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ABSTRACT
While the Cell Transmission Model (CTM) is generally accepted as a standard representation of
traffic flows on freeways with long links and uninterrupted flows, less is known about the accuracy
of CTM or other macroscopic queueing models on urban road networks with short links and fre-
quent flow blockages due to signal control. In fact, almost all existing validations of CTM focus5

on modeling freeways. In this paper, we aim to provide evidence towards selecting the appropri-
ate queueing model dynamics for use in analysis and control of a large-scale network of signalized
traffic intersections. We introduce a new vertical queueing dynamics called the Vertical Cell Model
(VCM) that incorporates a representation of link transit time and finite queue capacity. The lin-
ear link model of VCM provides an attractive new alternative to CTM for practical network-wide10

estimation and control procedures. We then compare the link outflow and density outputs of both
VCM and CTM to a set of high fidelity ground-truth observations on a multi-intersection segment
of an existing urban roadway. Ultimately we provide a validation of both CTM and VCM for use
in arterial networks which have minimal observed over-saturation. The development and valida-
tion of VCM is a first step toward a new control-theoretic approach to the operations of signalized15

intersections in a large-scale network.



INTRODUCTION
As traffic congestion in urban areas increases while space for building new capacity depletes, many
agencies responsible for local traffic management will be forced to take a deeper look into how to
influence flow dynamics and improve global congestion patterns on their existing road networks.
However such analysis requires the application of practical and efficient traffic models that can5

handle various levels of congestion and types of control. While researchers have extensively ex-
plored the idea of modeling dynamic traffic networks for more than a half century, most of the
theoretical work has been more easily applied to freeways than to realistic networks of signalized
urban intersections—often leaving traffic managers dependent on computationally demanding and
highly parameter-sensitive microscopic traffic models for the analysis of arterial traffic networks.10

The first introduction of a dynamic network-wide model for signalized roadways appears
to have come from Gazis et al. (1, 2), which introduces a discrete-time store and forward model of
flows between controlled intersections for the purposes of delay-minimizing optimal control. This
form of vertical queueing model introduces a representation of a road network as a graphical model
in which vehicles are passed between intersection “nodes” along road “links” at each time step.15

The characteristics of the modeling framework were highly limiting as they were originally pro-
posed, yet many researchers soon published extensions of this type of model (3, 4, 5, 6). Notably,
Michalopoulos and Stephanopoulos (7) made the model more applicable to flows in congested
regimes by introducing the idea of transmission limitations due to finite link storage capacities.

A major shift occurred when the community appealed for the inclusion of a “fundamental20

diagram”, or an underlying relationship between traffic density and the modeled flow rate. This
idea derives from the work of Lighthill and Whitham (8) and Richards (9), commonly known as
the LWR model, in which traffic flows were modeled as hydrodynamic waves. It was believed that
this step towards horizontal queueing models would better represent the effects of sharp density
shockwaves (frequent “stop and go” behaviors) due to signal controllers (10).25

The widely-adopted finite difference scheme of Daganzo known as the Cell Transmission
Model (CTM) uses a simplified peicewise-linear fundamental diagram to provide a convergent ap-
proximation to the LWR model (11, 12). Field data suggests that CTM closely fits observations of
flows on freeways or highways with few interruptions (13, 14), yet to our knowledge validation of
CTM on real arterial networks with short signalized intersections is very limited. One existing nu-30

merical comparison of CTM to a vertical queueing model on an artificial grid network is presented
in (15).

In recent years, CTM has been considered by many researchers to be the standard in macro-
scopic modeling of traffic flows. It has been used to design many traffic controllers for freeways
(16), and has even been adopted in version 13 of the widely-used traffic optimization package35

TRANSYT (17). An analysis of the dynamic properties of CTM for use in control is provided in
(18). Recently, there have been many algorithms proposed for optimal intersection signal control
schemes based on the analytical dynamics of CTM (19, 20, 21, 22, 23). It is still argued, however,
that the complexity and high computational requirements of these CTM-based control schemes on
detailed urban networks make them impractical for the real-time application for which they were40

designed (24). This has in turn spawned a second look at using less detailed vertical queueing
dynamics to analyze global flow patterns and design model-based control (25, 26, 27).

Bolstered by similar research in the field of communications and mechanical service net-
works, modern vertical queueing models have introduced a variety of transit delay and congestion
propagation improvements which have made them more widely applicable than those of the 1960’s45
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and 1970’s. Recent work yields promising results for practical network-wide control algorithms
based on vertical queueing models (28, 29, 30, 31, 32, 33, 34).

The objective of the current work is therefore to provide evidence towards selecting the
appropriate model dynamics for use in analysis and control of a realistic large-scale network of
signalized roadways. Specifically, the present article makes the following contributions:5

1. We introduce the formulation of the Vertical Cell Model (VCM), a new implementation of a
vertical queueing model that incorporates a simple representation of intra-link transit delay
and finite link storage capacity,

2. We validate this model against a set of ground-truth density and flow measurements derived
from high-resolution vehicle trajectory observations on a real urban traffic network, and10

3. We show that VCM performs equally as well as CTM relative to these ground-truth obser-
vations.

We believe that we also contribute one of the first comprehensive validations of an implementation
of CTM against high-fidelity observations on a real network of signalized intersections with short,
congested links. This type of validation has been largely limited by the the lack of appropriate data15

on urban networks.
We ultimately seek to determine whether a horizontal queueing pattern adds significant

benefit to network-wide model accuracy on a signalized traffic network with practical model time
discretization. The relative analytical simplicity of the link dynamics of VCM make it an attractive
option for use in model-based arterial estimation and signal control, especially if performance of20

VCM and CTM are proven to be comparable. To ensure fair comparison of results, we ran both
models on the same computational platform using the exact same graphical network, dynamic
parameters, and node model. In the future, we plan to continue to study the use of VCM for esti-
mation and control objectives in the I-210 corridor as part of the Connected Corridors integrated
corridor management pilot project at California PATH (http://connected-corridors.berkeley.edu/).25

MODEL DESCRIPTIONS
As previously mentioned, CTM and VCM share a common graphical representation of an arterial
traffic network. Consider a set of short urban roads separated by signalized intersections. We
model this network as a graph G = (N ,L) where the set of links L correspond unidirectional
roadways and the set of nodes N represent intersections or general points of flow division.30

More specifically, each individual link l ∈ L represents a unidirectional path between two
nodes in the network with a physical capacity for vehicles to be stored. Define In(l) to be the
set of all links immediately upstream of l in the network such that they can pass flow directly
into l (through the node between them), and define Out(l) as the set of all links which receive a
non-trivial flow directly from l.35

Physical roads are typically divided into a set of movements corresponding to each imme-
diate downstream destination. A movement contains to all vehicular flow on a single roadway
that intends to subsequently enter the same downstream roadway at the next intersection. In this
work, we consider each movement to be represented as a distinct link that is parallel to the links
representing all other movements on the same roadway. These parallel links can span the entire40

block from upstream intersection to downstream intersection, or they can originate somewhere in

http://connected-corridors.berkeley.edu/
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FIGURE 1 A road network is represented by a graph containing internal links, entry
links, exit links, intersection nodes, and intermediate nodes.

between two subsequent intersections at a position corresponding to the location at which a road
forks into a turn pocket. This mid-link split allows for modeling of shared lanes or turn bays
which can result in partial output blocking for one or more movements sharing common upstream
resources.

The set of all links L is divided into three subsets: entry links Lentry, exit links Lexit, and in-5

ternal links Lint. Internal links must be bounded on either side by a network node connecting them
to a non-trivial set of neighboring network links. They each have finite length Ll with correspond-
ing finite storage capacity. Therefore, the inflows and outflows of an internal link are inherently
constrained by the number of vehicles on the link at any given time. Entry links originate from
outside of the network and terminate at an internal network node. Because In(l) = ∅ ∀ l ∈ Lentry,10

demand on these links is exogenous to the network – entry links are in fact the only point of en-
try for external demand. For the purposes of this work, consider all time-dependent exogenous
demands to be known. While there is a rate limitation on the flow exiting entry links, there is no
bound on link storage; any expected demand can be stored on these links indefinitely until service
is available. In the same manner, exit links serve as an infinite repository for flow exiting the net-15

work. These links have no departing flow, and by definition Out(l) = ∅ ∀ l ∈ Lexit. Yet due to an
infinite storage capacity, the presence of congestion on exit links will never limit overall network
outflow.

Nodes are storage-less “gateways” that govern flow between neighboring links. A node
n ∈ N is defined geometrically by its set of incoming links In and its set of outgoing links On. It
is parameterized by a split ratio matrix βn of dimension |In| × |On| that defines the proportion of
vehicles in each incoming link that are waiting to enter each outgoing link m ∈ Out(l). Elements
βl,mn of feasible split matrices must obey the following characteristics:

0 ≤ βl,mn ≤ 1 ∀ l ∈ In, m ∈ On, n ∈ N (1)

∑
m∈On

βl,mn = 1 ∀ l ∈ In, n ∈ N (2)
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Each node in the network represents either a simple splitting of a single upstream link into
many “movement” links or a point of flow exchange between two or more intersecting roadways.
The topological differences between intermediate nodes and intersection nodes are illustrated in
Figure 1. The operation of the intermediate nodes is straightforward: a single demand flow is
consistently divided into many downstream supply flows as specified by a fixed split ratio parame-5

ter. Intersection nodes similarly split flows according to dictated split ratios, but furthermore must
resolve conflicts between multiple input flows which require the use of shared physical resources.

We therefore define a phase as a set of incoming links which can flow simultaneously
through the node without causing resource conflicts. Each phase ψ for a node n is encoded as a
sparse binary matrix of dimension |In|×|On|, where element ψl,m = 1 if link l is permitted to flow10

into link m as part of that phase (and otherwise 0). The set of all possible feasible phases for node
n is denoted Ψn.

A flow-impeding signal controller is placed on each intersection node to ensure safe oper-
ation of the modeled junction by restricting concurrent flows across the node to those input links
encoded in an element of Gn ⊂ Ψn. Note that Gn is generally limited to some subset of Ψn be-15

cause practical signal controllers typically only actuate a limited number of phases due to hardware
limitations or safety regulations. A controller on node n must alternate between actions G ∈ Gn

at an update rate dictated by management constraints or objectives.
Assume for now that all turn directions of a “shared movement” link are actuated simulta-

neously: if a node’s input link l is permitted to flow into any one of its downstream neighboring20

links m ∈ Out(l), it is also permitted to flow into any of its other downstream neighbors. Then
define Gl ∈ {0, 1} to be the indicator that link l is permitted to discharge according to its fixed
expected split ratios.

Because links are defined to have finite storage capacity, nodes must also enforce physical
limitations in flow due to congestion on their neighboring links. Flow through a node is therefore25

furthermore limited by two additional factors: the sending constraints of its upstream links, and
the receiving constraints of its downstream links. Intuitively, the set {Sl(t), l ∈ In} of upstream
sending constraints imposed on node n considers the number of vehicles currently available to be
serviced by the node on each of it’s incoming links. The relevant downstream receiving constraints
{Rm(t), m ∈ On} are limitations in the service rate of the node due to lack of space downstream30

to receive the transmitted flow.
The specific forms of S(t) and R(t) will vary according to the link dynamics being mod-

eled. But in terms of these generalized constraints, the flow departing each upstream link l ∈ In
can be defined as follows:

dl(t) = Gl(t) min

{
Sl(t), min

z∈Out(l)

{
1

βl,zn
Rz(t)

}}
(3)

where n is the terminal node of link l. Notice that this is designed to enforce that vehicles follow
a first in, first out (FIFO) principle: queue discharge is limited by the most restrictive downstream
demand function so that downstream queue capacities are not exceeded while discharge remains
consistent with the specified static split ratios. The flow arriving into downstream queues m ∈ On

must then balance this departing flow:

am(t) =
∑
k∈In

βk,mn dk(t) (4)



Anderson, Gomes, and Bayen 7

As previously mentioned, CTM and VCM impose different sending and receiving con-
straints on network nodes. These differences are related to the variations in how they depict con-
gestion within a link. The remainder of this section describes the difference between these two
model link dynamics.

Cell Transmission Model (CTM)5

The CTM is a discrete-time finite difference scheme which numerically approximates the LWR
hydrodynamic model of traffic flow. Define ρ(x, t) to be the density of vehicles at spatial location
x and time t, and q(ρ) to be the corresponding flow of vehicles at point (x, t). The LWR model is
defined by the following flow-conserving partial differential equation:

∂ρ

∂t
+

∂

∂x

(
q(ρ)

)
= 0 (5)

The discretization scheme of CTM specifically defines a piecewise-linear relationship be-
tween flow q and density ρ, an example of which is shown in Figure 2. For modeled link l, this
fundamental diagram relationship is parameterized by free-flow velocity Vl, maximum (capacity)
flow cl, queue dissipation speed Wl, and maximum (jam) density ρmax

l :

ql(ρl(x, t)) = min
{
Vlρ(x, t), cl,W

(
ρmax
l − ρl(x, t)

)}
(6)

FIGURE 2 The discretization scheme of CTM enforces a piecewise-linear relationship
between the spatial density of vehicles on a link and the flow of vehicles through the link. A
triangular variety in which ρmax = c

(
1
V

+ 1
W

)
is also widely employed.

Consider a temporal discretization with uniform time steps of length that is small relative
to typical actuation times for a signal control phases in the network being modeled. In CTM, a
road is spatially discretized into a series of homogenous cells of uniform length which is equal
to the distance traveled by free-flowing traffic in a single model time interval ∆t. Each network10

link l is therefore divided into a series of τl = b Ll

Vl·∆t
c cells. An illustration of this cell division is

presented in Figure 3.
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FIGURE 3 At each CTM time step, cell state ni(t) is increased by inflow yi(t) and de-
creased by outflow yi+1(t). The state update equation for this cell is therefore a function of
both the state of cell i and the state of the downstream cell i + 1. A link’s receiving con-
straint Rl(t) is a function of only the first cell’s state n1

l (t), and its sending constraint Sl(t) is
a function of only the last cell’s state nτll (t).

Also define the following cell-normalized fundamental diagram parameters:

Ṽl = Vl ·
∆tτl
Ll

W̃l = Wl ·
∆tτl
Ll

c̃l = cl∆t

Ñl = ρmax
l

Ll
τl

The state of each network link l can then be represented by a vector nl with elements {nil, i =
1, . . . , τl} representing the vehicle-count in each of these sequential cells. These scaled density
states evolve according to the vehicle conservation relationship

nil(t+ 1) = nil(t) + yil(t)− yi+1
l (t) (7)

where yi(t) represents the number of vehicles entering cell i during each time interval, defined as
follows:

yi(t) =


al(t), i = 1

min
{
Ṽln

i−1(t), cl, W̃l

[
Ñl − nil(t)

]}
νl ·∆t, i = 2, . . . , τl

dl(t), i = τl + 1

(8)

with νl equal to the number of lanes on link l. The receiving constraint put on the upstream node
of a CTM link is a function of the state of only the first cell in a link, n1

l (t):

Rl(t) = νl min

{
cl, W̃l

[
Ñl − n1

l (t)
]}

(∆t) (9)

Similarly, the sending constraint put on a downstream node is a function of only the last cell’s state
nτl (t):

Sl(t) = νl min

{
cl, Ṽln

τ
l (t)

}
(∆t) (10)
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Vertical Cell Model (VCM)
VCM is a new approach to a vertical queueing model which largely approximates the behavior of
a point-queue model in the same cell-based context as CTM. Unlike most vertical queueing model
formulations, it maintains a well-defined representation of both link travel delay and finite queue
capacity. In this way, VCM may be classified as what some call a spatial queueing model.5

Upon entering a VCM link, flows propagate at each step (without constraint) through a
sequence of (τl − 1) transit cells, after which they enter a terminal queueing cell. Therefore
τl = b Ll

Vl·∆t
c state variables are required to represent the state of each link l in VCM (as in CTM):

• vil(t), i = 1, . . . , (τl − 1) are non-negative values representing the amount of vehicle-flow
that has entered the link at time t− i, but has not yet traveled the length of the link to become10

eligible to exit, and

• ql(t) represents the amount of vehicle-flow which has traversed the entire link length and is
therefore queued to immediately exit the link.

FIGURE 4 VCM passes link input flows a constant rate between non-physical “transit
cells” until they reach a vertical “exit queue”. To enforce finite queue storage capacity, link
receiving constants are a function of the number of vehicles in all “cells” of the network.
Sending constraints, however, only depend on the number of vehicles that are explicitly in
the exit queue.

Explicitly, the transit queue states vil(t) and exit queue state ql(t) evolve as follows:

v1
l (t+ 1)
v2
l (t+ 1)
v3
l (t+ 1)

...
vτl−2
l (t+ 1)

vτl−1
l (t+ 1)
ql(t+ 1)


=



0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

... . . . . . . ...
...

...
0 0 0 . . . 0 0 0
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 1





v1
l (t)
v2
l (t)
v3
l (t)
...

vτl−2
l (t)

vτl−1
l (t)
ql(t)


+



1 0
0 0
0 0
...

...
0 0
0 0
0 −1


[
al(t)
dl(t)

]
(11)

This progression of vehicles across a VCM link is also illustrated in Figure 4.
Each VCM link is parameterized by a freeflow travel velocity Vl, a maximum flow rate

(capacity) cl, and a fixed queue capacity (per lane) κl. Notably, however, VCM links do not
enforce a fundamental relationship between spatial density and flow rate. Unlike the independent
cell supply limitation of CTM, receiving constraints in VCM are a function of the state of all link
cells:

Rl(t) = νl min
{
cl ·∆t, κl − ql(t)−

∑
i=1...(τl−1)

vil(t)
}

(12)
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VCM sending constraints, however, depend only on vehicles that are explicitly in the exit queue:

Sl(t) = νl min
{
cl ·∆t, ql(t)

}
(13)

Interpretation of the Physical Differences Between VCM and CTM
The independent storage capacity constraints of cells within a CTM link propagates the spatial
location of high-density flows within a road link. This characterizes a horizontal queueing model.
Such spatial differentiation is a theoretically desirable characteristic, especially for representing
freeways or major highways with long spans where flow is not artificially interrupted. While CTM5

should be able to propagate the effects of the theoretical “stop and go” shockwaves created by
frequent stopping due to signal controllers, accurate representation of these types of behaviors
would necessitate extremely high spatial resolution and therefore high temporal discretization in a
CTM implementation (recall that τl = b Ll

Vl·∆t
c).

Meanwhile, network cells on an arterial road corresponding to a model time step of 1-510

seconds typically represent very small portions of roadway where the relationship between flow
and density is not always as well-defined. As can be seen in a visualization of observed vehicle tra-
jectories on an urban network (available online at http://youtu.be/jJen2ybNr34), queue aggregation
and dissipation behaviors can vary significantly from link to link. Hence tuning the required funda-
mental diagram parameters to precisely represent observed conditions is a challenge—especially15

the backwards shockwave speed W, which is even difficult to measure will full knowledge of
system state. Furthermore, queues do not always dissipate as would be predicted by a rigid fun-
damental diagram relationship. This is perhaps because unmodeled factors such as varying driver
response and vehicle acceleration times are dominant in practical urban traffic dynamics.

Unlike the horizontal queue of CTM, VCM models a vertical queue or “stack” which is20

not assigned to any physical distance along the link. It can be interpreted as modeling vehicles that
can only either travel at maximum velocity (V) or be completely stopped. These vehicles traverse
the entire distance of a link, unconstrained by downstream congestion, before stopping in a queue.
Hence flow across a VCM link is less constrained by the presence of congestion. Furthermore,
queue dissipation is not limited by shockwave speed W in VCM as it is in CTM. Instead, link flow25

capacity is the only constraint on queue discharge. It is therefore expected that link queues may
empty more quickly in VCM than in CTM.

Another effect of the vertical queueing approach is the difference in upstream receiving
(or supply) constraints. A downstream departure will immediately yield effects on link receiving
constraints in VCM, while the effect of departures will take at least τ time steps to impact receiving30

constraints in CTM. The physical representativeness of this behavior remains to be examined, but
it will depend on the synchronization of a link’s service periods to demand patterns caused by
upstream signals.

These two simplifications of VCM (as compared to CTM) result in the linear model for link
dynamics shown in equation (11). In fact, the only non-linearities in VCM are contained within the35

network node model. The linear link model yields potential benefits for the derivation of link-state
estimation and model-based control procedures.

VALIDATION PROCEDURE
Our experimental network was designed to simulate the flows on five blocks of Lankershim Blvd.
in Los Angeles, California, USA. The selection of this simulation area was motivated by the avail-40

http://youtu.be/jJen2ybNr34
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ability of a set of high resolution ground-truth vehicle trajectory data that was collected at this
location by the Next Generation Simulation Community (NGSIM). This dataset is available online
at http://ngsim-community.org/.

FIGURE 5 High-resolution vehicle trajectories are available for five blocks of Lankershim
Blvd. The graphical representation to the right (not drawn to scale) was used to model link
flows for independent movements. The four larger intersection nodes represent the four
major signalized intersections on Lankershim Blvd. Each internal road is represented by 1-4
parallel links in each direction indicating the independently actuated movement queues. Five
smaller intermediate nodes represent locations where spill-back from turning bays which
could potentially cause partial blocking of the neighboring through movement. Network
links are labeled with the corresponding lane counts used in simulation.

Detailed vehicle trajectory traces originate from video obtained by five high-definition cam-
eras monitoring a 1,600-foot stretch of road from 8:28 am to 9:02 am on June 16, 2005. During5

this period, 2,442 vehicles were detected within the monitored area, and their trajectories were
transcribed at a time resolution of ten samples per second. According to NGSIM documentation,
the compiled trajectory position points are accurate up to a four foot radius.

http://ngsim-community.org/
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A visual inspection of the data in the form of an animated compilation of vehicle trajecto-
ries, available online at http://youtu.be/jJen2ybNr34, reveals that flows were typically constrained
only by signal controllers: vehicles did not suffer severe delays due to pedestrians or other uncon-
trolled obstacles.

Due to the priority put on the through movements of the signals on Lankershim Blvd in the5

relevant signal control parameters, the observed links were generally undersaturated throughout the
entire observation period. However some oversaturation caused noticeable congestion from Link
2NB to spill back onto Link 1NB during the last ten minutes of data collection. Unfortunately, the
effects of this spillback on link 1NB were unobservable due to the limited geographical range of
the trajectory data (very few of the vehicles originating from Link 1 were detected to be on the link10

in the trajectory data).
To specifically evaluate both VCM and CTM, we compared the output densities and flows

output by each model to the observed density and flow patterns generated by aggregating the posi-
tions documented in the tracked trajectories over time and space. Both models were implemented
using the Berkeley Advance Traffic Simulation (BeATS) platform with a model discretization of15

∆t = 1 second. They shared a common graphical network (shown in Figure 5) and were initial-
ized with the same geometric information, input flows, split ratios, and signal timings.

Geometry data such as link length and lane count was compiled from a satellite map image
and various NGSIM documentation. The network graph used in this procedure is illustrated in
Figure 5. Incoming boundary flows were collected by aggregating the initial appearances of tracked20

vehicles at each entry link with a five second resolution. Split ratios were considered static over the
entire simulation period. They were estimated by comparing the vehicle counts corresponding to
each intersection approach aggregated over the entire observation period. Signal parameters were
documented in the NGSIM data package, but we synchronized the precise offsets to correspond
to trajectory data timestamps via the initiation of observed outflows in links corresponding to the25

major approaches for each intersection.

RESULTS
Both VCM and CTM were able to accurately predict the general levels of congestion observed on
the Lankershim Blvd network during the 30 minute observation period with minimal parameter
tuning. In fact, we found only minute differences in the modeled link outflows for the entire period30

of available data. Both models seemed to smooth “spikes” in the true link outflows, which were
most likely physically caused by unpredictable variations in driver acceleration behaviors. When
differences in modeled outflows did exist, the most common observation was that CTM seemed to
attenuate the observed outflows at a slightly higher magnitude, as seen in the example in Figure 6.
This could be caused by the delay on queue dissipation imposed by the dissipation wave speed W35

in CTM’s flow-density relation: modeled flows are constrained in a queue slightly longer and at a
location further upstream in CTM than in VCM, where the exit queue is only limited by link flow
capacity and it is assumed that the travel time of de-queuing vehicles has already been incurred.

The errors observed in all modeled link outflows, as shown in Figure 7, reveal little vari-
ation between the errors in outflows predicted by the two link dynamics. But by analyzing cu-40

mulative modeled link outflows, it becomes apparent that both models have a slight tendency to
overestimate links outflows. The percent of cumulative error in outflow estimates for all through-
movements on Lankershim Blvd. links over the entire simulation period are tabulated in Table 1.
The similarity between the cumulative outflow estimation errors of the two models suggests that

http://youtu.be/jJen2ybNr34
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FIGURE 6 Modeled and observed flows exiting the through movement of Link 3 in
the southbound direction illustrate typical outflow variations in this analysis. Both mod-
els seemed to smooth the true outflows, but reached approximated capacity flows at similar
times.

this error was more likely caused by unpredictable flow impediments, parameter mistuning, or a
common misrepresentation in the network geometry than by differences in fundamental modeling
assumptions.

TABLE 1 Cumulative Outflow Model Error
Model Type Link 2NB Link 3NB Link 4NB Link 4SB Link 3SB Link 2SB

CTM 0.93% 4.53% 1.69% 0.79% 9.25% 6.74%
VCM 0.84% 4.29% 1.27% 0.76% 9.09% 6.53%

As expected given the similarities between link flow transfers, CTM and VCM yielded very
similar link-vehicle counts aggregated over a 5-second time period. The modeled and observed5

states of all internal network links representing through movements are depicted in Figure 8. While
VCM typically resulted in slightly larger link densities than CTM, it was not necessarily more
representative of true link state. Neither model seemed to have a clear advantage over the other in
correctly estimating link state.

CONCLUSION10

Our results serve to validate the use of a vertical queueing model such as VCM in the case of the
studied network. In fact, in our analysis (which was limited to a single model run by the lack of
appropriate data), VCM appears to have performed slightly better than CTM in terms of cumulative
link flow error. This work may help justify the relative analytical simplicity of using a similar point
queue dynamics for applications of model-based arterial estimation and signal control—especially15
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FIGURE 7 Differences in link outflow error between CTM and VCM (relative to observa-
tion) were minimal.

in cases where the measurements available for controller feedback is of very low resolution.
Because the links on Lankershim Blvd remained in the undersaturated regime for the en-

tire observation period, we were notably not able to investigate model performance in the high-
congestion conditions where CTM is expected to out-perform a vertical model. Likely due to this
lack of over-saturation, we also found very little output sensitivity to backwards shockwave speed5

W in the CTM model—which is the critical difference in the assumptions of CTM and VCM. This
unfortunately prevented conclusive results on the relative benefits of a horizontal queueing model.

Yet further analysis is limited by the lack of quality ground truth data on an appropriate
urban network. We plan to immediately repeat this procedure with the companion NGSIM arterial
trajectory data set on Peachtree St. in Atlanta. This network features longer links with more10

volume but lower velocities.
We also seek opportunities to compare the estimations provided by each of these models

to a calibrated microsimulation model of a congested network with high connectivity. We would
like to quantify the network impacts of congestion on a grid-link network with the possibility of
complicated routing patterns and more significant conflicting flow demands. However, the most15

difficult part of this investigation was the formalization of a network representation that could
accurately capture all of the characteristics of a realistic traffic network, including capacity reduc-
tions from turn bay blocking and complete independence of non-simultaneously-actuated queues.
A larger or more inter-connected network would intensify this part of the modeling procedure.
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FIGURE 8 The modeled flow differences resulted in minor variations in link density states
in the internal links, but neither model consistently resulted in a better representation of link
state.

While VCM is analytically simpler than a horizontal queueing model and results in differ-
ent queue dissipation behaviors, it does not provide any computational benefit over a CTM that
is run at the same time discretization. We are currently developing a generalized analytical point
queue model which could be implemented on a simplified arterial graphical network. In future
work we will propose a link dynamics which will eliminate the need for explicit representation of5

parallel “movement” links in the underlying network structure. Instead, separate capacities on co-
located movement queues will be tracked within the mathematical structure of the vertical queuing
model. This would greatly simplify the process of building an appropriate representative network
structure (which is a significant obstacle to a practical implementation of such a queueing model).

We ultimately hope to deploy an appropriate queueing model of an arterial network sur-10

rounding the I-210 freeway near Los Angeles, California as part of California PATH’s Connnected
Corridors integrated corridor management project (http://connected-corridors.berkeley.edu/). We
seek a model of dynamic traffic flow that is easily tunable and practical for largely-automated func-
tionality, but is also sufficiently accurate on realistic urban networks to produce estimations for use
in predictive control procedures. Additionally, we want our selected model to be easily interfaced15

with a concurrent macroscopic freeway model in terms of shared boundary flows and equivalent
calculations of performance metrics.

http://connected-corridors.berkeley.edu/
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