result measures the similarity of e′ to e. Later, we shall propose a set of similarity
metrics that are simple and can be extracted from the graph representation of the road network.

Because the expected similarity captures the effect of a specific cell region on a link’s
vehicle density, the estimate, n̂e, of the total vehicle density on each link is the sum of the effect
of each tower on the corresponding link, weighted by a single quantity for each region, αu, u ∈ T ,
which captures how much that region contributes to traffic on the network.

n̂e = ∑
u∈T

S(e,Eu)αu (6)

And so, by eliminating variables and simplifying the form, we can write the objective as a
least squares in the α = (αu)

ᵀ variables.

minimize
α

∑
k∈T

(
yk−M−1

∑
e∈Ek

qk,e ∑
u∈T

∑
e′∈Eu

s(e,e′)pe′,uαu

)
(7)

which we can write in matrix form as

minimize
α

∥∥y−M−1QSPα
∥∥2

2 (8)
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This program can be interpreted as a way of estimating the effect that each region has on
vehicle density in the network from indirect measurements of call volume.

In this current formulation, it is possible that noise or modeling error could allow the choice
of α that minimizes this error to lead to a negative count on a link. This would be an infeasible
in reality, as would the case where more vehicles are on the link than the link’s capacity could
carry. To prevent infeasible solutions, we add an inequality constraint that for the estimated count
on each link e, 0 < (SPα)e < (nmax)e.

The current objective is not guaranteed to be strongly convex unless the matrix QSP is full
rank; to guarantee strong convexity and help reduce over-fitting to noise, we propose adding a
regularization term to the objective. The most commonly used regularization is `2 regularization,
which results in a least-squares least-norm problem, (Boyd and Vandenberghe (19)). However, `1
regularization still results in a QP, but encourages more weight near zero and in the tails of the
distribution by placing a Laplacian prior on the link densities, (Tibshirani (20)). Therefore, `1
regularization is a more accurate form of regularization for this problem. We provide numerical
results to verify this claim in the Experiment section.

Thus, our final formulation can be posed as the following quadratic program,

minimize
α

∥∥y−M−1QSPα
∥∥2

2 +λ1ᵀSPα

s.t. 0≤ SPα ≤ nmax

(9)

Model selection
We have a number of road and cell network modeling decisions that need to be made: firstly, we
need a model for the probability P(e|Ek), and secondly, we need a model for the similarity function,
s(e,e′). Figure 3 illustrates how these models are incorporated along with the optimization program
into the framework. We present a simple model and in our experiment, describe the effects of
choosing this model on the performance of this method. In this model, we assume that if a call
is made through a cell, it could come from any link in that cell. The total area covered by a link
is the length of the link, `e times the number of lanes Ne. The length of the link must be further
divided into the fraction of it that lies within the Voronoi partition of tower t, fet . These properties
are assumed to be known in the road network, from a map of the region.

This area can then be weighted by a factor according to the road type, as described in the
model assumptions, that captures how likely this road is to be traveled by commuters, local traffic,
and how often these groups place calls. Pozdnoukhov and Kaiser (16) proposes using a weight of 1
for busy streets, and weight of 0.5 for local roads. In this model, we use a weight of 1 for highways
or freeways, and a weight of 0.5 for all other roads. This modeling choice could be adjusted to
improve estimates to better match what is observed in a real road network of interest. We model
the probability of being on a link e when placing a call in the cell k which covers Ek as

P(e|Ek) =
Ne`e fekwe

∑e′∈Ek
Ne′`e′ fe′kwe

(10)

Also, we can estimate the probability that one is in a cell given that he or she are on a link
is just the fraction of that link which is in each cell. In our model, for most links, this is either
1 or 0. However, for links that cross between two towers, it is:
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FIGURE 3 : Model inputs to the framework.

P(Ek|e) = fek (11)

Finally, the choice of similarity function must be made. We propose using a simple func-
tion, inspired by the literature on kernel learning (Borgwardt and Kriegel (21)), based on shortest
path distance. This captures the fact that the density on links are likely to correlated to links that
are nearby. Given the shortest path distance, d(e,e′), we define the similarity function,

s
(
e,e′
)
= exp

(
−βd

(
e,e′
)2
)

(12)

This leaves us with one hyper-parameter for this similarity function. Along with the reg-
ularization parameter, λ , we are left with only two hyper-parameters, a reasonable number to be
able to estimate in a cross validation scheme. Performance can be measured in terms of squared
error of counts on a set of links with known counts as well as squared error of number of calls in a
given cell.

In this sense, the α parameters describe how density is distributed among regions of the
road network, and the P matrix describes how density associated with a region is divided up among
the links in that region. Furthermore, Q describes how links are aggregated together to get the
number of cars contributing to connections in a cell phone region.

NUMERICAL EXPERIMENTS
We assessed the accuracy of this formulation by collecting data from a microsimulation and then
comparing the estimates generated by the model with the true counts measured in the microsimu-
lation. We present a method for assessing the accuracy of a model for vehicle density through this
framework, and discuss how the choice of model used can affect the accuracy of the results.
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FIGURE 4 : Screen captures from Aimsun microsimulation shows full view of network used in
microsimulation, a couple blocks with cell tower coverage map overlay, and a close up with detail
of vehicle trajectories.

Methods
A calibrated Aimsun 8 microsimulation was used to simulate the morning rush hour in the I-15 cor-
ridor, from I-15 mile marker 12 to 33. The map included arterial roads in the area as well, and in
total, there were 3273 links in the network. The microsimulation was fed a calibrated OD demand
model developed by SANDAG, (Miller and Skabardonis (22)). The simulation was run with a
0.85 second step interval with 370,000 unique vehicles simulated, and all vehicle trajectories were
logged every time step and stored on the cloud in a PostGIS spatial database for analysis. Cell
phone tower locations were simulated for the same region, using a mixture model of a uniform
distribution over the region, and a kernel density estimated distribution along roads in the net-
work, with a Gaussian kernel. In total, 300 cell towers were distributed over the network covering
roughly 300 sq. miles. The cell tower coverage regions were calculated by performing a Voronoi
tessellation on the cell tower locations. Figure 2 shows the resulting coverage map. These tessel-
lations were saved to a table in the PostGIS spatial database with the microsimulation trajectories
for analyzing coverage. Figure 4 shows screenshots of the Aimsun model on the network.

In total, the entire table of vehicle trajectories is approximately 30 GB. Spatial and temporal
indices were constructed for trajectory data in the database, though care is still needed to be taken
to efficiently query the data, as each time slice returns a large number of rows. The trajectory data
was aggregated over a time interval by counting the number of unique vehicle identifiers on each
link in the network to compute nt

true, for a time slice t. Similarly, the number of connections for
each cell tower was computed by counting all vehicles whose location during a specific time slice
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FIGURE 5 : System diagram for simulation and data analysis method.

was in that tower’s Voronoi cell. This aggregate was scaled by the penetration rate to simulate the
number of cell tower connections observed.

We sample 10 minute intervals from the morning rush hour, 5:00 am to 10:00 am. In each
interval, we counted the average number of cars on each link and the average number of cars in
each cell. We assume a 25% penetration rate among drivers and assume that all cars are connected
to the nearest cell tower in modeling cell phone connections in the microsimulation. We use these
same assumptions in choosing M and P in our model for density estimation.

We solve the optimization problem in terms of n̂ and α using the python optimization
package cvxpy with the SCS second order cone solver, (Diamond et al. (23)). We adjust the results
for the penetration rate and compared our estimates of n̂ to the true counts on each link, as extracted
from the microsimulation results. We tested two different probability distributions for P(e|Ek): the
first used the true distribution derived from the simulation, and the second used the estimate we
proposed above. An overview of the system for simulating this method is shown in Figure 5.

To assess the accuracy of this model, we suggest using the R2 correlation coefficient of the
link counts to judge the accuracy of the prediction. Because our model is a constrained linear one,
R2 corresponds to the fraction of variation captured by the estimates.

Distribution of Vehicle Density
We present the histogram of the distribution of ntrue, to justify our use of the `1-norm for regular-
ization. In Figure 6, the empirical distribution of the number of cars on a given link is shown. This
is calculated from the true distribution found from mining the microsimulation. p(n) is the prob-
ability that a given link has n cars on it. The histogram shows that the true distribution has more
mass in the tails and near 0 than an exponential distribution, but it is still much better than a normal
distribution. Tibshirani (20) shows that for an appropriate choice of λ , the λ‖SPα‖1 term in the
objective represents a Laplacian (two-sided exponential) prior over n̂. The `1-norm is the smallest
p-norm which is still convex, so despite the fact that we would prefer to add a regularization that



Yadlowsky, Thai, Wu, Pozdnukhov and Bayen 11

FIGURE 6 : Distribution of number of cars on links in simulation.

would put more weight at zero and the tails, using `1 regularization is a decent convex relaxation.
We make this into an exponential distribution by imposing the non-negativity constraint on n̂.

Prediction accuracy
Using the true distribution of P(e|Ek), we observe accurate estimates of link densities, consistent
with the microsimulation. The estimates produced by the model have an R2 correlation coefficient
as high as 0.998, as shown in Figure 7a. What we observe in Figure 8a is that with this model for
P, larger β does better. We can see that

lim
β→∞

s(e,e′) = I{e=e′} (13)

where I which is 1 when its argument is true, and 0 otherwise. So, a larger β corresponds to
the correlation matrix being “simplified” out of our model. This is not too surprising, as having
the exact probability distribution means that the estimates don’t need to be smoothed onto similar
links, so mapping each onto only itself is the best one can do.

However, what is surprising is that this tends to be true for our simple model of the dis-
tribution as well, as shown in Figure 8b, despite the fact that this model does not completely
characterize the true distribution of vehicles on links. We believe this is an indication that the
choice of s(e,e′) = exp(−βd(e,e′)) is not the best choice for describing the relationship between
links in a road network. More investigation into this is warranted, to look for a better choice of S
that does a better job of infusing the behavior of traffic into the model. The prediction versus true
distribution scatter plot is shown for the best choice of hyper-parameters (R2 = 0.767) in Figure 7b.

Adaptability of Model
Having the true distribution for P makes a significant difference, so finding a better model for this
is crucial to further improving the results. For example, Traag et al. (24) proposes a more sophis-
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(a) Exact P matrix. (b) Estimated P matrix.

FIGURE 7 : Car counts scatter plot.

(a) Exact P matrix. (b) Estimated P matrix.

FIGURE 8 : Effect of hyper-parameters on prediction accuracy.

ticated model for fuzzy Voronoi tessellation that captures the uncertainty of connections near cell
tower boundaries. However, the model we have presented for P is simple, and its implementation
in this framework is clear. To demonstrate that the framework can easily be adapted to implement a
different model for P(e|Et) and P(Et |e), We choose another model, implement it in our microsim-
ulation, and show that our framework produces estimates with similar error as presented above in
the case of the simpler model.

In this model, we assume that there is a 70% chance that a phone is connected to the nearest
tower, and a 30% chance that it is connected to any of the surrounding towers. We use this model
when assigning counts to towers in the simulation. Figures 9a and 9b show that when we model
this in P and Q in the framework, the model works roughly as well, with R2 accuracy of 0.998
when the true distribution is known and R2 of 0.74 when we use the following estimate:
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(a) Exact P matrix. (b) Estimated P matrix.

FIGURE 9 : Car counts with overlapping cell coverage.

P(e|Ek) =
γNe`e fekwe

γ ∑e′∈Ek
Ne′`e′ fe′kwe +

1−γ

|adjk|∑u∈adjk ∑e′∈Eu Ne′`e′ fe′kwe
(14)

P(Ek|e) = γ · fek +
1− γ

|adjk| ∑
u∈adjk

feu (15)

where adjk is the set of cells adjacent to tower k, and γ = 0.7.

MODEL ANALYSIS AND DISCUSSION
These results provide evidence that the framework is effective in reproducing the vehicle densities
on links in a road network, given that S, P, and Q are well modeled. However, we see that it is
sensitive to errors on P and S. This shows that more effective modeling of these probabilities,
perhaps based on the traffic patterns or driving behaviors, could be used to improve these results.
While consistency with a simulation is nice, the reality of complexities in practical road networks
and noise in cell tower data present challenges for building a practical implementation of the model
employed by this network.

The key models that we explored in this experiment were P(e|Ek) and s(e,e′), as modeling
of P(Ek|e) was simple to choose based on the model used in our simulation. We demonstrated that
a more sophisticated model of P(e|Ek) was key to our results, and suggested that a better choice
of s(e,e′) could make it more useful to the framework as well. However, by taking a more careful
look at where these appear in the framework, we can see that the two are closely related.

We rewrite (9) in a way that highlights this point. The implicit variable n̂ can be written in
to the program as variables constrained by an equality relation to the α:

minimize
α,n̂

∥∥y−M−1Qn̂
∥∥2

2 +λ1ᵀn̂

s.t. 0≤ n̂≤ nmax
n̂ = SPα

(16)
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But in this formulation, α only appears in the constraints of n̂. Otherwise, it is a free
variable with no other constraints or effect on the objective. So, we can rewrite that constraint as:

n̂ ∈ range(SP) (17)

and remove α entirely from the problem.
This constraint restricts the link densities to a |T |-dimensional subspace of R|E| that should

represent reasonable relationships of the vehicle densities between links that are related to one an-
other on the roadway. Separating it into S and P, however, does provide value: it defines a useful
interpretation of how this subspace can be constructed. However, some may find this second inter-
pretation instructive, as it removes the implicit assumption that P is a stochastic matrix and may
allow more sophisticated models for describing how vehicle densities are related to one another on
the road network.

An important consideration of these experiments is that they are simulations, which do
not fully verify the practicality of the modeling assumptions in the present work for real traffic
inference problems. We recognize the challenges of validating a model such as this, and suggest
experiments be performed on a real network and validated against existing sensors wherever avail-
able to investigate the modeling assumptions and accept or refine them as necessary. Choosing an
experiment location would be key: an area must be selected with many sensors against which to
compare estimates and a realistic cell phone network in the area.

CONCLUSION
This article presents a convex optimization framework for estimating vehicle densities on the links
in a road network from call volumes collected from cell towers. This provides higher penetration of
vehicle density estimates in the road network, as cellular infrastructure has much better distribution
than loop detectors in the road. It can be used to provide estimates on a 10-to-15 minute time
interval, which would be useful to traffic managers in choosing adaptive signal timing plans.

The framework is posed as a quadratic program, and so it can be solved efficiently in O(n3)
time, where n is the number of towers in the road network. Typically, this is less than 1000. For an
area the size of the I-15 corridor, there are about 300 cell towers. In our results, we demonstrate
that it can feasibly be implemented for a road network of the scale found in integrated corridor
management projects, such as the I-15 corridor in San Diego.

The framework is fed with a model for the probability of being on a specific link given
that you are connected to a specific cell tower, and a model for the relationship between vehicle
densities on every pair of links. Careful choice of these models has a significant impact on the
performance of the estimates computed according to this framework. We presented an alternative
perspective of the modeling task here, based on constraining the subspace of feasible link density
observations.

In the experiment, we demonstrated that both simple and sophisticated models of cell tower
connections can be handled robustly by the framework, demonstrating that more sophisticated
modeling which may allow improved results would not break any implicit assumptions made in
the convex optimization formulation.

Further refinement of this method involves developing more realistic models to be used in
this framework, that would allow this to be used in practice for corridor management. This includes
more realistic modeling of link density similarity, and cell tower connection dynamics. This could
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also be extended to include traffic dynamics by using the estimates of densities from the last time
step to construct a better model for the next time step.
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